xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Mips/MipsSEISelLowering.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/MachineValueType.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/SelectionDAGNodes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsMips.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/TargetParser/Triple.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "mips-isel"
53 
54 static cl::opt<bool>
55 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
56                     cl::desc("MIPS: permit tail calls."), cl::init(false));
57 
58 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
59                                    cl::desc("Expand double precision loads and "
60                                             "stores to their single precision "
61                                             "counterparts"));
62 
63 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
64                                            const MipsSubtarget &STI)
65     : MipsTargetLowering(TM, STI) {
66   // Set up the register classes
67   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
68 
69   if (Subtarget.isGP64bit())
70     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
71 
72   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
73     // Expand all truncating stores and extending loads.
74     for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) {
75       for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) {
76         setTruncStoreAction(VT0, VT1, Expand);
77         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
78         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
79         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
80       }
81     }
82   }
83 
84   if (Subtarget.hasDSP()) {
85     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
86 
87     for (const auto &VecTy : VecTys) {
88       addRegisterClass(VecTy, &Mips::DSPRRegClass);
89 
90       // Expand all builtin opcodes.
91       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
92         setOperationAction(Opc, VecTy, Expand);
93 
94       setOperationAction(ISD::ADD, VecTy, Legal);
95       setOperationAction(ISD::SUB, VecTy, Legal);
96       setOperationAction(ISD::LOAD, VecTy, Legal);
97       setOperationAction(ISD::STORE, VecTy, Legal);
98       setOperationAction(ISD::BITCAST, VecTy, Legal);
99     }
100 
101     setTargetDAGCombine(
102         {ISD::SHL, ISD::SRA, ISD::SRL, ISD::SETCC, ISD::VSELECT});
103 
104     if (Subtarget.hasMips32r2()) {
105       setOperationAction(ISD::ADDC, MVT::i32, Legal);
106       setOperationAction(ISD::ADDE, MVT::i32, Legal);
107     }
108   }
109 
110   if (Subtarget.hasDSPR2())
111     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
112 
113   if (Subtarget.hasMSA()) {
114     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
115     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
116     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
117     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
118     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
119     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
120     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
121 
122     // f16 is a storage-only type, always promote it to f32.
123     addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
124     setOperationAction(ISD::SETCC, MVT::f16, Promote);
125     setOperationAction(ISD::BR_CC, MVT::f16, Promote);
126     setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
127     setOperationAction(ISD::SELECT, MVT::f16, Promote);
128     setOperationAction(ISD::FADD, MVT::f16, Promote);
129     setOperationAction(ISD::FSUB, MVT::f16, Promote);
130     setOperationAction(ISD::FMUL, MVT::f16, Promote);
131     setOperationAction(ISD::FDIV, MVT::f16, Promote);
132     setOperationAction(ISD::FREM, MVT::f16, Promote);
133     setOperationAction(ISD::FMA, MVT::f16, Promote);
134     setOperationAction(ISD::FNEG, MVT::f16, Promote);
135     setOperationAction(ISD::FABS, MVT::f16, Promote);
136     setOperationAction(ISD::FCEIL, MVT::f16, Promote);
137     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
138     setOperationAction(ISD::FCOS, MVT::f16, Promote);
139     setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
140     setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
141     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
142     setOperationAction(ISD::FPOW, MVT::f16, Promote);
143     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
144     setOperationAction(ISD::FRINT, MVT::f16, Promote);
145     setOperationAction(ISD::FSIN, MVT::f16, Promote);
146     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
147     setOperationAction(ISD::FSQRT, MVT::f16, Promote);
148     setOperationAction(ISD::FEXP, MVT::f16, Promote);
149     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
150     setOperationAction(ISD::FLOG, MVT::f16, Promote);
151     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
152     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
153     setOperationAction(ISD::FROUND, MVT::f16, Promote);
154     setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
155     setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
156     setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
157     setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
158     setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
159 
160     setTargetDAGCombine({ISD::AND, ISD::OR, ISD::SRA, ISD::VSELECT, ISD::XOR});
161   }
162 
163   if (!Subtarget.useSoftFloat()) {
164     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
165 
166     // When dealing with single precision only, use libcalls
167     if (!Subtarget.isSingleFloat()) {
168       if (Subtarget.isFP64bit())
169         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
170       else
171         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
172     }
173   }
174 
175   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
176   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
177   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
178   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
179 
180   if (Subtarget.hasCnMips())
181     setOperationAction(ISD::MUL,              MVT::i64, Legal);
182   else if (Subtarget.isGP64bit())
183     setOperationAction(ISD::MUL,              MVT::i64, Custom);
184 
185   if (Subtarget.isGP64bit()) {
186     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
187     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
188     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
189     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
190     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
191     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
192   }
193 
194   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
195   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
196 
197   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
198   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
199   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
200   setOperationAction(ISD::LOAD,               MVT::i32, Custom);
201   setOperationAction(ISD::STORE,              MVT::i32, Custom);
202 
203   setTargetDAGCombine(ISD::MUL);
204 
205   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
206   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
207   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
208 
209   if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() &&
210       !Subtarget.hasMips64()) {
211     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
212   }
213 
214   if (NoDPLoadStore) {
215     setOperationAction(ISD::LOAD, MVT::f64, Custom);
216     setOperationAction(ISD::STORE, MVT::f64, Custom);
217   }
218 
219   if (Subtarget.hasMips32r6()) {
220     // MIPS32r6 replaces the accumulator-based multiplies with a three register
221     // instruction
222     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
223     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
224     setOperationAction(ISD::MUL, MVT::i32, Legal);
225     setOperationAction(ISD::MULHS, MVT::i32, Legal);
226     setOperationAction(ISD::MULHU, MVT::i32, Legal);
227 
228     // MIPS32r6 replaces the accumulator-based division/remainder with separate
229     // three register division and remainder instructions.
230     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
231     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
232     setOperationAction(ISD::SDIV, MVT::i32, Legal);
233     setOperationAction(ISD::UDIV, MVT::i32, Legal);
234     setOperationAction(ISD::SREM, MVT::i32, Legal);
235     setOperationAction(ISD::UREM, MVT::i32, Legal);
236 
237     // MIPS32r6 replaces conditional moves with an equivalent that removes the
238     // need for three GPR read ports.
239     setOperationAction(ISD::SETCC, MVT::i32, Legal);
240     setOperationAction(ISD::SELECT, MVT::i32, Legal);
241     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
242 
243     setOperationAction(ISD::SETCC, MVT::f32, Legal);
244     setOperationAction(ISD::SELECT, MVT::f32, Legal);
245     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
246 
247     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
248     setOperationAction(ISD::SETCC, MVT::f64, Legal);
249     setOperationAction(ISD::SELECT, MVT::f64, Custom);
250     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
251 
252     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
253 
254     // Floating point > and >= are supported via < and <=
255     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
256     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
257     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
258     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
259 
260     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
261     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
262     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
263     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
264   }
265 
266   if (Subtarget.hasMips64r6()) {
267     // MIPS64r6 replaces the accumulator-based multiplies with a three register
268     // instruction
269     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
270     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
271     setOperationAction(ISD::MUL, MVT::i64, Legal);
272     setOperationAction(ISD::MULHS, MVT::i64, Legal);
273     setOperationAction(ISD::MULHU, MVT::i64, Legal);
274 
275     // MIPS32r6 replaces the accumulator-based division/remainder with separate
276     // three register division and remainder instructions.
277     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
278     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
279     setOperationAction(ISD::SDIV, MVT::i64, Legal);
280     setOperationAction(ISD::UDIV, MVT::i64, Legal);
281     setOperationAction(ISD::SREM, MVT::i64, Legal);
282     setOperationAction(ISD::UREM, MVT::i64, Legal);
283 
284     // MIPS64r6 replaces conditional moves with an equivalent that removes the
285     // need for three GPR read ports.
286     setOperationAction(ISD::SETCC, MVT::i64, Legal);
287     setOperationAction(ISD::SELECT, MVT::i64, Legal);
288     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
289   }
290 
291   computeRegisterProperties(Subtarget.getRegisterInfo());
292 }
293 
294 const MipsTargetLowering *
295 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
296                                  const MipsSubtarget &STI) {
297   return new MipsSETargetLowering(TM, STI);
298 }
299 
300 const TargetRegisterClass *
301 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
302   if (VT == MVT::Untyped)
303     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
304 
305   return TargetLowering::getRepRegClassFor(VT);
306 }
307 
308 // Enable MSA support for the given integer type and Register class.
309 void MipsSETargetLowering::
310 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
311   addRegisterClass(Ty, RC);
312 
313   // Expand all builtin opcodes.
