xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsSEISelLowering.cpp (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/CodeGenTypes/MachineValueType.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsMips.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/TargetParser/Triple.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "mips-isel"
53 
54 static cl::opt<bool>
55 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
56                     cl::desc("MIPS: permit tail calls."), cl::init(false));
57 
58 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
59                                    cl::desc("Expand double precision loads and "
60                                             "stores to their single precision "
61                                             "counterparts"));
62 
63 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
64                                            const MipsSubtarget &STI)
65     : MipsTargetLowering(TM, STI) {
66   // Set up the register classes
67   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
68 
69   if (Subtarget.isGP64bit())
70     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
71 
72   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
73     // Expand all truncating stores and extending loads.
74     for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) {
75       for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) {
76         setTruncStoreAction(VT0, VT1, Expand);
77         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
78         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
79         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
80       }
81     }
82   }
83 
84   if (Subtarget.hasDSP()) {
85     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
86 
87     for (const auto &VecTy : VecTys) {
88       addRegisterClass(VecTy, &Mips::DSPRRegClass);
89 
90       // Expand all builtin opcodes.
91       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
92         setOperationAction(Opc, VecTy, Expand);
93 
94       setOperationAction(ISD::ADD, VecTy, Legal);
95       setOperationAction(ISD::SUB, VecTy, Legal);
96       setOperationAction(ISD::LOAD, VecTy, Legal);
97       setOperationAction(ISD::STORE, VecTy, Legal);
98       setOperationAction(ISD::BITCAST, VecTy, Legal);
99     }
100 
101     setTargetDAGCombine(
102         {ISD::SHL, ISD::SRA, ISD::SRL, ISD::SETCC, ISD::VSELECT});
103 
104     if (Subtarget.hasMips32r2()) {
105       setOperationAction(ISD::ADDC, MVT::i32, Legal);
106       setOperationAction(ISD::ADDE, MVT::i32, Legal);
107     }
108   }
109 
110   if (Subtarget.hasDSPR2())
111     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
112 
113   if (Subtarget.hasMSA()) {
114     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
115     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
116     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
117     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
118     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
119     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
120     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
121 
122     // f16 is a storage-only type, always promote it to f32.
123     addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
124     setOperationAction(ISD::SETCC, MVT::f16, Promote);
125     setOperationAction(ISD::BR_CC, MVT::f16, Promote);
126     setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
127     setOperationAction(ISD::SELECT, MVT::f16, Promote);
128     setOperationAction(ISD::FADD, MVT::f16, Promote);
129     setOperationAction(ISD::FSUB, MVT::f16, Promote);
130     setOperationAction(ISD::FMUL, MVT::f16, Promote);
131     setOperationAction(ISD::FDIV, MVT::f16, Promote);
132     setOperationAction(ISD::FREM, MVT::f16, Promote);
133     setOperationAction(ISD::FMA, MVT::f16, Promote);
134     setOperationAction(ISD::FNEG, MVT::f16, Promote);
135     setOperationAction(ISD::FABS, MVT::f16, Promote);
136     setOperationAction(ISD::FCEIL, MVT::f16, Promote);
137     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
138     setOperationAction(ISD::FCOS, MVT::f16, Promote);
139     setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
140     setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
141     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
142     setOperationAction(ISD::FPOW, MVT::f16, Promote);
143     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
144     setOperationAction(ISD::FRINT, MVT::f16, Promote);
145     setOperationAction(ISD::FSIN, MVT::f16, Promote);
146     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
147     setOperationAction(ISD::FSQRT, MVT::f16, Promote);
148     setOperationAction(ISD::FEXP, MVT::f16, Promote);
149     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
150     setOperationAction(ISD::FLOG, MVT::f16, Promote);
151     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
152     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
153     setOperationAction(ISD::FROUND, MVT::f16, Promote);
154     setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
155     setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
156     setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
157     setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
158     setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
159 
160     setTargetDAGCombine({ISD::AND, ISD::OR, ISD::SRA, ISD::VSELECT, ISD::XOR});
161   }
162 
163   if (!Subtarget.useSoftFloat()) {
164     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
165 
166     // When dealing with single precision only, use libcalls
167     if (!Subtarget.isSingleFloat()) {
168       if (Subtarget.isFP64bit())
169         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
170       else
171         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
172     }
173   }
174 
175   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
176   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
177   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
178   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
179 
180   if (Subtarget.hasCnMips())
181     setOperationAction(ISD::MUL,              MVT::i64, Legal);
182   else if (Subtarget.isGP64bit())
183     setOperationAction(ISD::MUL,              MVT::i64, Custom);
184 
185   if (Subtarget.isGP64bit()) {
186     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
187     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
188     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
189     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
190     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
191     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
192   }
193 
194   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
195   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
196 
197   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
198   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
199   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
200   if (Subtarget.hasMips32r6()) {
201     setOperationAction(ISD::LOAD,               MVT::i32, Legal);
202     setOperationAction(ISD::STORE,              MVT::i32, Legal);
203   } else {
204     setOperationAction(ISD::LOAD,               MVT::i32, Custom);
205     setOperationAction(ISD::STORE,              MVT::i32, Custom);
206   }
207 
208   setTargetDAGCombine(ISD::MUL);
209 
210   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
212   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
213 
214   if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() &&
215       !Subtarget.hasMips64()) {
216     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
217   }
218 
219   if (NoDPLoadStore) {
220     setOperationAction(ISD::LOAD, MVT::f64, Custom);
221     setOperationAction(ISD::STORE, MVT::f64, Custom);
222   }
223 
224   if (Subtarget.hasMips32r6()) {
225     // MIPS32r6 replaces the accumulator-based multiplies with a three register
226     // instruction
227     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
228     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
229     setOperationAction(ISD::MUL, MVT::i32, Legal);
230     setOperationAction(ISD::MULHS, MVT::i32, Legal);
231     setOperationAction(ISD::MULHU, MVT::i32, Legal);
232 
233     // MIPS32r6 replaces the accumulator-based division/remainder with separate
234     // three register division and remainder instructions.
235     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
236     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
237     setOperationAction(ISD::SDIV, MVT::i32, Legal);
238     setOperationAction(ISD::UDIV, MVT::i32, Legal);
239     setOperationAction(ISD::SREM, MVT::i32, Legal);
240     setOperationAction(ISD::UREM, MVT::i32, Legal);
241 
242     // MIPS32r6 replaces conditional moves with an equivalent that removes the
243     // need for three GPR read ports.
244     setOperationAction(ISD::SETCC, MVT::i32, Legal);
245     setOperationAction(ISD::SELECT, MVT::i32, Legal);
246     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
247 
248     setOperationAction(ISD::SETCC, MVT::f32, Legal);
249     setOperationAction(ISD::SELECT, MVT::f32, Legal);
250     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
251 
252     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
253     setOperationAction(ISD::SETCC, MVT::f64, Legal);
254     setOperationAction(ISD::SELECT, MVT::f64, Custom);
255     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
256 
257     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
258 
259     // Floating point > and >= are supported via < and <=
260     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
261     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
262     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
263     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
264 
265     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
266     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
267     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
268     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
269   }
270 
271   if (Subtarget.hasMips64r6()) {
272     // MIPS64r6 replaces the accumulator-based multiplies with a three register
273     // instruction
274     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
275     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
276     setOperationAction(ISD::MUL, MVT::i64, Legal);
277     setOperationAction(ISD::MULHS, MVT::i64, Legal);
278     setOperationAction(ISD::MULHU, MVT::i64, Legal);
279 
280     // MIPS32r6 replaces the accumulator-based division/remainder with separate
281     // three register division and remainder instructions.
282     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
283     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
284     setOperationAction(ISD::SDIV, MVT::i64, Legal);
285     setOperationAction(ISD::UDIV, MVT::i64, Legal);
286     setOperationAction(ISD::SREM, MVT::i64, Legal);
287     setOperationAction(ISD::UREM, MVT::i64, Legal);
288 
289     // MIPS64r6 replaces conditional moves with an equivalent that removes the
290     // need for three GPR read ports.
291     setOperationAction(ISD::SETCC, MVT::i64, Legal);
292     setOperationAction(ISD::SELECT, MVT::i64, Legal);
293     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
294   }
295 
296   computeRegisterProperties(Subtarget.getRegisterInfo());
297 }
298 
299 const MipsTargetLowering *
300 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
301                                  const MipsSubtarget &STI) {
302   return new MipsSETargetLowering(TM, STI);
303 }
304 
305 const TargetRegisterClass *
306 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
307   if (VT == MVT::Untyped)
308     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
309 
310   return TargetLowering::getRepRegClassFor(VT);
311 }
312 
313 // Enable MSA support for the given integer type and Register class.
314 void MipsSETargetLowering::
315 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
316   addRegisterClass(Ty, RC);
317 
318   // Expand all builtin opcodes.
319   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
320     setOperationAction(Opc, Ty, Expand);
321 
322   setOperationAction(ISD::BITCAST, Ty, Legal);
323   setOperationAction(ISD::LOAD, Ty, Legal);
324   setOperationAction(ISD::STORE, Ty, Legal);
325   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
326   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
327   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
328   setOperationAction(ISD::UNDEF, Ty, Legal);
329 
330   setOperationAction(ISD::ADD, Ty, Legal);
331   setOperationAction(ISD::AND, Ty, Legal);
332   setOperationAction(ISD::CTLZ, Ty, Legal);
333   setOperationAction(ISD::CTPOP, Ty, Legal);
334   setOperationAction(ISD::MUL, Ty, Legal);
335   setOperationAction(ISD::OR, Ty, Legal);
336   setOperationAction(ISD::SDIV, Ty, Legal);
337   setOperationAction(ISD::SREM, Ty, Legal);
338   setOperationAction(ISD::SHL, Ty, Legal);
339   setOperationAction(ISD::SRA, Ty, Legal);
340   setOperationAction(ISD::SRL, Ty, Legal);
341   setOperationAction(ISD::SUB, Ty, Legal);
342   setOperationAction(ISD::SMAX, Ty, Legal);
343   setOperationAction(ISD::SMIN, Ty, Legal);
344   setOperationAction(ISD::UDIV, Ty, Legal);
345   setOperationAction(ISD::UREM, Ty, Legal);
346   setOperationAction(ISD::UMAX, Ty, Legal);
347   setOperationAction(ISD::UMIN, Ty, Legal);
348   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
349   setOperationAction(ISD::VSELECT, Ty, Legal);
350   setOperationAction(ISD::XOR, Ty, Legal);
351 
352   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
353     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
354     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
355     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
356     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
357   }
358 
359   setOperationAction(ISD::SETCC, Ty, Legal);
360   setCondCodeAction(ISD::SETNE, Ty, Expand);
361   setCondCodeAction(ISD::SETGE, Ty, Expand);
362   setCondCodeAction(ISD::SETGT, Ty, Expand);
363   setCondCodeAction(ISD::SETUGE, Ty, Expand);
364   setCondCodeAction(ISD::SETUGT, Ty, Expand);
365 }
366 
367 // Enable MSA support for the given floating-point type and Register class.
368 void MipsSETargetLowering::
369 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
370   addRegisterClass(Ty, RC);
371 
372   // Expand all builtin opcodes.
373   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
374     setOperationAction(Opc, Ty, Expand);
375 
376   setOperationAction(ISD::LOAD, Ty, Legal);
377   setOperationAction(ISD::STORE, Ty, Legal);
378   setOperationAction(ISD::BITCAST, Ty, Legal);
379   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
380   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
381   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
382 
383   if (Ty != MVT::v8f16) {
384     setOperationAction(ISD::FABS,  Ty, Legal);
385     setOperationAction(ISD::FADD,  Ty, Legal);
386     setOperationAction(ISD::FDIV,  Ty, Legal);
387     setOperationAction(ISD::FEXP2, Ty, Legal);
388     setOperationAction(ISD::FLOG2, Ty, Legal);
389     setOperationAction(ISD::FMA,   Ty, Legal);
390     setOperationAction(ISD::FMUL,  Ty, Legal);
391     setOperationAction(ISD::FRINT, Ty, Legal);
392     setOperationAction(ISD::FSQRT, Ty, Legal);
393     setOperationAction(ISD::FSUB,  Ty, Legal);
394     setOperationAction(ISD::VSELECT, Ty, Legal);
395 
396     setOperationAction(ISD::SETCC, Ty, Legal);
397     setCondCodeAction(ISD::SETOGE, Ty, Expand);
398     setCondCodeAction(ISD::SETOGT, Ty, Expand);
399     setCondCodeAction(ISD::SETUGE, Ty, Expand);
400     setCondCodeAction(ISD::SETUGT, Ty, Expand);
401     setCondCodeAction(ISD::SETGE,  Ty, Expand);
402     setCondCodeAction(ISD::SETGT,  Ty, Expand);
403   }
404 }
405 
406 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
407   if(!Subtarget.hasMips32r6())
408     return MipsTargetLowering::LowerOperation(Op, DAG);
409 
410   EVT ResTy = Op->getValueType(0);
411   SDLoc DL(Op);
412 
413   // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
414   // floating point register are undefined. Not really an issue as sel.d, which
415   // is produced from an FSELECT node, only looks at bit 0.
416   SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
417   return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
418                      Op->getOperand(2));
419 }
420 
421 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses(
422     EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
423   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
424 
425   if (Subtarget.systemSupportsUnalignedAccess()) {
426     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
427     // implementation defined whether this is handled by hardware, software, or
428     // a hybrid of the two but it's expected that most implementations will
429     // handle the majority of cases in hardware.
430     if (Fast)
431       *Fast = 1;
432     return true;
433   } else if (Subtarget.hasMips32r6()) {
434     return false;
435   }
436 
437   switch (SVT) {
438   case MVT::i64:
439   case MVT::i32:
440     if (Fast)
441       *Fast = 1;
442     return true;
443   default:
444     return false;
445   }
446 }
447 
448 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
449                                              SelectionDAG &DAG) const {
450   switch(Op.getOpcode()) {
451   case ISD::LOAD:  return lowerLOAD(Op, DAG);
452   case ISD::STORE: return lowerSTORE(Op, DAG);
453   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
454   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
455   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
456   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
457   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
458   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
459   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
460                                           DAG);
461   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
462   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
463   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
464   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
465   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
466   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
467   case ISD::SELECT:             return lowerSELECT(Op, DAG);
468   case ISD::BITCAST:            return lowerBITCAST(Op, DAG);
469   }
470 
471   return MipsTargetLowering::LowerOperation(Op, DAG);
472 }
473 
474 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
475 //
476 // Performs the following transformations:
477 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
478 //   sign/zero-extension is completely overwritten by the new one performed by
479 //   the ISD::AND.
480 // - Removes redundant zero extensions performed by an ISD::AND.
481 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
482                                  TargetLowering::DAGCombinerInfo &DCI,
483                                  const MipsSubtarget &Subtarget) {
484   if (!Subtarget.hasMSA())
485     return SDValue();
486 
487   SDValue Op0 = N->getOperand(0);
488   SDValue Op1 = N->getOperand(1);
489   unsigned Op0Opcode = Op0->getOpcode();
490 
491   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
492   // where $d + 1 == 2^n and n == 32
493   // or    $d + 1 == 2^n and n <= 32 and ZExt
494   // -> (MipsVExtractZExt $a, $b, $c)
495   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
496       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
497     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
498 
499     if (!Mask)
500       return SDValue();
501 
502     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
503 
504     if (Log2IfPositive <= 0)
505       return SDValue(); // Mask+1 is not a power of 2
506 
507     SDValue Op0Op2 = Op0->getOperand(2);
508     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
509     unsigned ExtendTySize = ExtendTy.getSizeInBits();
510     unsigned Log2 = Log2IfPositive;
511 
512     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
513         Log2 == ExtendTySize) {
514       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
515       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
516                          Op0->getVTList(),
517                          ArrayRef(Ops, Op0->getNumOperands()));
518     }
519   }
520 
521   return SDValue();
522 }
523 
524 // Determine if the specified node is a constant vector splat.
