xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsSEISelLowering.cpp (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/MachineValueType.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/SelectionDAGNodes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/IntrinsicsMips.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/TargetParser/Triple.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <utility>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "mips-isel"
54 
55 static cl::opt<bool>
56 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
57                     cl::desc("MIPS: permit tail calls."), cl::init(false));
58 
59 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
60                                    cl::desc("Expand double precision loads and "
61                                             "stores to their single precision "
62                                             "counterparts"));
63 
64 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
65                                            const MipsSubtarget &STI)
66     : MipsTargetLowering(TM, STI) {
67   // Set up the register classes
68   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
69 
70   if (Subtarget.isGP64bit())
71     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
72 
73   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
74     // Expand all truncating stores and extending loads.
75     for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) {
76       for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) {
77         setTruncStoreAction(VT0, VT1, Expand);
78         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
79         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
80         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
81       }
82     }
83   }
84 
85   if (Subtarget.hasDSP()) {
86     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
87 
88     for (const auto &VecTy : VecTys) {
89       addRegisterClass(VecTy, &Mips::DSPRRegClass);
90 
91       // Expand all builtin opcodes.
92       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
93         setOperationAction(Opc, VecTy, Expand);
94 
95       setOperationAction(ISD::ADD, VecTy, Legal);
96       setOperationAction(ISD::SUB, VecTy, Legal);
97       setOperationAction(ISD::LOAD, VecTy, Legal);
98       setOperationAction(ISD::STORE, VecTy, Legal);
99       setOperationAction(ISD::BITCAST, VecTy, Legal);
100     }
101 
102     setTargetDAGCombine(
103         {ISD::SHL, ISD::SRA, ISD::SRL, ISD::SETCC, ISD::VSELECT});
104 
105     if (Subtarget.hasMips32r2()) {
106       setOperationAction(ISD::ADDC, MVT::i32, Legal);
107       setOperationAction(ISD::ADDE, MVT::i32, Legal);
108     }
109   }
110 
111   if (Subtarget.hasDSPR2())
112     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
113 
114   if (Subtarget.hasMSA()) {
115     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
116     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
117     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
118     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
119     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
120     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
121     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
122 
123     // f16 is a storage-only type, always promote it to f32.
124     addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
125     setOperationAction(ISD::SETCC, MVT::f16, Promote);
126     setOperationAction(ISD::BR_CC, MVT::f16, Promote);
127     setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
128     setOperationAction(ISD::SELECT, MVT::f16, Promote);
129     setOperationAction(ISD::FADD, MVT::f16, Promote);
130     setOperationAction(ISD::FSUB, MVT::f16, Promote);
131     setOperationAction(ISD::FMUL, MVT::f16, Promote);
132     setOperationAction(ISD::FDIV, MVT::f16, Promote);
133     setOperationAction(ISD::FREM, MVT::f16, Promote);
134     setOperationAction(ISD::FMA, MVT::f16, Promote);
135     setOperationAction(ISD::FNEG, MVT::f16, Promote);
136     setOperationAction(ISD::FABS, MVT::f16, Promote);
137     setOperationAction(ISD::FCEIL, MVT::f16, Promote);
138     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
139     setOperationAction(ISD::FCOS, MVT::f16, Promote);
140     setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
141     setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
142     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
143     setOperationAction(ISD::FPOW, MVT::f16, Promote);
144     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
145     setOperationAction(ISD::FRINT, MVT::f16, Promote);
146     setOperationAction(ISD::FSIN, MVT::f16, Promote);
147     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
148     setOperationAction(ISD::FSQRT, MVT::f16, Promote);
149     setOperationAction(ISD::FEXP, MVT::f16, Promote);
150     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
151     setOperationAction(ISD::FLOG, MVT::f16, Promote);
152     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
153     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
154     setOperationAction(ISD::FROUND, MVT::f16, Promote);
155     setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
156     setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
157     setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
158     setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
159     setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
160 
161     setTargetDAGCombine({ISD::AND, ISD::OR, ISD::SRA, ISD::VSELECT, ISD::XOR});
162   }
163 
164   if (!Subtarget.useSoftFloat()) {
165     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
166 
167     // When dealing with single precision only, use libcalls
168     if (!Subtarget.isSingleFloat()) {
169       if (Subtarget.isFP64bit())
170         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
171       else
172         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
173     }
174   }
175 
176   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
177   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
178   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
179   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
180 
181   if (Subtarget.hasCnMips())
182     setOperationAction(ISD::MUL,              MVT::i64, Legal);
183   else if (Subtarget.isGP64bit())
184     setOperationAction(ISD::MUL,              MVT::i64, Custom);
185 
186   if (Subtarget.isGP64bit()) {
187     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
188     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
189     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
190     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
191     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
192     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
193   }
194 
195   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
196   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
197 
198   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
199   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
200   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
201   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
202   setOperationAction(ISD::STORE,              MVT::i32, Custom);
203 
204   setTargetDAGCombine(ISD::MUL);
205 
206   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
207   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
208   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
209 
210   if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() &&
211       !Subtarget.hasMips64()) {
212     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
213   }
214 
215   if (NoDPLoadStore) {
216     setOperationAction(ISD::LOAD, MVT::f64, Custom);
217     setOperationAction(ISD::STORE, MVT::f64, Custom);
218   }
219 
220   if (Subtarget.hasMips32r6()) {
221     // MIPS32r6 replaces the accumulator-based multiplies with a three register
222     // instruction
223     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
224     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
225     setOperationAction(ISD::MUL, MVT::i32, Legal);
226     setOperationAction(ISD::MULHS, MVT::i32, Legal);
227     setOperationAction(ISD::MULHU, MVT::i32, Legal);
228 
229     // MIPS32r6 replaces the accumulator-based division/remainder with separate
230     // three register division and remainder instructions.
231     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
232     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
233     setOperationAction(ISD::SDIV, MVT::i32, Legal);
234     setOperationAction(ISD::UDIV, MVT::i32, Legal);
235     setOperationAction(ISD::SREM, MVT::i32, Legal);
236     setOperationAction(ISD::UREM, MVT::i32, Legal);
237 
238     // MIPS32r6 replaces conditional moves with an equivalent that removes the
239     // need for three GPR read ports.
240     setOperationAction(ISD::SETCC, MVT::i32, Legal);
241     setOperationAction(ISD::SELECT, MVT::i32, Legal);
242     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
243 
244     setOperationAction(ISD::SETCC, MVT::f32, Legal);
245     setOperationAction(ISD::SELECT, MVT::f32, Legal);
246     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
247 
248     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
249     setOperationAction(ISD::SETCC, MVT::f64, Legal);
250     setOperationAction(ISD::SELECT, MVT::f64, Custom);
251     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
252 
253     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
254 
255     // Floating point > and >= are supported via < and <=
256     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
257     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
258     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
259     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
260 
261     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
262     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
263     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
264     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
265   }
266 
267   if (Subtarget.hasMips64r6()) {
268     // MIPS64r6 replaces the accumulator-based multiplies with a three register
269     // instruction
270     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
271     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
272     setOperationAction(ISD::MUL, MVT::i64, Legal);
273     setOperationAction(ISD::MULHS, MVT::i64, Legal);
274     setOperationAction(ISD::MULHU, MVT::i64, Legal);
275 
276     // MIPS32r6 replaces the accumulator-based division/remainder with separate
277     // three register division and remainder instructions.
278     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
279     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
280     setOperationAction(ISD::SDIV, MVT::i64, Legal);
281     setOperationAction(ISD::UDIV, MVT::i64, Legal);
282     setOperationAction(ISD::SREM, MVT::i64, Legal);
283     setOperationAction(ISD::UREM, MVT::i64, Legal);
284 
285     // MIPS64r6 replaces conditional moves with an equivalent that removes the
286     // need for three GPR read ports.
287     setOperationAction(ISD::SETCC, MVT::i64, Legal);
288     setOperationAction(ISD::SELECT, MVT::i64, Legal);
289     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
290   }
291 
292   computeRegisterProperties(Subtarget.getRegisterInfo());
293 }
294 
295 const MipsTargetLowering *
296 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
297                                  const MipsSubtarget &STI) {
298   return new MipsSETargetLowering(TM, STI);
299 }
300 
301 const TargetRegisterClass *
302 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
303   if (VT == MVT::Untyped)
304     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
305 
306   return TargetLowering::getRepRegClassFor(VT);
307 }
308 
309 // Enable MSA support for the given integer type and Register class.
310 void MipsSETargetLowering::
311 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
312   addRegisterClass(Ty, RC);
313 
314   // Expand all builtin opcodes.
315   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
316     setOperationAction(Opc, Ty, Expand);
317 
318   setOperationAction(ISD::BITCAST, Ty, Legal);
319   setOperationAction(ISD::LOAD, Ty, Legal);
320   setOperationAction(ISD::STORE, Ty, Legal);
321   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
322   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
323   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
324   setOperationAction(ISD::UNDEF, Ty, Legal);
325 
326   setOperationAction(ISD::ADD, Ty, Legal);
327   setOperationAction(ISD::AND, Ty, Legal);
328   setOperationAction(ISD::CTLZ, Ty, Legal);
329   setOperationAction(ISD::CTPOP, Ty, Legal);
330   setOperationAction(ISD::MUL, Ty, Legal);
331   setOperationAction(ISD::OR, Ty, Legal);
332   setOperationAction(ISD::SDIV, Ty, Legal);
333   setOperationAction(ISD::SREM, Ty, Legal);
334   setOperationAction(ISD::SHL, Ty, Legal);
335   setOperationAction(ISD::SRA, Ty, Legal);
336   setOperationAction(ISD::SRL, Ty, Legal);
337   setOperationAction(ISD::SUB, Ty, Legal);
338   setOperationAction(ISD::SMAX, Ty, Legal);
339   setOperationAction(ISD::SMIN, Ty, Legal);
340   setOperationAction(ISD::UDIV, Ty, Legal);
341   setOperationAction(ISD::UREM, Ty, Legal);
342   setOperationAction(ISD::UMAX, Ty, Legal);
343   setOperationAction(ISD::UMIN, Ty, Legal);
344   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
345   setOperationAction(ISD::VSELECT, Ty, Legal);
346   setOperationAction(ISD::XOR, Ty, Legal);
347 
348   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
349     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
350     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
351     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
352     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
353   }
354 
355   setOperationAction(ISD::SETCC, Ty, Legal);
356   setCondCodeAction(ISD::SETNE, Ty, Expand);
357   setCondCodeAction(ISD::SETGE, Ty, Expand);
358   setCondCodeAction(ISD::SETGT, Ty, Expand);
359   setCondCodeAction(ISD::SETUGE, Ty, Expand);
360   setCondCodeAction(ISD::SETUGT, Ty, Expand);
361 }
362 
363 // Enable MSA support for the given floating-point type and Register class.
364 void MipsSETargetLowering::
365 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
366   addRegisterClass(Ty, RC);
367 
368   // Expand all builtin opcodes.
369   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
370     setOperationAction(Opc, Ty, Expand);
371 
372   setOperationAction(ISD::LOAD, Ty, Legal);
373   setOperationAction(ISD::STORE, Ty, Legal);
374   setOperationAction(ISD::BITCAST, Ty, Legal);
375   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
376   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
377   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
378 
379   if (Ty != MVT::v8f16) {
380     setOperationAction(ISD::FABS,  Ty, Legal);
381     setOperationAction(ISD::FADD,  Ty, Legal);
382     setOperationAction(ISD::FDIV,  Ty, Legal);
383     setOperationAction(ISD::FEXP2, Ty, Legal);
384     setOperationAction(ISD::FLOG2, Ty, Legal);
385     setOperationAction(ISD::FMA,   Ty, Legal);
386     setOperationAction(ISD::FMUL,  Ty, Legal);
387     setOperationAction(ISD::FRINT, Ty, Legal);
388     setOperationAction(ISD::FSQRT, Ty, Legal);
389     setOperationAction(ISD::FSUB,  Ty, Legal);
390     setOperationAction(ISD::VSELECT, Ty, Legal);
391 
392     setOperationAction(ISD::SETCC, Ty, Legal);
393     setCondCodeAction(ISD::SETOGE, Ty, Expand);
394     setCondCodeAction(ISD::SETOGT, Ty, Expand);
395     setCondCodeAction(ISD::SETUGE, Ty, Expand);
396     setCondCodeAction(ISD::SETUGT, Ty, Expand);
397     setCondCodeAction(ISD::SETGE,  Ty, Expand);
398     setCondCodeAction(ISD::SETGT,  Ty, Expand);
399   }
400 }
401 
402 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
403   if(!Subtarget.hasMips32r6())
404     return MipsTargetLowering::LowerOperation(Op, DAG);
405 
406   EVT ResTy = Op->getValueType(0);
407   SDLoc DL(Op);
408 
409   // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
410   // floating point register are undefined. Not really an issue as sel.d, which
411   // is produced from an FSELECT node, only looks at bit 0.
412   SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
413   return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
414                      Op->getOperand(2));
415 }
416 
417 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses(
418     EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
419   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
420 
421   if (Subtarget.systemSupportsUnalignedAccess()) {
422     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
423     // implementation defined whether this is handled by hardware, software, or
424     // a hybrid of the two but it's expected that most implementations will
425     // handle the majority of cases in hardware.
426     if (Fast)
427       *Fast = 1;
428     return true;
429   }
430 
431   switch (SVT) {
432   case MVT::i64:
433   case MVT::i32:
434     if (Fast)
435       *Fast = 1;
436     return true;
437   default:
438     return false;
439   }
440 }
441 
442 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
443                                              SelectionDAG &DAG) const {
444   switch(Op.getOpcode()) {
445   case ISD::LOAD:  return lowerLOAD(Op, DAG);
446   case ISD::STORE: return lowerSTORE(Op, DAG);
447   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
448   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
449   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
450   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
451   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
452   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
453   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
454                                           DAG);
455   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
456   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
457   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
458   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
459   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
460   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
461   case ISD::SELECT:             return lowerSELECT(Op, DAG);
462   case ISD::BITCAST:            return lowerBITCAST(Op, DAG);
463   }
464 
465   return MipsTargetLowering::LowerOperation(Op, DAG);
466 }
467 
468 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
469 //
470 // Performs the following transformations:
471 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
472 //   sign/zero-extension is completely overwritten by the new one performed by
473 //   the ISD::AND.
474 // - Removes redundant zero extensions performed by an ISD::AND.
475 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
476                                  TargetLowering::DAGCombinerInfo &DCI,
477                                  const MipsSubtarget &Subtarget) {
478   if (!Subtarget.hasMSA())
479     return SDValue();
480 
481   SDValue Op0 = N->getOperand(0);
482   SDValue Op1 = N->getOperand(1);
483   unsigned Op0Opcode = Op0->getOpcode();
484 
485   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
486   // where $d + 1 == 2^n and n == 32
487   // or    $d + 1 == 2^n and n <= 32 and ZExt
488   // -> (MipsVExtractZExt $a, $b, $c)
489   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
490       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
491     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
492 
493     if (!Mask)
494       return SDValue();
495 
496     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
497 
498     if (Log2IfPositive <= 0)
499       return SDValue(); // Mask+1 is not a power of 2
500 
501     SDValue Op0Op2 = Op0->getOperand(2);
502     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
503     unsigned ExtendTySize = ExtendTy.getSizeInBits();
504     unsigned Log2 = Log2IfPositive;
505 
506     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
507         Log2 == ExtendTySize) {
508       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
509       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
510                          Op0->getVTList(),
511                          ArrayRef(Ops, Op0->getNumOperands()));
512     }
513   }
514 
515   return SDValue();
516 }
517 
518 // Determine if the specified node is a constant vector splat.