314   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
315     setOperationAction(Opc, Ty, Expand);
316 
317   setOperationAction(ISD::BITCAST, Ty, Legal);
318   setOperationAction(ISD::LOAD, Ty, Legal);
319   setOperationAction(ISD::STORE, Ty, Legal);
320   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
321   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
322   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
323   setOperationAction(ISD::UNDEF, Ty, Legal);
324 
325   setOperationAction(ISD::ADD, Ty, Legal);
326   setOperationAction(ISD::AND, Ty, Legal);
327   setOperationAction(ISD::CTLZ, Ty, Legal);
328   setOperationAction(ISD::CTPOP, Ty, Legal);
329   setOperationAction(ISD::MUL, Ty, Legal);
330   setOperationAction(ISD::OR, Ty, Legal);
331   setOperationAction(ISD::SDIV, Ty, Legal);
332   setOperationAction(ISD::SREM, Ty, Legal);
333   setOperationAction(ISD::SHL, Ty, Legal);
334   setOperationAction(ISD::SRA, Ty, Legal);
335   setOperationAction(ISD::SRL, Ty, Legal);
336   setOperationAction(ISD::SUB, Ty, Legal);
337   setOperationAction(ISD::SMAX, Ty, Legal);
338   setOperationAction(ISD::SMIN, Ty, Legal);
339   setOperationAction(ISD::UDIV, Ty, Legal);
340   setOperationAction(ISD::UREM, Ty, Legal);
341   setOperationAction(ISD::UMAX, Ty, Legal);
342   setOperationAction(ISD::UMIN, Ty, Legal);
343   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
344   setOperationAction(ISD::VSELECT, Ty, Legal);
345   setOperationAction(ISD::XOR, Ty, Legal);
346 
347   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
348     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
349     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
350     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
351     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
352   }
353 
354   setOperationAction(ISD::SETCC, Ty, Legal);
355   setCondCodeAction(ISD::SETNE, Ty, Expand);
356   setCondCodeAction(ISD::SETGE, Ty, Expand);
357   setCondCodeAction(ISD::SETGT, Ty, Expand);
358   setCondCodeAction(ISD::SETUGE, Ty, Expand);
359   setCondCodeAction(ISD::SETUGT, Ty, Expand);
360 }
361 
362 // Enable MSA support for the given floating-point type and Register class.
363 void MipsSETargetLowering::
364 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
365   addRegisterClass(Ty, RC);
366 
367   // Expand all builtin opcodes.
368   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
369     setOperationAction(Opc, Ty, Expand);
370 
371   setOperationAction(ISD::LOAD, Ty, Legal);
372   setOperationAction(ISD::STORE, Ty, Legal);
373   setOperationAction(ISD::BITCAST, Ty, Legal);
374   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
375   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
376   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
377 
378   if (Ty != MVT::v8f16) {
379     setOperationAction(ISD::FABS,  Ty, Legal);
380     setOperationAction(ISD::FADD,  Ty, Legal);
381     setOperationAction(ISD::FDIV,  Ty, Legal);
382     setOperationAction(ISD::FEXP2, Ty, Legal);
383     setOperationAction(ISD::FLOG2, Ty, Legal);
384     setOperationAction(ISD::FMA,   Ty, Legal);
385     setOperationAction(ISD::FMUL,  Ty, Legal);
386     setOperationAction(ISD::FRINT, Ty, Legal);
387     setOperationAction(ISD::FSQRT, Ty, Legal);
388     setOperationAction(ISD::FSUB,  Ty, Legal);
389     setOperationAction(ISD::VSELECT, Ty, Legal);
390 
391     setOperationAction(ISD::SETCC, Ty, Legal);
392     setCondCodeAction(ISD::SETOGE, Ty, Expand);
393     setCondCodeAction(ISD::SETOGT, Ty, Expand);
394     setCondCodeAction(ISD::SETUGE, Ty, Expand);
395     setCondCodeAction(ISD::SETUGT, Ty, Expand);
396     setCondCodeAction(ISD::SETGE,  Ty, Expand);
397     setCondCodeAction(ISD::SETGT,  Ty, Expand);
398   }
399 }
400 
401 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
402   if(!Subtarget.hasMips32r6())
403     return MipsTargetLowering::LowerOperation(Op, DAG);
404 
405   EVT ResTy = Op->getValueType(0);
406   SDLoc DL(Op);
407 
408   // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
409   // floating point register are undefined. Not really an issue as sel.d, which
410   // is produced from an FSELECT node, only looks at bit 0.
411   SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
412   return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
413                      Op->getOperand(2));
414 }
415 
416 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses(
417     EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
418   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
419 
420   if (Subtarget.systemSupportsUnalignedAccess()) {
421     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
422     // implementation defined whether this is handled by hardware, software, or
423     // a hybrid of the two but it's expected that most implementations will
424     // handle the majority of cases in hardware.
425     if (Fast)
426       *Fast = 1;
427     return true;
428   }
429 
430   switch (SVT) {
431   case MVT::i64:
432   case MVT::i32:
433     if (Fast)
434       *Fast = 1;
435     return true;
436   default:
437     return false;
438   }
439 }
440 
441 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
442                                              SelectionDAG &DAG) const {
443   switch(Op.getOpcode()) {
444   case ISD::LOAD:  return lowerLOAD(Op, DAG);
445   case ISD::STORE: return lowerSTORE(Op, DAG);
446   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
447   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
448   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
449   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
450   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
451   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
452   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
453                                           DAG);
454   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
455   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
456   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
457   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
458   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
459   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
460   case ISD::SELECT:             return lowerSELECT(Op, DAG);
461   case ISD::BITCAST:            return lowerBITCAST(Op, DAG);
462   }
463 
464   return MipsTargetLowering::LowerOperation(Op, DAG);
465 }
466 
467 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
468 //
469 // Performs the following transformations:
470 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
471 //   sign/zero-extension is completely overwritten by the new one performed by
472 //   the ISD::AND.
473 // - Removes redundant zero extensions performed by an ISD::AND.
474 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
475                                  TargetLowering::DAGCombinerInfo &DCI,
476                                  const MipsSubtarget &Subtarget) {
477   if (!Subtarget.hasMSA())
478     return SDValue();
479 
480   SDValue Op0 = N->getOperand(0);
481   SDValue Op1 = N->getOperand(1);
482   unsigned Op0Opcode = Op0->getOpcode();
483 
484   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
485   // where $d + 1 == 2^n and n == 32
486   // or    $d + 1 == 2^n and n <= 32 and ZExt
487   // -> (MipsVExtractZExt $a, $b, $c)
488   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
489       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
490     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
491 
492     if (!Mask)
493       return SDValue();
494 
495     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
496 
497     if (Log2IfPositive <= 0)
498       return SDValue(); // Mask+1 is not a power of 2
499 
500     SDValue Op0Op2 = Op0->getOperand(2);
501     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
502     unsigned ExtendTySize = ExtendTy.getSizeInBits();
503     unsigned Log2 = Log2IfPositive;
504 
505     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
506         Log2 == ExtendTySize) {
507       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
508       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
509                          Op0->getVTList(),
510                          ArrayRef(Ops, Op0->getNumOperands()));
511     }
512   }
513 
514   return SDValue();
515 }
516 
517 // Determine if the specified node is a constant vector splat.
518 //
519 // Returns true and sets Imm if:
520 // * N is a ISD::BUILD_VECTOR representing a constant splat
521 //
522 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
523 // differences are that it assumes the MSA has already been checked and the
524 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
525 // must not be in order for binsri.d to be selectable).
526 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
527   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
528 
529   if (!Node)
530     return false;
531 
532   APInt SplatValue, SplatUndef;
533   unsigned SplatBitSize;
534   bool HasAnyUndefs;
535 
536   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
537                              8, !IsLittleEndian))
538     return false;
539 
540   Imm = SplatValue;
541 
542   return true;
543 }
544 
545 // Test whether the given node is an all-ones build_vector.
546 static bool isVectorAllOnes(SDValue N) {
547   // Look through bitcasts. Endianness doesn't matter because we are looking
548   // for an all-ones value.
549   if (N->getOpcode() == ISD::BITCAST)
550     N = N->getOperand(0);
551 
552   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
553 
554   if (!BVN)
555     return false;
556 
557   APInt SplatValue, SplatUndef;
558   unsigned SplatBitSize;
559   bool HasAnyUndefs;
560 
561   // Endianness doesn't matter in this context because we are looking for
562   // an all-ones value.
563   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
564     return SplatValue.isAllOnes();
565 
566   return false;
567 }
568 
569 // Test whether N is the bitwise inverse of OfNode.
570 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
571   if (N->getOpcode() != ISD::XOR)
572     return false;
573 
574   if (isVectorAllOnes(N->getOperand(0)))
575     return N->getOperand(1) == OfNode;
576 
577   if (isVectorAllOnes(N->getOperand(1)))
578     return N->getOperand(0) == OfNode;
579 
580   return false;
581 }
582 
583 // Perform combines where ISD::OR is the root node.
584 //
585 // Performs the following transformations:
586 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
587 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
588 //   vector type.
589 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
590                                 TargetLowering::DAGCombinerInfo &DCI,
591                                 const MipsSubtarget &Subtarget) {
592   if (!Subtarget.hasMSA())
593     return SDValue();
594 
595   EVT Ty = N->getValueType(0);
596 
597   if (!Ty.is128BitVector())
598     return SDValue();
599 
600   SDValue Op0 = N->getOperand(0);
601   SDValue Op1 = N->getOperand(1);
602 
603   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
604     SDValue Op0Op0 = Op0->getOperand(0);
605     SDValue Op0Op1 = Op0->getOperand(1);
606     SDValue Op1Op0 = Op1->getOperand(0);
607     SDValue Op1Op1 = Op1->getOperand(1);
608     bool IsLittleEndian = !Subtarget.isLittle();
609 
610     SDValue IfSet, IfClr, Cond;
611     bool IsConstantMask = false;
612     APInt Mask, InvMask;
613 
614     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
615     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
616     // looking.