525 //
526 // Returns true and sets Imm if:
527 // * N is a ISD::BUILD_VECTOR representing a constant splat
528 //
529 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
530 // differences are that it assumes the MSA has already been checked and the
531 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
532 // must not be in order for binsri.d to be selectable).
533 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
534   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
535 
536   if (!Node)
537     return false;
538 
539   APInt SplatValue, SplatUndef;
540   unsigned SplatBitSize;
541   bool HasAnyUndefs;
542 
543   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
544                              8, !IsLittleEndian))
545     return false;
546 
547   Imm = SplatValue;
548 
549   return true;
550 }
551 
552 // Test whether the given node is an all-ones build_vector.
553 static bool isVectorAllOnes(SDValue N) {
554   // Look through bitcasts. Endianness doesn't matter because we are looking
555   // for an all-ones value.
556   if (N->getOpcode() == ISD::BITCAST)
557     N = N->getOperand(0);
558 
559   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
560 
561   if (!BVN)
562     return false;
563 
564   APInt SplatValue, SplatUndef;
565   unsigned SplatBitSize;
566   bool HasAnyUndefs;
567 
568   // Endianness doesn't matter in this context because we are looking for
569   // an all-ones value.
570   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
571     return SplatValue.isAllOnes();
572 
573   return false;
574 }
575 
576 // Test whether N is the bitwise inverse of OfNode.
577 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
578   if (N->getOpcode() != ISD::XOR)
579     return false;
580 
581   if (isVectorAllOnes(N->getOperand(0)))
582     return N->getOperand(1) == OfNode;
583 
584   if (isVectorAllOnes(N->getOperand(1)))
585     return N->getOperand(0) == OfNode;
586 
587   return false;
588 }
589 
590 // Perform combines where ISD::OR is the root node.
591 //
592 // Performs the following transformations:
593 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
594 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
595 //   vector type.
596 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
597                                 TargetLowering::DAGCombinerInfo &DCI,
598                                 const MipsSubtarget &Subtarget) {
599   if (!Subtarget.hasMSA())
600     return SDValue();
601 
602   EVT Ty = N->getValueType(0);
603 
604   if (!Ty.is128BitVector())
605     return SDValue();
606 
607   SDValue Op0 = N->getOperand(0);
608   SDValue Op1 = N->getOperand(1);
609 
610   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
611     SDValue Op0Op0 = Op0->getOperand(0);
612     SDValue Op0Op1 = Op0->getOperand(1);
613     SDValue Op1Op0 = Op1->getOperand(0);
614     SDValue Op1Op1 = Op1->getOperand(1);
615     bool IsLittleEndian = !Subtarget.isLittle();
616 
617     SDValue IfSet, IfClr, Cond;
618     bool IsConstantMask = false;
619     APInt Mask, InvMask;
620 
621     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
622     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
623     // looking.
624     // IfClr will be set if we find a valid match.
625     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
626       Cond = Op0Op0;
627       IfSet = Op0Op1;
628 
629       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
630           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
631         IfClr = Op1Op1;
632       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
633                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
634         IfClr = Op1Op0;
635 
636       IsConstantMask = true;
637     }
638 
639     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
640     // thing again using this mask.
641     // IfClr will be set if we find a valid match.
642     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
643       Cond = Op0Op1;
644       IfSet = Op0Op0;
645 
646       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
647           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
648         IfClr = Op1Op1;
649       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
650                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
651         IfClr = Op1Op0;
652 
653       IsConstantMask = true;
654     }
655 
656     // If IfClr is not yet set, try looking for a non-constant match.
657     // IfClr will be set if we find a valid match amongst the eight
658     // possibilities.
659     if (!IfClr.getNode()) {
660       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
661         Cond = Op1Op0;
662         IfSet = Op1Op1;
663         IfClr = Op0Op1;
664       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
665         Cond = Op1Op0;
666         IfSet = Op1Op1;
667         IfClr = Op0Op0;
668       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
669         Cond = Op1Op1;
670         IfSet = Op1Op0;
671         IfClr = Op0Op1;
672       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
673         Cond = Op1Op1;
674         IfSet = Op1Op0;
675         IfClr = Op0Op0;
676       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
677         Cond = Op0Op0;
678         IfSet = Op0Op1;
679         IfClr = Op1Op1;
680       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
681         Cond = Op0Op0;
682         IfSet = Op0Op1;
683         IfClr = Op1Op0;
684       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
685         Cond = Op0Op1;
686         IfSet = Op0Op0;
687         IfClr = Op1Op1;
688       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
689         Cond = Op0Op1;
690         IfSet = Op0Op0;
691         IfClr = Op1Op0;
692       }
693     }
694 
695     // At this point, IfClr will be set if we have a valid match.
696     if (!IfClr.getNode())
697       return SDValue();
698 
699     assert(Cond.getNode() && IfSet.getNode());
700 
701     // Fold degenerate cases.
702     if (IsConstantMask) {
703       if (Mask.isAllOnes())
704         return IfSet;
705       else if (Mask == 0)
706         return IfClr;
707     }
708 
709     // Transform the DAG into an equivalent VSELECT.
710     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
711   }
712 
713   return SDValue();
714 }
715 
716 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
717                                                SelectionDAG &DAG,
718                                                const MipsSubtarget &Subtarget) {
719   // Estimate the number of operations the below transform will turn a
720   // constant multiply into. The number is approximately equal to the minimal
721   // number of powers of two that constant can be broken down to by adding
722   // or subtracting them.
723   //
724   // If we have taken more than 12[1] / 8[2] steps to attempt the
725   // optimization for a native sized value, it is more than likely that this
726   // optimization will make things worse.
727   //
728   // [1] MIPS64 requires 6 instructions at most to materialize any constant,
729   //     multiplication requires at least 4 cycles, but another cycle (or two)
730   //     to retrieve the result from the HI/LO registers.
731   //
732   // [2] For MIPS32, more than 8 steps is expensive as the constant could be
733   //     materialized in 2 instructions, multiplication requires at least 4
734   //     cycles, but another cycle (or two) to retrieve the result from the
735   //     HI/LO registers.
736   //
737   // TODO:
738   // - MaxSteps needs to consider the `VT` of the constant for the current
739   //   target.
740   // - Consider to perform this optimization after type legalization.
741   //   That allows to remove a workaround for types not supported natively.
742   // - Take in account `-Os, -Oz` flags because this optimization
743   //   increases code size.
744   unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12;
745 
746   SmallVector<APInt, 16> WorkStack(1, C);
747   unsigned Steps = 0;
748   unsigned BitWidth = C.getBitWidth();
749 
750   while (!WorkStack.empty()) {
751     APInt Val = WorkStack.pop_back_val();
752 
753     if (Val == 0 || Val == 1)
754       continue;
755 
756     if (Steps >= MaxSteps)
757       return false;
758 
759     if (Val.isPowerOf2()) {
760       ++Steps;
761       continue;
762     }
763 
764     APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
765     APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
766                                   : APInt(BitWidth, 1) << C.ceilLogBase2();
767     if ((Val - Floor).ule(Ceil - Val)) {
768       WorkStack.push_back(Floor);
769       WorkStack.push_back(Val - Floor);
770     } else {
771       WorkStack.push_back(Ceil);
772       WorkStack.push_back(Ceil - Val);
773     }
774 
775     ++Steps;
776   }
777 
778   // If the value being multiplied is not supported natively, we have to pay
779   // an additional legalization cost, conservatively assume an increase in the
780   // cost of 3 instructions per step. This values for this heuristic were
781   // determined experimentally.
782   unsigned RegisterSize = DAG.getTargetLoweringInfo()
783                               .getRegisterType(*DAG.getContext(), VT)
784                               .getSizeInBits();
785   Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
786   if (Steps > 27)
787     return false;
788 
789   return true;
790 }
791 
792 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
793                             EVT ShiftTy, SelectionDAG &DAG) {
794   // Return 0.
795   if (C == 0)
796     return DAG.getConstant(0, DL, VT);
797 
798   // Return x.
799   if (C == 1)
800     return X;
801 
802   // If c is power of 2, return (shl x, log2(c)).
803   if (C.isPowerOf2())
804     return DAG.getNode(ISD::SHL, DL, VT, X,
805                        DAG.getConstant(C.logBase2(), DL, ShiftTy));
806 
807   unsigned BitWidth = C.getBitWidth();
808   APInt Floor = APInt(BitWidth, 1) << C.logBase2();
809   APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
810                                 APInt(BitWidth, 1) << C.ceilLogBase2();
811 
812   // If |c - floor_c| <= |c - ceil_c|,
813   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
814   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
815   if ((C - Floor).ule(Ceil - C)) {
816     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
817     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
818     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
819   }
820 
821   // If |c - floor_c| > |c - ceil_c|,
822   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
823   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
824   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
825   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
826 }
827 
828 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
829                                  const TargetLowering::DAGCombinerInfo &DCI,
830                                  const MipsSETargetLowering *TL,
831                                  const MipsSubtarget &Subtarget) {
832   EVT VT = N->getValueType(0);
833 
834   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
835     if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
836                               C->getAPIntValue(), VT, DAG, Subtarget))
837       return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
838                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
839                           DAG);
840 
841   return SDValue(N, 0);
842 }
843 
844 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
845                                       SelectionDAG &DAG,
846                                       const MipsSubtarget &Subtarget) {
847   // See if this is a vector splat immediate node.
848   APInt SplatValue, SplatUndef;
849   unsigned SplatBitSize;
850   bool HasAnyUndefs;
851   unsigned EltSize = Ty.getScalarSizeInBits();
852   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
853 
854   if (!Subtarget.hasDSP())
855     return SDValue();
856 
857   if (!BV ||
858       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
859                            EltSize, !Subtarget.isLittle()) ||
860       (SplatBitSize != EltSize) ||
861       (SplatValue.getZExtValue() >= EltSize))
862     return SDValue();
863 
864   SDLoc DL(N);
865   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
866                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
867 }
868 
869 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
870                                  TargetLowering::DAGCombinerInfo &DCI,
871                                  const MipsSubtarget &Subtarget) {
872   EVT Ty = N->getValueType(0);
873 
874   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
875     return SDValue();
876 
877   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
878 }
879 
880 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
881 // constant splats into MipsISD::SHRA_DSP for DSPr2.
882 //
883 // Performs the following transformations:
884 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
885 //   sign/zero-extension is completely overwritten by the new one performed by
886 //   the ISD::SRA and ISD::SHL nodes.
887 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
888 //   sequence.
889 //
890 // See performDSPShiftCombine for more information about the transformation
891 // used for DSPr2.
892 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
893                                  TargetLowering::DAGCombinerInfo &DCI,
894                                  const MipsSubtarget &Subtarget) {
895   EVT Ty = N->getValueType(0);
896 
897   if (Subtarget.hasMSA()) {
898     SDValue Op0 = N->getOperand(0);
899     SDValue Op1 = N->getOperand(1);
900 
901     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
902     // where $d + sizeof($c) == 32
903     // or    $d + sizeof($c) <= 32 and SExt
904     // -> (MipsVExtractSExt $a, $b, $c)
905     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
906       SDValue Op0Op0 = Op0->getOperand(0);
907       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
908 
909       if (!ShAmount)
910         return SDValue();
911 
912       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
913           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
914         return SDValue();
915 
916       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
917       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
918 
919       if (TotalBits == 32 ||
920           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
921            TotalBits <= 32)) {
922         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
923                           Op0Op0->getOperand(2) };
924         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
925                            Op0Op0->getVTList(),
926                            ArrayRef(Ops, Op0Op0->getNumOperands()));
927       }
928     }
929   }
930 
931   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
932     return SDValue();
933 
934   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
935 }
936 
937 
938 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
939                                  TargetLowering::DAGCombinerInfo &DCI,
940                                  const MipsSubtarget &Subtarget) {
941   EVT Ty = N->getValueType(0);
942 
943   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
944     return SDValue();
945 
946   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
947 }
948 
949 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
950   bool IsV216 = (Ty == MVT::v2i16);
951 
952   switch (CC) {
953   case ISD::SETEQ:
954   case ISD::SETNE:  return true;
955   case ISD::SETLT:
956   case ISD::SETLE:
957   case ISD::SETGT:
958   case ISD::SETGE:  return IsV216;
959   case ISD::SETULT:
960   case ISD::SETULE:
961   case ISD::SETUGT:
962   case ISD::SETUGE: return !IsV216;
963   default:          return false;
964   }
965 }
966 
967 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
968   EVT Ty = N->getValueType(0);
969 
970   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
971     return SDValue();
972 
973   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
974     return SDValue();
975 
976   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
977                      N->getOperand(1), N->getOperand(2));
978 }
979 
980 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
981   EVT Ty = N->getValueType(0);
982 
983   if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
984     SDValue SetCC = N->getOperand(0);
985 
986     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
987       return SDValue();
988 
989     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
990                        SetCC.getOperand(0), SetCC.getOperand(1),
991                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
992   }
993 
994   return SDValue();
995 }
996 
997 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
998                                  const MipsSubtarget &Subtarget) {
999   EVT Ty = N->getValueType(0);
1000 
1001   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1002     // Try the following combines:
1003     //   (xor (or $a, $b), (build_vector allones))
1004     //   (xor (or $a, $b), (bitcast (build_vector allones)))
1005     SDValue Op0 = N->getOperand(0);
1006     SDValue Op1 = N->getOperand(1);
1007     SDValue NotOp;
1008 
1009     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1010       NotOp = Op1;
1011     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1012       NotOp = Op0;
1013     else
1014       return SDValue();
1015 
1016     if (NotOp->getOpcode() == ISD::OR)
1017       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1018                          NotOp->getOperand(1));
1019   }
1020 
1021   return SDValue();
1022 }
1023 
1024 SDValue
1025 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1026   SelectionDAG &DAG = DCI.DAG;
1027   SDValue Val;
1028 
1029   switch (N->getOpcode()) {
1030   case ISD::AND:
1031     Val = performANDCombine(N, DAG, DCI, Subtarget);
1032     break;
1033   case ISD::OR:
1034     Val = performORCombine(N, DAG, DCI, Subtarget);
1035     break;
1036   case ISD::MUL:
1037     return performMULCombine(N, DAG, DCI, this, Subtarget);
1038   case ISD::SHL:
1039     Val = performSHLCombine(N, DAG, DCI, Subtarget);
1040     break;
1041   case ISD::SRA:
1042     return performSRACombine(N, DAG, DCI, Subtarget);
1043   case ISD::SRL:
1044     return performSRLCombine(N, DAG, DCI, Subtarget);
1045   case ISD::VSELECT:
1046     return performVSELECTCombine(N, DAG);
1047   case ISD::XOR:
1048     Val = performXORCombine(N, DAG, Subtarget);
1049     break;
1050   case ISD::SETCC:
1051     Val = performSETCCCombine(N, DAG);
1052     break;
1053   }
1054 
1055   if (Val.getNode()) {
1056     LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1057                N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1058                Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1059     return Val;
1060   }
1061 
1062   return MipsTargetLowering::PerformDAGCombine(N, DCI);
1063 }
1064 
1065 MachineBasicBlock *
1066 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1067                                                   MachineBasicBlock *BB) const {
1068   switch (MI.getOpcode()) {
1069   default:
1070     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1071   case Mips::BPOSGE32_PSEUDO:
1072     return emitBPOSGE32(MI, BB);
1073   case Mips::SNZ_B_PSEUDO:
1074     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1075   case Mips::SNZ_H_PSEUDO:
1076     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1077   case Mips::SNZ_W_PSEUDO:
1078     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1079   case Mips::SNZ_D_PSEUDO:
1080     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1081   case Mips::SNZ_V_PSEUDO:
1082     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1083   case Mips::SZ_B_PSEUDO:
1084     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1085   case Mips::SZ_H_PSEUDO:
1086     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1087   case Mips::SZ_W_PSEUDO:
1088     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1089   case Mips::SZ_D_PSEUDO:
1090     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1091   case Mips::SZ_V_PSEUDO:
1092     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1093   case Mips::COPY_FW_PSEUDO:
1094     return emitCOPY_FW(MI, BB);
1095   case Mips::COPY_FD_PSEUDO:
1096     return emitCOPY_FD(MI, BB);
1097   case Mips::INSERT_FW_PSEUDO:
1098     return emitINSERT_FW(MI, BB);
1099   case Mips::INSERT_FD_PSEUDO:
1100     return emitINSERT_FD(MI, BB);
1101   case Mips::INSERT_B_VIDX_PSEUDO:
1102   case Mips::INSERT_B_VIDX64_PSEUDO:
1103     return emitINSERT_DF_VIDX(MI, BB, 1, false);
1104   case Mips::INSERT_H_VIDX_PSEUDO:
1105   case Mips::INSERT_H_VIDX64_PSEUDO:
1106     return emitINSERT_DF_VIDX(MI, BB, 2, false);
1107   case Mips::INSERT_W_VIDX_PSEUDO:
1108   case Mips::INSERT_W_VIDX64_PSEUDO:
1109     return emitINSERT_DF_VIDX(MI, BB, 4, false);
1110   case Mips::INSERT_D_VIDX_PSEUDO:
1111   case Mips::INSERT_D_VIDX64_PSEUDO:
1112     return emitINSERT_DF_VIDX(MI, BB, 8, false);
1113   case Mips::INSERT_FW_VIDX_PSEUDO:
1114   case Mips::INSERT_FW_VIDX64_PSEUDO:
1115     return emitINSERT_DF_VIDX(MI, BB, 4, true);
1116   case Mips::INSERT_FD_VIDX_PSEUDO:
1117   case Mips::INSERT_FD_VIDX64_PSEUDO:
1118     return emitINSERT_DF_VIDX(MI, BB, 8, true);
1119   case Mips::FILL_FW_PSEUDO:
1120     return emitFILL_FW(MI, BB);
1121   case Mips::FILL_FD_PSEUDO:
1122     return emitFILL_FD(MI, BB);
1123   case Mips::FEXP2_W_1_PSEUDO:
1124     return emitFEXP2_W_1(MI, BB);
1125   case Mips::FEXP2_D_1_PSEUDO:
1126     return emitFEXP2_D_1(MI, BB);
1127   case Mips::ST_F16:
1128     return emitST_F16_PSEUDO(MI, BB);
1129   case Mips::LD_F16:
1130     return emitLD_F16_PSEUDO(MI, BB);
1131   case Mips::MSA_FP_EXTEND_W_PSEUDO:
1132     return emitFPEXTEND_PSEUDO(MI, BB, false);
1133   case Mips::MSA_FP_ROUND_W_PSEUDO:
1134     return emitFPROUND_PSEUDO(MI, BB, false);
1135   case Mips::MSA_FP_EXTEND_D_PSEUDO:
1136     return emitFPEXTEND_PSEUDO(MI, BB, true);
1137   case Mips::MSA_FP_ROUND_D_PSEUDO:
1138     return emitFPROUND_PSEUDO(MI, BB, true);
1139   }
1140 }
1141 
1142 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1143     const CCState &CCInfo, unsigned NextStackOffset,
1144     const MipsFunctionInfo &FI) const {
1145   if (!UseMipsTailCalls)
1146     return false;
1147 
1148   // Exception has to be cleared with eret.