519 //
520 // Returns true and sets Imm if:
521 // * N is a ISD::BUILD_VECTOR representing a constant splat
522 //
523 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
524 // differences are that it assumes the MSA has already been checked and the
525 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
526 // must not be in order for binsri.d to be selectable).
527 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
528   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
529 
530   if (!Node)
531     return false;
532 
533   APInt SplatValue, SplatUndef;
534   unsigned SplatBitSize;
535   bool HasAnyUndefs;
536 
537   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
538                              8, !IsLittleEndian))
539     return false;
540 
541   Imm = SplatValue;
542 
543   return true;
544 }
545 
546 // Test whether the given node is an all-ones build_vector.
547 static bool isVectorAllOnes(SDValue N) {
548   // Look through bitcasts. Endianness doesn't matter because we are looking
549   // for an all-ones value.
550   if (N->getOpcode() == ISD::BITCAST)
551     N = N->getOperand(0);
552 
553   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
554 
555   if (!BVN)
556     return false;
557 
558   APInt SplatValue, SplatUndef;
559   unsigned SplatBitSize;
560   bool HasAnyUndefs;
561 
562   // Endianness doesn't matter in this context because we are looking for
563   // an all-ones value.
564   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
565     return SplatValue.isAllOnes();
566 
567   return false;
568 }
569 
570 // Test whether N is the bitwise inverse of OfNode.
571 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
572   if (N->getOpcode() != ISD::XOR)
573     return false;
574 
575   if (isVectorAllOnes(N->getOperand(0)))
576     return N->getOperand(1) == OfNode;
577 
578   if (isVectorAllOnes(N->getOperand(1)))
579     return N->getOperand(0) == OfNode;
580 
581   return false;
582 }
583 
584 // Perform combines where ISD::OR is the root node.
585 //
586 // Performs the following transformations:
587 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
588 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
589 //   vector type.
590 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
591                                 TargetLowering::DAGCombinerInfo &DCI,
592                                 const MipsSubtarget &Subtarget) {
593   if (!Subtarget.hasMSA())
594     return SDValue();
595 
596   EVT Ty = N->getValueType(0);
597 
598   if (!Ty.is128BitVector())
599     return SDValue();
600 
601   SDValue Op0 = N->getOperand(0);
602   SDValue Op1 = N->getOperand(1);
603 
604   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
605     SDValue Op0Op0 = Op0->getOperand(0);
606     SDValue Op0Op1 = Op0->getOperand(1);
607     SDValue Op1Op0 = Op1->getOperand(0);
608     SDValue Op1Op1 = Op1->getOperand(1);
609     bool IsLittleEndian = !Subtarget.isLittle();
610 
611     SDValue IfSet, IfClr, Cond;
612     bool IsConstantMask = false;
613     APInt Mask, InvMask;
614 
615     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
616     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
617     // looking.
618     // IfClr will be set if we find a valid match.
619     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
620       Cond = Op0Op0;
621       IfSet = Op0Op1;
622 
623       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
624           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
625         IfClr = Op1Op1;
626       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
627                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
628         IfClr = Op1Op0;
629 
630       IsConstantMask = true;
631     }
632 
633     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
634     // thing again using this mask.
635     // IfClr will be set if we find a valid match.
636     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
637       Cond = Op0Op1;
638       IfSet = Op0Op0;
639 
640       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
641           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
642         IfClr = Op1Op1;
643       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
644                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
645         IfClr = Op1Op0;
646 
647       IsConstantMask = true;
648     }
649 
650     // If IfClr is not yet set, try looking for a non-constant match.
651     // IfClr will be set if we find a valid match amongst the eight
652     // possibilities.
653     if (!IfClr.getNode()) {
654       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
655         Cond = Op1Op0;
656         IfSet = Op1Op1;
657         IfClr = Op0Op1;
658       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
659         Cond = Op1Op0;
660         IfSet = Op1Op1;
661         IfClr = Op0Op0;
662       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
663         Cond = Op1Op1;
664         IfSet = Op1Op0;
665         IfClr = Op0Op1;
666       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
667         Cond = Op1Op1;
668         IfSet = Op1Op0;
669         IfClr = Op0Op0;
670       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
671         Cond = Op0Op0;
672         IfSet = Op0Op1;
673         IfClr = Op1Op1;
674       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
675         Cond = Op0Op0;
676         IfSet = Op0Op1;
677         IfClr = Op1Op0;
678       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
679         Cond = Op0Op1;
680         IfSet = Op0Op0;
681         IfClr = Op1Op1;
682       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
683         Cond = Op0Op1;
684         IfSet = Op0Op0;
685         IfClr = Op1Op0;
686       }
687     }
688 
689     // At this point, IfClr will be set if we have a valid match.
690     if (!IfClr.getNode())
691       return SDValue();
692 
693     assert(Cond.getNode() && IfSet.getNode());
694 
695     // Fold degenerate cases.
696     if (IsConstantMask) {
697       if (Mask.isAllOnes())
698         return IfSet;
699       else if (Mask == 0)
700         return IfClr;
701     }
702 
703     // Transform the DAG into an equivalent VSELECT.
704     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
705   }
706 
707   return SDValue();
708 }
709 
710 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
711                                                SelectionDAG &DAG,
712                                                const MipsSubtarget &Subtarget) {
713   // Estimate the number of operations the below transform will turn a
714   // constant multiply into. The number is approximately equal to the minimal
715   // number of powers of two that constant can be broken down to by adding
716   // or subtracting them.
717   //
718   // If we have taken more than 12[1] / 8[2] steps to attempt the
719   // optimization for a native sized value, it is more than likely that this
720   // optimization will make things worse.
721   //
722   // [1] MIPS64 requires 6 instructions at most to materialize any constant,
723   //     multiplication requires at least 4 cycles, but another cycle (or two)
724   //     to retrieve the result from the HI/LO registers.
725   //
726   // [2] For MIPS32, more than 8 steps is expensive as the constant could be
727   //     materialized in 2 instructions, multiplication requires at least 4
728   //     cycles, but another cycle (or two) to retrieve the result from the
729   //     HI/LO registers.
730   //
731   // TODO:
732   // - MaxSteps needs to consider the `VT` of the constant for the current
733   //   target.
734   // - Consider to perform this optimization after type legalization.
735   //   That allows to remove a workaround for types not supported natively.
736   // - Take in account `-Os, -Oz` flags because this optimization
737   //   increases code size.
738   unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12;
739 
740   SmallVector<APInt, 16> WorkStack(1, C);
741   unsigned Steps = 0;
742   unsigned BitWidth = C.getBitWidth();
743 
744   while (!WorkStack.empty()) {
745     APInt Val = WorkStack.pop_back_val();
746 
747     if (Val == 0 || Val == 1)
748       continue;
749 
750     if (Steps >= MaxSteps)
751       return false;
752 
753     if (Val.isPowerOf2()) {
754       ++Steps;
755       continue;
756     }
757 
758     APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
759     APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
760                                   : APInt(BitWidth, 1) << C.ceilLogBase2();
761     if ((Val - Floor).ule(Ceil - Val)) {
762       WorkStack.push_back(Floor);
763       WorkStack.push_back(Val - Floor);
764     } else {
765       WorkStack.push_back(Ceil);
766       WorkStack.push_back(Ceil - Val);
767     }
768 
769     ++Steps;
770   }
771 
772   // If the value being multiplied is not supported natively, we have to pay
773   // an additional legalization cost, conservatively assume an increase in the
774   // cost of 3 instructions per step. This values for this heuristic were
775   // determined experimentally.
776   unsigned RegisterSize = DAG.getTargetLoweringInfo()
777                               .getRegisterType(*DAG.getContext(), VT)
778                               .getSizeInBits();
779   Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
780   if (Steps > 27)
781     return false;
782 
783   return true;
784 }
785 
786 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
787                             EVT ShiftTy, SelectionDAG &DAG) {
788   // Return 0.
789   if (C == 0)
790     return DAG.getConstant(0, DL, VT);
791 
792   // Return x.
793   if (C == 1)
794     return X;
795 
796   // If c is power of 2, return (shl x, log2(c)).
797   if (C.isPowerOf2())
798     return DAG.getNode(ISD::SHL, DL, VT, X,
799                        DAG.getConstant(C.logBase2(), DL, ShiftTy));
800 
801   unsigned BitWidth = C.getBitWidth();
802   APInt Floor = APInt(BitWidth, 1) << C.logBase2();
803   APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
804                                 APInt(BitWidth, 1) << C.ceilLogBase2();
805 
806   // If |c - floor_c| <= |c - ceil_c|,
807   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
808   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
809   if ((C - Floor).ule(Ceil - C)) {
810     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
811     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
812     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
813   }
814 
815   // If |c - floor_c| > |c - ceil_c|,
816   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
817   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
818   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
819   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
820 }
821 
822 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
823                                  const TargetLowering::DAGCombinerInfo &DCI,
824                                  const MipsSETargetLowering *TL,
825                                  const MipsSubtarget &Subtarget) {
826   EVT VT = N->getValueType(0);
827 
828   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
829     if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
830                               C->getAPIntValue(), VT, DAG, Subtarget))
831       return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
832                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
833                           DAG);
834 
835   return SDValue(N, 0);
836 }
837 
838 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
839                                       SelectionDAG &DAG,
840                                       const MipsSubtarget &Subtarget) {
841   // See if this is a vector splat immediate node.
842   APInt SplatValue, SplatUndef;
843   unsigned SplatBitSize;
844   bool HasAnyUndefs;
845   unsigned EltSize = Ty.getScalarSizeInBits();
846   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
847 
848   if (!Subtarget.hasDSP())
849     return SDValue();
850 
851   if (!BV ||
852       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
853                            EltSize, !Subtarget.isLittle()) ||
854       (SplatBitSize != EltSize) ||
855       (SplatValue.getZExtValue() >= EltSize))
856     return SDValue();
857 
858   SDLoc DL(N);
859   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
860                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
861 }
862 
863 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
864                                  TargetLowering::DAGCombinerInfo &DCI,
865                                  const MipsSubtarget &Subtarget) {
866   EVT Ty = N->getValueType(0);
867 
868   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
869     return SDValue();
870 
871   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
872 }
873 
874 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
875 // constant splats into MipsISD::SHRA_DSP for DSPr2.
876 //
877 // Performs the following transformations:
878 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
879 //   sign/zero-extension is completely overwritten by the new one performed by
880 //   the ISD::SRA and ISD::SHL nodes.
881 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
882 //   sequence.
883 //
884 // See performDSPShiftCombine for more information about the transformation
885 // used for DSPr2.
886 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
887                                  TargetLowering::DAGCombinerInfo &DCI,
888                                  const MipsSubtarget &Subtarget) {
889   EVT Ty = N->getValueType(0);
890 
891   if (Subtarget.hasMSA()) {
892     SDValue Op0 = N->getOperand(0);
893     SDValue Op1 = N->getOperand(1);
894 
895     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
896     // where $d + sizeof($c) == 32
897     // or    $d + sizeof($c) <= 32 and SExt
898     // -> (MipsVExtractSExt $a, $b, $c)
899     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
900       SDValue Op0Op0 = Op0->getOperand(0);
901       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
902 
903       if (!ShAmount)
904         return SDValue();
905 
906       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
907           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
908         return SDValue();
909 
910       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
911       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
912 
913       if (TotalBits == 32 ||
914           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
915            TotalBits <= 32)) {
916         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
917                           Op0Op0->getOperand(2) };
918         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
919                            Op0Op0->getVTList(),
920                            ArrayRef(Ops, Op0Op0->getNumOperands()));
921       }
922     }
923   }
924 
925   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
926     return SDValue();
927 
928   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
929 }
930 
931 
932 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
933                                  TargetLowering::DAGCombinerInfo &DCI,
934                                  const MipsSubtarget &Subtarget) {
935   EVT Ty = N->getValueType(0);
936 
937   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
938     return SDValue();
939 
940   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
941 }
942 
943 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
944   bool IsV216 = (Ty == MVT::v2i16);
945 
946   switch (CC) {
947   case ISD::SETEQ:
948   case ISD::SETNE:  return true;
949   case ISD::SETLT:
950   case ISD::SETLE:
951   case ISD::SETGT:
952   case ISD::SETGE:  return IsV216;
953   case ISD::SETULT:
954   case ISD::SETULE:
955   case ISD::SETUGT:
956   case ISD::SETUGE: return !IsV216;
957   default:          return false;
958   }
959 }
960 
961 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
962   EVT Ty = N->getValueType(0);
963 
964   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
965     return SDValue();
966 
967   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
968     return SDValue();
969 
970   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
971                      N->getOperand(1), N->getOperand(2));
972 }
973 
974 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
975   EVT Ty = N->getValueType(0);
976 
977   if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
978     SDValue SetCC = N->getOperand(0);
979 
980     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
981       return SDValue();
982 
983     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
984                        SetCC.getOperand(0), SetCC.getOperand(1),
985                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
986   }
987 
988   return SDValue();
989 }
990 
991 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
992                                  const MipsSubtarget &Subtarget) {
993   EVT Ty = N->getValueType(0);
994 
995   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
996     // Try the following combines:
997     //   (xor (or $a, $b), (build_vector allones))
998     //   (xor (or $a, $b), (bitcast (build_vector allones)))
999     SDValue Op0 = N->getOperand(0);
1000     SDValue Op1 = N->getOperand(1);
1001     SDValue NotOp;
1002 
1003     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1004       NotOp = Op1;
1005     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1006       NotOp = Op0;
1007     else
1008       return SDValue();
1009 
1010     if (NotOp->getOpcode() == ISD::OR)
1011       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1012                          NotOp->getOperand(1));
1013   }
1014 
1015   return SDValue();
1016 }
1017 
1018 SDValue
1019 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1020   SelectionDAG &DAG = DCI.DAG;
1021   SDValue Val;
1022 
1023   switch (N->getOpcode()) {
1024   case ISD::AND:
1025     Val = performANDCombine(N, DAG, DCI, Subtarget);
1026     break;
1027   case ISD::OR:
1028     Val = performORCombine(N, DAG, DCI, Subtarget);
1029     break;
1030   case ISD::MUL:
1031     return performMULCombine(N, DAG, DCI, this, Subtarget);
1032   case ISD::SHL:
1033     Val = performSHLCombine(N, DAG, DCI, Subtarget);
1034     break;
1035   case ISD::SRA:
1036     return performSRACombine(N, DAG, DCI, Subtarget);
1037   case ISD::SRL:
1038     return performSRLCombine(N, DAG, DCI, Subtarget);
1039   case ISD::VSELECT:
1040     return performVSELECTCombine(N, DAG);
1041   case ISD::XOR:
1042     Val = performXORCombine(N, DAG, Subtarget);
1043     break;
1044   case ISD::SETCC:
1045     Val = performSETCCCombine(N, DAG);
1046     break;
1047   }
1048 
1049   if (Val.getNode()) {
1050     LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1051                N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1052                Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1053     return Val;
1054   }
1055 
1056   return MipsTargetLowering::PerformDAGCombine(N, DCI);
1057 }
1058 
1059 MachineBasicBlock *
1060 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1061                                                   MachineBasicBlock *BB) const {
1062   switch (MI.getOpcode()) {
1063   default:
1064     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1065   case Mips::BPOSGE32_PSEUDO:
1066     return emitBPOSGE32(MI, BB);
1067   case Mips::SNZ_B_PSEUDO:
1068     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1069   case Mips::SNZ_H_PSEUDO:
1070     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1071   case Mips::SNZ_W_PSEUDO:
1072     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1073   case Mips::SNZ_D_PSEUDO:
1074     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1075   case Mips::SNZ_V_PSEUDO:
1076     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1077   case Mips::SZ_B_PSEUDO:
1078     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1079   case Mips::SZ_H_PSEUDO:
1080     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1081   case Mips::SZ_W_PSEUDO:
1082     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1083   case Mips::SZ_D_PSEUDO:
1084     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1085   case Mips::SZ_V_PSEUDO:
1086     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1087   case Mips::COPY_FW_PSEUDO:
1088     return emitCOPY_FW(MI, BB);
1089   case Mips::COPY_FD_PSEUDO:
1090     return emitCOPY_FD(MI, BB);
1091   case Mips::INSERT_FW_PSEUDO:
1092     return emitINSERT_FW(MI, BB);
1093   case Mips::INSERT_FD_PSEUDO:
1094     return emitINSERT_FD(MI, BB);
1095   case Mips::INSERT_B_VIDX_PSEUDO:
1096   case Mips::INSERT_B_VIDX64_PSEUDO:
1097     return emitINSERT_DF_VIDX(MI, BB, 1, false);
1098   case Mips::INSERT_H_VIDX_PSEUDO:
1099   case Mips::INSERT_H_VIDX64_PSEUDO:
1100     return emitINSERT_DF_VIDX(MI, BB, 2, false);
1101   case Mips::INSERT_W_VIDX_PSEUDO:
1102   case Mips::INSERT_W_VIDX64_PSEUDO:
1103     return emitINSERT_DF_VIDX(MI, BB, 4, false);
1104   case Mips::INSERT_D_VIDX_PSEUDO:
1105   case Mips::INSERT_D_VIDX64_PSEUDO:
1106     return emitINSERT_DF_VIDX(MI, BB, 8, false);
1107   case Mips::INSERT_FW_VIDX_PSEUDO:
1108   case Mips::INSERT_FW_VIDX64_PSEUDO:
1109     return emitINSERT_DF_VIDX(MI, BB, 4, true);
1110   case Mips::INSERT_FD_VIDX_PSEUDO:
1111   case Mips::INSERT_FD_VIDX64_PSEUDO:
1112     return emitINSERT_DF_VIDX(MI, BB, 8, true);
1113   case Mips::FILL_FW_PSEUDO:
1114     return emitFILL_FW(MI, BB);
1115   case Mips::FILL_FD_PSEUDO:
1116     return emitFILL_FD(MI, BB);
1117   case Mips::FEXP2_W_1_PSEUDO:
1118     return emitFEXP2_W_1(MI, BB);
1119   case Mips::FEXP2_D_1_PSEUDO:
1120     return emitFEXP2_D_1(MI, BB);
1121   case Mips::ST_F16:
1122     return emitST_F16_PSEUDO(MI, BB);
1123   case Mips::LD_F16:
1124     return emitLD_F16_PSEUDO(MI, BB);
1125   case Mips::MSA_FP_EXTEND_W_PSEUDO:
1126     return emitFPEXTEND_PSEUDO(MI, BB, false);
1127   case Mips::MSA_FP_ROUND_W_PSEUDO:
1128     return emitFPROUND_PSEUDO(MI, BB, false);
1129   case Mips::MSA_FP_EXTEND_D_PSEUDO:
1130     return emitFPEXTEND_PSEUDO(MI, BB, true);
1131   case Mips::MSA_FP_ROUND_D_PSEUDO:
1132     return emitFPROUND_PSEUDO(MI, BB, true);
1133   }
1134 }
1135 
1136 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1137     const CCState &CCInfo, unsigned NextStackOffset,
1138     const MipsFunctionInfo &FI) const {
1139   if (!UseMipsTailCalls)
1140     return false;
1141 
1142   // Exception has to be cleared with eret.