617     // IfClr will be set if we find a valid match.
618     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
619       Cond = Op0Op0;
620       IfSet = Op0Op1;
621 
622       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
623           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
624         IfClr = Op1Op1;
625       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
626                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
627         IfClr = Op1Op0;
628 
629       IsConstantMask = true;
630     }
631 
632     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
633     // thing again using this mask.
634     // IfClr will be set if we find a valid match.
635     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
636       Cond = Op0Op1;
637       IfSet = Op0Op0;
638 
639       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
640           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
641         IfClr = Op1Op1;
642       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
643                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
644         IfClr = Op1Op0;
645 
646       IsConstantMask = true;
647     }
648 
649     // If IfClr is not yet set, try looking for a non-constant match.
650     // IfClr will be set if we find a valid match amongst the eight
651     // possibilities.
652     if (!IfClr.getNode()) {
653       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
654         Cond = Op1Op0;
655         IfSet = Op1Op1;
656         IfClr = Op0Op1;
657       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
658         Cond = Op1Op0;
659         IfSet = Op1Op1;
660         IfClr = Op0Op0;
661       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
662         Cond = Op1Op1;
663         IfSet = Op1Op0;
664         IfClr = Op0Op1;
665       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
666         Cond = Op1Op1;
667         IfSet = Op1Op0;
668         IfClr = Op0Op0;
669       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
670         Cond = Op0Op0;
671         IfSet = Op0Op1;
672         IfClr = Op1Op1;
673       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
674         Cond = Op0Op0;
675         IfSet = Op0Op1;
676         IfClr = Op1Op0;
677       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
678         Cond = Op0Op1;
679         IfSet = Op0Op0;
680         IfClr = Op1Op1;
681       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
682         Cond = Op0Op1;
683         IfSet = Op0Op0;
684         IfClr = Op1Op0;
685       }
686     }
687 
688     // At this point, IfClr will be set if we have a valid match.
689     if (!IfClr.getNode())
690       return SDValue();
691 
692     assert(Cond.getNode() && IfSet.getNode());
693 
694     // Fold degenerate cases.
695     if (IsConstantMask) {
696       if (Mask.isAllOnes())
697         return IfSet;
698       else if (Mask == 0)
699         return IfClr;
700     }
701 
702     // Transform the DAG into an equivalent VSELECT.
703     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
704   }
705 
706   return SDValue();
707 }
708 
709 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
710                                                SelectionDAG &DAG,
711                                                const MipsSubtarget &Subtarget) {
712   // Estimate the number of operations the below transform will turn a
713   // constant multiply into. The number is approximately equal to the minimal
714   // number of powers of two that constant can be broken down to by adding
715   // or subtracting them.
716   //
717   // If we have taken more than 12[1] / 8[2] steps to attempt the
718   // optimization for a native sized value, it is more than likely that this
719   // optimization will make things worse.
720   //
721   // [1] MIPS64 requires 6 instructions at most to materialize any constant,
722   //     multiplication requires at least 4 cycles, but another cycle (or two)
723   //     to retrieve the result from the HI/LO registers.
724   //
725   // [2] For MIPS32, more than 8 steps is expensive as the constant could be
726   //     materialized in 2 instructions, multiplication requires at least 4
727   //     cycles, but another cycle (or two) to retrieve the result from the
728   //     HI/LO registers.
729   //
730   // TODO:
731   // - MaxSteps needs to consider the `VT` of the constant for the current
732   //   target.
733   // - Consider to perform this optimization after type legalization.
734   //   That allows to remove a workaround for types not supported natively.
735   // - Take in account `-Os, -Oz` flags because this optimization
736   //   increases code size.
737   unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12;
738 
739   SmallVector<APInt, 16> WorkStack(1, C);
740   unsigned Steps = 0;
741   unsigned BitWidth = C.getBitWidth();
742 
743   while (!WorkStack.empty()) {
744     APInt Val = WorkStack.pop_back_val();
745 
746     if (Val == 0 || Val == 1)
747       continue;
748 
749     if (Steps >= MaxSteps)
750       return false;
751 
752     if (Val.isPowerOf2()) {
753       ++Steps;
754       continue;
755     }
756 
757     APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
758     APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
759                                   : APInt(BitWidth, 1) << C.ceilLogBase2();
760     if ((Val - Floor).ule(Ceil - Val)) {
761       WorkStack.push_back(Floor);
762       WorkStack.push_back(Val - Floor);
763     } else {
764       WorkStack.push_back(Ceil);
765       WorkStack.push_back(Ceil - Val);
766     }
767 
768     ++Steps;
769   }
770 
771   // If the value being multiplied is not supported natively, we have to pay
772   // an additional legalization cost, conservatively assume an increase in the
773   // cost of 3 instructions per step. This values for this heuristic were
774   // determined experimentally.
775   unsigned RegisterSize = DAG.getTargetLoweringInfo()
776                               .getRegisterType(*DAG.getContext(), VT)
777                               .getSizeInBits();
778   Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
779   if (Steps > 27)
780     return false;
781 
782   return true;
783 }
784 
785 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
786                             EVT ShiftTy, SelectionDAG &DAG) {
787   // Return 0.
788   if (C == 0)
789     return DAG.getConstant(0, DL, VT);
790 
791   // Return x.
792   if (C == 1)
793     return X;
794 
795   // If c is power of 2, return (shl x, log2(c)).
796   if (C.isPowerOf2())
797     return DAG.getNode(ISD::SHL, DL, VT, X,
798                        DAG.getConstant(C.logBase2(), DL, ShiftTy));
799 
800   unsigned BitWidth = C.getBitWidth();
801   APInt Floor = APInt(BitWidth, 1) << C.logBase2();
802   APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
803                                 APInt(BitWidth, 1) << C.ceilLogBase2();
804 
805   // If |c - floor_c| <= |c - ceil_c|,
806   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
807   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
808   if ((C - Floor).ule(Ceil - C)) {
809     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
810     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
811     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
812   }
813 
814   // If |c - floor_c| > |c - ceil_c|,
815   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
816   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
817   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
818   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
819 }
820 
821 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
822                                  const TargetLowering::DAGCombinerInfo &DCI,
823                                  const MipsSETargetLowering *TL,
824                                  const MipsSubtarget &Subtarget) {
825   EVT VT = N->getValueType(0);
826 
827   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
828     if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
829                               C->getAPIntValue(), VT, DAG, Subtarget))
830       return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
831                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
832                           DAG);
833 
834   return SDValue(N, 0);
835 }
836 
837 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
838                                       SelectionDAG &DAG,
839                                       const MipsSubtarget &Subtarget) {
840   // See if this is a vector splat immediate node.
841   APInt SplatValue, SplatUndef;
842   unsigned SplatBitSize;
843   bool HasAnyUndefs;
844   unsigned EltSize = Ty.getScalarSizeInBits();
845   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
846 
847   if (!Subtarget.hasDSP())
848     return SDValue();
849 
850   if (!BV ||
851       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
852                            EltSize, !Subtarget.isLittle()) ||
853       (SplatBitSize != EltSize) ||
854       (SplatValue.getZExtValue() >= EltSize))
855     return SDValue();
856 
857   SDLoc DL(N);
858   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
859                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
860 }
861 
862 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
863                                  TargetLowering::DAGCombinerInfo &DCI,
864                                  const MipsSubtarget &Subtarget) {
865   EVT Ty = N->getValueType(0);
866 
867   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
868     return SDValue();
869 
870   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
871 }
872 
873 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
874 // constant splats into MipsISD::SHRA_DSP for DSPr2.
875 //
876 // Performs the following transformations:
877 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
878 //   sign/zero-extension is completely overwritten by the new one performed by
879 //   the ISD::SRA and ISD::SHL nodes.
880 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
881 //   sequence.
882 //
883 // See performDSPShiftCombine for more information about the transformation
884 // used for DSPr2.