1149   if (FI.isISR())
1150     return false;
1151 
1152   // Return false if either the callee or caller has a byval argument.
1153   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1154     return false;
1155 
1156   // Return true if the callee's argument area is no larger than the
1157   // caller's.
1158   return NextStackOffset <= FI.getIncomingArgSize();
1159 }
1160 
1161 void MipsSETargetLowering::
1162 getOpndList(SmallVectorImpl<SDValue> &Ops,
1163             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1164             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1165             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1166             SDValue Chain) const {
1167   Ops.push_back(Callee);
1168   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1169                                   InternalLinkage, IsCallReloc, CLI, Callee,
1170                                   Chain);
1171 }
1172 
1173 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1174   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1175 
1176   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1177     return MipsTargetLowering::lowerLOAD(Op, DAG);
1178 
1179   // Replace a double precision load with two i32 loads and a buildpair64.
1180   SDLoc DL(Op);
1181   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1182   EVT PtrVT = Ptr.getValueType();
1183 
1184   // i32 load from lower address.
1185   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1186                            Nd.getAlign(), Nd.getMemOperand()->getFlags());
1187 
1188   // i32 load from higher address.
1189   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1190   SDValue Hi = DAG.getLoad(
1191       MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1192       commonAlignment(Nd.getAlign(), 4), Nd.getMemOperand()->getFlags());
1193 
1194   if (!Subtarget.isLittle())
1195     std::swap(Lo, Hi);
1196 
1197   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1198   SDValue Ops[2] = {BP, Hi.getValue(1)};
1199   return DAG.getMergeValues(Ops, DL);
1200 }
1201 
1202 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1203   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1204 
1205   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1206     return MipsTargetLowering::lowerSTORE(Op, DAG);
1207 
1208   // Replace a double precision store with two extractelement64s and i32 stores.
1209   SDLoc DL(Op);
1210   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1211   EVT PtrVT = Ptr.getValueType();
1212   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1213                            Val, DAG.getConstant(0, DL, MVT::i32));
1214   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1215                            Val, DAG.getConstant(1, DL, MVT::i32));
1216 
1217   if (!Subtarget.isLittle())
1218     std::swap(Lo, Hi);
1219 
1220   // i32 store to lower address.
1221   Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlign(),
1222                        Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1223 
1224   // i32 store to higher address.
1225   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1226   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1227                       commonAlignment(Nd.getAlign(), 4),
1228                       Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1229 }
1230 
1231 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op,
1232                                            SelectionDAG &DAG) const {
1233   SDLoc DL(Op);
1234   MVT Src = Op.getOperand(0).getValueType().getSimpleVT();
1235   MVT Dest = Op.getValueType().getSimpleVT();
1236 
1237   // Bitcast i64 to double.
1238   if (Src == MVT::i64 && Dest == MVT::f64) {
1239     SDValue Lo, Hi;
1240     std::tie(Lo, Hi) =
1241         DAG.SplitScalar(Op.getOperand(0), DL, MVT::i32, MVT::i32);
1242     return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1243   }
1244 
1245   // Bitcast double to i64.
1246   if (Src == MVT::f64 && Dest == MVT::i64) {
1247     SDValue Lo =
1248         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1249                     DAG.getConstant(0, DL, MVT::i32));
1250     SDValue Hi =
1251         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1252                     DAG.getConstant(1, DL, MVT::i32));
1253     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1254   }
1255 
1256   // Skip other cases of bitcast and use default lowering.
1257   return SDValue();
1258 }
1259 
1260 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1261                                           bool HasLo, bool HasHi,
1262                                           SelectionDAG &DAG) const {
1263   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1264   assert(!Subtarget.hasMips32r6());
1265 
1266   EVT Ty = Op.getOperand(0).getValueType();
1267   SDLoc DL(Op);
1268   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1269                              Op.getOperand(0), Op.getOperand(1));
1270   SDValue Lo, Hi;
1271 
1272   if (HasLo)
1273     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1274   if (HasHi)
1275     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1276 
1277   if (!HasLo || !HasHi)
1278     return HasLo ? Lo : Hi;
1279 
1280   SDValue Vals[] = { Lo, Hi };
1281   return DAG.getMergeValues(Vals, DL);
1282 }
1283 
1284 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1285   SDValue InLo, InHi;
1286   std::tie(InLo, InHi) = DAG.SplitScalar(In, DL, MVT::i32, MVT::i32);
1287   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1288 }
1289 
1290 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1291   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1292   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1293   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1294 }
1295 
1296 // This function expands mips intrinsic nodes which have 64-bit input operands
1297 // or output values.
1298 //
1299 // out64 = intrinsic-node in64
1300 // =>
1301 // lo = copy (extract-element (in64, 0))
1302 // hi = copy (extract-element (in64, 1))
1303 // mips-specific-node
1304 // v0 = copy lo
1305 // v1 = copy hi
1306 // out64 = merge-values (v0, v1)
1307 //
1308 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1309   SDLoc DL(Op);
1310   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1311   SmallVector<SDValue, 3> Ops;
1312   unsigned OpNo = 0;
1313 
1314   // See if Op has a chain input.
1315   if (HasChainIn)
1316     Ops.push_back(Op->getOperand(OpNo++));
1317 
1318   // The next operand is the intrinsic opcode.
1319   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1320 
1321   // See if the next operand has type i64.
1322   SDValue Opnd = Op->getOperand(++OpNo), In64;
1323 
1324   if (Opnd.getValueType() == MVT::i64)
1325     In64 = initAccumulator(Opnd, DL, DAG);
1326   else
1327     Ops.push_back(Opnd);
1328 
1329   // Push the remaining operands.
1330   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1331     Ops.push_back(Op->getOperand(OpNo));
1332 
1333   // Add In64 to the end of the list.
1334   if (In64.getNode())
1335     Ops.push_back(In64);
1336 
1337   // Scan output.
1338   SmallVector<EVT, 2> ResTys;
1339 
1340   for (EVT Ty : Op->values())
1341     ResTys.push_back((Ty == MVT::i64) ? MVT::Untyped : Ty);
1342 
1343   // Create node.
1344   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1345   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1346 
1347   if (!HasChainIn)
1348     return Out;
1349 
1350   assert(Val->getValueType(1) == MVT::Other);
1351   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1352   return DAG.getMergeValues(Vals, DL);
1353 }
1354 
1355 // Lower an MSA copy intrinsic into the specified SelectionDAG node
1356 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1357   SDLoc DL(Op);
1358   SDValue Vec = Op->getOperand(1);
1359   SDValue Idx = Op->getOperand(2);
1360   EVT ResTy = Op->getValueType(0);
1361   EVT EltTy = Vec->getValueType(0).getVectorElementType();
1362 
1363   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1364                                DAG.getValueType(EltTy));
1365 
1366   return Result;
1367 }
1368 
1369 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1370   EVT ResVecTy = Op->getValueType(0);
1371   EVT ViaVecTy = ResVecTy;
1372   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1373   SDLoc DL(Op);
1374 
1375   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1376   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1377   // lanes.
1378   SDValue LaneA = Op->getOperand(OpNr);
1379   SDValue LaneB;
1380 
1381   if (ResVecTy == MVT::v2i64) {
1382     // In case of the index being passed as an immediate value, set the upper
1383     // lane to 0 so that the splati.d instruction can be matched.
1384     if (isa<ConstantSDNode>(LaneA))
1385       LaneB = DAG.getConstant(0, DL, MVT::i32);
1386     // Having the index passed in a register, set the upper lane to the same
1387     // value as the lower - this results in the BUILD_VECTOR node not being
1388     // expanded through stack. This way we are able to pattern match the set of
1389     // nodes created here to splat.d.
1390     else
1391       LaneB = LaneA;
1392     ViaVecTy = MVT::v4i32;
1393     if(BigEndian)
1394       std::swap(LaneA, LaneB);
1395   } else
1396     LaneB = LaneA;
1397 
1398   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1399                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1400 
1401   SDValue Result = DAG.getBuildVector(
1402       ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1403 
1404   if (ViaVecTy != ResVecTy) {
1405     SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1406     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1407                          DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1408   }
1409 
1410   return Result;
1411 }
1412 
1413 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1414                                 bool IsSigned = false) {
1415   auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1416   return DAG.getConstant(
1417       APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1418             IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
1419       SDLoc(Op), Op->getValueType(0));
1420 }
1421 
1422 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1423                                    bool BigEndian, SelectionDAG &DAG) {
1424   EVT ViaVecTy = VecTy;
1425   SDValue SplatValueA = SplatValue;
1426   SDValue SplatValueB = SplatValue;
1427   SDLoc DL(SplatValue);
1428 
1429   if (VecTy == MVT::v2i64) {
1430     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1431     ViaVecTy = MVT::v4i32;
1432 
1433     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1434     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1435                               DAG.getConstant(32, DL, MVT::i32));
1436     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1437   }
1438 
1439   // We currently hold the parts in little endian order. Swap them if
1440   // necessary.
1441   if (BigEndian)
1442     std::swap(SplatValueA, SplatValueB);
1443 
1444   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1445                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1446                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1447                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1448 
1449   SDValue Result = DAG.getBuildVector(
1450       ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1451 
1452   if (VecTy != ViaVecTy)
1453     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1454 
1455   return Result;
1456 }
1457 
1458 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1459                                         unsigned Opc, SDValue Imm,
1460                                         bool BigEndian) {
1461   EVT VecTy = Op->getValueType(0);
1462   SDValue Exp2Imm;
1463   SDLoc DL(Op);
1464 
1465   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1466   // here for now.
1467   if (VecTy == MVT::v2i64) {
1468     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1469       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1470 
1471       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1472                                            MVT::i32);
1473       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1474 
1475       if (BigEndian)
1476         std::swap(BitImmLoOp, BitImmHiOp);
1477 
1478       Exp2Imm = DAG.getNode(
1479           ISD::BITCAST, DL, MVT::v2i64,
1480           DAG.getBuildVector(MVT::v4i32, DL,
1481                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1482     }
1483   }
1484 
1485   if (!Exp2Imm.getNode()) {
1486     // We couldnt constant fold, do a vector shift instead
1487 
1488     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1489     // only values 0-63 are valid.