1143   if (FI.isISR())
1144     return false;
1145 
1146   // Return false if either the callee or caller has a byval argument.
1147   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1148     return false;
1149 
1150   // Return true if the callee's argument area is no larger than the
1151   // caller's.
1152   return NextStackOffset <= FI.getIncomingArgSize();
1153 }
1154 
1155 void MipsSETargetLowering::
1156 getOpndList(SmallVectorImpl<SDValue> &Ops,
1157             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1158             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1159             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1160             SDValue Chain) const {
1161   Ops.push_back(Callee);
1162   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1163                                   InternalLinkage, IsCallReloc, CLI, Callee,
1164                                   Chain);
1165 }
1166 
1167 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1168   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1169 
1170   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1171     return MipsTargetLowering::lowerLOAD(Op, DAG);
1172 
1173   // Replace a double precision load with two i32 loads and a buildpair64.
1174   SDLoc DL(Op);
1175   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1176   EVT PtrVT = Ptr.getValueType();
1177 
1178   // i32 load from lower address.
1179   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1180                            Nd.getAlign(), Nd.getMemOperand()->getFlags());
1181 
1182   // i32 load from higher address.
1183   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1184   SDValue Hi = DAG.getLoad(
1185       MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1186       commonAlignment(Nd.getAlign(), 4), Nd.getMemOperand()->getFlags());
1187 
1188   if (!Subtarget.isLittle())
1189     std::swap(Lo, Hi);
1190 
1191   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1192   SDValue Ops[2] = {BP, Hi.getValue(1)};
1193   return DAG.getMergeValues(Ops, DL);
1194 }
1195 
1196 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1197   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1198 
1199   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1200     return MipsTargetLowering::lowerSTORE(Op, DAG);
1201 
1202   // Replace a double precision store with two extractelement64s and i32 stores.
1203   SDLoc DL(Op);
1204   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1205   EVT PtrVT = Ptr.getValueType();
1206   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1207                            Val, DAG.getConstant(0, DL, MVT::i32));
1208   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1209                            Val, DAG.getConstant(1, DL, MVT::i32));
1210 
1211   if (!Subtarget.isLittle())
1212     std::swap(Lo, Hi);
1213 
1214   // i32 store to lower address.
1215   Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlign(),
1216                        Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1217 
1218   // i32 store to higher address.
1219   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1220   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1221                       commonAlignment(Nd.getAlign(), 4),
1222                       Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1223 }
1224 
1225 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op,
1226                                            SelectionDAG &DAG) const {
1227   SDLoc DL(Op);
1228   MVT Src = Op.getOperand(0).getValueType().getSimpleVT();
1229   MVT Dest = Op.getValueType().getSimpleVT();
1230 
1231   // Bitcast i64 to double.
1232   if (Src == MVT::i64 && Dest == MVT::f64) {
1233     SDValue Lo, Hi;
1234     std::tie(Lo, Hi) =
1235         DAG.SplitScalar(Op.getOperand(0), DL, MVT::i32, MVT::i32);
1236     return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1237   }
1238 
1239   // Bitcast double to i64.
1240   if (Src == MVT::f64 && Dest == MVT::i64) {
1241     SDValue Lo =
1242         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1243                     DAG.getConstant(0, DL, MVT::i32));
1244     SDValue Hi =
1245         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1246                     DAG.getConstant(1, DL, MVT::i32));
1247     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1248   }
1249 
1250   // Skip other cases of bitcast and use default lowering.
1251   return SDValue();
1252 }
1253 
1254 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1255                                           bool HasLo, bool HasHi,
1256                                           SelectionDAG &DAG) const {
1257   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1258   assert(!Subtarget.hasMips32r6());
1259 
1260   EVT Ty = Op.getOperand(0).getValueType();
1261   SDLoc DL(Op);
1262   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1263                              Op.getOperand(0), Op.getOperand(1));
1264   SDValue Lo, Hi;
1265 
1266   if (HasLo)
1267     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1268   if (HasHi)
1269     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1270 
1271   if (!HasLo || !HasHi)
1272     return HasLo ? Lo : Hi;
1273 
1274   SDValue Vals[] = { Lo, Hi };
1275   return DAG.getMergeValues(Vals, DL);
1276 }
1277 
1278 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1279   SDValue InLo, InHi;
1280   std::tie(InLo, InHi) = DAG.SplitScalar(In, DL, MVT::i32, MVT::i32);
1281   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1282 }
1283 
1284 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1285   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1286   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1287   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1288 }
1289 
1290 // This function expands mips intrinsic nodes which have 64-bit input operands
1291 // or output values.
1292 //
1293 // out64 = intrinsic-node in64
1294 // =>
1295 // lo = copy (extract-element (in64, 0))
1296 // hi = copy (extract-element (in64, 1))
1297 // mips-specific-node
1298 // v0 = copy lo
1299 // v1 = copy hi
1300 // out64 = merge-values (v0, v1)
1301 //
1302 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1303   SDLoc DL(Op);
1304   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1305   SmallVector<SDValue, 3> Ops;
1306   unsigned OpNo = 0;
1307 
1308   // See if Op has a chain input.
1309   if (HasChainIn)
1310     Ops.push_back(Op->getOperand(OpNo++));
1311 
1312   // The next operand is the intrinsic opcode.
1313   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1314 
1315   // See if the next operand has type i64.
1316   SDValue Opnd = Op->getOperand(++OpNo), In64;
1317 
1318   if (Opnd.getValueType() == MVT::i64)
1319     In64 = initAccumulator(Opnd, DL, DAG);
1320   else
1321     Ops.push_back(Opnd);
1322 
1323   // Push the remaining operands.
1324   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1325     Ops.push_back(Op->getOperand(OpNo));
1326 
1327   // Add In64 to the end of the list.
1328   if (In64.getNode())
1329     Ops.push_back(In64);
1330 
1331   // Scan output.
1332   SmallVector<EVT, 2> ResTys;
1333 
1334   for (EVT Ty : Op->values())
1335     ResTys.push_back((Ty == MVT::i64) ? MVT::Untyped : Ty);
1336 
1337   // Create node.
1338   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1339   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1340 
1341   if (!HasChainIn)
1342     return Out;
1343 
1344   assert(Val->getValueType(1) == MVT::Other);
1345   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1346   return DAG.getMergeValues(Vals, DL);
1347 }
1348 
1349 // Lower an MSA copy intrinsic into the specified SelectionDAG node
1350 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1351   SDLoc DL(Op);
1352   SDValue Vec = Op->getOperand(1);
1353   SDValue Idx = Op->getOperand(2);
1354   EVT ResTy = Op->getValueType(0);
1355   EVT EltTy = Vec->getValueType(0).getVectorElementType();
1356 
1357   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1358                                DAG.getValueType(EltTy));
1359 
1360   return Result;
1361 }
1362 
1363 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1364   EVT ResVecTy = Op->getValueType(0);
1365   EVT ViaVecTy = ResVecTy;
1366   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1367   SDLoc DL(Op);
1368 
1369   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1370   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1371   // lanes.
1372   SDValue LaneA = Op->getOperand(OpNr);
1373   SDValue LaneB;
1374 
1375   if (ResVecTy == MVT::v2i64) {
1376     // In case of the index being passed as an immediate value, set the upper
1377     // lane to 0 so that the splati.d instruction can be matched.
1378     if (isa<ConstantSDNode>(LaneA))
1379       LaneB = DAG.getConstant(0, DL, MVT::i32);
1380     // Having the index passed in a register, set the upper lane to the same
1381     // value as the lower - this results in the BUILD_VECTOR node not being
1382     // expanded through stack. This way we are able to pattern match the set of
1383     // nodes created here to splat.d.
1384     else
1385       LaneB = LaneA;
1386     ViaVecTy = MVT::v4i32;
1387     if(BigEndian)
1388       std::swap(LaneA, LaneB);
1389   } else
1390     LaneB = LaneA;
1391 
1392   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1393                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1394 
1395   SDValue Result = DAG.getBuildVector(
1396       ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1397 
1398   if (ViaVecTy != ResVecTy) {
1399     SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1400     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1401                          DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1402   }
1403 
1404   return Result;
1405 }
1406 
1407 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1408                                 bool IsSigned = false) {
1409   auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1410   return DAG.getConstant(
1411       APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1412             IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
1413       SDLoc(Op), Op->getValueType(0));
1414 }
1415 
1416 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1417                                    bool BigEndian, SelectionDAG &DAG) {
1418   EVT ViaVecTy = VecTy;
1419   SDValue SplatValueA = SplatValue;
1420   SDValue SplatValueB = SplatValue;
1421   SDLoc DL(SplatValue);
1422 
1423   if (VecTy == MVT::v2i64) {
1424     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1425     ViaVecTy = MVT::v4i32;
1426 
1427     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1428     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1429                               DAG.getConstant(32, DL, MVT::i32));
1430     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1431   }
1432 
1433   // We currently hold the parts in little endian order. Swap them if
1434   // necessary.
1435   if (BigEndian)
1436     std::swap(SplatValueA, SplatValueB);
1437 
1438   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1439                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1440                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1441                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1442 
1443   SDValue Result = DAG.getBuildVector(
1444       ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1445 
1446   if (VecTy != ViaVecTy)
1447     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1448 
1449   return Result;
1450 }
1451 
1452 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1453                                         unsigned Opc, SDValue Imm,
1454                                         bool BigEndian) {
1455   EVT VecTy = Op->getValueType(0);
1456   SDValue Exp2Imm;
1457   SDLoc DL(Op);
1458 
1459   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1460   // here for now.
1461   if (VecTy == MVT::v2i64) {
1462     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1463       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1464 
1465       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1466                                            MVT::i32);
1467       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1468 
1469       if (BigEndian)
1470         std::swap(BitImmLoOp, BitImmHiOp);
1471 
1472       Exp2Imm = DAG.getNode(
1473           ISD::BITCAST, DL, MVT::v2i64,
1474           DAG.getBuildVector(MVT::v4i32, DL,
1475                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1476     }
1477   }
1478 
1479   if (!Exp2Imm.getNode()) {
1480     // We couldnt constant fold, do a vector shift instead
1481 
1482     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1483     // only values 0-63 are valid.