885 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
886                                  TargetLowering::DAGCombinerInfo &DCI,
887                                  const MipsSubtarget &Subtarget) {
888   EVT Ty = N->getValueType(0);
889 
890   if (Subtarget.hasMSA()) {
891     SDValue Op0 = N->getOperand(0);
892     SDValue Op1 = N->getOperand(1);
893 
894     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
895     // where $d + sizeof($c) == 32
896     // or    $d + sizeof($c) <= 32 and SExt
897     // -> (MipsVExtractSExt $a, $b, $c)
898     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
899       SDValue Op0Op0 = Op0->getOperand(0);
900       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
901 
902       if (!ShAmount)
903         return SDValue();
904 
905       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
906           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
907         return SDValue();
908 
909       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
910       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
911 
912       if (TotalBits == 32 ||
913           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
914            TotalBits <= 32)) {
915         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
916                           Op0Op0->getOperand(2) };
917         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
918                            Op0Op0->getVTList(),
919                            ArrayRef(Ops, Op0Op0->getNumOperands()));
920       }
921     }
922   }
923 
924   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
925     return SDValue();
926 
927   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
928 }
929 
930 
931 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
932                                  TargetLowering::DAGCombinerInfo &DCI,
933                                  const MipsSubtarget &Subtarget) {
934   EVT Ty = N->getValueType(0);
935 
936   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
937     return SDValue();
938 
939   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
940 }
941 
942 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
943   bool IsV216 = (Ty == MVT::v2i16);
944 
945   switch (CC) {
946   case ISD::SETEQ:
947   case ISD::SETNE:  return true;
948   case ISD::SETLT:
949   case ISD::SETLE:
950   case ISD::SETGT:
951   case ISD::SETGE:  return IsV216;
952   case ISD::SETULT:
953   case ISD::SETULE:
954   case ISD::SETUGT:
955   case ISD::SETUGE: return !IsV216;
956   default:          return false;
957   }
958 }
959 
960 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
961   EVT Ty = N->getValueType(0);
962 
963   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
964     return SDValue();
965 
966   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
967     return SDValue();
968 
969   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
970                      N->getOperand(1), N->getOperand(2));
971 }
972 
973 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
974   EVT Ty = N->getValueType(0);
975 
976   if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
977     SDValue SetCC = N->getOperand(0);
978 
979     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
980       return SDValue();
981 
982     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
983                        SetCC.getOperand(0), SetCC.getOperand(1),
984                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
985   }
986 
987   return SDValue();
988 }
989 
990 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
991                                  const MipsSubtarget &Subtarget) {
992   EVT Ty = N->getValueType(0);
993 
994   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
995     // Try the following combines:
996     //   (xor (or $a, $b), (build_vector allones))
997     //   (xor (or $a, $b), (bitcast (build_vector allones)))
998     SDValue Op0 = N->getOperand(0);
999     SDValue Op1 = N->getOperand(1);
1000     SDValue NotOp;
1001 
1002     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1003       NotOp = Op1;
1004     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1005       NotOp = Op0;
1006     else
1007       return SDValue();
1008 
1009     if (NotOp->getOpcode() == ISD::OR)
1010       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1011                          NotOp->getOperand(1));
1012   }
1013 
1014   return SDValue();
1015 }
1016 
1017 SDValue
1018 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1019   SelectionDAG &DAG = DCI.DAG;
1020   SDValue Val;
1021 
1022   switch (N->getOpcode()) {
1023   case ISD::AND:
1024     Val = performANDCombine(N, DAG, DCI, Subtarget);
1025     break;
1026   case ISD::OR:
1027     Val = performORCombine(N, DAG, DCI, Subtarget);
1028     break;
1029   case ISD::MUL:
1030     return performMULCombine(N, DAG, DCI, this, Subtarget);
1031   case ISD::SHL:
1032     Val = performSHLCombine(N, DAG, DCI, Subtarget);
1033     break;
1034   case ISD::SRA:
1035     return performSRACombine(N, DAG, DCI, Subtarget);
1036   case ISD::SRL:
1037     return performSRLCombine(N, DAG, DCI, Subtarget);
1038   case ISD::VSELECT:
1039     return performVSELECTCombine(N, DAG);
1040   case ISD::XOR:
1041     Val = performXORCombine(N, DAG, Subtarget);
1042     break;
1043   case ISD::SETCC:
1044     Val = performSETCCCombine(N, DAG);
1045     break;
1046   }
1047 
1048   if (Val.getNode()) {
1049     LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1050                N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1051                Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1052     return Val;
1053   }
1054 
1055   return MipsTargetLowering::PerformDAGCombine(N, DCI);
1056 }
1057 
1058 MachineBasicBlock *
1059 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1060                                                   MachineBasicBlock *BB) const {
1061   switch (MI.getOpcode()) {
1062   default:
1063     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1064   case Mips::BPOSGE32_PSEUDO:
1065     return emitBPOSGE32(MI, BB);
1066   case Mips::SNZ_B_PSEUDO:
1067     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1068   case Mips::SNZ_H_PSEUDO:
1069     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1070   case Mips::SNZ_W_PSEUDO:
1071     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1072   case Mips::SNZ_D_PSEUDO:
1073     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1074   case Mips::SNZ_V_PSEUDO:
1075     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1076   case Mips::SZ_B_PSEUDO:
1077     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1078   case Mips::SZ_H_PSEUDO:
1079     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1080   case Mips::SZ_W_PSEUDO:
1081     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1082   case Mips::SZ_D_PSEUDO:
1083     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1084   case Mips::SZ_V_PSEUDO:
1085     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1086   case Mips::COPY_FW_PSEUDO:
1087     return emitCOPY_FW(MI, BB);
1088   case Mips::COPY_FD_PSEUDO:
1089     return emitCOPY_FD(MI, BB);
1090   case Mips::INSERT_FW_PSEUDO:
1091     return emitINSERT_FW(MI, BB);
1092   case Mips::INSERT_FD_PSEUDO:
1093     return emitINSERT_FD(MI, BB);
1094   case Mips::INSERT_B_VIDX_PSEUDO:
1095   case Mips::INSERT_B_VIDX64_PSEUDO:
1096     return emitINSERT_DF_VIDX(MI, BB, 1, false);
1097   case Mips::INSERT_H_VIDX_PSEUDO:
1098   case Mips::INSERT_H_VIDX64_PSEUDO:
1099     return emitINSERT_DF_VIDX(MI, BB, 2, false);
1100   case Mips::INSERT_W_VIDX_PSEUDO:
1101   case Mips::INSERT_W_VIDX64_PSEUDO:
1102     return emitINSERT_DF_VIDX(MI, BB, 4, false);
1103   case Mips::INSERT_D_VIDX_PSEUDO:
1104   case Mips::INSERT_D_VIDX64_PSEUDO:
1105     return emitINSERT_DF_VIDX(MI, BB, 8, false);
1106   case Mips::INSERT_FW_VIDX_PSEUDO:
1107   case Mips::INSERT_FW_VIDX64_PSEUDO:
1108     return emitINSERT_DF_VIDX(MI, BB, 4, true);
1109   case Mips::INSERT_FD_VIDX_PSEUDO:
1110   case Mips::INSERT_FD_VIDX64_PSEUDO:
1111     return emitINSERT_DF_VIDX(MI, BB, 8, true);
1112   case Mips::FILL_FW_PSEUDO:
1113     return emitFILL_FW(MI, BB);
1114   case Mips::FILL_FD_PSEUDO:
1115     return emitFILL_FD(MI, BB);
1116   case Mips::FEXP2_W_1_PSEUDO:
1117     return emitFEXP2_W_1(MI, BB);
1118   case Mips::FEXP2_D_1_PSEUDO:
1119     return emitFEXP2_D_1(MI, BB);
1120   case Mips::ST_F16:
1121     return emitST_F16_PSEUDO(MI, BB);
1122   case Mips::LD_F16:
1123     return emitLD_F16_PSEUDO(MI, BB);
1124   case Mips::MSA_FP_EXTEND_W_PSEUDO:
1125     return emitFPEXTEND_PSEUDO(MI, BB, false);
1126   case Mips::MSA_FP_ROUND_W_PSEUDO:
1127     return emitFPROUND_PSEUDO(MI, BB, false);
1128   case Mips::MSA_FP_EXTEND_D_PSEUDO:
1129     return emitFPEXTEND_PSEUDO(MI, BB, true);
1130   case Mips::MSA_FP_ROUND_D_PSEUDO:
1131     return emitFPROUND_PSEUDO(MI, BB, true);
1132   }
1133 }
1134 
1135 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1136     const CCState &CCInfo, unsigned NextStackOffset,
1137     const MipsFunctionInfo &FI) const {
1138   if (!UseMipsTailCalls)
1139     return false;
1140 
1141   // Exception has to be cleared with eret.
1142   if (FI.isISR())
1143     return false;
1144 
1145   // Return false if either the callee or caller has a byval argument.
1146   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1147     return false;
1148 
1149   // Return true if the callee's argument area is no larger than the
1150   // caller's.
1151   return NextStackOffset <= FI.getIncomingArgSize();
1152 }
1153 
1154 void MipsSETargetLowering::
1155 getOpndList(SmallVectorImpl<SDValue> &Ops,
1156             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1157             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1158             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1159             SDValue Chain) const {
1160   Ops.push_back(Callee);
1161   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1162                                   InternalLinkage, IsCallReloc, CLI, Callee,
1163                                   Chain);
1164 }
1165 
1166 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1167   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1168 
1169   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1170     return MipsTargetLowering::lowerLOAD(Op, DAG);
1171 
1172   // Replace a double precision load with two i32 loads and a buildpair64.
1173   SDLoc DL(Op);
1174   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1175   EVT PtrVT = Ptr.getValueType();
1176 
1177   // i32 load from lower address.
1178   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1179                            Nd.getAlign(), Nd.getMemOperand()->getFlags());
1180 
1181   // i32 load from higher address.
1182   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1183   SDValue Hi = DAG.getLoad(
1184       MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1185       commonAlignment(Nd.getAlign(), 4), Nd.getMemOperand()->getFlags());
1186 
1187   if (!Subtarget.isLittle())
1188     std::swap(Lo, Hi);
1189 
1190   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1191   SDValue Ops[2] = {BP, Hi.getValue(1)};
1192   return DAG.getMergeValues(Ops, DL);
1193 }
1194 
1195 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1196   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1197 
1198   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1199     return MipsTargetLowering::lowerSTORE(Op, DAG);
1200 
1201   // Replace a double precision store with two extractelement64s and i32 stores.
1202   SDLoc DL(Op);
1203   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1204   EVT PtrVT = Ptr.getValueType();
1205   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1206                            Val, DAG.getConstant(0, DL, MVT::i32));
1207   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1208                            Val, DAG.getConstant(1, DL, MVT::i32));
1209 
1210   if (!Subtarget.isLittle())
1211     std::swap(Lo, Hi);
1212 
1213   // i32 store to lower address.