1490     if (VecTy == MVT::v2i64)
1491       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1492 
1493     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1494 
1495     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1496                           Exp2Imm);
1497   }
1498 
1499   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1500 }
1501 
1502 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1503   SDLoc DL(Op);
1504   EVT ResTy = Op->getValueType(0);
1505   SDValue Vec = Op->getOperand(2);
1506   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1507   MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1508   SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1509                                        DL, ResEltTy);
1510   SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1511 
1512   return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1513 }
1514 
1515 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1516   EVT ResTy = Op->getValueType(0);
1517   SDLoc DL(Op);
1518   SDValue One = DAG.getConstant(1, DL, ResTy);
1519   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1520 
1521   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1522                      DAG.getNOT(DL, Bit, ResTy));
1523 }
1524 
1525 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1526   SDLoc DL(Op);
1527   EVT ResTy = Op->getValueType(0);
1528   APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1529                  << Op->getConstantOperandAPInt(2);
1530   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1531 
1532   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1533 }
1534 
1535 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1536                                                       SelectionDAG &DAG) const {
1537   SDLoc DL(Op);
1538   unsigned Intrinsic = Op->getConstantOperandVal(0);
1539   switch (Intrinsic) {
1540   default:
1541     return SDValue();
1542   case Intrinsic::mips_shilo:
1543     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1544   case Intrinsic::mips_dpau_h_qbl:
1545     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1546   case Intrinsic::mips_dpau_h_qbr:
1547     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1548   case Intrinsic::mips_dpsu_h_qbl:
1549     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1550   case Intrinsic::mips_dpsu_h_qbr:
1551     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1552   case Intrinsic::mips_dpa_w_ph:
1553     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1554   case Intrinsic::mips_dps_w_ph:
1555     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1556   case Intrinsic::mips_dpax_w_ph:
1557     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1558   case Intrinsic::mips_dpsx_w_ph:
1559     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1560   case Intrinsic::mips_mulsa_w_ph:
1561     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1562   case Intrinsic::mips_mult:
1563     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1564   case Intrinsic::mips_multu:
1565     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1566   case Intrinsic::mips_madd:
1567     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1568   case Intrinsic::mips_maddu:
1569     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1570   case Intrinsic::mips_msub:
1571     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1572   case Intrinsic::mips_msubu:
1573     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1574   case Intrinsic::mips_addv_b:
1575   case Intrinsic::mips_addv_h:
1576   case Intrinsic::mips_addv_w:
1577   case Intrinsic::mips_addv_d:
1578     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1579                        Op->getOperand(2));
1580   case Intrinsic::mips_addvi_b:
1581   case Intrinsic::mips_addvi_h:
1582   case Intrinsic::mips_addvi_w:
1583   case Intrinsic::mips_addvi_d:
1584     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1585                        lowerMSASplatImm(Op, 2, DAG));
1586   case Intrinsic::mips_and_v:
1587     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1588                        Op->getOperand(2));
1589   case Intrinsic::mips_andi_b:
1590     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1591                        lowerMSASplatImm(Op, 2, DAG));
1592   case Intrinsic::mips_bclr_b:
1593   case Intrinsic::mips_bclr_h:
1594   case Intrinsic::mips_bclr_w:
1595   case Intrinsic::mips_bclr_d:
1596     return lowerMSABitClear(Op, DAG);
1597   case Intrinsic::mips_bclri_b:
1598   case Intrinsic::mips_bclri_h:
1599   case Intrinsic::mips_bclri_w:
1600   case Intrinsic::mips_bclri_d:
1601     return lowerMSABitClearImm(Op, DAG);
1602   case Intrinsic::mips_binsli_b:
1603   case Intrinsic::mips_binsli_h:
1604   case Intrinsic::mips_binsli_w:
1605   case Intrinsic::mips_binsli_d: {
1606     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1607     EVT VecTy = Op->getValueType(0);
1608     EVT EltTy = VecTy.getVectorElementType();
1609     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1610       report_fatal_error("Immediate out of range");
1611     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1612                                        Op->getConstantOperandVal(3) + 1);
1613     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1614                        DAG.getConstant(Mask, DL, VecTy, true),
1615                        Op->getOperand(2), Op->getOperand(1));
1616   }
1617   case Intrinsic::mips_binsri_b:
1618   case Intrinsic::mips_binsri_h:
1619   case Intrinsic::mips_binsri_w:
1620   case Intrinsic::mips_binsri_d: {
1621     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1622     EVT VecTy = Op->getValueType(0);
1623     EVT EltTy = VecTy.getVectorElementType();
1624     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1625       report_fatal_error("Immediate out of range");
1626     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1627                                       Op->getConstantOperandVal(3) + 1);
1628     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1629                        DAG.getConstant(Mask, DL, VecTy, true),
1630                        Op->getOperand(2), Op->getOperand(1));
1631   }
1632   case Intrinsic::mips_bmnz_v:
1633     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1634                        Op->getOperand(2), Op->getOperand(1));
1635   case Intrinsic::mips_bmnzi_b:
1636     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1637                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1638                        Op->getOperand(1));
1639   case Intrinsic::mips_bmz_v:
1640     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1641                        Op->getOperand(1), Op->getOperand(2));
1642   case Intrinsic::mips_bmzi_b:
1643     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1644                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1645                        Op->getOperand(2));
1646   case Intrinsic::mips_bneg_b:
1647   case Intrinsic::mips_bneg_h:
1648   case Intrinsic::mips_bneg_w:
1649   case Intrinsic::mips_bneg_d: {
1650     EVT VecTy = Op->getValueType(0);
1651     SDValue One = DAG.getConstant(1, DL, VecTy);
1652 
1653     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1654                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1655                                    truncateVecElts(Op, DAG)));
1656   }
1657   case Intrinsic::mips_bnegi_b:
1658   case Intrinsic::mips_bnegi_h:
1659   case Intrinsic::mips_bnegi_w:
1660   case Intrinsic::mips_bnegi_d:
1661     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1662                                     !Subtarget.isLittle());
1663   case Intrinsic::mips_bnz_b:
1664   case Intrinsic::mips_bnz_h:
1665   case Intrinsic::mips_bnz_w:
1666   case Intrinsic::mips_bnz_d:
1667     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1668                        Op->getOperand(1));
1669   case Intrinsic::mips_bnz_v:
1670     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1671                        Op->getOperand(1));
1672   case Intrinsic::mips_bsel_v:
1673     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1674     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1675                        Op->getOperand(1), Op->getOperand(3),
1676                        Op->getOperand(2));
1677   case Intrinsic::mips_bseli_b:
1678     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1679     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1680                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1681                        Op->getOperand(2));
1682   case Intrinsic::mips_bset_b:
1683   case Intrinsic::mips_bset_h:
1684   case Intrinsic::mips_bset_w:
1685   case Intrinsic::mips_bset_d: {
1686     EVT VecTy = Op->getValueType(0);
1687     SDValue One = DAG.getConstant(1, DL, VecTy);
1688 
1689     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1690                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1691                                    truncateVecElts(Op, DAG)));
1692   }
1693   case Intrinsic::mips_bseti_b:
1694   case Intrinsic::mips_bseti_h:
1695   case Intrinsic::mips_bseti_w:
1696   case Intrinsic::mips_bseti_d:
1697     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1698                                     !Subtarget.isLittle());
1699   case Intrinsic::mips_bz_b:
1700   case Intrinsic::mips_bz_h:
1701   case Intrinsic::mips_bz_w:
1702   case Intrinsic::mips_bz_d:
1703     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1704                        Op->getOperand(1));
1705   case Intrinsic::mips_bz_v:
1706     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1707                        Op->getOperand(1));
1708   case Intrinsic::mips_ceq_b:
1709   case Intrinsic::mips_ceq_h:
1710   case Intrinsic::mips_ceq_w:
1711   case Intrinsic::mips_ceq_d:
1712     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1713                         Op->getOperand(2), ISD::SETEQ);
1714   case Intrinsic::mips_ceqi_b:
1715   case Intrinsic::mips_ceqi_h:
1716   case Intrinsic::mips_ceqi_w:
1717   case Intrinsic::mips_ceqi_d:
1718     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1719                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1720   case Intrinsic::mips_cle_s_b:
1721   case Intrinsic::mips_cle_s_h:
1722   case Intrinsic::mips_cle_s_w:
1723   case Intrinsic::mips_cle_s_d:
1724     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1725                         Op->getOperand(2), ISD::SETLE);
1726   case Intrinsic::mips_clei_s_b:
1727   case Intrinsic::mips_clei_s_h:
1728   case Intrinsic::mips_clei_s_w:
1729   case Intrinsic::mips_clei_s_d:
1730     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1731                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1732   case Intrinsic::mips_cle_u_b:
1733   case Intrinsic::mips_cle_u_h:
1734   case Intrinsic::mips_cle_u_w:
1735   case Intrinsic::mips_cle_u_d:
1736     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1737                         Op->getOperand(2), ISD::SETULE);
1738   case Intrinsic::mips_clei_u_b:
1739   case Intrinsic::mips_clei_u_h:
1740   case Intrinsic::mips_clei_u_w:
1741   case Intrinsic::mips_clei_u_d:
1742     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1743                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1744   case Intrinsic::mips_clt_s_b:
1745   case Intrinsic::mips_clt_s_h:
1746   case Intrinsic::mips_clt_s_w:
1747   case Intrinsic::mips_clt_s_d:
1748     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1749                         Op->getOperand(2), ISD::SETLT);
1750   case Intrinsic::mips_clti_s_b:
1751   case Intrinsic::mips_clti_s_h:
1752   case Intrinsic::mips_clti_s_w:
1753   case Intrinsic::mips_clti_s_d:
1754     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1755                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1756   case Intrinsic::mips_clt_u_b:
1757   case Intrinsic::mips_clt_u_h:
1758   case Intrinsic::mips_clt_u_w:
1759   case Intrinsic::mips_clt_u_d:
1760     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1761                         Op->getOperand(2), ISD::SETULT);
1762   case Intrinsic::mips_clti_u_b:
1763   case Intrinsic::mips_clti_u_h:
1764   case Intrinsic::mips_clti_u_w:
1765   case Intrinsic::mips_clti_u_d:
1766     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1767                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1768   case Intrinsic::mips_copy_s_b:
1769   case Intrinsic::mips_copy_s_h:
1770   case Intrinsic::mips_copy_s_w:
1771     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1772   case Intrinsic::mips_copy_s_d:
1773     if (Subtarget.hasMips64())
1774       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1775       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1776     else {
1777       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1778       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1779       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1780                          Op->getValueType(0), Op->getOperand(1),
1781                          Op->getOperand(2));
1782     }
1783   case Intrinsic::mips_copy_u_b:
1784   case Intrinsic::mips_copy_u_h:
1785   case Intrinsic::mips_copy_u_w:
1786     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1787   case Intrinsic::mips_copy_u_d:
1788     if (Subtarget.hasMips64())
1789       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1790       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1791     else {
1792       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1793       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1794       // Note: When i64 is illegal, this results in copy_s.w instructions
1795       // instead of copy_u.w instructions. This makes no difference to the
1796       // behaviour since i64 is only illegal when the register file is 32-bit.
1797       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1798                          Op->getValueType(0), Op->getOperand(1),
1799                          Op->getOperand(2));
1800     }
1801   case Intrinsic::mips_div_s_b:
1802   case Intrinsic::mips_div_s_h:
1803   case Intrinsic::mips_div_s_w:
1804   case Intrinsic::mips_div_s_d:
1805     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1806                        Op->getOperand(2));
1807   case Intrinsic::mips_div_u_b:
1808   case Intrinsic::mips_div_u_h:
1809   case Intrinsic::mips_div_u_w:
1810   case Intrinsic::mips_div_u_d:
1811     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1812                        Op->getOperand(2));
1813   case Intrinsic::mips_fadd_w:
1814   case Intrinsic::mips_fadd_d:
1815     // TODO: If intrinsics have fast-math-flags, propagate them.
1816     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1817                        Op->getOperand(2));
1818   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1819   case Intrinsic::mips_fceq_w:
1820   case Intrinsic::mips_fceq_d:
1821     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1822                         Op->getOperand(2), ISD::SETOEQ);
1823   case Intrinsic::mips_fcle_w:
1824   case Intrinsic::mips_fcle_d:
1825     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1826                         Op->getOperand(2), ISD::SETOLE);
1827   case Intrinsic::mips_fclt_w:
1828   case Intrinsic::mips_fclt_d:
1829     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1830                         Op->getOperand(2), ISD::SETOLT);
1831   case Intrinsic::mips_fcne_w:
1832   case Intrinsic::mips_fcne_d:
1833     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1834                         Op->getOperand(2), ISD::SETONE);
1835   case Intrinsic::mips_fcor_w:
1836   case Intrinsic::mips_fcor_d:
1837     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1838                         Op->getOperand(2), ISD::SETO);
1839   case Intrinsic::mips_fcueq_w:
1840   case Intrinsic::mips_fcueq_d:
1841     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1842                         Op->getOperand(2), ISD::SETUEQ);
1843   case Intrinsic::mips_fcule_w:
1844   case Intrinsic::mips_fcule_d:
1845     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1846                         Op->getOperand(2), ISD::SETULE);
1847   case Intrinsic::mips_fcult_w:
1848   case Intrinsic::mips_fcult_d:
1849     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1850                         Op->getOperand(2), ISD::SETULT);
1851   case Intrinsic::mips_fcun_w:
1852   case Intrinsic::mips_fcun_d:
1853     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1854                         Op->getOperand(2), ISD::SETUO);
1855   case Intrinsic::mips_fcune_w:
1856   case Intrinsic::mips_fcune_d:
1857     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1858                         Op->getOperand(2), ISD::SETUNE);
1859   case Intrinsic::mips_fdiv_w:
1860   case Intrinsic::mips_fdiv_d:
1861     // TODO: If intrinsics have fast-math-flags, propagate them.
1862     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1863                        Op->getOperand(2));
1864   case Intrinsic::mips_ffint_u_w:
1865   case Intrinsic::mips_ffint_u_d:
1866     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1867                        Op->getOperand(1));
1868   case Intrinsic::mips_ffint_s_w:
1869   case Intrinsic::mips_ffint_s_d:
1870     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1871                        Op->getOperand(1));
1872   case Intrinsic::mips_fill_b:
1873   case Intrinsic::mips_fill_h:
1874   case Intrinsic::mips_fill_w:
1875   case Intrinsic::mips_fill_d: {
1876     EVT ResTy = Op->getValueType(0);
1877     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1878                                  Op->getOperand(1));
1879 
1880     // If ResTy is v2i64 then the type legalizer will break this node down into
1881     // an equivalent v4i32.
1882     return DAG.getBuildVector(ResTy, DL, Ops);
1883   }
1884   case Intrinsic::mips_fexp2_w:
1885   case Intrinsic::mips_fexp2_d: {
1886     // TODO: If intrinsics have fast-math-flags, propagate them.
1887     EVT ResTy = Op->getValueType(0);
1888     return DAG.getNode(
1889         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1890         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1891   }
1892   case Intrinsic::mips_flog2_w:
1893   case Intrinsic::mips_flog2_d:
1894     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1895   case Intrinsic::mips_fmadd_w:
1896   case Intrinsic::mips_fmadd_d:
1897     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1898                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1899   case Intrinsic::mips_fmul_w:
1900   case Intrinsic::mips_fmul_d:
1901     // TODO: If intrinsics have fast-math-flags, propagate them.
1902     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1903                        Op->getOperand(2));
1904   case Intrinsic::mips_fmsub_w:
1905   case Intrinsic::mips_fmsub_d: {
1906     // TODO: If intrinsics have fast-math-flags, propagate them.
1907     return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1908                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1909   }
1910   case Intrinsic::mips_frint_w:
1911   case Intrinsic::mips_frint_d:
1912     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1913   case Intrinsic::mips_fsqrt_w:
1914   case Intrinsic::mips_fsqrt_d:
1915     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1916   case Intrinsic::mips_fsub_w:
1917   case Intrinsic::mips_fsub_d:
1918     // TODO: If intrinsics have fast-math-flags, propagate them.
1919     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1920                        Op->getOperand(2));
1921   case Intrinsic::mips_ftrunc_u_w:
1922   case Intrinsic::mips_ftrunc_u_d:
1923     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1924                        Op->getOperand(1));
1925   case Intrinsic::mips_ftrunc_s_w:
1926   case Intrinsic::mips_ftrunc_s_d:
1927     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1928                        Op->getOperand(1));
1929   case Intrinsic::mips_ilvev_b:
1930   case Intrinsic::mips_ilvev_h:
1931   case Intrinsic::mips_ilvev_w:
1932   case Intrinsic::mips_ilvev_d:
1933     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1934                        Op->getOperand(1), Op->getOperand(2));
1935   case Intrinsic::mips_ilvl_b:
1936   case Intrinsic::mips_ilvl_h:
1937   case Intrinsic::mips_ilvl_w:
1938   case Intrinsic::mips_ilvl_d:
1939     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1940                        Op->getOperand(1), Op->getOperand(2));
1941   case Intrinsic::mips_ilvod_b:
1942   case Intrinsic::mips_ilvod_h:
1943   case Intrinsic::mips_ilvod_w:
1944   case Intrinsic::mips_ilvod_d:
1945     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1946                        Op->getOperand(1), Op->getOperand(2));
1947   case Intrinsic::mips_ilvr_b:
1948   case Intrinsic::mips_ilvr_h:
1949   case Intrinsic::mips_ilvr_w:
1950   case Intrinsic::mips_ilvr_d:
1951     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1952                        Op->getOperand(1), Op->getOperand(2));
1953   case Intrinsic::mips_insert_b:
1954   case Intrinsic::mips_insert_h:
1955   case Intrinsic::mips_insert_w:
1956   case Intrinsic::mips_insert_d:
1957     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1958                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1959   case Intrinsic::mips_insve_b:
1960   case Intrinsic::mips_insve_h:
1961   case Intrinsic::mips_insve_w:
1962   case Intrinsic::mips_insve_d: {
1963     // Report an error for out of range values.