1484     if (VecTy == MVT::v2i64)
1485       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1486 
1487     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1488 
1489     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1490                           Exp2Imm);
1491   }
1492 
1493   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1494 }
1495 
1496 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1497   SDLoc DL(Op);
1498   EVT ResTy = Op->getValueType(0);
1499   SDValue Vec = Op->getOperand(2);
1500   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1501   MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1502   SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1503                                        DL, ResEltTy);
1504   SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1505 
1506   return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1507 }
1508 
1509 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1510   EVT ResTy = Op->getValueType(0);
1511   SDLoc DL(Op);
1512   SDValue One = DAG.getConstant(1, DL, ResTy);
1513   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1514 
1515   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1516                      DAG.getNOT(DL, Bit, ResTy));
1517 }
1518 
1519 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1520   SDLoc DL(Op);
1521   EVT ResTy = Op->getValueType(0);
1522   APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1523                  << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1524   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1525 
1526   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1527 }
1528 
1529 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1530                                                       SelectionDAG &DAG) const {
1531   SDLoc DL(Op);
1532   unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue();
1533   switch (Intrinsic) {
1534   default:
1535     return SDValue();
1536   case Intrinsic::mips_shilo:
1537     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1538   case Intrinsic::mips_dpau_h_qbl:
1539     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1540   case Intrinsic::mips_dpau_h_qbr:
1541     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1542   case Intrinsic::mips_dpsu_h_qbl:
1543     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1544   case Intrinsic::mips_dpsu_h_qbr:
1545     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1546   case Intrinsic::mips_dpa_w_ph:
1547     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1548   case Intrinsic::mips_dps_w_ph:
1549     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1550   case Intrinsic::mips_dpax_w_ph:
1551     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1552   case Intrinsic::mips_dpsx_w_ph:
1553     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1554   case Intrinsic::mips_mulsa_w_ph:
1555     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1556   case Intrinsic::mips_mult:
1557     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1558   case Intrinsic::mips_multu:
1559     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1560   case Intrinsic::mips_madd:
1561     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1562   case Intrinsic::mips_maddu:
1563     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1564   case Intrinsic::mips_msub:
1565     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1566   case Intrinsic::mips_msubu:
1567     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1568   case Intrinsic::mips_addv_b:
1569   case Intrinsic::mips_addv_h:
1570   case Intrinsic::mips_addv_w:
1571   case Intrinsic::mips_addv_d:
1572     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1573                        Op->getOperand(2));
1574   case Intrinsic::mips_addvi_b:
1575   case Intrinsic::mips_addvi_h:
1576   case Intrinsic::mips_addvi_w:
1577   case Intrinsic::mips_addvi_d:
1578     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1579                        lowerMSASplatImm(Op, 2, DAG));
1580   case Intrinsic::mips_and_v:
1581     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1582                        Op->getOperand(2));
1583   case Intrinsic::mips_andi_b:
1584     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1585                        lowerMSASplatImm(Op, 2, DAG));
1586   case Intrinsic::mips_bclr_b:
1587   case Intrinsic::mips_bclr_h:
1588   case Intrinsic::mips_bclr_w:
1589   case Intrinsic::mips_bclr_d:
1590     return lowerMSABitClear(Op, DAG);
1591   case Intrinsic::mips_bclri_b:
1592   case Intrinsic::mips_bclri_h:
1593   case Intrinsic::mips_bclri_w:
1594   case Intrinsic::mips_bclri_d:
1595     return lowerMSABitClearImm(Op, DAG);
1596   case Intrinsic::mips_binsli_b:
1597   case Intrinsic::mips_binsli_h:
1598   case Intrinsic::mips_binsli_w:
1599   case Intrinsic::mips_binsli_d: {
1600     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1601     EVT VecTy = Op->getValueType(0);
1602     EVT EltTy = VecTy.getVectorElementType();
1603     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1604       report_fatal_error("Immediate out of range");
1605     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1606                                        Op->getConstantOperandVal(3) + 1);
1607     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1608                        DAG.getConstant(Mask, DL, VecTy, true),
1609                        Op->getOperand(2), Op->getOperand(1));
1610   }
1611   case Intrinsic::mips_binsri_b:
1612   case Intrinsic::mips_binsri_h:
1613   case Intrinsic::mips_binsri_w:
1614   case Intrinsic::mips_binsri_d: {
1615     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1616     EVT VecTy = Op->getValueType(0);
1617     EVT EltTy = VecTy.getVectorElementType();
1618     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1619       report_fatal_error("Immediate out of range");
1620     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1621                                       Op->getConstantOperandVal(3) + 1);
1622     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1623                        DAG.getConstant(Mask, DL, VecTy, true),
1624                        Op->getOperand(2), Op->getOperand(1));
1625   }
1626   case Intrinsic::mips_bmnz_v:
1627     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1628                        Op->getOperand(2), Op->getOperand(1));
1629   case Intrinsic::mips_bmnzi_b:
1630     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1631                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1632                        Op->getOperand(1));
1633   case Intrinsic::mips_bmz_v:
1634     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1635                        Op->getOperand(1), Op->getOperand(2));
1636   case Intrinsic::mips_bmzi_b:
1637     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1638                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1639                        Op->getOperand(2));
1640   case Intrinsic::mips_bneg_b:
1641   case Intrinsic::mips_bneg_h:
1642   case Intrinsic::mips_bneg_w:
1643   case Intrinsic::mips_bneg_d: {
1644     EVT VecTy = Op->getValueType(0);
1645     SDValue One = DAG.getConstant(1, DL, VecTy);
1646 
1647     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1648                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1649                                    truncateVecElts(Op, DAG)));
1650   }
1651   case Intrinsic::mips_bnegi_b:
1652   case Intrinsic::mips_bnegi_h:
1653   case Intrinsic::mips_bnegi_w:
1654   case Intrinsic::mips_bnegi_d:
1655     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1656                                     !Subtarget.isLittle());
1657   case Intrinsic::mips_bnz_b:
1658   case Intrinsic::mips_bnz_h:
1659   case Intrinsic::mips_bnz_w:
1660   case Intrinsic::mips_bnz_d:
1661     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1662                        Op->getOperand(1));
1663   case Intrinsic::mips_bnz_v:
1664     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1665                        Op->getOperand(1));
1666   case Intrinsic::mips_bsel_v:
1667     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1668     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1669                        Op->getOperand(1), Op->getOperand(3),
1670                        Op->getOperand(2));
1671   case Intrinsic::mips_bseli_b:
1672     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1673     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1674                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1675                        Op->getOperand(2));
1676   case Intrinsic::mips_bset_b:
1677   case Intrinsic::mips_bset_h:
1678   case Intrinsic::mips_bset_w:
1679   case Intrinsic::mips_bset_d: {
1680     EVT VecTy = Op->getValueType(0);
1681     SDValue One = DAG.getConstant(1, DL, VecTy);
1682 
1683     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1684                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1685                                    truncateVecElts(Op, DAG)));
1686   }
1687   case Intrinsic::mips_bseti_b:
1688   case Intrinsic::mips_bseti_h:
1689   case Intrinsic::mips_bseti_w:
1690   case Intrinsic::mips_bseti_d:
1691     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1692                                     !Subtarget.isLittle());
1693   case Intrinsic::mips_bz_b:
1694   case Intrinsic::mips_bz_h:
1695   case Intrinsic::mips_bz_w:
1696   case Intrinsic::mips_bz_d:
1697     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1698                        Op->getOperand(1));
1699   case Intrinsic::mips_bz_v:
1700     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1701                        Op->getOperand(1));
1702   case Intrinsic::mips_ceq_b:
1703   case Intrinsic::mips_ceq_h:
1704   case Intrinsic::mips_ceq_w:
1705   case Intrinsic::mips_ceq_d:
1706     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1707                         Op->getOperand(2), ISD::SETEQ);
1708   case Intrinsic::mips_ceqi_b:
1709   case Intrinsic::mips_ceqi_h:
1710   case Intrinsic::mips_ceqi_w:
1711   case Intrinsic::mips_ceqi_d:
1712     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1713                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1714   case Intrinsic::mips_cle_s_b:
1715   case Intrinsic::mips_cle_s_h:
1716   case Intrinsic::mips_cle_s_w:
1717   case Intrinsic::mips_cle_s_d:
1718     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1719                         Op->getOperand(2), ISD::SETLE);
1720   case Intrinsic::mips_clei_s_b:
1721   case Intrinsic::mips_clei_s_h:
1722   case Intrinsic::mips_clei_s_w:
1723   case Intrinsic::mips_clei_s_d:
1724     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1725                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1726   case Intrinsic::mips_cle_u_b:
1727   case Intrinsic::mips_cle_u_h:
1728   case Intrinsic::mips_cle_u_w:
1729   case Intrinsic::mips_cle_u_d:
1730     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1731                         Op->getOperand(2), ISD::SETULE);
1732   case Intrinsic::mips_clei_u_b:
1733   case Intrinsic::mips_clei_u_h:
1734   case Intrinsic::mips_clei_u_w:
1735   case Intrinsic::mips_clei_u_d:
1736     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1737                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1738   case Intrinsic::mips_clt_s_b:
1739   case Intrinsic::mips_clt_s_h:
1740   case Intrinsic::mips_clt_s_w:
1741   case Intrinsic::mips_clt_s_d:
1742     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1743                         Op->getOperand(2), ISD::SETLT);
1744   case Intrinsic::mips_clti_s_b:
1745   case Intrinsic::mips_clti_s_h:
1746   case Intrinsic::mips_clti_s_w:
1747   case Intrinsic::mips_clti_s_d:
1748     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1749                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1750   case Intrinsic::mips_clt_u_b:
1751   case Intrinsic::mips_clt_u_h:
1752   case Intrinsic::mips_clt_u_w:
1753   case Intrinsic::mips_clt_u_d:
1754     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1755                         Op->getOperand(2), ISD::SETULT);
1756   case Intrinsic::mips_clti_u_b:
1757   case Intrinsic::mips_clti_u_h:
1758   case Intrinsic::mips_clti_u_w:
1759   case Intrinsic::mips_clti_u_d:
1760     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1761                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1762   case Intrinsic::mips_copy_s_b:
1763   case Intrinsic::mips_copy_s_h:
1764   case Intrinsic::mips_copy_s_w:
1765     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1766   case Intrinsic::mips_copy_s_d:
1767     if (Subtarget.hasMips64())
1768       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1769       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1770     else {
1771       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1772       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1773       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1774                          Op->getValueType(0), Op->getOperand(1),
1775                          Op->getOperand(2));
1776     }
1777   case Intrinsic::mips_copy_u_b:
1778   case Intrinsic::mips_copy_u_h:
1779   case Intrinsic::mips_copy_u_w:
1780     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1781   case Intrinsic::mips_copy_u_d:
1782     if (Subtarget.hasMips64())
1783       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1784       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1785     else {
1786       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1787       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1788       // Note: When i64 is illegal, this results in copy_s.w instructions
1789       // instead of copy_u.w instructions. This makes no difference to the
1790       // behaviour since i64 is only illegal when the register file is 32-bit.
1791       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1792                          Op->getValueType(0), Op->getOperand(1),
1793                          Op->getOperand(2));
1794     }
1795   case Intrinsic::mips_div_s_b:
1796   case Intrinsic::mips_div_s_h:
1797   case Intrinsic::mips_div_s_w:
1798   case Intrinsic::mips_div_s_d:
1799     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1800                        Op->getOperand(2));
1801   case Intrinsic::mips_div_u_b:
1802   case Intrinsic::mips_div_u_h:
1803   case Intrinsic::mips_div_u_w:
1804   case Intrinsic::mips_div_u_d:
1805     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1806                        Op->getOperand(2));
1807   case Intrinsic::mips_fadd_w:
1808   case Intrinsic::mips_fadd_d:
1809     // TODO: If intrinsics have fast-math-flags, propagate them.
1810     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1811                        Op->getOperand(2));
1812   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1813   case Intrinsic::mips_fceq_w:
1814   case Intrinsic::mips_fceq_d:
1815     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1816                         Op->getOperand(2), ISD::SETOEQ);
1817   case Intrinsic::mips_fcle_w:
1818   case Intrinsic::mips_fcle_d:
1819     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1820                         Op->getOperand(2), ISD::SETOLE);
1821   case Intrinsic::mips_fclt_w:
1822   case Intrinsic::mips_fclt_d:
1823     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1824                         Op->getOperand(2), ISD::SETOLT);
1825   case Intrinsic::mips_fcne_w:
1826   case Intrinsic::mips_fcne_d:
1827     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1828                         Op->getOperand(2), ISD::SETONE);
1829   case Intrinsic::mips_fcor_w:
1830   case Intrinsic::mips_fcor_d:
1831     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1832                         Op->getOperand(2), ISD::SETO);
1833   case Intrinsic::mips_fcueq_w:
1834   case Intrinsic::mips_fcueq_d:
1835     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1836                         Op->getOperand(2), ISD::SETUEQ);
1837   case Intrinsic::mips_fcule_w:
1838   case Intrinsic::mips_fcule_d:
1839     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1840                         Op->getOperand(2), ISD::SETULE);
1841   case Intrinsic::mips_fcult_w:
1842   case Intrinsic::mips_fcult_d:
1843     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1844                         Op->getOperand(2), ISD::SETULT);
1845   case Intrinsic::mips_fcun_w:
1846   case Intrinsic::mips_fcun_d:
1847     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1848                         Op->getOperand(2), ISD::SETUO);
1849   case Intrinsic::mips_fcune_w:
1850   case Intrinsic::mips_fcune_d:
1851     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1852                         Op->getOperand(2), ISD::SETUNE);
1853   case Intrinsic::mips_fdiv_w:
1854   case Intrinsic::mips_fdiv_d:
1855     // TODO: If intrinsics have fast-math-flags, propagate them.
1856     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1857                        Op->getOperand(2));
1858   case Intrinsic::mips_ffint_u_w:
1859   case Intrinsic::mips_ffint_u_d:
1860     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1861                        Op->getOperand(1));
1862   case Intrinsic::mips_ffint_s_w:
1863   case Intrinsic::mips_ffint_s_d:
1864     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1865                        Op->getOperand(1));
1866   case Intrinsic::mips_fill_b:
1867   case Intrinsic::mips_fill_h:
1868   case Intrinsic::mips_fill_w:
1869   case Intrinsic::mips_fill_d: {
1870     EVT ResTy = Op->getValueType(0);
1871     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1872                                  Op->getOperand(1));
1873 
1874     // If ResTy is v2i64 then the type legalizer will break this node down into
1875     // an equivalent v4i32.
1876     return DAG.getBuildVector(ResTy, DL, Ops);
1877   }
1878   case Intrinsic::mips_fexp2_w:
1879   case Intrinsic::mips_fexp2_d: {
1880     // TODO: If intrinsics have fast-math-flags, propagate them.
1881     EVT ResTy = Op->getValueType(0);
1882     return DAG.getNode(
1883         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1884         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1885   }
1886   case Intrinsic::mips_flog2_w:
1887   case Intrinsic::mips_flog2_d:
1888     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1889   case Intrinsic::mips_fmadd_w:
1890   case Intrinsic::mips_fmadd_d:
1891     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1892                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1893   case Intrinsic::mips_fmul_w:
1894   case Intrinsic::mips_fmul_d:
1895     // TODO: If intrinsics have fast-math-flags, propagate them.
1896     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1897                        Op->getOperand(2));
1898   case Intrinsic::mips_fmsub_w:
1899   case Intrinsic::mips_fmsub_d: {
1900     // TODO: If intrinsics have fast-math-flags, propagate them.
1901     return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1902                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1903   }
1904   case Intrinsic::mips_frint_w:
1905   case Intrinsic::mips_frint_d:
1906     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1907   case Intrinsic::mips_fsqrt_w:
1908   case Intrinsic::mips_fsqrt_d:
1909     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1910   case Intrinsic::mips_fsub_w:
1911   case Intrinsic::mips_fsub_d:
1912     // TODO: If intrinsics have fast-math-flags, propagate them.
1913     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1914                        Op->getOperand(2));
1915   case Intrinsic::mips_ftrunc_u_w:
1916   case Intrinsic::mips_ftrunc_u_d:
1917     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1918                        Op->getOperand(1));
1919   case Intrinsic::mips_ftrunc_s_w:
1920   case Intrinsic::mips_ftrunc_s_d:
1921     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1922                        Op->getOperand(1));
1923   case Intrinsic::mips_ilvev_b:
1924   case Intrinsic::mips_ilvev_h:
1925   case Intrinsic::mips_ilvev_w:
1926   case Intrinsic::mips_ilvev_d:
1927     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1928                        Op->getOperand(1), Op->getOperand(2));
1929   case Intrinsic::mips_ilvl_b:
1930   case Intrinsic::mips_ilvl_h:
1931   case Intrinsic::mips_ilvl_w:
1932   case Intrinsic::mips_ilvl_d:
1933     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1934                        Op->getOperand(1), Op->getOperand(2));
1935   case Intrinsic::mips_ilvod_b:
1936   case Intrinsic::mips_ilvod_h:
1937   case Intrinsic::mips_ilvod_w:
1938   case Intrinsic::mips_ilvod_d:
1939     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1940                        Op->getOperand(1), Op->getOperand(2));
1941   case Intrinsic::mips_ilvr_b:
1942   case Intrinsic::mips_ilvr_h:
1943   case Intrinsic::mips_ilvr_w:
1944   case Intrinsic::mips_ilvr_d:
1945     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1946                        Op->getOperand(1), Op->getOperand(2));
1947   case Intrinsic::mips_insert_b:
1948   case Intrinsic::mips_insert_h:
1949   case Intrinsic::mips_insert_w:
1950   case Intrinsic::mips_insert_d:
1951     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1952                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1953   case Intrinsic::mips_insve_b:
1954   case Intrinsic::mips_insve_h:
1955   case Intrinsic::mips_insve_w:
1956   case Intrinsic::mips_insve_d: {
1957     // Report an error for out of range values.