1214   Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlign(),
1215                        Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1216 
1217   // i32 store to higher address.
1218   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1219   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1220                       commonAlignment(Nd.getAlign(), 4),
1221                       Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1222 }
1223 
1224 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op,
1225                                            SelectionDAG &DAG) const {
1226   SDLoc DL(Op);
1227   MVT Src = Op.getOperand(0).getValueType().getSimpleVT();
1228   MVT Dest = Op.getValueType().getSimpleVT();
1229 
1230   // Bitcast i64 to double.
1231   if (Src == MVT::i64 && Dest == MVT::f64) {
1232     SDValue Lo, Hi;
1233     std::tie(Lo, Hi) =
1234         DAG.SplitScalar(Op.getOperand(0), DL, MVT::i32, MVT::i32);
1235     return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1236   }
1237 
1238   // Bitcast double to i64.
1239   if (Src == MVT::f64 && Dest == MVT::i64) {
1240     SDValue Lo =
1241         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1242                     DAG.getConstant(0, DL, MVT::i32));
1243     SDValue Hi =
1244         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1245                     DAG.getConstant(1, DL, MVT::i32));
1246     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1247   }
1248 
1249   // Skip other cases of bitcast and use default lowering.
1250   return SDValue();
1251 }
1252 
1253 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1254                                           bool HasLo, bool HasHi,
1255                                           SelectionDAG &DAG) const {
1256   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1257   assert(!Subtarget.hasMips32r6());
1258 
1259   EVT Ty = Op.getOperand(0).getValueType();
1260   SDLoc DL(Op);
1261   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1262                              Op.getOperand(0), Op.getOperand(1));
1263   SDValue Lo, Hi;
1264 
1265   if (HasLo)
1266     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1267   if (HasHi)
1268     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1269 
1270   if (!HasLo || !HasHi)
1271     return HasLo ? Lo : Hi;
1272 
1273   SDValue Vals[] = { Lo, Hi };
1274   return DAG.getMergeValues(Vals, DL);
1275 }
1276 
1277 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1278   SDValue InLo, InHi;
1279   std::tie(InLo, InHi) = DAG.SplitScalar(In, DL, MVT::i32, MVT::i32);
1280   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1281 }
1282 
1283 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1284   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1285   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1286   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1287 }
1288 
1289 // This function expands mips intrinsic nodes which have 64-bit input operands
1290 // or output values.
1291 //
1292 // out64 = intrinsic-node in64
1293 // =>
1294 // lo = copy (extract-element (in64, 0))
1295 // hi = copy (extract-element (in64, 1))
1296 // mips-specific-node
1297 // v0 = copy lo
1298 // v1 = copy hi
1299 // out64 = merge-values (v0, v1)
1300 //
1301 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1302   SDLoc DL(Op);
1303   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1304   SmallVector<SDValue, 3> Ops;
1305   unsigned OpNo = 0;
1306 
1307   // See if Op has a chain input.
1308   if (HasChainIn)
1309     Ops.push_back(Op->getOperand(OpNo++));
1310 
1311   // The next operand is the intrinsic opcode.
1312   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1313 
1314   // See if the next operand has type i64.
1315   SDValue Opnd = Op->getOperand(++OpNo), In64;
1316 
1317   if (Opnd.getValueType() == MVT::i64)
1318     In64 = initAccumulator(Opnd, DL, DAG);
1319   else
1320     Ops.push_back(Opnd);
1321 
1322   // Push the remaining operands.
1323   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1324     Ops.push_back(Op->getOperand(OpNo));
1325 
1326   // Add In64 to the end of the list.
1327   if (In64.getNode())
1328     Ops.push_back(In64);
1329 
1330   // Scan output.
1331   SmallVector<EVT, 2> ResTys;
1332 
1333   for (EVT Ty : Op->values())
1334     ResTys.push_back((Ty == MVT::i64) ? MVT::Untyped : Ty);
1335 
1336   // Create node.
1337   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1338   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1339 
1340   if (!HasChainIn)
1341     return Out;
1342 
1343   assert(Val->getValueType(1) == MVT::Other);
1344   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1345   return DAG.getMergeValues(Vals, DL);
1346 }
1347 
1348 // Lower an MSA copy intrinsic into the specified SelectionDAG node
1349 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1350   SDLoc DL(Op);
1351   SDValue Vec = Op->getOperand(1);
1352   SDValue Idx = Op->getOperand(2);
1353   EVT ResTy = Op->getValueType(0);
1354   EVT EltTy = Vec->getValueType(0).getVectorElementType();
1355 
1356   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1357                                DAG.getValueType(EltTy));
1358 
1359   return Result;
1360 }
1361 
1362 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1363   EVT ResVecTy = Op->getValueType(0);
1364   EVT ViaVecTy = ResVecTy;
1365   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1366   SDLoc DL(Op);
1367 
1368   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1369   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1370   // lanes.
1371   SDValue LaneA = Op->getOperand(OpNr);
1372   SDValue LaneB;
1373 
1374   if (ResVecTy == MVT::v2i64) {
1375     // In case of the index being passed as an immediate value, set the upper
1376     // lane to 0 so that the splati.d instruction can be matched.
1377     if (isa<ConstantSDNode>(LaneA))
1378       LaneB = DAG.getConstant(0, DL, MVT::i32);
1379     // Having the index passed in a register, set the upper lane to the same
1380     // value as the lower - this results in the BUILD_VECTOR node not being
1381     // expanded through stack. This way we are able to pattern match the set of
1382     // nodes created here to splat.d.
1383     else
1384       LaneB = LaneA;
1385     ViaVecTy = MVT::v4i32;
1386     if(BigEndian)
1387       std::swap(LaneA, LaneB);
1388   } else
1389     LaneB = LaneA;
1390 
1391   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1392                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1393 
1394   SDValue Result = DAG.getBuildVector(
1395       ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1396 
1397   if (ViaVecTy != ResVecTy) {
1398     SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1399     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1400                          DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1401   }
1402 
1403   return Result;
1404 }
1405 
1406 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1407                                 bool IsSigned = false) {
1408   auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1409   return DAG.getConstant(
1410       APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1411             IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
1412       SDLoc(Op), Op->getValueType(0));
1413 }
1414 
1415 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1416                                    bool BigEndian, SelectionDAG &DAG) {
1417   EVT ViaVecTy = VecTy;
1418   SDValue SplatValueA = SplatValue;
1419   SDValue SplatValueB = SplatValue;
1420   SDLoc DL(SplatValue);
1421 
1422   if (VecTy == MVT::v2i64) {
1423     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1424     ViaVecTy = MVT::v4i32;
1425 
1426     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1427     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1428                               DAG.getConstant(32, DL, MVT::i32));
1429     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1430   }
1431 
1432   // We currently hold the parts in little endian order. Swap them if
1433   // necessary.
1434   if (BigEndian)
1435     std::swap(SplatValueA, SplatValueB);
1436 
1437   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1438                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1439                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1440                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1441 
1442   SDValue Result = DAG.getBuildVector(
1443       ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1444 
1445   if (VecTy != ViaVecTy)
1446     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1447 
1448   return Result;
1449 }
1450 
1451 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1452                                         unsigned Opc, SDValue Imm,
1453                                         bool BigEndian) {
1454   EVT VecTy = Op->getValueType(0);
1455   SDValue Exp2Imm;
1456   SDLoc DL(Op);
1457 
1458   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1459   // here for now.
1460   if (VecTy == MVT::v2i64) {
1461     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1462       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1463 
1464       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1465                                            MVT::i32);
1466       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1467 
1468       if (BigEndian)
1469         std::swap(BitImmLoOp, BitImmHiOp);
1470 
1471       Exp2Imm = DAG.getNode(
1472           ISD::BITCAST, DL, MVT::v2i64,
1473           DAG.getBuildVector(MVT::v4i32, DL,
1474                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1475     }
1476   }
1477 
1478   if (!Exp2Imm.getNode()) {
1479     // We couldnt constant fold, do a vector shift instead
1480 
1481     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1482     // only values 0-63 are valid.