1964     int64_t Max;
1965     switch (Intrinsic) {
1966     case Intrinsic::mips_insve_b: Max = 15; break;
1967     case Intrinsic::mips_insve_h: Max = 7; break;
1968     case Intrinsic::mips_insve_w: Max = 3; break;
1969     case Intrinsic::mips_insve_d: Max = 1; break;
1970     default: llvm_unreachable("Unmatched intrinsic");
1971     }
1972     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
1973     if (Value < 0 || Value > Max)
1974       report_fatal_error("Immediate out of range");
1975     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1976                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1977                        DAG.getConstant(0, DL, MVT::i32));
1978     }
1979   case Intrinsic::mips_ldi_b:
1980   case Intrinsic::mips_ldi_h:
1981   case Intrinsic::mips_ldi_w:
1982   case Intrinsic::mips_ldi_d:
1983     return lowerMSASplatImm(Op, 1, DAG, true);
1984   case Intrinsic::mips_lsa:
1985   case Intrinsic::mips_dlsa: {
1986     EVT ResTy = Op->getValueType(0);
1987     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1988                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1989                                    Op->getOperand(2), Op->getOperand(3)));
1990   }
1991   case Intrinsic::mips_maddv_b:
1992   case Intrinsic::mips_maddv_h:
1993   case Intrinsic::mips_maddv_w:
1994   case Intrinsic::mips_maddv_d: {
1995     EVT ResTy = Op->getValueType(0);
1996     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1997                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1998                                    Op->getOperand(2), Op->getOperand(3)));
1999   }
2000   case Intrinsic::mips_max_s_b:
2001   case Intrinsic::mips_max_s_h:
2002   case Intrinsic::mips_max_s_w:
2003   case Intrinsic::mips_max_s_d:
2004     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2005                        Op->getOperand(1), Op->getOperand(2));
2006   case Intrinsic::mips_max_u_b:
2007   case Intrinsic::mips_max_u_h:
2008   case Intrinsic::mips_max_u_w:
2009   case Intrinsic::mips_max_u_d:
2010     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2011                        Op->getOperand(1), Op->getOperand(2));
2012   case Intrinsic::mips_maxi_s_b:
2013   case Intrinsic::mips_maxi_s_h:
2014   case Intrinsic::mips_maxi_s_w:
2015   case Intrinsic::mips_maxi_s_d:
2016     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2017                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2018   case Intrinsic::mips_maxi_u_b:
2019   case Intrinsic::mips_maxi_u_h:
2020   case Intrinsic::mips_maxi_u_w:
2021   case Intrinsic::mips_maxi_u_d:
2022     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2023                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2024   case Intrinsic::mips_min_s_b:
2025   case Intrinsic::mips_min_s_h:
2026   case Intrinsic::mips_min_s_w:
2027   case Intrinsic::mips_min_s_d:
2028     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2029                        Op->getOperand(1), Op->getOperand(2));
2030   case Intrinsic::mips_min_u_b:
2031   case Intrinsic::mips_min_u_h:
2032   case Intrinsic::mips_min_u_w:
2033   case Intrinsic::mips_min_u_d:
2034     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2035                        Op->getOperand(1), Op->getOperand(2));
2036   case Intrinsic::mips_mini_s_b:
2037   case Intrinsic::mips_mini_s_h:
2038   case Intrinsic::mips_mini_s_w:
2039   case Intrinsic::mips_mini_s_d:
2040     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2041                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2042   case Intrinsic::mips_mini_u_b:
2043   case Intrinsic::mips_mini_u_h:
2044   case Intrinsic::mips_mini_u_w:
2045   case Intrinsic::mips_mini_u_d:
2046     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2047                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2048   case Intrinsic::mips_mod_s_b:
2049   case Intrinsic::mips_mod_s_h:
2050   case Intrinsic::mips_mod_s_w:
2051   case Intrinsic::mips_mod_s_d:
2052     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2053                        Op->getOperand(2));
2054   case Intrinsic::mips_mod_u_b:
2055   case Intrinsic::mips_mod_u_h:
2056   case Intrinsic::mips_mod_u_w:
2057   case Intrinsic::mips_mod_u_d:
2058     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2059                        Op->getOperand(2));
2060   case Intrinsic::mips_mulv_b:
2061   case Intrinsic::mips_mulv_h:
2062   case Intrinsic::mips_mulv_w:
2063   case Intrinsic::mips_mulv_d:
2064     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2065                        Op->getOperand(2));
2066   case Intrinsic::mips_msubv_b:
2067   case Intrinsic::mips_msubv_h:
2068   case Intrinsic::mips_msubv_w:
2069   case Intrinsic::mips_msubv_d: {
2070     EVT ResTy = Op->getValueType(0);
2071     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2072                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2073                                    Op->getOperand(2), Op->getOperand(3)));
2074   }
2075   case Intrinsic::mips_nlzc_b:
2076   case Intrinsic::mips_nlzc_h:
2077   case Intrinsic::mips_nlzc_w:
2078   case Intrinsic::mips_nlzc_d:
2079     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2080   case Intrinsic::mips_nor_v: {
2081     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2082                               Op->getOperand(1), Op->getOperand(2));
2083     return DAG.getNOT(DL, Res, Res->getValueType(0));
2084   }
2085   case Intrinsic::mips_nori_b: {
2086     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2087                                Op->getOperand(1),
2088                                lowerMSASplatImm(Op, 2, DAG));
2089     return DAG.getNOT(DL, Res, Res->getValueType(0));
2090   }
2091   case Intrinsic::mips_or_v:
2092     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2093                        Op->getOperand(2));
2094   case Intrinsic::mips_ori_b:
2095     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2096                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2097   case Intrinsic::mips_pckev_b:
2098   case Intrinsic::mips_pckev_h:
2099   case Intrinsic::mips_pckev_w:
2100   case Intrinsic::mips_pckev_d:
2101     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2102                        Op->getOperand(1), Op->getOperand(2));
2103   case Intrinsic::mips_pckod_b:
2104   case Intrinsic::mips_pckod_h:
2105   case Intrinsic::mips_pckod_w:
2106   case Intrinsic::mips_pckod_d:
2107     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2108                        Op->getOperand(1), Op->getOperand(2));
2109   case Intrinsic::mips_pcnt_b:
2110   case Intrinsic::mips_pcnt_h:
2111   case Intrinsic::mips_pcnt_w:
2112   case Intrinsic::mips_pcnt_d:
2113     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2114   case Intrinsic::mips_sat_s_b:
2115   case Intrinsic::mips_sat_s_h:
2116   case Intrinsic::mips_sat_s_w:
2117   case Intrinsic::mips_sat_s_d:
2118   case Intrinsic::mips_sat_u_b:
2119   case Intrinsic::mips_sat_u_h:
2120   case Intrinsic::mips_sat_u_w:
2121   case Intrinsic::mips_sat_u_d: {
2122     // Report an error for out of range values.
2123     int64_t Max;
2124     switch (Intrinsic) {
2125     case Intrinsic::mips_sat_s_b:
2126     case Intrinsic::mips_sat_u_b: Max = 7;  break;
2127     case Intrinsic::mips_sat_s_h:
2128     case Intrinsic::mips_sat_u_h: Max = 15; break;
2129     case Intrinsic::mips_sat_s_w:
2130     case Intrinsic::mips_sat_u_w: Max = 31; break;
2131     case Intrinsic::mips_sat_s_d:
2132     case Intrinsic::mips_sat_u_d: Max = 63; break;
2133     default: llvm_unreachable("Unmatched intrinsic");
2134     }
2135     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2136     if (Value < 0 || Value > Max)
2137       report_fatal_error("Immediate out of range");
2138     return SDValue();
2139   }
2140   case Intrinsic::mips_shf_b:
2141   case Intrinsic::mips_shf_h:
2142   case Intrinsic::mips_shf_w: {
2143     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2144     if (Value < 0 || Value > 255)
2145       report_fatal_error("Immediate out of range");
2146     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2147                        Op->getOperand(2), Op->getOperand(1));
2148   }
2149   case Intrinsic::mips_sldi_b:
2150   case Intrinsic::mips_sldi_h:
2151   case Intrinsic::mips_sldi_w:
2152   case Intrinsic::mips_sldi_d: {
2153     // Report an error for out of range values.
2154     int64_t Max;
2155     switch (Intrinsic) {
2156     case Intrinsic::mips_sldi_b: Max = 15; break;
2157     case Intrinsic::mips_sldi_h: Max = 7; break;
2158     case Intrinsic::mips_sldi_w: Max = 3; break;
2159     case Intrinsic::mips_sldi_d: Max = 1; break;
2160     default: llvm_unreachable("Unmatched intrinsic");
2161     }
2162     int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2163     if (Value < 0 || Value > Max)
2164       report_fatal_error("Immediate out of range");
2165     return SDValue();
2166   }
2167   case Intrinsic::mips_sll_b:
2168   case Intrinsic::mips_sll_h:
2169   case Intrinsic::mips_sll_w:
2170   case Intrinsic::mips_sll_d:
2171     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2172                        truncateVecElts(Op, DAG));
2173   case Intrinsic::mips_slli_b:
2174   case Intrinsic::mips_slli_h:
2175   case Intrinsic::mips_slli_w:
2176   case Intrinsic::mips_slli_d:
2177     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2178                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2179   case Intrinsic::mips_splat_b:
2180   case Intrinsic::mips_splat_h:
2181   case Intrinsic::mips_splat_w:
2182   case Intrinsic::mips_splat_d:
2183     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2184     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2185     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2186     // Instead we lower to MipsISD::VSHF and match from there.
2187     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2188                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2189                        Op->getOperand(1));
2190   case Intrinsic::mips_splati_b:
2191   case Intrinsic::mips_splati_h:
2192   case Intrinsic::mips_splati_w:
2193   case Intrinsic::mips_splati_d:
2194     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2195                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2196                        Op->getOperand(1));
2197   case Intrinsic::mips_sra_b:
2198   case Intrinsic::mips_sra_h:
2199   case Intrinsic::mips_sra_w:
2200   case Intrinsic::mips_sra_d:
2201     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2202                        truncateVecElts(Op, DAG));
2203   case Intrinsic::mips_srai_b:
2204   case Intrinsic::mips_srai_h:
2205   case Intrinsic::mips_srai_w:
2206   case Intrinsic::mips_srai_d:
2207     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2208                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2209   case Intrinsic::mips_srari_b:
2210   case Intrinsic::mips_srari_h:
2211   case Intrinsic::mips_srari_w:
2212   case Intrinsic::mips_srari_d: {
2213     // Report an error for out of range values.
2214     int64_t Max;
2215     switch (Intrinsic) {
2216     case Intrinsic::mips_srari_b: Max = 7; break;
2217     case Intrinsic::mips_srari_h: Max = 15; break;
2218     case Intrinsic::mips_srari_w: Max = 31; break;
2219     case Intrinsic::mips_srari_d: Max = 63; break;
2220     default: llvm_unreachable("Unmatched intrinsic");
2221     }
2222     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2223     if (Value < 0 || Value > Max)
2224       report_fatal_error("Immediate out of range");
2225     return SDValue();
2226   }
2227   case Intrinsic::mips_srl_b:
2228   case Intrinsic::mips_srl_h:
2229   case Intrinsic::mips_srl_w:
2230   case Intrinsic::mips_srl_d:
2231     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2232                        truncateVecElts(Op, DAG));
2233   case Intrinsic::mips_srli_b:
2234   case Intrinsic::mips_srli_h:
2235   case Intrinsic::mips_srli_w:
2236   case Intrinsic::mips_srli_d:
2237     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2238                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2239   case Intrinsic::mips_srlri_b:
2240   case Intrinsic::mips_srlri_h:
2241   case Intrinsic::mips_srlri_w:
2242   case Intrinsic::mips_srlri_d: {
2243     // Report an error for out of range values.
2244     int64_t Max;
2245     switch (Intrinsic) {
2246     case Intrinsic::mips_srlri_b: Max = 7; break;
2247     case Intrinsic::mips_srlri_h: Max = 15; break;
2248     case Intrinsic::mips_srlri_w: Max = 31; break;
2249     case Intrinsic::mips_srlri_d: Max = 63; break;
2250     default: llvm_unreachable("Unmatched intrinsic");
2251     }
2252     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2253     if (Value < 0 || Value > Max)
2254       report_fatal_error("Immediate out of range");
2255     return SDValue();
2256   }
2257   case Intrinsic::mips_subv_b:
2258   case Intrinsic::mips_subv_h:
2259   case Intrinsic::mips_subv_w:
2260   case Intrinsic::mips_subv_d:
2261     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2262                        Op->getOperand(2));
2263   case Intrinsic::mips_subvi_b:
2264   case Intrinsic::mips_subvi_h:
2265   case Intrinsic::mips_subvi_w:
2266   case Intrinsic::mips_subvi_d:
2267     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2268                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2269   case Intrinsic::mips_vshf_b:
2270   case Intrinsic::mips_vshf_h:
2271   case Intrinsic::mips_vshf_w:
2272   case Intrinsic::mips_vshf_d:
2273     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2274                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2275   case Intrinsic::mips_xor_v:
2276     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2277                        Op->getOperand(2));
2278   case Intrinsic::mips_xori_b:
2279     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2280                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2281   case Intrinsic::thread_pointer: {
2282     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2283     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2284   }
2285   }
2286 }
2287 
2288 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2289                                 const MipsSubtarget &Subtarget) {
2290   SDLoc DL(Op);
2291   SDValue ChainIn = Op->getOperand(0);
2292   SDValue Address = Op->getOperand(2);
2293   SDValue Offset  = Op->getOperand(3);
2294   EVT ResTy = Op->getValueType(0);
2295   EVT PtrTy = Address->getValueType(0);
2296 
2297   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2298   // however takes an i32 signed constant offset. The actual type of the
2299   // intrinsic is a scaled signed i10.
2300   if (Subtarget.isABI_N64())
2301     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2302 
2303   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2304   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2305                      Align(16));
2306 }
2307 
2308 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2309                                                      SelectionDAG &DAG) const {
2310   unsigned Intr = Op->getConstantOperandVal(1);
2311   switch (Intr) {
2312   default:
2313     return SDValue();
2314   case Intrinsic::mips_extp:
2315     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2316   case Intrinsic::mips_extpdp:
2317     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2318   case Intrinsic::mips_extr_w:
2319     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2320   case Intrinsic::mips_extr_r_w:
2321     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2322   case Intrinsic::mips_extr_rs_w:
2323     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2324   case Intrinsic::mips_extr_s_h:
2325     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2326   case Intrinsic::mips_mthlip:
2327     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2328   case Intrinsic::mips_mulsaq_s_w_ph:
2329     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2330   case Intrinsic::mips_maq_s_w_phl:
2331     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2332   case Intrinsic::mips_maq_s_w_phr:
2333     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2334   case Intrinsic::mips_maq_sa_w_phl:
2335     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2336   case Intrinsic::mips_maq_sa_w_phr:
2337     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2338   case Intrinsic::mips_dpaq_s_w_ph:
2339     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2340   case Intrinsic::mips_dpsq_s_w_ph:
2341     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2342   case Intrinsic::mips_dpaq_sa_l_w:
2343     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2344   case Intrinsic::mips_dpsq_sa_l_w:
2345     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2346   case Intrinsic::mips_dpaqx_s_w_ph:
2347     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2348   case Intrinsic::mips_dpaqx_sa_w_ph:
2349     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2350   case Intrinsic::mips_dpsqx_s_w_ph:
2351     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2352   case Intrinsic::mips_dpsqx_sa_w_ph:
2353     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2354   case Intrinsic::mips_ld_b:
2355   case Intrinsic::mips_ld_h:
2356   case Intrinsic::mips_ld_w:
2357   case Intrinsic::mips_ld_d:
2358    return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2359   }
2360 }
2361 
2362 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2363                                  const MipsSubtarget &Subtarget) {
2364   SDLoc DL(Op);
2365   SDValue ChainIn = Op->getOperand(0);
2366   SDValue Value   = Op->getOperand(2);
2367   SDValue Address = Op->getOperand(3);
2368   SDValue Offset  = Op->getOperand(4);
2369   EVT PtrTy = Address->getValueType(0);
2370 
2371   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2372   // however takes an i32 signed constant offset. The actual type of the
2373   // intrinsic is a scaled signed i10.