1958     int64_t Max;
1959     switch (Intrinsic) {
1960     case Intrinsic::mips_insve_b: Max = 15; break;
1961     case Intrinsic::mips_insve_h: Max = 7; break;
1962     case Intrinsic::mips_insve_w: Max = 3; break;
1963     case Intrinsic::mips_insve_d: Max = 1; break;
1964     default: llvm_unreachable("Unmatched intrinsic");
1965     }
1966     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
1967     if (Value < 0 || Value > Max)
1968       report_fatal_error("Immediate out of range");
1969     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1970                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1971                        DAG.getConstant(0, DL, MVT::i32));
1972     }
1973   case Intrinsic::mips_ldi_b:
1974   case Intrinsic::mips_ldi_h:
1975   case Intrinsic::mips_ldi_w:
1976   case Intrinsic::mips_ldi_d:
1977     return lowerMSASplatImm(Op, 1, DAG, true);
1978   case Intrinsic::mips_lsa:
1979   case Intrinsic::mips_dlsa: {
1980     EVT ResTy = Op->getValueType(0);
1981     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1982                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1983                                    Op->getOperand(2), Op->getOperand(3)));
1984   }
1985   case Intrinsic::mips_maddv_b:
1986   case Intrinsic::mips_maddv_h:
1987   case Intrinsic::mips_maddv_w:
1988   case Intrinsic::mips_maddv_d: {
1989     EVT ResTy = Op->getValueType(0);
1990     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1991                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1992                                    Op->getOperand(2), Op->getOperand(3)));
1993   }
1994   case Intrinsic::mips_max_s_b:
1995   case Intrinsic::mips_max_s_h:
1996   case Intrinsic::mips_max_s_w:
1997   case Intrinsic::mips_max_s_d:
1998     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
1999                        Op->getOperand(1), Op->getOperand(2));
2000   case Intrinsic::mips_max_u_b:
2001   case Intrinsic::mips_max_u_h:
2002   case Intrinsic::mips_max_u_w:
2003   case Intrinsic::mips_max_u_d:
2004     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2005                        Op->getOperand(1), Op->getOperand(2));
2006   case Intrinsic::mips_maxi_s_b:
2007   case Intrinsic::mips_maxi_s_h:
2008   case Intrinsic::mips_maxi_s_w:
2009   case Intrinsic::mips_maxi_s_d:
2010     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2011                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2012   case Intrinsic::mips_maxi_u_b:
2013   case Intrinsic::mips_maxi_u_h:
2014   case Intrinsic::mips_maxi_u_w:
2015   case Intrinsic::mips_maxi_u_d:
2016     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2017                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2018   case Intrinsic::mips_min_s_b:
2019   case Intrinsic::mips_min_s_h:
2020   case Intrinsic::mips_min_s_w:
2021   case Intrinsic::mips_min_s_d:
2022     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2023                        Op->getOperand(1), Op->getOperand(2));
2024   case Intrinsic::mips_min_u_b:
2025   case Intrinsic::mips_min_u_h:
2026   case Intrinsic::mips_min_u_w:
2027   case Intrinsic::mips_min_u_d:
2028     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2029                        Op->getOperand(1), Op->getOperand(2));
2030   case Intrinsic::mips_mini_s_b:
2031   case Intrinsic::mips_mini_s_h:
2032   case Intrinsic::mips_mini_s_w:
2033   case Intrinsic::mips_mini_s_d:
2034     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2035                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2036   case Intrinsic::mips_mini_u_b:
2037   case Intrinsic::mips_mini_u_h:
2038   case Intrinsic::mips_mini_u_w:
2039   case Intrinsic::mips_mini_u_d:
2040     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2041                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2042   case Intrinsic::mips_mod_s_b:
2043   case Intrinsic::mips_mod_s_h:
2044   case Intrinsic::mips_mod_s_w:
2045   case Intrinsic::mips_mod_s_d:
2046     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2047                        Op->getOperand(2));
2048   case Intrinsic::mips_mod_u_b:
2049   case Intrinsic::mips_mod_u_h:
2050   case Intrinsic::mips_mod_u_w:
2051   case Intrinsic::mips_mod_u_d:
2052     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2053                        Op->getOperand(2));
2054   case Intrinsic::mips_mulv_b:
2055   case Intrinsic::mips_mulv_h:
2056   case Intrinsic::mips_mulv_w:
2057   case Intrinsic::mips_mulv_d:
2058     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2059                        Op->getOperand(2));
2060   case Intrinsic::mips_msubv_b:
2061   case Intrinsic::mips_msubv_h:
2062   case Intrinsic::mips_msubv_w:
2063   case Intrinsic::mips_msubv_d: {
2064     EVT ResTy = Op->getValueType(0);
2065     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2066                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2067                                    Op->getOperand(2), Op->getOperand(3)));
2068   }
2069   case Intrinsic::mips_nlzc_b:
2070   case Intrinsic::mips_nlzc_h:
2071   case Intrinsic::mips_nlzc_w:
2072   case Intrinsic::mips_nlzc_d:
2073     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2074   case Intrinsic::mips_nor_v: {
2075     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2076                               Op->getOperand(1), Op->getOperand(2));
2077     return DAG.getNOT(DL, Res, Res->getValueType(0));
2078   }
2079   case Intrinsic::mips_nori_b: {
2080     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2081                                Op->getOperand(1),
2082                                lowerMSASplatImm(Op, 2, DAG));
2083     return DAG.getNOT(DL, Res, Res->getValueType(0));
2084   }
2085   case Intrinsic::mips_or_v:
2086     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2087                        Op->getOperand(2));
2088   case Intrinsic::mips_ori_b:
2089     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2090                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2091   case Intrinsic::mips_pckev_b:
2092   case Intrinsic::mips_pckev_h:
2093   case Intrinsic::mips_pckev_w:
2094   case Intrinsic::mips_pckev_d:
2095     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2096                        Op->getOperand(1), Op->getOperand(2));
2097   case Intrinsic::mips_pckod_b:
2098   case Intrinsic::mips_pckod_h:
2099   case Intrinsic::mips_pckod_w:
2100   case Intrinsic::mips_pckod_d:
2101     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2102                        Op->getOperand(1), Op->getOperand(2));
2103   case Intrinsic::mips_pcnt_b:
2104   case Intrinsic::mips_pcnt_h:
2105   case Intrinsic::mips_pcnt_w:
2106   case Intrinsic::mips_pcnt_d:
2107     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2108   case Intrinsic::mips_sat_s_b:
2109   case Intrinsic::mips_sat_s_h:
2110   case Intrinsic::mips_sat_s_w:
2111   case Intrinsic::mips_sat_s_d:
2112   case Intrinsic::mips_sat_u_b:
2113   case Intrinsic::mips_sat_u_h:
2114   case Intrinsic::mips_sat_u_w:
2115   case Intrinsic::mips_sat_u_d: {
2116     // Report an error for out of range values.
2117     int64_t Max;
2118     switch (Intrinsic) {
2119     case Intrinsic::mips_sat_s_b:
2120     case Intrinsic::mips_sat_u_b: Max = 7;  break;
2121     case Intrinsic::mips_sat_s_h:
2122     case Intrinsic::mips_sat_u_h: Max = 15; break;
2123     case Intrinsic::mips_sat_s_w:
2124     case Intrinsic::mips_sat_u_w: Max = 31; break;
2125     case Intrinsic::mips_sat_s_d:
2126     case Intrinsic::mips_sat_u_d: Max = 63; break;
2127     default: llvm_unreachable("Unmatched intrinsic");
2128     }
2129     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2130     if (Value < 0 || Value > Max)
2131       report_fatal_error("Immediate out of range");
2132     return SDValue();
2133   }
2134   case Intrinsic::mips_shf_b:
2135   case Intrinsic::mips_shf_h:
2136   case Intrinsic::mips_shf_w: {
2137     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2138     if (Value < 0 || Value > 255)
2139       report_fatal_error("Immediate out of range");
2140     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2141                        Op->getOperand(2), Op->getOperand(1));
2142   }
2143   case Intrinsic::mips_sldi_b:
2144   case Intrinsic::mips_sldi_h:
2145   case Intrinsic::mips_sldi_w:
2146   case Intrinsic::mips_sldi_d: {
2147     // Report an error for out of range values.
2148     int64_t Max;
2149     switch (Intrinsic) {
2150     case Intrinsic::mips_sldi_b: Max = 15; break;
2151     case Intrinsic::mips_sldi_h: Max = 7; break;
2152     case Intrinsic::mips_sldi_w: Max = 3; break;
2153     case Intrinsic::mips_sldi_d: Max = 1; break;
2154     default: llvm_unreachable("Unmatched intrinsic");
2155     }
2156     int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2157     if (Value < 0 || Value > Max)
2158       report_fatal_error("Immediate out of range");
2159     return SDValue();
2160   }
2161   case Intrinsic::mips_sll_b:
2162   case Intrinsic::mips_sll_h:
2163   case Intrinsic::mips_sll_w:
2164   case Intrinsic::mips_sll_d:
2165     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2166                        truncateVecElts(Op, DAG));
2167   case Intrinsic::mips_slli_b:
2168   case Intrinsic::mips_slli_h:
2169   case Intrinsic::mips_slli_w:
2170   case Intrinsic::mips_slli_d:
2171     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2172                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2173   case Intrinsic::mips_splat_b:
2174   case Intrinsic::mips_splat_h:
2175   case Intrinsic::mips_splat_w:
2176   case Intrinsic::mips_splat_d:
2177     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2178     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2179     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2180     // Instead we lower to MipsISD::VSHF and match from there.
2181     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2182                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2183                        Op->getOperand(1));
2184   case Intrinsic::mips_splati_b:
2185   case Intrinsic::mips_splati_h:
2186   case Intrinsic::mips_splati_w:
2187   case Intrinsic::mips_splati_d:
2188     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2189                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2190                        Op->getOperand(1));
2191   case Intrinsic::mips_sra_b:
2192   case Intrinsic::mips_sra_h:
2193   case Intrinsic::mips_sra_w:
2194   case Intrinsic::mips_sra_d:
2195     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2196                        truncateVecElts(Op, DAG));
2197   case Intrinsic::mips_srai_b:
2198   case Intrinsic::mips_srai_h:
2199   case Intrinsic::mips_srai_w:
2200   case Intrinsic::mips_srai_d:
2201     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2202                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2203   case Intrinsic::mips_srari_b:
2204   case Intrinsic::mips_srari_h:
2205   case Intrinsic::mips_srari_w:
2206   case Intrinsic::mips_srari_d: {
2207     // Report an error for out of range values.
2208     int64_t Max;
2209     switch (Intrinsic) {
2210     case Intrinsic::mips_srari_b: Max = 7; break;
2211     case Intrinsic::mips_srari_h: Max = 15; break;
2212     case Intrinsic::mips_srari_w: Max = 31; break;
2213     case Intrinsic::mips_srari_d: Max = 63; break;
2214     default: llvm_unreachable("Unmatched intrinsic");
2215     }
2216     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2217     if (Value < 0 || Value > Max)
2218       report_fatal_error("Immediate out of range");
2219     return SDValue();
2220   }
2221   case Intrinsic::mips_srl_b:
2222   case Intrinsic::mips_srl_h:
2223   case Intrinsic::mips_srl_w:
2224   case Intrinsic::mips_srl_d:
2225     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2226                        truncateVecElts(Op, DAG));
2227   case Intrinsic::mips_srli_b:
2228   case Intrinsic::mips_srli_h:
2229   case Intrinsic::mips_srli_w:
2230   case Intrinsic::mips_srli_d:
2231     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2232                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2233   case Intrinsic::mips_srlri_b:
2234   case Intrinsic::mips_srlri_h:
2235   case Intrinsic::mips_srlri_w:
2236   case Intrinsic::mips_srlri_d: {
2237     // Report an error for out of range values.
2238     int64_t Max;
2239     switch (Intrinsic) {
2240     case Intrinsic::mips_srlri_b: Max = 7; break;
2241     case Intrinsic::mips_srlri_h: Max = 15; break;
2242     case Intrinsic::mips_srlri_w: Max = 31; break;
2243     case Intrinsic::mips_srlri_d: Max = 63; break;
2244     default: llvm_unreachable("Unmatched intrinsic");
2245     }
2246     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2247     if (Value < 0 || Value > Max)
2248       report_fatal_error("Immediate out of range");
2249     return SDValue();
2250   }
2251   case Intrinsic::mips_subv_b:
2252   case Intrinsic::mips_subv_h:
2253   case Intrinsic::mips_subv_w:
2254   case Intrinsic::mips_subv_d:
2255     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2256                        Op->getOperand(2));
2257   case Intrinsic::mips_subvi_b:
2258   case Intrinsic::mips_subvi_h:
2259   case Intrinsic::mips_subvi_w:
2260   case Intrinsic::mips_subvi_d:
2261     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2262                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2263   case Intrinsic::mips_vshf_b:
2264   case Intrinsic::mips_vshf_h:
2265   case Intrinsic::mips_vshf_w:
2266   case Intrinsic::mips_vshf_d:
2267     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2268                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2269   case Intrinsic::mips_xor_v:
2270     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2271                        Op->getOperand(2));
2272   case Intrinsic::mips_xori_b:
2273     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2274                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2275   case Intrinsic::thread_pointer: {
2276     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2277     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2278   }
2279   }
2280 }
2281 
2282 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2283                                 const MipsSubtarget &Subtarget) {
2284   SDLoc DL(Op);
2285   SDValue ChainIn = Op->getOperand(0);
2286   SDValue Address = Op->getOperand(2);
2287   SDValue Offset  = Op->getOperand(3);
2288   EVT ResTy = Op->getValueType(0);
2289   EVT PtrTy = Address->getValueType(0);
2290 
2291   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2292   // however takes an i32 signed constant offset. The actual type of the
2293   // intrinsic is a scaled signed i10.
2294   if (Subtarget.isABI_N64())
2295     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2296 
2297   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2298   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2299                      Align(16));
2300 }
2301 
2302 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2303                                                      SelectionDAG &DAG) const {
2304   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2305   switch (Intr) {
2306   default:
2307     return SDValue();
2308   case Intrinsic::mips_extp:
2309     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2310   case Intrinsic::mips_extpdp:
2311     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2312   case Intrinsic::mips_extr_w:
2313     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2314   case Intrinsic::mips_extr_r_w:
2315     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2316   case Intrinsic::mips_extr_rs_w:
2317     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2318   case Intrinsic::mips_extr_s_h:
2319     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2320   case Intrinsic::mips_mthlip:
2321     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2322   case Intrinsic::mips_mulsaq_s_w_ph:
2323     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2324   case Intrinsic::mips_maq_s_w_phl:
2325     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2326   case Intrinsic::mips_maq_s_w_phr:
2327     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2328   case Intrinsic::mips_maq_sa_w_phl:
2329     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2330   case Intrinsic::mips_maq_sa_w_phr:
2331     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2332   case Intrinsic::mips_dpaq_s_w_ph:
2333     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2334   case Intrinsic::mips_dpsq_s_w_ph:
2335     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2336   case Intrinsic::mips_dpaq_sa_l_w:
2337     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2338   case Intrinsic::mips_dpsq_sa_l_w:
2339     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2340   case Intrinsic::mips_dpaqx_s_w_ph:
2341     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2342   case Intrinsic::mips_dpaqx_sa_w_ph:
2343     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2344   case Intrinsic::mips_dpsqx_s_w_ph:
2345     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2346   case Intrinsic::mips_dpsqx_sa_w_ph:
2347     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2348   case Intrinsic::mips_ld_b:
2349   case Intrinsic::mips_ld_h:
2350   case Intrinsic::mips_ld_w:
2351   case Intrinsic::mips_ld_d:
2352    return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2353   }
2354 }
2355 
2356 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2357                                  const MipsSubtarget &Subtarget) {
2358   SDLoc DL(Op);
2359   SDValue ChainIn = Op->getOperand(0);
2360   SDValue Value   = Op->getOperand(2);
2361   SDValue Address = Op->getOperand(3);
2362   SDValue Offset  = Op->getOperand(4);
2363   EVT PtrTy = Address->getValueType(0);
2364 
2365   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2366   // however takes an i32 signed constant offset. The actual type of the
2367   // intrinsic is a scaled signed i10.