1483     if (VecTy == MVT::v2i64)
1484       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1485 
1486     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1487 
1488     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1489                           Exp2Imm);
1490   }
1491 
1492   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1493 }
1494 
1495 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1496   SDLoc DL(Op);
1497   EVT ResTy = Op->getValueType(0);
1498   SDValue Vec = Op->getOperand(2);
1499   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1500   MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1501   SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1502                                        DL, ResEltTy);
1503   SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1504 
1505   return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1506 }
1507 
1508 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1509   EVT ResTy = Op->getValueType(0);
1510   SDLoc DL(Op);
1511   SDValue One = DAG.getConstant(1, DL, ResTy);
1512   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1513 
1514   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1515                      DAG.getNOT(DL, Bit, ResTy));
1516 }
1517 
1518 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1519   SDLoc DL(Op);
1520   EVT ResTy = Op->getValueType(0);
1521   APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1522                  << Op->getConstantOperandAPInt(2);
1523   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1524 
1525   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1526 }
1527 
1528 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1529                                                       SelectionDAG &DAG) const {
1530   SDLoc DL(Op);
1531   unsigned Intrinsic = Op->getConstantOperandVal(0);
1532   switch (Intrinsic) {
1533   default:
1534     return SDValue();
1535   case Intrinsic::mips_shilo:
1536     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1537   case Intrinsic::mips_dpau_h_qbl:
1538     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1539   case Intrinsic::mips_dpau_h_qbr:
1540     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1541   case Intrinsic::mips_dpsu_h_qbl:
1542     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1543   case Intrinsic::mips_dpsu_h_qbr:
1544     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1545   case Intrinsic::mips_dpa_w_ph:
1546     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1547   case Intrinsic::mips_dps_w_ph:
1548     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1549   case Intrinsic::mips_dpax_w_ph:
1550     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1551   case Intrinsic::mips_dpsx_w_ph:
1552     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1553   case Intrinsic::mips_mulsa_w_ph:
1554     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1555   case Intrinsic::mips_mult:
1556     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1557   case Intrinsic::mips_multu:
1558     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1559   case Intrinsic::mips_madd:
1560     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1561   case Intrinsic::mips_maddu:
1562     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1563   case Intrinsic::mips_msub:
1564     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1565   case Intrinsic::mips_msubu:
1566     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1567   case Intrinsic::mips_addv_b:
1568   case Intrinsic::mips_addv_h:
1569   case Intrinsic::mips_addv_w:
1570   case Intrinsic::mips_addv_d:
1571     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1572                        Op->getOperand(2));
1573   case Intrinsic::mips_addvi_b:
1574   case Intrinsic::mips_addvi_h:
1575   case Intrinsic::mips_addvi_w:
1576   case Intrinsic::mips_addvi_d:
1577     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1578                        lowerMSASplatImm(Op, 2, DAG));
1579   case Intrinsic::mips_and_v:
1580     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1581                        Op->getOperand(2));
1582   case Intrinsic::mips_andi_b:
1583     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1584                        lowerMSASplatImm(Op, 2, DAG));
1585   case Intrinsic::mips_bclr_b:
1586   case Intrinsic::mips_bclr_h:
1587   case Intrinsic::mips_bclr_w:
1588   case Intrinsic::mips_bclr_d:
1589     return lowerMSABitClear(Op, DAG);
1590   case Intrinsic::mips_bclri_b:
1591   case Intrinsic::mips_bclri_h:
1592   case Intrinsic::mips_bclri_w:
1593   case Intrinsic::mips_bclri_d:
1594     return lowerMSABitClearImm(Op, DAG);
1595   case Intrinsic::mips_binsli_b:
1596   case Intrinsic::mips_binsli_h:
1597   case Intrinsic::mips_binsli_w:
1598   case Intrinsic::mips_binsli_d: {
1599     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1600     EVT VecTy = Op->getValueType(0);
1601     EVT EltTy = VecTy.getVectorElementType();
1602     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1603       report_fatal_error("Immediate out of range");
1604     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1605                                        Op->getConstantOperandVal(3) + 1);
1606     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1607                        DAG.getConstant(Mask, DL, VecTy, true),
1608                        Op->getOperand(2), Op->getOperand(1));
1609   }
1610   case Intrinsic::mips_binsri_b:
1611   case Intrinsic::mips_binsri_h:
1612   case Intrinsic::mips_binsri_w:
1613   case Intrinsic::mips_binsri_d: {
1614     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1615     EVT VecTy = Op->getValueType(0);
1616     EVT EltTy = VecTy.getVectorElementType();
1617     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1618       report_fatal_error("Immediate out of range");
1619     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1620                                       Op->getConstantOperandVal(3) + 1);
1621     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1622                        DAG.getConstant(Mask, DL, VecTy, true),
1623                        Op->getOperand(2), Op->getOperand(1));
1624   }
1625   case Intrinsic::mips_bmnz_v:
1626     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1627                        Op->getOperand(2), Op->getOperand(1));
1628   case Intrinsic::mips_bmnzi_b:
1629     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1630                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1631                        Op->getOperand(1));
1632   case Intrinsic::mips_bmz_v:
1633     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1634                        Op->getOperand(1), Op->getOperand(2));
1635   case Intrinsic::mips_bmzi_b:
1636     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1637                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1638                        Op->getOperand(2));
1639   case Intrinsic::mips_bneg_b:
1640   case Intrinsic::mips_bneg_h:
1641   case Intrinsic::mips_bneg_w:
1642   case Intrinsic::mips_bneg_d: {
1643     EVT VecTy = Op->getValueType(0);
1644     SDValue One = DAG.getConstant(1, DL, VecTy);
1645 
1646     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1647                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1648                                    truncateVecElts(Op, DAG)));
1649   }
1650   case Intrinsic::mips_bnegi_b:
1651   case Intrinsic::mips_bnegi_h:
1652   case Intrinsic::mips_bnegi_w:
1653   case Intrinsic::mips_bnegi_d:
1654     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1655                                     !Subtarget.isLittle());
1656   case Intrinsic::mips_bnz_b:
1657   case Intrinsic::mips_bnz_h:
1658   case Intrinsic::mips_bnz_w:
1659   case Intrinsic::mips_bnz_d:
1660     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1661                        Op->getOperand(1));
1662   case Intrinsic::mips_bnz_v:
1663     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1664                        Op->getOperand(1));
1665   case Intrinsic::mips_bsel_v:
1666     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1667     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1668                        Op->getOperand(1), Op->getOperand(3),
1669                        Op->getOperand(2));
1670   case Intrinsic::mips_bseli_b:
1671     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1672     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1673                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1674                        Op->getOperand(2));
1675   case Intrinsic::mips_bset_b:
1676   case Intrinsic::mips_bset_h:
1677   case Intrinsic::mips_bset_w:
1678   case Intrinsic::mips_bset_d: {
1679     EVT VecTy = Op->getValueType(0);
1680     SDValue One = DAG.getConstant(1, DL, VecTy);
1681 
1682     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1683                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1684                                    truncateVecElts(Op, DAG)));
1685   }
1686   case Intrinsic::mips_bseti_b:
1687   case Intrinsic::mips_bseti_h:
1688   case Intrinsic::mips_bseti_w:
1689   case Intrinsic::mips_bseti_d:
1690     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1691                                     !Subtarget.isLittle());
1692   case Intrinsic::mips_bz_b:
1693   case Intrinsic::mips_bz_h:
1694   case Intrinsic::mips_bz_w:
1695   case Intrinsic::mips_bz_d:
1696     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1697                        Op->getOperand(1));
1698   case Intrinsic::mips_bz_v:
1699     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1700                        Op->getOperand(1));
1701   case Intrinsic::mips_ceq_b:
1702   case Intrinsic::mips_ceq_h:
1703   case Intrinsic::mips_ceq_w:
1704   case Intrinsic::mips_ceq_d:
1705     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1706                         Op->getOperand(2), ISD::SETEQ);
1707   case Intrinsic::mips_ceqi_b:
1708   case Intrinsic::mips_ceqi_h:
1709   case Intrinsic::mips_ceqi_w:
1710   case Intrinsic::mips_ceqi_d:
1711     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1712                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1713   case Intrinsic::mips_cle_s_b:
1714   case Intrinsic::mips_cle_s_h:
1715   case Intrinsic::mips_cle_s_w:
1716   case Intrinsic::mips_cle_s_d:
1717     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1718                         Op->getOperand(2), ISD::SETLE);
1719   case Intrinsic::mips_clei_s_b:
1720   case Intrinsic::mips_clei_s_h:
1721   case Intrinsic::mips_clei_s_w:
1722   case Intrinsic::mips_clei_s_d:
1723     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1724                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1725   case Intrinsic::mips_cle_u_b:
1726   case Intrinsic::mips_cle_u_h:
1727   case Intrinsic::mips_cle_u_w:
1728   case Intrinsic::mips_cle_u_d:
1729     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1730                         Op->getOperand(2), ISD::SETULE);
1731   case Intrinsic::mips_clei_u_b:
1732   case Intrinsic::mips_clei_u_h:
1733   case Intrinsic::mips_clei_u_w:
1734   case Intrinsic::mips_clei_u_d:
1735     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1736                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1737   case Intrinsic::mips_clt_s_b:
1738   case Intrinsic::mips_clt_s_h:
1739   case Intrinsic::mips_clt_s_w:
1740   case Intrinsic::mips_clt_s_d:
1741     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1742                         Op->getOperand(2), ISD::SETLT);
1743   case Intrinsic::mips_clti_s_b:
1744   case Intrinsic::mips_clti_s_h:
1745   case Intrinsic::mips_clti_s_w:
1746   case Intrinsic::mips_clti_s_d:
1747     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1748                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1749   case Intrinsic::mips_clt_u_b:
1750   case Intrinsic::mips_clt_u_h:
1751   case Intrinsic::mips_clt_u_w:
1752   case Intrinsic::mips_clt_u_d:
1753     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1754                         Op->getOperand(2), ISD::SETULT);
1755   case Intrinsic::mips_clti_u_b:
1756   case Intrinsic::mips_clti_u_h:
1757   case Intrinsic::mips_clti_u_w:
1758   case Intrinsic::mips_clti_u_d:
1759     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1760                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1761   case Intrinsic::mips_copy_s_b:
1762   case Intrinsic::mips_copy_s_h:
1763   case Intrinsic::mips_copy_s_w:
1764     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1765   case Intrinsic::mips_copy_s_d:
1766     if (Subtarget.hasMips64())
1767       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1768       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1769     else {
1770       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1771       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1772       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1773                          Op->getValueType(0), Op->getOperand(1),
1774                          Op->getOperand(2));
1775     }
1776   case Intrinsic::mips_copy_u_b:
1777   case Intrinsic::mips_copy_u_h:
1778   case Intrinsic::mips_copy_u_w:
1779     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1780   case Intrinsic::mips_copy_u_d:
1781     if (Subtarget.hasMips64())
1782       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1783       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1784     else {
1785       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1786       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1787       // Note: When i64 is illegal, this results in copy_s.w instructions
1788       // instead of copy_u.w instructions. This makes no difference to the
1789       // behaviour since i64 is only illegal when the register file is 32-bit.