2374   if (Subtarget.isABI_N64())
2375     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2376 
2377   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2378 
2379   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2380                       Align(16));
2381 }
2382 
2383 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2384                                                   SelectionDAG &DAG) const {
2385   unsigned Intr = Op->getConstantOperandVal(1);
2386   switch (Intr) {
2387   default:
2388     return SDValue();
2389   case Intrinsic::mips_st_b:
2390   case Intrinsic::mips_st_h:
2391   case Intrinsic::mips_st_w:
2392   case Intrinsic::mips_st_d:
2393     return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2394   }
2395 }
2396 
2397 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2398 //
2399 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2400 // choose to sign-extend but we could have equally chosen zero-extend. The
2401 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2402 // result into this node later (possibly changing it to a zero-extend in the
2403 // process).
2404 SDValue MipsSETargetLowering::
2405 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2406   SDLoc DL(Op);
2407   EVT ResTy = Op->getValueType(0);
2408   SDValue Op0 = Op->getOperand(0);
2409   EVT VecTy = Op0->getValueType(0);
2410 
2411   if (!VecTy.is128BitVector())
2412     return SDValue();
2413 
2414   if (ResTy.isInteger()) {
2415     SDValue Op1 = Op->getOperand(1);
2416     EVT EltTy = VecTy.getVectorElementType();
2417     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2418                        DAG.getValueType(EltTy));
2419   }
2420 
2421   return Op;
2422 }
2423 
2424 static bool isConstantOrUndef(const SDValue Op) {
2425   if (Op->isUndef())
2426     return true;
2427   if (isa<ConstantSDNode>(Op))
2428     return true;
2429   if (isa<ConstantFPSDNode>(Op))
2430     return true;
2431   return false;
2432 }
2433 
2434 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2435   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2436     if (isConstantOrUndef(Op->getOperand(i)))
2437       return true;
2438   return false;
2439 }
2440 
2441 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2442 // backend.
2443 //
2444 // Lowers according to the following rules:
2445 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2446 //   2 less than or equal to 64 and the value fits into a signed 10-bit
2447 //   immediate
2448 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2449 //   is a power of 2 less than or equal to 64 and the value does not fit into a
2450 //   signed 10-bit immediate
2451 // - Non-constant splats are legal as-is.
2452 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2453 // - All others are illegal and must be expanded.
2454 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2455                                                 SelectionDAG &DAG) const {
2456   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2457   EVT ResTy = Op->getValueType(0);
2458   SDLoc DL(Op);
2459   APInt SplatValue, SplatUndef;
2460   unsigned SplatBitSize;
2461   bool HasAnyUndefs;
2462 
2463   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2464     return SDValue();
2465 
2466   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2467                             HasAnyUndefs, 8,
2468                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
2469     // We can only cope with 8, 16, 32, or 64-bit elements
2470     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2471         SplatBitSize != 64)
2472       return SDValue();
2473 
2474     // If the value isn't an integer type we will have to bitcast
2475     // from an integer type first. Also, if there are any undefs, we must
2476     // lower them to defined values first.
2477     if (ResTy.isInteger() && !HasAnyUndefs)
2478       return Op;
2479 
2480     EVT ViaVecTy;
2481 
2482     switch (SplatBitSize) {
2483     default:
2484       return SDValue();
2485     case 8:
2486       ViaVecTy = MVT::v16i8;
2487       break;
2488     case 16:
2489       ViaVecTy = MVT::v8i16;
2490       break;
2491     case 32:
2492       ViaVecTy = MVT::v4i32;
2493       break;
2494     case 64:
2495       // There's no fill.d to fall back on for 64-bit values
2496       return SDValue();
2497     }
2498 
2499     // SelectionDAG::getConstant will promote SplatValue appropriately.
2500     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2501 
2502     // Bitcast to the type we originally wanted
2503     if (ViaVecTy != ResTy)
2504       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2505 
2506     return Result;
2507   } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false))
2508     return Op;
2509   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2510     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2511     // The resulting code is the same length as the expansion, but it doesn't
2512     // use memory operations
2513     EVT ResTy = Node->getValueType(0);
2514 
2515     assert(ResTy.isVector());
2516 
2517     unsigned NumElts = ResTy.getVectorNumElements();
2518     SDValue Vector = DAG.getUNDEF(ResTy);
2519     for (unsigned i = 0; i < NumElts; ++i) {
2520       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2521                            Node->getOperand(i),
2522                            DAG.getConstant(i, DL, MVT::i32));
2523     }
2524     return Vector;
2525   }
2526 
2527   return SDValue();
2528 }
2529 
2530 // Lower VECTOR_SHUFFLE into SHF (if possible).
2531 //
2532 // SHF splits the vector into blocks of four elements, then shuffles these
2533 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2534 //
2535 // It is therefore possible to lower into SHF when the mask takes the form:
2536 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2537 // When undef's appear they are treated as if they were whatever value is
2538 // necessary in order to fit the above forms.
2539 //
2540 // For example:
2541 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2542 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2543 //                                 i32 7, i32 6, i32 5, i32 4>
2544 // is lowered to:
2545 //   (SHF_H $w0, $w1, 27)
2546 // where the 27 comes from:
2547 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
2548 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2549                                        SmallVector<int, 16> Indices,
2550                                        SelectionDAG &DAG) {
2551   int SHFIndices[4] = { -1, -1, -1, -1 };
2552 
2553   if (Indices.size() < 4)
2554     return SDValue();
2555 
2556   for (unsigned i = 0; i < 4; ++i) {
2557     for (unsigned j = i; j < Indices.size(); j += 4) {
2558       int Idx = Indices[j];
2559 
2560       // Convert from vector index to 4-element subvector index
2561       // If an index refers to an element outside of the subvector then give up
2562       if (Idx != -1) {
2563         Idx -= 4 * (j / 4);
2564         if (Idx < 0 || Idx >= 4)
2565           return SDValue();
2566       }
2567 
2568       // If the mask has an undef, replace it with the current index.
2569       // Note that it might still be undef if the current index is also undef
2570       if (SHFIndices[i] == -1)
2571         SHFIndices[i] = Idx;
2572 
2573       // Check that non-undef values are the same as in the mask. If they
2574       // aren't then give up
2575       if (!(Idx == -1 || Idx == SHFIndices[i]))
2576         return SDValue();
2577     }
2578   }
2579 
2580   // Calculate the immediate. Replace any remaining undefs with zero
2581   APInt Imm(32, 0);
2582   for (int i = 3; i >= 0; --i) {
2583     int Idx = SHFIndices[i];
2584 
2585     if (Idx == -1)
2586       Idx = 0;
2587 
2588     Imm <<= 2;
2589     Imm |= Idx & 0x3;
2590   }
2591 
2592   SDLoc DL(Op);
2593   return DAG.getNode(MipsISD::SHF, DL, ResTy,
2594                      DAG.getTargetConstant(Imm, DL, MVT::i32),
2595                      Op->getOperand(0));
2596 }
2597 
2598 /// Determine whether a range fits a regular pattern of values.
2599 /// This function accounts for the possibility of jumping over the End iterator.
2600 template <typename ValType>
2601 static bool
2602 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2603                    unsigned CheckStride,
2604                    typename SmallVectorImpl<ValType>::const_iterator End,
2605                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2606   auto &I = Begin;
2607 
2608   while (I != End) {
2609     if (*I != -1 && *I != ExpectedIndex)
2610       return false;
2611     ExpectedIndex += ExpectedIndexStride;
2612 
2613     // Incrementing past End is undefined behaviour so we must increment one
2614     // step at a time and check for End at each step.
2615     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2616       ; // Empty loop body.
2617   }
2618   return true;
2619 }
2620 
2621 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2622 //
2623 // It is a SPLATI when the mask is:
2624 //   <x, x, x, ...>
2625 // where x is any valid index.
2626 //
2627 // When undef's appear in the mask they are treated as if they were whatever
2628 // value is necessary in order to fit the above form.
2629 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2630                                     SmallVector<int, 16> Indices,
2631                                     SelectionDAG &DAG) {
2632   assert((Indices.size() % 2) == 0);
2633 
2634   int SplatIndex = -1;
2635   for (const auto &V : Indices) {
2636     if (V != -1) {
2637       SplatIndex = V;
2638       break;
2639     }
2640   }
2641 
2642   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2643                                  0);
2644 }
2645 
2646 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2647 //
2648 // ILVEV interleaves the even elements from each vector.
2649 //
2650 // It is possible to lower into ILVEV when the mask consists of two of the
2651 // following forms interleaved:
2652 //   <0, 2, 4, ...>
2653 //   <n, n+2, n+4, ...>
2654 // where n is the number of elements in the vector.
2655 // For example:
2656 //   <0, 0, 2, 2, 4, 4, ...>
2657 //   <0, n, 2, n+2, 4, n+4, ...>
2658 //
2659 // When undef's appear in the mask they are treated as if they were whatever
2660 // value is necessary in order to fit the above forms.
2661 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2662                                          SmallVector<int, 16> Indices,
2663                                          SelectionDAG &DAG) {
2664   assert((Indices.size() % 2) == 0);
2665 
2666   SDValue Wt;
2667   SDValue Ws;
2668   const auto &Begin = Indices.begin();
2669   const auto &End = Indices.end();
2670 
2671   // Check even elements are taken from the even elements of one half or the
2672   // other and pick an operand accordingly.
2673   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2674     Wt = Op->getOperand(0);
2675   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2676     Wt = Op->getOperand(1);
2677   else
2678     return SDValue();
2679 
2680   // Check odd elements are taken from the even elements of one half or the
2681   // other and pick an operand accordingly.
2682   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2683     Ws = Op->getOperand(0);
2684   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2685     Ws = Op->getOperand(1);
2686   else
2687     return SDValue();
2688 
2689   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2690 }
2691 
2692 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2693 //
2694 // ILVOD interleaves the odd elements from each vector.
2695 //
2696 // It is possible to lower into ILVOD when the mask consists of two of the
2697 // following forms interleaved:
2698 //   <1, 3, 5, ...>
2699 //   <n+1, n+3, n+5, ...>
2700 // where n is the number of elements in the vector.
2701 // For example:
2702 //   <1, 1, 3, 3, 5, 5, ...>
2703 //   <1, n+1, 3, n+3, 5, n+5, ...>
2704 //
2705 // When undef's appear in the mask they are treated as if they were whatever
2706 // value is necessary in order to fit the above forms.
2707 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2708                                          SmallVector<int, 16> Indices,
2709                                          SelectionDAG &DAG) {
2710   assert((Indices.size() % 2) == 0);
2711 
2712   SDValue Wt;
2713   SDValue Ws;
2714   const auto &Begin = Indices.begin();
2715   const auto &End = Indices.end();
2716 
2717   // Check even elements are taken from the odd elements of one half or the
2718   // other and pick an operand accordingly.
2719   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2720     Wt = Op->getOperand(0);
2721   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2722     Wt = Op->getOperand(1);
2723   else
2724     return SDValue();
2725 
2726   // Check odd elements are taken from the odd elements of one half or the
2727   // other and pick an operand accordingly.
2728   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2729     Ws = Op->getOperand(0);
2730   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2731     Ws = Op->getOperand(1);
2732   else
2733     return SDValue();
2734 
2735   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2736 }
2737 
2738 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2739 //
2740 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2741 // each vector.
2742 //
2743 // It is possible to lower into ILVR when the mask consists of two of the
2744 // following forms interleaved:
2745 //   <0, 1, 2, ...>
2746 //   <n, n+1, n+2, ...>
2747 // where n is the number of elements in the vector.
2748 // For example:
2749 //   <0, 0, 1, 1, 2, 2, ...>
2750 //   <0, n, 1, n+1, 2, n+2, ...>
2751 //
2752 // When undef's appear in the mask they are treated as if they were whatever
2753 // value is necessary in order to fit the above forms.
2754 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2755                                         SmallVector<int, 16> Indices,
2756                                         SelectionDAG &DAG) {
2757   assert((Indices.size() % 2) == 0);
2758 
2759   SDValue Wt;
2760   SDValue Ws;
2761   const auto &Begin = Indices.begin();
2762   const auto &End = Indices.end();
2763 
2764   // Check even elements are taken from the right (lowest-indexed) elements of
2765   // one half or the other and pick an operand accordingly.
2766   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2767     Wt = Op->getOperand(0);
2768   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2769     Wt = Op->getOperand(1);
2770   else
2771     return SDValue();
2772 
2773   // Check odd elements are taken from the right (lowest-indexed) elements of
2774   // one half or the other and pick an operand accordingly.
2775   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2776     Ws = Op->getOperand(0);
2777   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2778     Ws = Op->getOperand(1);
2779   else
2780     return SDValue();
2781 
2782   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2783 }
2784 
2785 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2786 //
2787 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2788 // of each vector.
2789 //
2790 // It is possible to lower into ILVL when the mask consists of two of the
2791 // following forms interleaved:
2792 //   <x, x+1, x+2, ...>
2793 //   <n+x, n+x+1, n+x+2, ...>
2794 // where n is the number of elements in the vector and x is half n.
2795 // For example:
2796 //   <x, x, x+1, x+1, x+2, x+2, ...>
2797 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2798 //
2799 // When undef's appear in the mask they are treated as if they were whatever
2800 // value is necessary in order to fit the above forms.
2801 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2802                                         SmallVector<int, 16> Indices,
2803                                         SelectionDAG &DAG) {
2804   assert((Indices.size() % 2) == 0);
2805 
2806   unsigned HalfSize = Indices.size() / 2;
2807   SDValue Wt;
2808   SDValue Ws;
2809   const auto &Begin = Indices.begin();
2810   const auto &End = Indices.end();
2811 
2812   // Check even elements are taken from the left (highest-indexed) elements of
2813   // one half or the other and pick an operand accordingly.
2814   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2815     Wt = Op->getOperand(0);
2816   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2817     Wt = Op->getOperand(1);
2818   else
2819     return SDValue();
2820 
2821   // Check odd elements are taken from the left (highest-indexed) elements of
2822   // one half or the other and pick an operand accordingly.
2823   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2824     Ws = Op->getOperand(0);
2825   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2826                                    1))
2827     Ws = Op->getOperand(1);
2828   else
2829     return SDValue();
2830 
2831   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2832 }
2833 
2834 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2835 //
2836 // PCKEV copies the even elements of each vector into the result vector.
2837 //
2838 // It is possible to lower into PCKEV when the mask consists of two of the
2839 // following forms concatenated:
2840 //   <0, 2, 4, ...>
2841 //   <n, n+2, n+4, ...>
2842 // where n is the number of elements in the vector.