2368   if (Subtarget.isABI_N64())
2369     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2370 
2371   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2372 
2373   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2374                       Align(16));
2375 }
2376 
2377 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2378                                                   SelectionDAG &DAG) const {
2379   unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2380   switch (Intr) {
2381   default:
2382     return SDValue();
2383   case Intrinsic::mips_st_b:
2384   case Intrinsic::mips_st_h:
2385   case Intrinsic::mips_st_w:
2386   case Intrinsic::mips_st_d:
2387     return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2388   }
2389 }
2390 
2391 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2392 //
2393 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2394 // choose to sign-extend but we could have equally chosen zero-extend. The
2395 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2396 // result into this node later (possibly changing it to a zero-extend in the
2397 // process).
2398 SDValue MipsSETargetLowering::
2399 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2400   SDLoc DL(Op);
2401   EVT ResTy = Op->getValueType(0);
2402   SDValue Op0 = Op->getOperand(0);
2403   EVT VecTy = Op0->getValueType(0);
2404 
2405   if (!VecTy.is128BitVector())
2406     return SDValue();
2407 
2408   if (ResTy.isInteger()) {
2409     SDValue Op1 = Op->getOperand(1);
2410     EVT EltTy = VecTy.getVectorElementType();
2411     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2412                        DAG.getValueType(EltTy));
2413   }
2414 
2415   return Op;
2416 }
2417 
2418 static bool isConstantOrUndef(const SDValue Op) {
2419   if (Op->isUndef())
2420     return true;
2421   if (isa<ConstantSDNode>(Op))
2422     return true;
2423   if (isa<ConstantFPSDNode>(Op))
2424     return true;
2425   return false;
2426 }
2427 
2428 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2429   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2430     if (isConstantOrUndef(Op->getOperand(i)))
2431       return true;
2432   return false;
2433 }
2434 
2435 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2436 // backend.
2437 //
2438 // Lowers according to the following rules:
2439 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2440 //   2 less than or equal to 64 and the value fits into a signed 10-bit
2441 //   immediate
2442 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2443 //   is a power of 2 less than or equal to 64 and the value does not fit into a
2444 //   signed 10-bit immediate
2445 // - Non-constant splats are legal as-is.
2446 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2447 // - All others are illegal and must be expanded.
2448 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2449                                                 SelectionDAG &DAG) const {
2450   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2451   EVT ResTy = Op->getValueType(0);
2452   SDLoc DL(Op);
2453   APInt SplatValue, SplatUndef;
2454   unsigned SplatBitSize;
2455   bool HasAnyUndefs;
2456 
2457   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2458     return SDValue();
2459 
2460   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2461                             HasAnyUndefs, 8,
2462                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
2463     // We can only cope with 8, 16, 32, or 64-bit elements
2464     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2465         SplatBitSize != 64)
2466       return SDValue();
2467 
2468     // If the value isn't an integer type we will have to bitcast
2469     // from an integer type first. Also, if there are any undefs, we must
2470     // lower them to defined values first.
2471     if (ResTy.isInteger() && !HasAnyUndefs)
2472       return Op;
2473 
2474     EVT ViaVecTy;
2475 
2476     switch (SplatBitSize) {
2477     default:
2478       return SDValue();
2479     case 8:
2480       ViaVecTy = MVT::v16i8;
2481       break;
2482     case 16:
2483       ViaVecTy = MVT::v8i16;
2484       break;
2485     case 32:
2486       ViaVecTy = MVT::v4i32;
2487       break;
2488     case 64:
2489       // There's no fill.d to fall back on for 64-bit values
2490       return SDValue();
2491     }
2492 
2493     // SelectionDAG::getConstant will promote SplatValue appropriately.
2494     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2495 
2496     // Bitcast to the type we originally wanted
2497     if (ViaVecTy != ResTy)
2498       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2499 
2500     return Result;
2501   } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false))
2502     return Op;
2503   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2504     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2505     // The resulting code is the same length as the expansion, but it doesn't
2506     // use memory operations
2507     EVT ResTy = Node->getValueType(0);
2508 
2509     assert(ResTy.isVector());
2510 
2511     unsigned NumElts = ResTy.getVectorNumElements();
2512     SDValue Vector = DAG.getUNDEF(ResTy);
2513     for (unsigned i = 0; i < NumElts; ++i) {
2514       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2515                            Node->getOperand(i),
2516                            DAG.getConstant(i, DL, MVT::i32));
2517     }
2518     return Vector;
2519   }
2520 
2521   return SDValue();
2522 }
2523 
2524 // Lower VECTOR_SHUFFLE into SHF (if possible).
2525 //
2526 // SHF splits the vector into blocks of four elements, then shuffles these
2527 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2528 //
2529 // It is therefore possible to lower into SHF when the mask takes the form:
2530 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2531 // When undef's appear they are treated as if they were whatever value is
2532 // necessary in order to fit the above forms.
2533 //
2534 // For example:
2535 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2536 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2537 //                                 i32 7, i32 6, i32 5, i32 4>
2538 // is lowered to:
2539 //   (SHF_H $w0, $w1, 27)
2540 // where the 27 comes from:
2541 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
2542 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2543                                        SmallVector<int, 16> Indices,
2544                                        SelectionDAG &DAG) {
2545   int SHFIndices[4] = { -1, -1, -1, -1 };
2546 
2547   if (Indices.size() < 4)
2548     return SDValue();
2549 
2550   for (unsigned i = 0; i < 4; ++i) {
2551     for (unsigned j = i; j < Indices.size(); j += 4) {
2552       int Idx = Indices[j];
2553 
2554       // Convert from vector index to 4-element subvector index
2555       // If an index refers to an element outside of the subvector then give up
2556       if (Idx != -1) {
2557         Idx -= 4 * (j / 4);
2558         if (Idx < 0 || Idx >= 4)
2559           return SDValue();
2560       }
2561 
2562       // If the mask has an undef, replace it with the current index.
2563       // Note that it might still be undef if the current index is also undef
2564       if (SHFIndices[i] == -1)
2565         SHFIndices[i] = Idx;
2566 
2567       // Check that non-undef values are the same as in the mask. If they
2568       // aren't then give up
2569       if (!(Idx == -1 || Idx == SHFIndices[i]))
2570         return SDValue();
2571     }
2572   }
2573 
2574   // Calculate the immediate. Replace any remaining undefs with zero
2575   APInt Imm(32, 0);
2576   for (int i = 3; i >= 0; --i) {
2577     int Idx = SHFIndices[i];
2578 
2579     if (Idx == -1)
2580       Idx = 0;
2581 
2582     Imm <<= 2;
2583     Imm |= Idx & 0x3;
2584   }
2585 
2586   SDLoc DL(Op);
2587   return DAG.getNode(MipsISD::SHF, DL, ResTy,
2588                      DAG.getTargetConstant(Imm, DL, MVT::i32),
2589                      Op->getOperand(0));
2590 }
2591 
2592 /// Determine whether a range fits a regular pattern of values.
2593 /// This function accounts for the possibility of jumping over the End iterator.
2594 template <typename ValType>
2595 static bool
2596 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2597                    unsigned CheckStride,
2598                    typename SmallVectorImpl<ValType>::const_iterator End,
2599                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2600   auto &I = Begin;
2601 
2602   while (I != End) {
2603     if (*I != -1 && *I != ExpectedIndex)
2604       return false;
2605     ExpectedIndex += ExpectedIndexStride;
2606 
2607     // Incrementing past End is undefined behaviour so we must increment one
2608     // step at a time and check for End at each step.
2609     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2610       ; // Empty loop body.
2611   }
2612   return true;
2613 }
2614 
2615 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2616 //
2617 // It is a SPLATI when the mask is:
2618 //   <x, x, x, ...>
2619 // where x is any valid index.
2620 //
2621 // When undef's appear in the mask they are treated as if they were whatever
2622 // value is necessary in order to fit the above form.
2623 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2624                                     SmallVector<int, 16> Indices,
2625                                     SelectionDAG &DAG) {
2626   assert((Indices.size() % 2) == 0);
2627 
2628   int SplatIndex = -1;
2629   for (const auto &V : Indices) {
2630     if (V != -1) {
2631       SplatIndex = V;
2632       break;
2633     }
2634   }
2635 
2636   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2637                                  0);
2638 }
2639 
2640 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2641 //
2642 // ILVEV interleaves the even elements from each vector.
2643 //
2644 // It is possible to lower into ILVEV when the mask consists of two of the
2645 // following forms interleaved:
2646 //   <0, 2, 4, ...>
2647 //   <n, n+2, n+4, ...>
2648 // where n is the number of elements in the vector.
2649 // For example:
2650 //   <0, 0, 2, 2, 4, 4, ...>
2651 //   <0, n, 2, n+2, 4, n+4, ...>
2652 //
2653 // When undef's appear in the mask they are treated as if they were whatever
2654 // value is necessary in order to fit the above forms.
2655 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2656                                          SmallVector<int, 16> Indices,
2657                                          SelectionDAG &DAG) {
2658   assert((Indices.size() % 2) == 0);
2659 
2660   SDValue Wt;
2661   SDValue Ws;
2662   const auto &Begin = Indices.begin();
2663   const auto &End = Indices.end();
2664 
2665   // Check even elements are taken from the even elements of one half or the
2666   // other and pick an operand accordingly.
2667   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2668     Wt = Op->getOperand(0);
2669   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2670     Wt = Op->getOperand(1);
2671   else
2672     return SDValue();
2673 
2674   // Check odd elements are taken from the even elements of one half or the
2675   // other and pick an operand accordingly.
2676   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2677     Ws = Op->getOperand(0);
2678   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2679     Ws = Op->getOperand(1);
2680   else
2681     return SDValue();
2682 
2683   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2684 }
2685 
2686 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2687 //
2688 // ILVOD interleaves the odd elements from each vector.
2689 //
2690 // It is possible to lower into ILVOD when the mask consists of two of the
2691 // following forms interleaved:
2692 //   <1, 3, 5, ...>
2693 //   <n+1, n+3, n+5, ...>
2694 // where n is the number of elements in the vector.
2695 // For example:
2696 //   <1, 1, 3, 3, 5, 5, ...>
2697 //   <1, n+1, 3, n+3, 5, n+5, ...>
2698 //
2699 // When undef's appear in the mask they are treated as if they were whatever
2700 // value is necessary in order to fit the above forms.
2701 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2702                                          SmallVector<int, 16> Indices,
2703                                          SelectionDAG &DAG) {
2704   assert((Indices.size() % 2) == 0);
2705 
2706   SDValue Wt;
2707   SDValue Ws;
2708   const auto &Begin = Indices.begin();
2709   const auto &End = Indices.end();
2710 
2711   // Check even elements are taken from the odd elements of one half or the
2712   // other and pick an operand accordingly.
2713   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2714     Wt = Op->getOperand(0);
2715   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2716     Wt = Op->getOperand(1);
2717   else
2718     return SDValue();
2719 
2720   // Check odd elements are taken from the odd elements of one half or the
2721   // other and pick an operand accordingly.
2722   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2723     Ws = Op->getOperand(0);
2724   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2725     Ws = Op->getOperand(1);
2726   else
2727     return SDValue();
2728 
2729   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2730 }
2731 
2732 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2733 //
2734 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2735 // each vector.
2736 //
2737 // It is possible to lower into ILVR when the mask consists of two of the
2738 // following forms interleaved:
2739 //   <0, 1, 2, ...>
2740 //   <n, n+1, n+2, ...>
2741 // where n is the number of elements in the vector.
2742 // For example:
2743 //   <0, 0, 1, 1, 2, 2, ...>
2744 //   <0, n, 1, n+1, 2, n+2, ...>
2745 //
2746 // When undef's appear in the mask they are treated as if they were whatever
2747 // value is necessary in order to fit the above forms.
2748 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2749                                         SmallVector<int, 16> Indices,
2750                                         SelectionDAG &DAG) {
2751   assert((Indices.size() % 2) == 0);
2752 
2753   SDValue Wt;
2754   SDValue Ws;
2755   const auto &Begin = Indices.begin();
2756   const auto &End = Indices.end();
2757 
2758   // Check even elements are taken from the right (lowest-indexed) elements of
2759   // one half or the other and pick an operand accordingly.
2760   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2761     Wt = Op->getOperand(0);
2762   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2763     Wt = Op->getOperand(1);
2764   else
2765     return SDValue();
2766 
2767   // Check odd elements are taken from the right (lowest-indexed) elements of
2768   // one half or the other and pick an operand accordingly.
2769   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2770     Ws = Op->getOperand(0);
2771   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2772     Ws = Op->getOperand(1);
2773   else
2774     return SDValue();
2775 
2776   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2777 }
2778 
2779 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2780 //
2781 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2782 // of each vector.
2783 //
2784 // It is possible to lower into ILVL when the mask consists of two of the
2785 // following forms interleaved:
2786 //   <x, x+1, x+2, ...>
2787 //   <n+x, n+x+1, n+x+2, ...>
2788 // where n is the number of elements in the vector and x is half n.
2789 // For example:
2790 //   <x, x, x+1, x+1, x+2, x+2, ...>
2791 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2792 //
2793 // When undef's appear in the mask they are treated as if they were whatever
2794 // value is necessary in order to fit the above forms.
2795 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2796                                         SmallVector<int, 16> Indices,
2797                                         SelectionDAG &DAG) {
2798   assert((Indices.size() % 2) == 0);
2799 
2800   unsigned HalfSize = Indices.size() / 2;
2801   SDValue Wt;
2802   SDValue Ws;
2803   const auto &Begin = Indices.begin();
2804   const auto &End = Indices.end();
2805 
2806   // Check even elements are taken from the left (highest-indexed) elements of
2807   // one half or the other and pick an operand accordingly.
2808   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2809     Wt = Op->getOperand(0);
2810   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2811     Wt = Op->getOperand(1);
2812   else
2813     return SDValue();
2814 
2815   // Check odd elements are taken from the left (highest-indexed) elements of
2816   // one half or the other and pick an operand accordingly.
2817   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2818     Ws = Op->getOperand(0);
2819   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2820                                    1))
2821     Ws = Op->getOperand(1);
2822   else
2823     return SDValue();
2824 
2825   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2826 }
2827 
2828 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2829 //
2830 // PCKEV copies the even elements of each vector into the result vector.
2831 //
2832 // It is possible to lower into PCKEV when the mask consists of two of the
2833 // following forms concatenated:
2834 //   <0, 2, 4, ...>
2835 //   <n, n+2, n+4, ...>
2836 // where n is the number of elements in the vector.