1790       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1791                          Op->getValueType(0), Op->getOperand(1),
1792                          Op->getOperand(2));
1793     }
1794   case Intrinsic::mips_div_s_b:
1795   case Intrinsic::mips_div_s_h:
1796   case Intrinsic::mips_div_s_w:
1797   case Intrinsic::mips_div_s_d:
1798     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1799                        Op->getOperand(2));
1800   case Intrinsic::mips_div_u_b:
1801   case Intrinsic::mips_div_u_h:
1802   case Intrinsic::mips_div_u_w:
1803   case Intrinsic::mips_div_u_d:
1804     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1805                        Op->getOperand(2));
1806   case Intrinsic::mips_fadd_w:
1807   case Intrinsic::mips_fadd_d:
1808     // TODO: If intrinsics have fast-math-flags, propagate them.
1809     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1810                        Op->getOperand(2));
1811   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1812   case Intrinsic::mips_fceq_w:
1813   case Intrinsic::mips_fceq_d:
1814     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1815                         Op->getOperand(2), ISD::SETOEQ);
1816   case Intrinsic::mips_fcle_w:
1817   case Intrinsic::mips_fcle_d:
1818     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1819                         Op->getOperand(2), ISD::SETOLE);
1820   case Intrinsic::mips_fclt_w:
1821   case Intrinsic::mips_fclt_d:
1822     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1823                         Op->getOperand(2), ISD::SETOLT);
1824   case Intrinsic::mips_fcne_w:
1825   case Intrinsic::mips_fcne_d:
1826     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1827                         Op->getOperand(2), ISD::SETONE);
1828   case Intrinsic::mips_fcor_w:
1829   case Intrinsic::mips_fcor_d:
1830     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1831                         Op->getOperand(2), ISD::SETO);
1832   case Intrinsic::mips_fcueq_w:
1833   case Intrinsic::mips_fcueq_d:
1834     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1835                         Op->getOperand(2), ISD::SETUEQ);
1836   case Intrinsic::mips_fcule_w:
1837   case Intrinsic::mips_fcule_d:
1838     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1839                         Op->getOperand(2), ISD::SETULE);
1840   case Intrinsic::mips_fcult_w:
1841   case Intrinsic::mips_fcult_d:
1842     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1843                         Op->getOperand(2), ISD::SETULT);
1844   case Intrinsic::mips_fcun_w:
1845   case Intrinsic::mips_fcun_d:
1846     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1847                         Op->getOperand(2), ISD::SETUO);
1848   case Intrinsic::mips_fcune_w:
1849   case Intrinsic::mips_fcune_d:
1850     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1851                         Op->getOperand(2), ISD::SETUNE);
1852   case Intrinsic::mips_fdiv_w:
1853   case Intrinsic::mips_fdiv_d:
1854     // TODO: If intrinsics have fast-math-flags, propagate them.
1855     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1856                        Op->getOperand(2));
1857   case Intrinsic::mips_ffint_u_w:
1858   case Intrinsic::mips_ffint_u_d:
1859     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1860                        Op->getOperand(1));
1861   case Intrinsic::mips_ffint_s_w:
1862   case Intrinsic::mips_ffint_s_d:
1863     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1864                        Op->getOperand(1));
1865   case Intrinsic::mips_fill_b:
1866   case Intrinsic::mips_fill_h:
1867   case Intrinsic::mips_fill_w:
1868   case Intrinsic::mips_fill_d: {
1869     EVT ResTy = Op->getValueType(0);
1870     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1871                                  Op->getOperand(1));
1872 
1873     // If ResTy is v2i64 then the type legalizer will break this node down into
1874     // an equivalent v4i32.
1875     return DAG.getBuildVector(ResTy, DL, Ops);
1876   }
1877   case Intrinsic::mips_fexp2_w:
1878   case Intrinsic::mips_fexp2_d: {
1879     // TODO: If intrinsics have fast-math-flags, propagate them.
1880     EVT ResTy = Op->getValueType(0);
1881     return DAG.getNode(
1882         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1883         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1884   }
1885   case Intrinsic::mips_flog2_w:
1886   case Intrinsic::mips_flog2_d:
1887     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1888   case Intrinsic::mips_fmadd_w:
1889   case Intrinsic::mips_fmadd_d:
1890     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1891                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1892   case Intrinsic::mips_fmul_w:
1893   case Intrinsic::mips_fmul_d:
1894     // TODO: If intrinsics have fast-math-flags, propagate them.
1895     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1896                        Op->getOperand(2));
1897   case Intrinsic::mips_fmsub_w:
1898   case Intrinsic::mips_fmsub_d: {
1899     // TODO: If intrinsics have fast-math-flags, propagate them.
1900     return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1901                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1902   }
1903   case Intrinsic::mips_frint_w:
1904   case Intrinsic::mips_frint_d:
1905     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1906   case Intrinsic::mips_fsqrt_w:
1907   case Intrinsic::mips_fsqrt_d:
1908     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1909   case Intrinsic::mips_fsub_w:
1910   case Intrinsic::mips_fsub_d:
1911     // TODO: If intrinsics have fast-math-flags, propagate them.
1912     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1913                        Op->getOperand(2));
1914   case Intrinsic::mips_ftrunc_u_w:
1915   case Intrinsic::mips_ftrunc_u_d:
1916     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1917                        Op->getOperand(1));
1918   case Intrinsic::mips_ftrunc_s_w:
1919   case Intrinsic::mips_ftrunc_s_d:
1920     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1921                        Op->getOperand(1));
1922   case Intrinsic::mips_ilvev_b:
1923   case Intrinsic::mips_ilvev_h:
1924   case Intrinsic::mips_ilvev_w:
1925   case Intrinsic::mips_ilvev_d:
1926     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1927                        Op->getOperand(1), Op->getOperand(2));
1928   case Intrinsic::mips_ilvl_b:
1929   case Intrinsic::mips_ilvl_h:
1930   case Intrinsic::mips_ilvl_w:
1931   case Intrinsic::mips_ilvl_d:
1932     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1933                        Op->getOperand(1), Op->getOperand(2));
1934   case Intrinsic::mips_ilvod_b:
1935   case Intrinsic::mips_ilvod_h:
1936   case Intrinsic::mips_ilvod_w:
1937   case Intrinsic::mips_ilvod_d:
1938     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1939                        Op->getOperand(1), Op->getOperand(2));
1940   case Intrinsic::mips_ilvr_b:
1941   case Intrinsic::mips_ilvr_h:
1942   case Intrinsic::mips_ilvr_w:
1943   case Intrinsic::mips_ilvr_d:
1944     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1945                        Op->getOperand(1), Op->getOperand(2));
1946   case Intrinsic::mips_insert_b:
1947   case Intrinsic::mips_insert_h:
1948   case Intrinsic::mips_insert_w:
1949   case Intrinsic::mips_insert_d:
1950     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1951                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1952   case Intrinsic::mips_insve_b:
1953   case Intrinsic::mips_insve_h:
1954   case Intrinsic::mips_insve_w:
1955   case Intrinsic::mips_insve_d: {
1956     // Report an error for out of range values.