2843 // For example:
2844 //   <0, 2, 4, ..., 0, 2, 4, ...>
2845 //   <0, 2, 4, ..., n, n+2, n+4, ...>
2846 //
2847 // When undef's appear in the mask they are treated as if they were whatever
2848 // value is necessary in order to fit the above forms.
2849 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2850                                          SmallVector<int, 16> Indices,
2851                                          SelectionDAG &DAG) {
2852   assert((Indices.size() % 2) == 0);
2853 
2854   SDValue Wt;
2855   SDValue Ws;
2856   const auto &Begin = Indices.begin();
2857   const auto &Mid = Indices.begin() + Indices.size() / 2;
2858   const auto &End = Indices.end();
2859 
2860   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2861     Wt = Op->getOperand(0);
2862   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2863     Wt = Op->getOperand(1);
2864   else
2865     return SDValue();
2866 
2867   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2868     Ws = Op->getOperand(0);
2869   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2870     Ws = Op->getOperand(1);
2871   else
2872     return SDValue();
2873 
2874   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2875 }
2876 
2877 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2878 //
2879 // PCKOD copies the odd elements of each vector into the result vector.
2880 //
2881 // It is possible to lower into PCKOD when the mask consists of two of the
2882 // following forms concatenated:
2883 //   <1, 3, 5, ...>
2884 //   <n+1, n+3, n+5, ...>
2885 // where n is the number of elements in the vector.
2886 // For example:
2887 //   <1, 3, 5, ..., 1, 3, 5, ...>
2888 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2889 //
2890 // When undef's appear in the mask they are treated as if they were whatever
2891 // value is necessary in order to fit the above forms.
2892 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2893                                          SmallVector<int, 16> Indices,
2894                                          SelectionDAG &DAG) {
2895   assert((Indices.size() % 2) == 0);
2896 
2897   SDValue Wt;
2898   SDValue Ws;
2899   const auto &Begin = Indices.begin();
2900   const auto &Mid = Indices.begin() + Indices.size() / 2;
2901   const auto &End = Indices.end();
2902 
2903   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2904     Wt = Op->getOperand(0);
2905   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2906     Wt = Op->getOperand(1);
2907   else
2908     return SDValue();
2909 
2910   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2911     Ws = Op->getOperand(0);
2912   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2913     Ws = Op->getOperand(1);
2914   else
2915     return SDValue();
2916 
2917   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2918 }
2919 
2920 // Lower VECTOR_SHUFFLE into VSHF.
2921 //
2922 // This mostly consists of converting the shuffle indices in Indices into a
2923 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2924 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2925 // if the type is v8i16 and all the indices are less than 8 then the second
2926 // operand is unused and can be replaced with anything. We choose to replace it
2927 // with the used operand since this reduces the number of instructions overall.
2928 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2929                                         const SmallVector<int, 16> &Indices,
2930                                         SelectionDAG &DAG) {
2931   SmallVector<SDValue, 16> Ops;
2932   SDValue Op0;
2933   SDValue Op1;
2934   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2935   EVT MaskEltTy = MaskVecTy.getVectorElementType();
2936   bool Using1stVec = false;
2937   bool Using2ndVec = false;
2938   SDLoc DL(Op);
2939   int ResTyNumElts = ResTy.getVectorNumElements();
2940 
2941   for (int i = 0; i < ResTyNumElts; ++i) {
2942     // Idx == -1 means UNDEF
2943     int Idx = Indices[i];
2944 
2945     if (0 <= Idx && Idx < ResTyNumElts)
2946       Using1stVec = true;
2947     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2948       Using2ndVec = true;
2949   }
2950 
2951   for (int Idx : Indices)
2952     Ops.push_back(DAG.getTargetConstant(Idx, DL, MaskEltTy));
2953 
2954   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2955 
2956   if (Using1stVec && Using2ndVec) {
2957     Op0 = Op->getOperand(0);
2958     Op1 = Op->getOperand(1);
2959   } else if (Using1stVec)
2960     Op0 = Op1 = Op->getOperand(0);
2961   else if (Using2ndVec)
2962     Op0 = Op1 = Op->getOperand(1);
2963   else
2964     llvm_unreachable("shuffle vector mask references neither vector operand?");
2965 
2966   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2967   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2968   // VSHF concatenates the vectors in a bitwise fashion:
2969   // <0b00, 0b01> + <0b10, 0b11> ->
2970   // 0b0100       + 0b1110       -> 0b01001110
2971   //                                <0b10, 0b11, 0b00, 0b01>
2972   // We must therefore swap the operands to get the correct result.
2973   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2974 }
2975 
2976 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2977 // indices in the shuffle.
2978 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2979                                                   SelectionDAG &DAG) const {
2980   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2981   EVT ResTy = Op->getValueType(0);
2982 
2983   if (!ResTy.is128BitVector())
2984     return SDValue();
2985 
2986   int ResTyNumElts = ResTy.getVectorNumElements();
2987   SmallVector<int, 16> Indices;
2988 
2989   for (int i = 0; i < ResTyNumElts; ++i)
2990     Indices.push_back(Node->getMaskElt(i));
2991 
2992   // splati.[bhwd] is preferable to the others but is matched from
2993   // MipsISD::VSHF.
2994   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2995     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2996   SDValue Result;
2997   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
2998     return Result;
2999   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
3000     return Result;
3001   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
3002     return Result;
3003   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
3004     return Result;
3005   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
3006     return Result;
3007   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
3008     return Result;
3009   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
3010     return Result;
3011   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3012 }
3013 
3014 MachineBasicBlock *
3015 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3016                                    MachineBasicBlock *BB) const {
3017   // $bb:
3018   //  bposge32_pseudo $vr0
3019   //  =>
3020   // $bb:
3021   //  bposge32 $tbb
3022   // $fbb:
3023   //  li $vr2, 0
3024   //  b $sink
3025   // $tbb:
3026   //  li $vr1, 1
3027   // $sink:
3028   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3029 
3030   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3031   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3032   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3033   DebugLoc DL = MI.getDebugLoc();
3034   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3035   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3036   MachineFunction *F = BB->getParent();
3037   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3038   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3039   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3040   F->insert(It, FBB);
3041   F->insert(It, TBB);
3042   F->insert(It, Sink);
3043 
3044   // Transfer the remainder of BB and its successor edges to Sink.
3045   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3046                BB->end());
3047   Sink->transferSuccessorsAndUpdatePHIs(BB);
3048 
3049   // Add successors.
3050   BB->addSuccessor(FBB);
3051   BB->addSuccessor(TBB);
3052   FBB->addSuccessor(Sink);
3053   TBB->addSuccessor(Sink);
3054 
3055   // Insert the real bposge32 instruction to $BB.
3056   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3057   // Insert the real bposge32c instruction to $BB.
3058   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3059 
3060   // Fill $FBB.
3061   Register VR2 = RegInfo.createVirtualRegister(RC);
3062   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3063     .addReg(Mips::ZERO).addImm(0);
3064   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3065 
3066   // Fill $TBB.
3067   Register VR1 = RegInfo.createVirtualRegister(RC);
3068   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3069     .addReg(Mips::ZERO).addImm(1);
3070 
3071   // Insert phi function to $Sink.
3072   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3073           MI.getOperand(0).getReg())
3074       .addReg(VR2)
3075       .addMBB(FBB)
3076       .addReg(VR1)
3077       .addMBB(TBB);
3078 
3079   MI.eraseFromParent(); // The pseudo instruction is gone now.
3080   return Sink;
3081 }
3082 
3083 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3084     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3085   // $bb:
3086   //  vany_nonzero $rd, $ws
3087   //  =>
3088   // $bb:
3089   //  bnz.b $ws, $tbb
3090   //  b $fbb
3091   // $fbb:
3092   //  li $rd1, 0
3093   //  b $sink
3094   // $tbb:
3095   //  li $rd2, 1
3096   // $sink:
3097   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
3098 
3099   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3100   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3101   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3102   DebugLoc DL = MI.getDebugLoc();
3103   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3104   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3105   MachineFunction *F = BB->getParent();
3106   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3107   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3108   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3109   F->insert(It, FBB);
3110   F->insert(It, TBB);
3111   F->insert(It, Sink);
3112 
3113   // Transfer the remainder of BB and its successor edges to Sink.
3114   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3115                BB->end());
3116   Sink->transferSuccessorsAndUpdatePHIs(BB);
3117 
3118   // Add successors.
3119   BB->addSuccessor(FBB);
3120   BB->addSuccessor(TBB);
3121   FBB->addSuccessor(Sink);
3122   TBB->addSuccessor(Sink);
3123 
3124   // Insert the real bnz.b instruction to $BB.
3125   BuildMI(BB, DL, TII->get(BranchOp))
3126       .addReg(MI.getOperand(1).getReg())
3127       .addMBB(TBB);
3128 
3129   // Fill $FBB.
3130   Register RD1 = RegInfo.createVirtualRegister(RC);
3131   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3132     .addReg(Mips::ZERO).addImm(0);
3133   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3134 
3135   // Fill $TBB.
3136   Register RD2 = RegInfo.createVirtualRegister(RC);
3137   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3138     .addReg(Mips::ZERO).addImm(1);
3139 
3140   // Insert phi function to $Sink.
3141   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3142           MI.getOperand(0).getReg())
3143       .addReg(RD1)
3144       .addMBB(FBB)
3145       .addReg(RD2)
3146       .addMBB(TBB);
3147 
3148   MI.eraseFromParent(); // The pseudo instruction is gone now.
3149   return Sink;
3150 }
3151 
3152 // Emit the COPY_FW pseudo instruction.
3153 //
3154 // copy_fw_pseudo $fd, $ws, n
3155 // =>
3156 // copy_u_w $rt, $ws, $n
3157 // mtc1     $rt, $fd
3158 //
3159 // When n is zero, the equivalent operation can be performed with (potentially)
3160 // zero instructions due to register overlaps. This optimization is never valid
3161 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3162 MachineBasicBlock *
3163 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3164                                   MachineBasicBlock *BB) const {
3165   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3166   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3167   DebugLoc DL = MI.getDebugLoc();
3168   Register Fd = MI.getOperand(0).getReg();
3169   Register Ws = MI.getOperand(1).getReg();
3170   unsigned Lane = MI.getOperand(2).getImm();
3171 
3172   if (Lane == 0) {
3173     unsigned Wt = Ws;
3174     if (!Subtarget.useOddSPReg()) {
3175       // We must copy to an even-numbered MSA register so that the
3176       // single-precision sub-register is also guaranteed to be even-numbered.
3177       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3178 
3179       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3180     }
3181 
3182     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3183   } else {
3184     Register Wt = RegInfo.createVirtualRegister(
3185         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3186                                 : &Mips::MSA128WEvensRegClass);
3187 
3188     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3189     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3190   }
3191 
3192   MI.eraseFromParent(); // The pseudo instruction is gone now.
3193   return BB;
3194 }
3195 
3196 // Emit the COPY_FD pseudo instruction.
3197 //
3198 // copy_fd_pseudo $fd, $ws, n
3199 // =>
3200 // splati.d $wt, $ws, $n
3201 // copy $fd, $wt:sub_64
3202 //
3203 // When n is zero, the equivalent operation can be performed with (potentially)
3204 // zero instructions due to register overlaps. This optimization is always
3205 // valid because FR=1 mode which is the only supported mode in MSA.
3206 MachineBasicBlock *
3207 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3208                                   MachineBasicBlock *BB) const {
3209   assert(Subtarget.isFP64bit());
3210 
3211   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3212   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3213   Register Fd = MI.getOperand(0).getReg();
3214   Register Ws = MI.getOperand(1).getReg();
3215   unsigned Lane = MI.getOperand(2).getImm() * 2;
3216   DebugLoc DL = MI.getDebugLoc();
3217 
3218   if (Lane == 0)
3219     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3220   else {
3221     Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3222 
3223     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3224     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3225   }
3226 
3227   MI.eraseFromParent(); // The pseudo instruction is gone now.
3228   return BB;
3229 }
3230 
3231 // Emit the INSERT_FW pseudo instruction.
3232 //
3233 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3234 // =>
3235 // subreg_to_reg $wt:sub_lo, $fs
3236 // insve_w $wd[$n], $wd_in, $wt[0]
3237 MachineBasicBlock *
3238 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3239                                     MachineBasicBlock *BB) const {
3240   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3241   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3242   DebugLoc DL = MI.getDebugLoc();
3243   Register Wd = MI.getOperand(0).getReg();
3244   Register Wd_in = MI.getOperand(1).getReg();
3245   unsigned Lane = MI.getOperand(2).getImm();
3246   Register Fs = MI.getOperand(3).getReg();
3247   Register Wt = RegInfo.createVirtualRegister(
3248       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3249                               : &Mips::MSA128WEvensRegClass);
3250 
3251   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3252       .addImm(0)
3253       .addReg(Fs)
3254       .addImm(Mips::sub_lo);
3255   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3256       .addReg(Wd_in)
3257       .addImm(Lane)
3258       .addReg(Wt)
3259       .addImm(0);
3260 
3261   MI.eraseFromParent(); // The pseudo instruction is gone now.
3262   return BB;
3263 }
3264 
3265 // Emit the INSERT_FD pseudo instruction.
3266 //
3267 // insert_fd_pseudo $wd, $fs, n
3268 // =>
3269 // subreg_to_reg $wt:sub_64, $fs
3270 // insve_d $wd[$n], $wd_in, $wt[0]
3271 MachineBasicBlock *
3272 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3273                                     MachineBasicBlock *BB) const {
3274   assert(Subtarget.isFP64bit());
3275 
3276   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3277   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3278   DebugLoc DL = MI.getDebugLoc();
3279   Register Wd = MI.getOperand(0).getReg();
3280   Register Wd_in = MI.getOperand(1).getReg();
3281   unsigned Lane = MI.getOperand(2).getImm();
3282   Register Fs = MI.getOperand(3).getReg();
3283   Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3284 
3285   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3286       .addImm(0)
3287       .addReg(Fs)
3288       .addImm(Mips::sub_64);
3289   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3290       .addReg(Wd_in)
3291       .addImm(Lane)
3292       .addReg(Wt)
3293       .addImm(0);
3294 
3295   MI.eraseFromParent(); // The pseudo instruction is gone now.
3296   return BB;
3297 }
3298 
3299 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3300 //
3301 // For integer:
3302 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3303 // =>
3304 // (SLL $lanetmp1, $lane, <log2size)
3305 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3306 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3307 // (NEG $lanetmp2, $lanetmp1)
3308 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3309 //
3310 // For floating point:
3311 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3312 // =>
3313 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3314 // (SLL $lanetmp1, $lane, <log2size)
3315 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3316 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3317 // (NEG $lanetmp2, $lanetmp1)
3318 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3319 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3320     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3321     bool IsFP) const {
3322   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3323   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3324   DebugLoc DL = MI.getDebugLoc();
3325   Register Wd = MI.getOperand(0).getReg();
3326   Register SrcVecReg = MI.getOperand(1).getReg();
3327   Register LaneReg = MI.getOperand(2).getReg();
3328   Register SrcValReg = MI.getOperand(3).getReg();
3329 
3330   const TargetRegisterClass *VecRC = nullptr;
3331   // FIXME: This should be true for N32 too.