2837 // For example:
2838 //   <0, 2, 4, ..., 0, 2, 4, ...>
2839 //   <0, 2, 4, ..., n, n+2, n+4, ...>
2840 //
2841 // When undef's appear in the mask they are treated as if they were whatever
2842 // value is necessary in order to fit the above forms.
2843 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2844                                          SmallVector<int, 16> Indices,
2845                                          SelectionDAG &DAG) {
2846   assert((Indices.size() % 2) == 0);
2847 
2848   SDValue Wt;
2849   SDValue Ws;
2850   const auto &Begin = Indices.begin();
2851   const auto &Mid = Indices.begin() + Indices.size() / 2;
2852   const auto &End = Indices.end();
2853 
2854   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2855     Wt = Op->getOperand(0);
2856   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2857     Wt = Op->getOperand(1);
2858   else
2859     return SDValue();
2860 
2861   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2862     Ws = Op->getOperand(0);
2863   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2864     Ws = Op->getOperand(1);
2865   else
2866     return SDValue();
2867 
2868   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2869 }
2870 
2871 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2872 //
2873 // PCKOD copies the odd elements of each vector into the result vector.
2874 //
2875 // It is possible to lower into PCKOD when the mask consists of two of the
2876 // following forms concatenated:
2877 //   <1, 3, 5, ...>
2878 //   <n+1, n+3, n+5, ...>
2879 // where n is the number of elements in the vector.
2880 // For example:
2881 //   <1, 3, 5, ..., 1, 3, 5, ...>
2882 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2883 //
2884 // When undef's appear in the mask they are treated as if they were whatever
2885 // value is necessary in order to fit the above forms.
2886 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2887                                          SmallVector<int, 16> Indices,
2888                                          SelectionDAG &DAG) {
2889   assert((Indices.size() % 2) == 0);
2890 
2891   SDValue Wt;
2892   SDValue Ws;
2893   const auto &Begin = Indices.begin();
2894   const auto &Mid = Indices.begin() + Indices.size() / 2;
2895   const auto &End = Indices.end();
2896 
2897   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2898     Wt = Op->getOperand(0);
2899   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2900     Wt = Op->getOperand(1);
2901   else
2902     return SDValue();
2903 
2904   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2905     Ws = Op->getOperand(0);
2906   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2907     Ws = Op->getOperand(1);
2908   else
2909     return SDValue();
2910 
2911   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2912 }
2913 
2914 // Lower VECTOR_SHUFFLE into VSHF.
2915 //
2916 // This mostly consists of converting the shuffle indices in Indices into a
2917 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2918 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2919 // if the type is v8i16 and all the indices are less than 8 then the second
2920 // operand is unused and can be replaced with anything. We choose to replace it
2921 // with the used operand since this reduces the number of instructions overall.
2922 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2923                                         const SmallVector<int, 16> &Indices,
2924                                         SelectionDAG &DAG) {
2925   SmallVector<SDValue, 16> Ops;
2926   SDValue Op0;
2927   SDValue Op1;
2928   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2929   EVT MaskEltTy = MaskVecTy.getVectorElementType();
2930   bool Using1stVec = false;
2931   bool Using2ndVec = false;
2932   SDLoc DL(Op);
2933   int ResTyNumElts = ResTy.getVectorNumElements();
2934 
2935   for (int i = 0; i < ResTyNumElts; ++i) {
2936     // Idx == -1 means UNDEF
2937     int Idx = Indices[i];
2938 
2939     if (0 <= Idx && Idx < ResTyNumElts)
2940       Using1stVec = true;
2941     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2942       Using2ndVec = true;
2943   }
2944 
2945   for (int Idx : Indices)
2946     Ops.push_back(DAG.getTargetConstant(Idx, DL, MaskEltTy));
2947 
2948   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2949 
2950   if (Using1stVec && Using2ndVec) {
2951     Op0 = Op->getOperand(0);
2952     Op1 = Op->getOperand(1);
2953   } else if (Using1stVec)
2954     Op0 = Op1 = Op->getOperand(0);
2955   else if (Using2ndVec)
2956     Op0 = Op1 = Op->getOperand(1);
2957   else
2958     llvm_unreachable("shuffle vector mask references neither vector operand?");
2959 
2960   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2961   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2962   // VSHF concatenates the vectors in a bitwise fashion:
2963   // <0b00, 0b01> + <0b10, 0b11> ->
2964   // 0b0100       + 0b1110       -> 0b01001110
2965   //                                <0b10, 0b11, 0b00, 0b01>
2966   // We must therefore swap the operands to get the correct result.
2967   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2968 }
2969 
2970 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2971 // indices in the shuffle.
2972 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2973                                                   SelectionDAG &DAG) const {
2974   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2975   EVT ResTy = Op->getValueType(0);
2976 
2977   if (!ResTy.is128BitVector())
2978     return SDValue();
2979 
2980   int ResTyNumElts = ResTy.getVectorNumElements();
2981   SmallVector<int, 16> Indices;
2982 
2983   for (int i = 0; i < ResTyNumElts; ++i)
2984     Indices.push_back(Node->getMaskElt(i));
2985 
2986   // splati.[bhwd] is preferable to the others but is matched from
2987   // MipsISD::VSHF.
2988   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2989     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2990   SDValue Result;
2991   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
2992     return Result;
2993   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
2994     return Result;
2995   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
2996     return Result;
2997   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
2998     return Result;
2999   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
3000     return Result;
3001   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
3002     return Result;
3003   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
3004     return Result;
3005   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3006 }
3007 
3008 MachineBasicBlock *
3009 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3010                                    MachineBasicBlock *BB) const {
3011   // $bb:
3012   //  bposge32_pseudo $vr0
3013   //  =>
3014   // $bb:
3015   //  bposge32 $tbb
3016   // $fbb:
3017   //  li $vr2, 0
3018   //  b $sink
3019   // $tbb:
3020   //  li $vr1, 1
3021   // $sink:
3022   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3023 
3024   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3025   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3026   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3027   DebugLoc DL = MI.getDebugLoc();
3028   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3029   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3030   MachineFunction *F = BB->getParent();
3031   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3032   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3033   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3034   F->insert(It, FBB);
3035   F->insert(It, TBB);
3036   F->insert(It, Sink);
3037 
3038   // Transfer the remainder of BB and its successor edges to Sink.
3039   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3040                BB->end());
3041   Sink->transferSuccessorsAndUpdatePHIs(BB);
3042 
3043   // Add successors.
3044   BB->addSuccessor(FBB);
3045   BB->addSuccessor(TBB);
3046   FBB->addSuccessor(Sink);
3047   TBB->addSuccessor(Sink);
3048 
3049   // Insert the real bposge32 instruction to $BB.
3050   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3051   // Insert the real bposge32c instruction to $BB.
3052   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3053 
3054   // Fill $FBB.
3055   Register VR2 = RegInfo.createVirtualRegister(RC);
3056   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3057     .addReg(Mips::ZERO).addImm(0);
3058   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3059 
3060   // Fill $TBB.
3061   Register VR1 = RegInfo.createVirtualRegister(RC);
3062   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3063     .addReg(Mips::ZERO).addImm(1);
3064 
3065   // Insert phi function to $Sink.
3066   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3067           MI.getOperand(0).getReg())
3068       .addReg(VR2)
3069       .addMBB(FBB)
3070       .addReg(VR1)
3071       .addMBB(TBB);
3072 
3073   MI.eraseFromParent(); // The pseudo instruction is gone now.
3074   return Sink;
3075 }
3076 
3077 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3078     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3079   // $bb:
3080   //  vany_nonzero $rd, $ws
3081   //  =>
3082   // $bb:
3083   //  bnz.b $ws, $tbb
3084   //  b $fbb
3085   // $fbb:
3086   //  li $rd1, 0
3087   //  b $sink
3088   // $tbb:
3089   //  li $rd2, 1
3090   // $sink:
3091   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
3092 
3093   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3094   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3095   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3096   DebugLoc DL = MI.getDebugLoc();
3097   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3098   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3099   MachineFunction *F = BB->getParent();
3100   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3101   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3102   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3103   F->insert(It, FBB);
3104   F->insert(It, TBB);
3105   F->insert(It, Sink);
3106 
3107   // Transfer the remainder of BB and its successor edges to Sink.
3108   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3109                BB->end());
3110   Sink->transferSuccessorsAndUpdatePHIs(BB);
3111 
3112   // Add successors.
3113   BB->addSuccessor(FBB);
3114   BB->addSuccessor(TBB);
3115   FBB->addSuccessor(Sink);
3116   TBB->addSuccessor(Sink);
3117 
3118   // Insert the real bnz.b instruction to $BB.
3119   BuildMI(BB, DL, TII->get(BranchOp))
3120       .addReg(MI.getOperand(1).getReg())
3121       .addMBB(TBB);
3122 
3123   // Fill $FBB.
3124   Register RD1 = RegInfo.createVirtualRegister(RC);
3125   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3126     .addReg(Mips::ZERO).addImm(0);
3127   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3128 
3129   // Fill $TBB.
3130   Register RD2 = RegInfo.createVirtualRegister(RC);
3131   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3132     .addReg(Mips::ZERO).addImm(1);
3133 
3134   // Insert phi function to $Sink.
3135   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3136           MI.getOperand(0).getReg())
3137       .addReg(RD1)
3138       .addMBB(FBB)
3139       .addReg(RD2)
3140       .addMBB(TBB);
3141 
3142   MI.eraseFromParent(); // The pseudo instruction is gone now.
3143   return Sink;
3144 }
3145 
3146 // Emit the COPY_FW pseudo instruction.
3147 //
3148 // copy_fw_pseudo $fd, $ws, n
3149 // =>
3150 // copy_u_w $rt, $ws, $n
3151 // mtc1     $rt, $fd
3152 //
3153 // When n is zero, the equivalent operation can be performed with (potentially)
3154 // zero instructions due to register overlaps. This optimization is never valid
3155 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3156 MachineBasicBlock *
3157 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3158                                   MachineBasicBlock *BB) const {
3159   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3160   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3161   DebugLoc DL = MI.getDebugLoc();
3162   Register Fd = MI.getOperand(0).getReg();
3163   Register Ws = MI.getOperand(1).getReg();
3164   unsigned Lane = MI.getOperand(2).getImm();
3165 
3166   if (Lane == 0) {
3167     unsigned Wt = Ws;
3168     if (!Subtarget.useOddSPReg()) {
3169       // We must copy to an even-numbered MSA register so that the
3170       // single-precision sub-register is also guaranteed to be even-numbered.
3171       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3172 
3173       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3174     }
3175 
3176     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3177   } else {
3178     Register Wt = RegInfo.createVirtualRegister(
3179         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3180                                 : &Mips::MSA128WEvensRegClass);
3181 
3182     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3183     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3184   }
3185 
3186   MI.eraseFromParent(); // The pseudo instruction is gone now.
3187   return BB;
3188 }
3189 
3190 // Emit the COPY_FD pseudo instruction.
3191 //
3192 // copy_fd_pseudo $fd, $ws, n
3193 // =>
3194 // splati.d $wt, $ws, $n
3195 // copy $fd, $wt:sub_64
3196 //
3197 // When n is zero, the equivalent operation can be performed with (potentially)
3198 // zero instructions due to register overlaps. This optimization is always
3199 // valid because FR=1 mode which is the only supported mode in MSA.
3200 MachineBasicBlock *
3201 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3202                                   MachineBasicBlock *BB) const {
3203   assert(Subtarget.isFP64bit());
3204 
3205   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3206   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3207   Register Fd = MI.getOperand(0).getReg();
3208   Register Ws = MI.getOperand(1).getReg();
3209   unsigned Lane = MI.getOperand(2).getImm() * 2;
3210   DebugLoc DL = MI.getDebugLoc();
3211 
3212   if (Lane == 0)
3213     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3214   else {
3215     Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3216 
3217     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3218     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3219   }
3220 
3221   MI.eraseFromParent(); // The pseudo instruction is gone now.
3222   return BB;
3223 }
3224 
3225 // Emit the INSERT_FW pseudo instruction.
3226 //
3227 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3228 // =>
3229 // subreg_to_reg $wt:sub_lo, $fs
3230 // insve_w $wd[$n], $wd_in, $wt[0]
3231 MachineBasicBlock *
3232 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3233                                     MachineBasicBlock *BB) const {
3234   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3235   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3236   DebugLoc DL = MI.getDebugLoc();
3237   Register Wd = MI.getOperand(0).getReg();
3238   Register Wd_in = MI.getOperand(1).getReg();
3239   unsigned Lane = MI.getOperand(2).getImm();
3240   Register Fs = MI.getOperand(3).getReg();
3241   Register Wt = RegInfo.createVirtualRegister(
3242       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3243                               : &Mips::MSA128WEvensRegClass);
3244 
3245   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3246       .addImm(0)
3247       .addReg(Fs)
3248       .addImm(Mips::sub_lo);
3249   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3250       .addReg(Wd_in)
3251       .addImm(Lane)
3252       .addReg(Wt)
3253       .addImm(0);
3254 
3255   MI.eraseFromParent(); // The pseudo instruction is gone now.
3256   return BB;
3257 }
3258 
3259 // Emit the INSERT_FD pseudo instruction.
3260 //
3261 // insert_fd_pseudo $wd, $fs, n
3262 // =>
3263 // subreg_to_reg $wt:sub_64, $fs
3264 // insve_d $wd[$n], $wd_in, $wt[0]
3265 MachineBasicBlock *
3266 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3267                                     MachineBasicBlock *BB) const {
3268   assert(Subtarget.isFP64bit());
3269 
3270   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3271   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3272   DebugLoc DL = MI.getDebugLoc();
3273   Register Wd = MI.getOperand(0).getReg();
3274   Register Wd_in = MI.getOperand(1).getReg();
3275   unsigned Lane = MI.getOperand(2).getImm();
3276   Register Fs = MI.getOperand(3).getReg();
3277   Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3278 
3279   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3280       .addImm(0)
3281       .addReg(Fs)
3282       .addImm(Mips::sub_64);
3283   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3284       .addReg(Wd_in)
3285       .addImm(Lane)
3286       .addReg(Wt)
3287       .addImm(0);
3288 
3289   MI.eraseFromParent(); // The pseudo instruction is gone now.
3290   return BB;
3291 }
3292 
3293 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3294 //
3295 // For integer:
3296 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3297 // =>
3298 // (SLL $lanetmp1, $lane, <log2size)
3299 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3300 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3301 // (NEG $lanetmp2, $lanetmp1)
3302 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3303 //
3304 // For floating point:
3305 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3306 // =>
3307 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3308 // (SLL $lanetmp1, $lane, <log2size)
3309 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3310 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3311 // (NEG $lanetmp2, $lanetmp1)
3312 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3313 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3314     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3315     bool IsFP) const {
3316   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3317   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3318   DebugLoc DL = MI.getDebugLoc();
3319   Register Wd = MI.getOperand(0).getReg();
3320   Register SrcVecReg = MI.getOperand(1).getReg();
3321   Register LaneReg = MI.getOperand(2).getReg();
3322   Register SrcValReg = MI.getOperand(3).getReg();
3323 
3324   const TargetRegisterClass *VecRC = nullptr;
3325   // FIXME: This should be true for N32 too.