3332   const TargetRegisterClass *GPRRC =
3333       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3334   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3335   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3336   unsigned EltLog2Size;
3337   unsigned InsertOp = 0;
3338   unsigned InsveOp = 0;
3339   switch (EltSizeInBytes) {
3340   default:
3341     llvm_unreachable("Unexpected size");
3342   case 1:
3343     EltLog2Size = 0;
3344     InsertOp = Mips::INSERT_B;
3345     InsveOp = Mips::INSVE_B;
3346     VecRC = &Mips::MSA128BRegClass;
3347     break;
3348   case 2:
3349     EltLog2Size = 1;
3350     InsertOp = Mips::INSERT_H;
3351     InsveOp = Mips::INSVE_H;
3352     VecRC = &Mips::MSA128HRegClass;
3353     break;
3354   case 4:
3355     EltLog2Size = 2;
3356     InsertOp = Mips::INSERT_W;
3357     InsveOp = Mips::INSVE_W;
3358     VecRC = &Mips::MSA128WRegClass;
3359     break;
3360   case 8:
3361     EltLog2Size = 3;
3362     InsertOp = Mips::INSERT_D;
3363     InsveOp = Mips::INSVE_D;
3364     VecRC = &Mips::MSA128DRegClass;
3365     break;
3366   }
3367 
3368   if (IsFP) {
3369     Register Wt = RegInfo.createVirtualRegister(VecRC);
3370     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3371         .addImm(0)
3372         .addReg(SrcValReg)
3373         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3374     SrcValReg = Wt;
3375   }
3376 
3377   // Convert the lane index into a byte index
3378   if (EltSizeInBytes != 1) {
3379     Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3380     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3381         .addReg(LaneReg)
3382         .addImm(EltLog2Size);
3383     LaneReg = LaneTmp1;
3384   }
3385 
3386   // Rotate bytes around so that the desired lane is element zero
3387   Register WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3388   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3389       .addReg(SrcVecReg)
3390       .addReg(SrcVecReg)
3391       .addReg(LaneReg, 0, SubRegIdx);
3392 
3393   Register WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3394   if (IsFP) {
3395     // Use insve.df to insert to element zero
3396     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3397         .addReg(WdTmp1)
3398         .addImm(0)
3399         .addReg(SrcValReg)
3400         .addImm(0);
3401   } else {
3402     // Use insert.df to insert to element zero
3403     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3404         .addReg(WdTmp1)
3405         .addReg(SrcValReg)
3406         .addImm(0);
3407   }
3408 
3409   // Rotate elements the rest of the way for a full rotation.
3410   // sld.df inteprets $rt modulo the number of columns so we only need to negate
3411   // the lane index to do this.
3412   Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3413   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3414           LaneTmp2)
3415       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3416       .addReg(LaneReg);
3417   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3418       .addReg(WdTmp2)
3419       .addReg(WdTmp2)
3420       .addReg(LaneTmp2, 0, SubRegIdx);
3421 
3422   MI.eraseFromParent(); // The pseudo instruction is gone now.
3423   return BB;
3424 }
3425 
3426 // Emit the FILL_FW pseudo instruction.
3427 //
3428 // fill_fw_pseudo $wd, $fs
3429 // =>
3430 // implicit_def $wt1
3431 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3432 // splati.w $wd, $wt2[0]
3433 MachineBasicBlock *
3434 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3435                                   MachineBasicBlock *BB) const {
3436   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3437   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3438   DebugLoc DL = MI.getDebugLoc();
3439   Register Wd = MI.getOperand(0).getReg();
3440   Register Fs = MI.getOperand(1).getReg();
3441   Register Wt1 = RegInfo.createVirtualRegister(
3442       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3443                               : &Mips::MSA128WEvensRegClass);
3444   Register Wt2 = RegInfo.createVirtualRegister(
3445       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3446                               : &Mips::MSA128WEvensRegClass);
3447 
3448   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3449   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3450       .addReg(Wt1)
3451       .addReg(Fs)
3452       .addImm(Mips::sub_lo);
3453   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3454 
3455   MI.eraseFromParent(); // The pseudo instruction is gone now.
3456   return BB;
3457 }
3458 
3459 // Emit the FILL_FD pseudo instruction.
3460 //
3461 // fill_fd_pseudo $wd, $fs
3462 // =>
3463 // implicit_def $wt1
3464 // insert_subreg $wt2:subreg_64, $wt1, $fs
3465 // splati.d $wd, $wt2[0]
3466 MachineBasicBlock *
3467 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3468                                   MachineBasicBlock *BB) const {
3469   assert(Subtarget.isFP64bit());
3470 
3471   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3472   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3473   DebugLoc DL = MI.getDebugLoc();
3474   Register Wd = MI.getOperand(0).getReg();
3475   Register Fs = MI.getOperand(1).getReg();
3476   Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3477   Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3478 
3479   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3480   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3481       .addReg(Wt1)
3482       .addReg(Fs)
3483       .addImm(Mips::sub_64);
3484   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3485 
3486   MI.eraseFromParent(); // The pseudo instruction is gone now.
3487   return BB;
3488 }
3489 
3490 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3491 // register.
3492 //
3493 // STF16 MSA128F16:$wd, mem_simm10:$addr
3494 // =>
3495 //  copy_u.h $rtemp,$wd[0]
3496 //  sh $rtemp, $addr
3497 //
3498 // Safety: We can't use st.h & co as they would over write the memory after
3499 // the destination. It would require half floats be allocated 16 bytes(!) of
3500 // space.
3501 MachineBasicBlock *
3502 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3503                                        MachineBasicBlock *BB) const {
3504 
3505   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3506   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3507   DebugLoc DL = MI.getDebugLoc();
3508   Register Ws = MI.getOperand(0).getReg();
3509   Register Rt = MI.getOperand(1).getReg();
3510   const MachineMemOperand &MMO = **MI.memoperands_begin();
3511   unsigned Imm = MMO.getOffset();
3512 
3513   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3514   //          spill and reload can expand as a GPR64 operand. Examine the
3515   //          operand in detail and default to ABI.
3516   const TargetRegisterClass *RC =
3517       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3518                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3519                                                         : &Mips::GPR64RegClass);
3520   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3521   Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3522 
3523   BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3524   if(!UsingMips32) {
3525     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3526     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3527         .addImm(0)
3528         .addReg(Rs)
3529         .addImm(Mips::sub_32);
3530     Rs = Tmp;
3531   }
3532   BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3533       .addReg(Rs)
3534       .addReg(Rt)
3535       .addImm(Imm)
3536       .addMemOperand(BB->getParent()->getMachineMemOperand(
3537           &MMO, MMO.getOffset(), MMO.getSize()));
3538 
3539   MI.eraseFromParent();
3540   return BB;
3541 }
3542 
3543 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3544 //
3545 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3546 // =>
3547 //  lh $rtemp, $addr
3548 //  fill.h $wd, $rtemp
3549 //
3550 // Safety: We can't use ld.h & co as they over-read from the source.
3551 // Additionally, if the address is not modulo 16, 2 cases can occur:
3552 //  a) Segmentation fault as the load instruction reads from a memory page
3553 //     memory it's not supposed to.
3554 //  b) The load crosses an implementation specific boundary, requiring OS
3555 //     intervention.
3556 MachineBasicBlock *
3557 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3558                                        MachineBasicBlock *BB) const {
3559 
3560   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3561   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3562   DebugLoc DL = MI.getDebugLoc();
3563   Register Wd = MI.getOperand(0).getReg();
3564 
3565   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3566   //          spill and reload can expand as a GPR64 operand. Examine the
3567   //          operand in detail and default to ABI.
3568   const TargetRegisterClass *RC =
3569       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3570                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3571                                                         : &Mips::GPR64RegClass);
3572 
3573   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3574   Register Rt = RegInfo.createVirtualRegister(RC);
3575 
3576   MachineInstrBuilder MIB =
3577       BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3578   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
3579     MIB.add(MO);
3580 
3581   if(!UsingMips32) {
3582     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3583     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3584     Rt = Tmp;
3585   }
3586 
3587   BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3588 
3589   MI.eraseFromParent();
3590   return BB;
3591 }
3592 
3593 // Emit the FPROUND_PSEUDO instruction.
3594 //
3595 // Round an FGR64Opnd, FGR32Opnd to an f16.
3596 //
3597 // Safety: Cycle the operand through the GPRs so the result always ends up
3598 //         the correct MSA register.
3599 //
3600 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3601 //        / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3602 //        (which they can be, as the MSA registers are defined to alias the
3603 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3604 //        the correct register class. That requires operands be tie-able across
3605 //        register classes which have a sub/super register class relationship.
3606 //
3607 // For FPG32Opnd:
3608 //
3609 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3610 // =>
3611 //  mfc1 $rtemp, $fs
3612 //  fill.w $rtemp, $wtemp
3613 //  fexdo.w $wd, $wtemp, $wtemp
3614 //
3615 // For FPG64Opnd on mips32r2+:
3616 //
3617 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3618 // =>
3619 //  mfc1 $rtemp, $fs
3620 //  fill.w $rtemp, $wtemp
3621 //  mfhc1 $rtemp2, $fs
3622 //  insert.w $wtemp[1], $rtemp2
3623 //  insert.w $wtemp[3], $rtemp2
3624 //  fexdo.w $wtemp2, $wtemp, $wtemp
3625 //  fexdo.h $wd, $temp2, $temp2
3626 //
3627 // For FGR64Opnd on mips64r2+:
3628 //
3629 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3630 // =>
3631 //  dmfc1 $rtemp, $fs
3632 //  fill.d $rtemp, $wtemp
3633 //  fexdo.w $wtemp2, $wtemp, $wtemp
3634 //  fexdo.h $wd, $wtemp2, $wtemp2
3635 //
3636 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3637 //              undef bits are "just right" and the exception enable bits are
3638 //              set. By using fill.w to replicate $fs into all elements over
3639 //              insert.w for one element, we avoid that potiential case. If
3640 //              fexdo.[hw] causes an exception in, the exception is valid and it
3641 //              occurs for all elements.
3642 MachineBasicBlock *
3643 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3644                                          MachineBasicBlock *BB,
3645                                          bool IsFGR64) const {
3646 
3647   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3648   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3649   // it.
3650   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3651 
3652   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3653   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3654 
3655   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3656   DebugLoc DL = MI.getDebugLoc();
3657   Register Wd = MI.getOperand(0).getReg();
3658   Register Fs = MI.getOperand(1).getReg();
3659 
3660   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3661   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3662   const TargetRegisterClass *GPRRC =
3663       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3664   unsigned MFC1Opc = IsFGR64onMips64
3665                          ? Mips::DMFC1
3666                          : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3667   unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3668 
3669   // Perform the register class copy as mentioned above.
3670   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3671   BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3672   BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3673   unsigned WPHI = Wtemp;
3674 
3675   if (IsFGR64onMips32) {
3676     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3677     BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3678     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3679     Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3680     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3681         .addReg(Wtemp)
3682         .addReg(Rtemp2)
3683         .addImm(1);
3684     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3685         .addReg(Wtemp2)
3686         .addReg(Rtemp2)
3687         .addImm(3);
3688     WPHI = Wtemp3;
3689   }
3690 
3691   if (IsFGR64) {
3692     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3693     BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3694         .addReg(WPHI)
3695         .addReg(WPHI);
3696     WPHI = Wtemp2;
3697   }
3698 
3699   BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3700 
3701   MI.eraseFromParent();
3702   return BB;
3703 }
3704 
3705 // Emit the FPEXTEND_PSEUDO instruction.
3706 //
3707 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3708 //
3709 // Safety: Cycle the result through the GPRs so the result always ends up
3710 //         the correct floating point register.
3711 //
3712 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3713 //        / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3714 //        (which they can be, as the MSA registers are defined to alias the
3715 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3716 //        the correct register class. That requires operands be tie-able across
3717 //        register classes which have a sub/super register class relationship. I
3718 //        haven't checked.
3719 //
3720 // For FGR32Opnd:
3721 //
3722 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3723 // =>
3724 //  fexupr.w $wtemp, $ws
3725 //  copy_s.w $rtemp, $ws[0]
3726 //  mtc1 $rtemp, $fd
3727 //
3728 // For FGR64Opnd on Mips64:
3729 //
3730 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3731 // =>
3732 //  fexupr.w $wtemp, $ws
3733 //  fexupr.d $wtemp2, $wtemp
3734 //  copy_s.d $rtemp, $wtemp2s[0]
3735 //  dmtc1 $rtemp, $fd
3736 //
3737 // For FGR64Opnd on Mips32:
3738 //
3739 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3740 // =>
3741 //  fexupr.w $wtemp, $ws
3742 //  fexupr.d $wtemp2, $wtemp
3743 //  copy_s.w $rtemp, $wtemp2[0]
3744 //  mtc1 $rtemp, $ftemp
3745 //  copy_s.w $rtemp2, $wtemp2[1]
3746 //  $fd = mthc1 $rtemp2, $ftemp
3747 MachineBasicBlock *
3748 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3749                                           MachineBasicBlock *BB,
3750                                           bool IsFGR64) const {
3751 
3752   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3753   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3754   // it.
3755   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3756 
3757   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3758   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3759 
3760   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3761   DebugLoc DL = MI.getDebugLoc();
3762   Register Fd = MI.getOperand(0).getReg();
3763   Register Ws = MI.getOperand(1).getReg();
3764 
3765   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3766   const TargetRegisterClass *GPRRC =
3767       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3768   unsigned MTC1Opc = IsFGR64onMips64
3769                          ? Mips::DMTC1
3770                          : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3771   Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3772 
3773   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3774   Register WPHI = Wtemp;
3775 
3776   BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3777   if (IsFGR64) {
3778     WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3779     BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3780   }
3781 
3782   // Perform the safety regclass copy mentioned above.
3783   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3784   Register FPRPHI = IsFGR64onMips32
3785                         ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3786                         : Fd;
3787   BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3788   BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3789 
3790   if (IsFGR64onMips32) {
3791     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3792     BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3793         .addReg(WPHI)
3794         .addImm(1);
3795     BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3796         .addReg(FPRPHI)
3797         .addReg(Rtemp2);
3798   }
3799 
3800   MI.eraseFromParent();
3801   return BB;
3802 }
3803 
3804 // Emit the FEXP2_W_1 pseudo instructions.
3805 //
3806 // fexp2_w_1_pseudo $wd, $wt
3807 // =>
3808 // ldi.w $ws, 1
3809 // fexp2.w $wd, $ws, $wt
3810 MachineBasicBlock *
3811 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3812                                     MachineBasicBlock *BB) const {
3813   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3814   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3815   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3816   Register Ws1 = RegInfo.createVirtualRegister(RC);
3817   Register Ws2 = RegInfo.createVirtualRegister(RC);
3818   DebugLoc DL = MI.getDebugLoc();
3819 
3820   // Splat 1.0 into a vector
3821   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3822   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3823 
3824   // Emit 1.0 * fexp2(Wt)
3825   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3826       .addReg(Ws2)
3827       .addReg(MI.getOperand(1).getReg());
3828 
3829   MI.eraseFromParent(); // The pseudo instruction is gone now.
3830   return BB;
3831 }
3832 
3833 // Emit the FEXP2_D_1 pseudo instructions.
3834 //
3835 // fexp2_d_1_pseudo $wd, $wt
3836 // =>
3837 // ldi.d $ws, 1
3838 // fexp2.d $wd, $ws, $wt
3839 MachineBasicBlock *
3840 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3841                                     MachineBasicBlock *BB) const {
3842   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3843   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3844   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3845   Register Ws1 = RegInfo.createVirtualRegister(RC);
3846   Register Ws2 = RegInfo.createVirtualRegister(RC);
3847   DebugLoc DL = MI.getDebugLoc();
3848 
3849   // Splat 1.0 into a vector
3850   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3851   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3852 
3853   // Emit 1.0 * fexp2(Wt)
3854   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3855       .addReg(Ws2)
3856       .addReg(MI.getOperand(1).getReg());
3857 
3858   MI.eraseFromParent(); // The pseudo instruction is gone now.
3859   return BB;
3860 }
3861