3326   const TargetRegisterClass *GPRRC =
3327       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3328   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3329   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3330   unsigned EltLog2Size;
3331   unsigned InsertOp = 0;
3332   unsigned InsveOp = 0;
3333   switch (EltSizeInBytes) {
3334   default:
3335     llvm_unreachable("Unexpected size");
3336   case 1:
3337     EltLog2Size = 0;
3338     InsertOp = Mips::INSERT_B;
3339     InsveOp = Mips::INSVE_B;
3340     VecRC = &Mips::MSA128BRegClass;
3341     break;
3342   case 2:
3343     EltLog2Size = 1;
3344     InsertOp = Mips::INSERT_H;
3345     InsveOp = Mips::INSVE_H;
3346     VecRC = &Mips::MSA128HRegClass;
3347     break;
3348   case 4:
3349     EltLog2Size = 2;
3350     InsertOp = Mips::INSERT_W;
3351     InsveOp = Mips::INSVE_W;
3352     VecRC = &Mips::MSA128WRegClass;
3353     break;
3354   case 8:
3355     EltLog2Size = 3;
3356     InsertOp = Mips::INSERT_D;
3357     InsveOp = Mips::INSVE_D;
3358     VecRC = &Mips::MSA128DRegClass;
3359     break;
3360   }
3361 
3362   if (IsFP) {
3363     Register Wt = RegInfo.createVirtualRegister(VecRC);
3364     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3365         .addImm(0)
3366         .addReg(SrcValReg)
3367         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3368     SrcValReg = Wt;
3369   }
3370 
3371   // Convert the lane index into a byte index
3372   if (EltSizeInBytes != 1) {
3373     Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3374     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3375         .addReg(LaneReg)
3376         .addImm(EltLog2Size);
3377     LaneReg = LaneTmp1;
3378   }
3379 
3380   // Rotate bytes around so that the desired lane is element zero
3381   Register WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3382   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3383       .addReg(SrcVecReg)
3384       .addReg(SrcVecReg)
3385       .addReg(LaneReg, 0, SubRegIdx);
3386 
3387   Register WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3388   if (IsFP) {
3389     // Use insve.df to insert to element zero
3390     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3391         .addReg(WdTmp1)
3392         .addImm(0)
3393         .addReg(SrcValReg)
3394         .addImm(0);
3395   } else {
3396     // Use insert.df to insert to element zero
3397     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3398         .addReg(WdTmp1)
3399         .addReg(SrcValReg)
3400         .addImm(0);
3401   }
3402 
3403   // Rotate elements the rest of the way for a full rotation.
3404   // sld.df inteprets $rt modulo the number of columns so we only need to negate
3405   // the lane index to do this.
3406   Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3407   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3408           LaneTmp2)
3409       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3410       .addReg(LaneReg);
3411   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3412       .addReg(WdTmp2)
3413       .addReg(WdTmp2)
3414       .addReg(LaneTmp2, 0, SubRegIdx);
3415 
3416   MI.eraseFromParent(); // The pseudo instruction is gone now.
3417   return BB;
3418 }
3419 
3420 // Emit the FILL_FW pseudo instruction.
3421 //
3422 // fill_fw_pseudo $wd, $fs
3423 // =>
3424 // implicit_def $wt1
3425 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3426 // splati.w $wd, $wt2[0]
3427 MachineBasicBlock *
3428 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3429                                   MachineBasicBlock *BB) const {
3430   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3431   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3432   DebugLoc DL = MI.getDebugLoc();
3433   Register Wd = MI.getOperand(0).getReg();
3434   Register Fs = MI.getOperand(1).getReg();
3435   Register Wt1 = RegInfo.createVirtualRegister(
3436       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3437                               : &Mips::MSA128WEvensRegClass);
3438   Register Wt2 = RegInfo.createVirtualRegister(
3439       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3440                               : &Mips::MSA128WEvensRegClass);
3441 
3442   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3443   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3444       .addReg(Wt1)
3445       .addReg(Fs)
3446       .addImm(Mips::sub_lo);
3447   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3448 
3449   MI.eraseFromParent(); // The pseudo instruction is gone now.
3450   return BB;
3451 }
3452 
3453 // Emit the FILL_FD pseudo instruction.
3454 //
3455 // fill_fd_pseudo $wd, $fs
3456 // =>
3457 // implicit_def $wt1
3458 // insert_subreg $wt2:subreg_64, $wt1, $fs
3459 // splati.d $wd, $wt2[0]
3460 MachineBasicBlock *
3461 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3462                                   MachineBasicBlock *BB) const {
3463   assert(Subtarget.isFP64bit());
3464 
3465   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3466   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3467   DebugLoc DL = MI.getDebugLoc();
3468   Register Wd = MI.getOperand(0).getReg();
3469   Register Fs = MI.getOperand(1).getReg();
3470   Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3471   Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3472 
3473   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3474   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3475       .addReg(Wt1)
3476       .addReg(Fs)
3477       .addImm(Mips::sub_64);
3478   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3479 
3480   MI.eraseFromParent(); // The pseudo instruction is gone now.
3481   return BB;
3482 }
3483 
3484 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3485 // register.
3486 //
3487 // STF16 MSA128F16:$wd, mem_simm10:$addr
3488 // =>
3489 //  copy_u.h $rtemp,$wd[0]
3490 //  sh $rtemp, $addr
3491 //
3492 // Safety: We can't use st.h & co as they would over write the memory after
3493 // the destination. It would require half floats be allocated 16 bytes(!) of
3494 // space.
3495 MachineBasicBlock *
3496 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3497                                        MachineBasicBlock *BB) const {
3498 
3499   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3500   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3501   DebugLoc DL = MI.getDebugLoc();
3502   Register Ws = MI.getOperand(0).getReg();
3503   Register Rt = MI.getOperand(1).getReg();
3504   const MachineMemOperand &MMO = **MI.memoperands_begin();
3505   unsigned Imm = MMO.getOffset();
3506 
3507   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3508   //          spill and reload can expand as a GPR64 operand. Examine the
3509   //          operand in detail and default to ABI.
3510   const TargetRegisterClass *RC =
3511       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3512                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3513                                                         : &Mips::GPR64RegClass);
3514   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3515   Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3516 
3517   BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3518   if(!UsingMips32) {
3519     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3520     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3521         .addImm(0)
3522         .addReg(Rs)
3523         .addImm(Mips::sub_32);
3524     Rs = Tmp;
3525   }
3526   BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3527       .addReg(Rs)
3528       .addReg(Rt)
3529       .addImm(Imm)
3530       .addMemOperand(BB->getParent()->getMachineMemOperand(
3531           &MMO, MMO.getOffset(), MMO.getSize()));
3532 
3533   MI.eraseFromParent();
3534   return BB;
3535 }
3536 
3537 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3538 //
3539 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3540 // =>
3541 //  lh $rtemp, $addr
3542 //  fill.h $wd, $rtemp
3543 //
3544 // Safety: We can't use ld.h & co as they over-read from the source.
3545 // Additionally, if the address is not modulo 16, 2 cases can occur:
3546 //  a) Segmentation fault as the load instruction reads from a memory page
3547 //     memory it's not supposed to.
3548 //  b) The load crosses an implementation specific boundary, requiring OS
3549 //     intervention.
3550 MachineBasicBlock *
3551 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3552                                        MachineBasicBlock *BB) const {
3553 
3554   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3555   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3556   DebugLoc DL = MI.getDebugLoc();
3557   Register Wd = MI.getOperand(0).getReg();
3558 
3559   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3560   //          spill and reload can expand as a GPR64 operand. Examine the
3561   //          operand in detail and default to ABI.
3562   const TargetRegisterClass *RC =
3563       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3564                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3565                                                         : &Mips::GPR64RegClass);
3566 
3567   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3568   Register Rt = RegInfo.createVirtualRegister(RC);
3569 
3570   MachineInstrBuilder MIB =
3571       BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3572   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
3573     MIB.add(MO);
3574 
3575   if(!UsingMips32) {
3576     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3577     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3578     Rt = Tmp;
3579   }
3580 
3581   BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3582 
3583   MI.eraseFromParent();
3584   return BB;
3585 }
3586 
3587 // Emit the FPROUND_PSEUDO instruction.
3588 //
3589 // Round an FGR64Opnd, FGR32Opnd to an f16.
3590 //
3591 // Safety: Cycle the operand through the GPRs so the result always ends up
3592 //         the correct MSA register.
3593 //
3594 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3595 //        / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3596 //        (which they can be, as the MSA registers are defined to alias the
3597 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3598 //        the correct register class. That requires operands be tie-able across
3599 //        register classes which have a sub/super register class relationship.
3600 //
3601 // For FPG32Opnd:
3602 //
3603 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3604 // =>
3605 //  mfc1 $rtemp, $fs
3606 //  fill.w $rtemp, $wtemp
3607 //  fexdo.w $wd, $wtemp, $wtemp
3608 //
3609 // For FPG64Opnd on mips32r2+:
3610 //
3611 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3612 // =>
3613 //  mfc1 $rtemp, $fs
3614 //  fill.w $rtemp, $wtemp
3615 //  mfhc1 $rtemp2, $fs
3616 //  insert.w $wtemp[1], $rtemp2
3617 //  insert.w $wtemp[3], $rtemp2
3618 //  fexdo.w $wtemp2, $wtemp, $wtemp
3619 //  fexdo.h $wd, $temp2, $temp2
3620 //
3621 // For FGR64Opnd on mips64r2+:
3622 //
3623 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3624 // =>
3625 //  dmfc1 $rtemp, $fs
3626 //  fill.d $rtemp, $wtemp
3627 //  fexdo.w $wtemp2, $wtemp, $wtemp
3628 //  fexdo.h $wd, $wtemp2, $wtemp2
3629 //
3630 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3631 //              undef bits are "just right" and the exception enable bits are
3632 //              set. By using fill.w to replicate $fs into all elements over
3633 //              insert.w for one element, we avoid that potiential case. If
3634 //              fexdo.[hw] causes an exception in, the exception is valid and it
3635 //              occurs for all elements.
3636 MachineBasicBlock *
3637 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3638                                          MachineBasicBlock *BB,
3639                                          bool IsFGR64) const {
3640 
3641   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3642   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3643   // it.
3644   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3645 
3646   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3647   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3648 
3649   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3650   DebugLoc DL = MI.getDebugLoc();
3651   Register Wd = MI.getOperand(0).getReg();
3652   Register Fs = MI.getOperand(1).getReg();
3653 
3654   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3655   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3656   const TargetRegisterClass *GPRRC =
3657       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3658   unsigned MFC1Opc = IsFGR64onMips64
3659                          ? Mips::DMFC1
3660                          : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3661   unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3662 
3663   // Perform the register class copy as mentioned above.
3664   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3665   BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3666   BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3667   unsigned WPHI = Wtemp;
3668 
3669   if (IsFGR64onMips32) {
3670     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3671     BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3672     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3673     Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3674     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3675         .addReg(Wtemp)
3676         .addReg(Rtemp2)
3677         .addImm(1);
3678     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3679         .addReg(Wtemp2)
3680         .addReg(Rtemp2)
3681         .addImm(3);
3682     WPHI = Wtemp3;
3683   }
3684 
3685   if (IsFGR64) {
3686     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3687     BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3688         .addReg(WPHI)
3689         .addReg(WPHI);
3690     WPHI = Wtemp2;
3691   }
3692 
3693   BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3694 
3695   MI.eraseFromParent();
3696   return BB;
3697 }
3698 
3699 // Emit the FPEXTEND_PSEUDO instruction.
3700 //
3701 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3702 //
3703 // Safety: Cycle the result through the GPRs so the result always ends up
3704 //         the correct floating point register.
3705 //
3706 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3707 //        / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3708 //        (which they can be, as the MSA registers are defined to alias the
3709 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3710 //        the correct register class. That requires operands be tie-able across
3711 //        register classes which have a sub/super register class relationship. I
3712 //        haven't checked.
3713 //
3714 // For FGR32Opnd:
3715 //
3716 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3717 // =>
3718 //  fexupr.w $wtemp, $ws
3719 //  copy_s.w $rtemp, $ws[0]
3720 //  mtc1 $rtemp, $fd
3721 //
3722 // For FGR64Opnd on Mips64:
3723 //
3724 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3725 // =>
3726 //  fexupr.w $wtemp, $ws
3727 //  fexupr.d $wtemp2, $wtemp
3728 //  copy_s.d $rtemp, $wtemp2s[0]
3729 //  dmtc1 $rtemp, $fd
3730 //
3731 // For FGR64Opnd on Mips32:
3732 //
3733 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3734 // =>
3735 //  fexupr.w $wtemp, $ws
3736 //  fexupr.d $wtemp2, $wtemp
3737 //  copy_s.w $rtemp, $wtemp2[0]
3738 //  mtc1 $rtemp, $ftemp
3739 //  copy_s.w $rtemp2, $wtemp2[1]
3740 //  $fd = mthc1 $rtemp2, $ftemp
3741 MachineBasicBlock *
3742 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3743                                           MachineBasicBlock *BB,
3744                                           bool IsFGR64) const {
3745 
3746   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3747   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3748   // it.
3749   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3750 
3751   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3752   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3753 
3754   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3755   DebugLoc DL = MI.getDebugLoc();
3756   Register Fd = MI.getOperand(0).getReg();
3757   Register Ws = MI.getOperand(1).getReg();
3758 
3759   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3760   const TargetRegisterClass *GPRRC =
3761       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3762   unsigned MTC1Opc = IsFGR64onMips64
3763                          ? Mips::DMTC1
3764                          : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3765   Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3766 
3767   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3768   Register WPHI = Wtemp;
3769 
3770   BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3771   if (IsFGR64) {
3772     WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3773     BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3774   }
3775 
3776   // Perform the safety regclass copy mentioned above.
3777   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3778   Register FPRPHI = IsFGR64onMips32
3779                         ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3780                         : Fd;
3781   BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3782   BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3783 
3784   if (IsFGR64onMips32) {
3785     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3786     BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3787         .addReg(WPHI)
3788         .addImm(1);
3789     BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3790         .addReg(FPRPHI)
3791         .addReg(Rtemp2);
3792   }
3793 
3794   MI.eraseFromParent();
3795   return BB;
3796 }
3797 
3798 // Emit the FEXP2_W_1 pseudo instructions.
3799 //
3800 // fexp2_w_1_pseudo $wd, $wt
3801 // =>
3802 // ldi.w $ws, 1
3803 // fexp2.w $wd, $ws, $wt
3804 MachineBasicBlock *
3805 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3806                                     MachineBasicBlock *BB) const {
3807   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3808   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3809   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3810   Register Ws1 = RegInfo.createVirtualRegister(RC);
3811   Register Ws2 = RegInfo.createVirtualRegister(RC);
3812   DebugLoc DL = MI.getDebugLoc();
3813 
3814   // Splat 1.0 into a vector
3815   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3816   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3817 
3818   // Emit 1.0 * fexp2(Wt)
3819   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3820       .addReg(Ws2)
3821       .addReg(MI.getOperand(1).getReg());
3822 
3823   MI.eraseFromParent(); // The pseudo instruction is gone now.
3824   return BB;
3825 }
3826 
3827 // Emit the FEXP2_D_1 pseudo instructions.
3828 //
3829 // fexp2_d_1_pseudo $wd, $wt
3830 // =>
3831 // ldi.d $ws, 1
3832 // fexp2.d $wd, $ws, $wt
3833 MachineBasicBlock *
3834 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3835                                     MachineBasicBlock *BB) const {
3836   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3837   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3838   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3839   Register Ws1 = RegInfo.createVirtualRegister(RC);
3840   Register Ws2 = RegInfo.createVirtualRegister(RC);
3841   DebugLoc DL = MI.getDebugLoc();
3842 
3843   // Splat 1.0 into a vector
3844   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3845   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3846 
3847   // Emit 1.0 * fexp2(Wt)
3848   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3849       .addReg(Ws2)
3850       .addReg(MI.getOperand(1).getReg());
3851 
3852   MI.eraseFromParent(); // The pseudo instruction is gone now.
3853   return BB;
3854 }
3855