1957     int64_t Max;
1958     switch (Intrinsic) {
1959     case Intrinsic::mips_insve_b: Max = 15; break;
1960     case Intrinsic::mips_insve_h: Max = 7; break;
1961     case Intrinsic::mips_insve_w: Max = 3; break;
1962     case Intrinsic::mips_insve_d: Max = 1; break;
1963     default: llvm_unreachable("Unmatched intrinsic");
1964     }
1965     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
1966     if (Value < 0 || Value > Max)
1967       report_fatal_error("Immediate out of range");
1968     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1969                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1970                        DAG.getConstant(0, DL, MVT::i32));
1971     }
1972   case Intrinsic::mips_ldi_b:
1973   case Intrinsic::mips_ldi_h:
1974   case Intrinsic::mips_ldi_w:
1975   case Intrinsic::mips_ldi_d:
1976     return lowerMSASplatImm(Op, 1, DAG, true);
1977   case Intrinsic::mips_lsa:
1978   case Intrinsic::mips_dlsa: {
1979     EVT ResTy = Op->getValueType(0);
1980     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1981                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1982                                    Op->getOperand(2), Op->getOperand(3)));
1983   }
1984   case Intrinsic::mips_maddv_b:
1985   case Intrinsic::mips_maddv_h:
1986   case Intrinsic::mips_maddv_w:
1987   case Intrinsic::mips_maddv_d: {
1988     EVT ResTy = Op->getValueType(0);
1989     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1990                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1991                                    Op->getOperand(2), Op->getOperand(3)));
1992   }
1993   case Intrinsic::mips_max_s_b:
1994   case Intrinsic::mips_max_s_h:
1995   case Intrinsic::mips_max_s_w:
1996   case Intrinsic::mips_max_s_d:
1997     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
1998                        Op->getOperand(1), Op->getOperand(2));
1999   case Intrinsic::mips_max_u_b:
2000   case Intrinsic::mips_max_u_h:
2001   case Intrinsic::mips_max_u_w:
2002   case Intrinsic::mips_max_u_d:
2003     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2004                        Op->getOperand(1), Op->getOperand(2));
2005   case Intrinsic::mips_maxi_s_b:
2006   case Intrinsic::mips_maxi_s_h:
2007   case Intrinsic::mips_maxi_s_w:
2008   case Intrinsic::mips_maxi_s_d:
2009     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2010                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2011   case Intrinsic::mips_maxi_u_b:
2012   case Intrinsic::mips_maxi_u_h:
2013   case Intrinsic::mips_maxi_u_w:
2014   case Intrinsic::mips_maxi_u_d:
2015     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2016                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2017   case Intrinsic::mips_min_s_b:
2018   case Intrinsic::mips_min_s_h:
2019   case Intrinsic::mips_min_s_w:
2020   case Intrinsic::mips_min_s_d:
2021     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2022                        Op->getOperand(1), Op->getOperand(2));
2023   case Intrinsic::mips_min_u_b:
2024   case Intrinsic::mips_min_u_h:
2025   case Intrinsic::mips_min_u_w:
2026   case Intrinsic::mips_min_u_d:
2027     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2028                        Op->getOperand(1), Op->getOperand(2));
2029   case Intrinsic::mips_mini_s_b:
2030   case Intrinsic::mips_mini_s_h:
2031   case Intrinsic::mips_mini_s_w:
2032   case Intrinsic::mips_mini_s_d:
2033     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2034                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2035   case Intrinsic::mips_mini_u_b:
2036   case Intrinsic::mips_mini_u_h:
2037   case Intrinsic::mips_mini_u_w:
2038   case Intrinsic::mips_mini_u_d:
2039     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2040                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2041   case Intrinsic::mips_mod_s_b:
2042   case Intrinsic::mips_mod_s_h:
2043   case Intrinsic::mips_mod_s_w:
2044   case Intrinsic::mips_mod_s_d:
2045     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2046                        Op->getOperand(2));
2047   case Intrinsic::mips_mod_u_b:
2048   case Intrinsic::mips_mod_u_h:
2049   case Intrinsic::mips_mod_u_w:
2050   case Intrinsic::mips_mod_u_d:
2051     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2052                        Op->getOperand(2));
2053   case Intrinsic::mips_mulv_b:
2054   case Intrinsic::mips_mulv_h:
2055   case Intrinsic::mips_mulv_w:
2056   case Intrinsic::mips_mulv_d:
2057     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2058                        Op->getOperand(2));
2059   case Intrinsic::mips_msubv_b:
2060   case Intrinsic::mips_msubv_h:
2061   case Intrinsic::mips_msubv_w:
2062   case Intrinsic::mips_msubv_d: {
2063     EVT ResTy = Op->getValueType(0);
2064     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2065                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2066                                    Op->getOperand(2), Op->getOperand(3)));
2067   }
2068   case Intrinsic::mips_nlzc_b:
2069   case Intrinsic::mips_nlzc_h:
2070   case Intrinsic::mips_nlzc_w:
2071   case Intrinsic::mips_nlzc_d:
2072     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2073   case Intrinsic::mips_nor_v: {
2074     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2075                               Op->getOperand(1), Op->getOperand(2));
2076     return DAG.getNOT(DL, Res, Res->getValueType(0));
2077   }
2078   case Intrinsic::mips_nori_b: {
2079     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2080                                Op->getOperand(1),
2081                                lowerMSASplatImm(Op, 2, DAG));
2082     return DAG.getNOT(DL, Res, Res->getValueType(0));
2083   }
2084   case Intrinsic::mips_or_v:
2085     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2086                        Op->getOperand(2));
2087   case Intrinsic::mips_ori_b:
2088     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2089                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2090   case Intrinsic::mips_pckev_b:
2091   case Intrinsic::mips_pckev_h:
2092   case Intrinsic::mips_pckev_w:
2093   case Intrinsic::mips_pckev_d:
2094     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2095                        Op->getOperand(1), Op->getOperand(2));
2096   case Intrinsic::mips_pckod_b:
2097   case Intrinsic::mips_pckod_h:
2098   case Intrinsic::mips_pckod_w:
2099   case Intrinsic::mips_pckod_d:
2100     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2101                        Op->getOperand(1), Op->getOperand(2));
2102   case Intrinsic::mips_pcnt_b:
2103   case Intrinsic::mips_pcnt_h:
2104   case Intrinsic::mips_pcnt_w:
2105   case Intrinsic::mips_pcnt_d:
2106     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2107   case Intrinsic::mips_sat_s_b:
2108   case Intrinsic::mips_sat_s_h:
2109   case Intrinsic::mips_sat_s_w:
2110   case Intrinsic::mips_sat_s_d:
2111   case Intrinsic::mips_sat_u_b:
2112   case Intrinsic::mips_sat_u_h:
2113   case Intrinsic::mips_sat_u_w:
2114   case Intrinsic::mips_sat_u_d: {
2115     // Report an error for out of range values.
2116     int64_t Max;
2117     switch (Intrinsic) {
2118     case Intrinsic::mips_sat_s_b:
2119     case Intrinsic::mips_sat_u_b: Max = 7;  break;
2120     case Intrinsic::mips_sat_s_h:
2121     case Intrinsic::mips_sat_u_h: Max = 15; break;
2122     case Intrinsic::mips_sat_s_w:
2123     case Intrinsic::mips_sat_u_w: Max = 31; break;
2124     case Intrinsic::mips_sat_s_d:
2125     case Intrinsic::mips_sat_u_d: Max = 63; break;
2126     default: llvm_unreachable("Unmatched intrinsic");
2127     }
2128     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2129     if (Value < 0 || Value > Max)
2130       report_fatal_error("Immediate out of range");
2131     return SDValue();
2132   }
2133   case Intrinsic::mips_shf_b:
2134   case Intrinsic::mips_shf_h:
2135   case Intrinsic::mips_shf_w: {
2136     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2137     if (Value < 0 || Value > 255)
2138       report_fatal_error("Immediate out of range");
2139     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2140                        Op->getOperand(2), Op->getOperand(1));
2141   }
2142   case Intrinsic::mips_sldi_b:
2143   case Intrinsic::mips_sldi_h:
2144   case Intrinsic::mips_sldi_w:
2145   case Intrinsic::mips_sldi_d: {
2146     // Report an error for out of range values.
2147     int64_t Max;
2148     switch (Intrinsic) {
2149     case Intrinsic::mips_sldi_b: Max = 15; break;
2150     case Intrinsic::mips_sldi_h: Max = 7; break;
2151     case Intrinsic::mips_sldi_w: Max = 3; break;
2152     case Intrinsic::mips_sldi_d: Max = 1; break;
2153     default: llvm_unreachable("Unmatched intrinsic");
2154     }
2155     int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2156     if (Value < 0 || Value > Max)
2157       report_fatal_error("Immediate out of range");
2158     return SDValue();
2159   }
2160   case Intrinsic::mips_sll_b:
2161   case Intrinsic::mips_sll_h:
2162   case Intrinsic::mips_sll_w:
2163   case Intrinsic::mips_sll_d:
2164     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2165                        truncateVecElts(Op, DAG));
2166   case Intrinsic::mips_slli_b:
2167   case Intrinsic::mips_slli_h:
2168   case Intrinsic::mips_slli_w:
2169   case Intrinsic::mips_slli_d:
2170     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2171                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2172   case Intrinsic::mips_splat_b:
2173   case Intrinsic::mips_splat_h:
2174   case Intrinsic::mips_splat_w:
2175   case Intrinsic::mips_splat_d:
2176     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2177     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2178     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2179     // Instead we lower to MipsISD::VSHF and match from there.
2180     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2181                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2182                        Op->getOperand(1));
2183   case Intrinsic::mips_splati_b:
2184   case Intrinsic::mips_splati_h:
2185   case Intrinsic::mips_splati_w:
2186   case Intrinsic::mips_splati_d:
2187     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2188                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2189                        Op->getOperand(1));
2190   case Intrinsic::mips_sra_b:
2191   case Intrinsic::mips_sra_h:
2192   case Intrinsic::mips_sra_w:
2193   case Intrinsic::mips_sra_d:
2194     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2195                        truncateVecElts(Op, DAG));
2196   case Intrinsic::mips_srai_b:
2197   case Intrinsic::mips_srai_h:
2198   case Intrinsic::mips_srai_w:
2199   case Intrinsic::mips_srai_d:
2200     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2201                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2202   case Intrinsic::mips_srari_b:
2203   case Intrinsic::mips_srari_h:
2204   case Intrinsic::mips_srari_w:
2205   case Intrinsic::mips_srari_d: {
2206     // Report an error for out of range values.
2207     int64_t Max;
2208     switch (Intrinsic) {
2209     case Intrinsic::mips_srari_b: Max = 7; break;
2210     case Intrinsic::mips_srari_h: Max = 15; break;
2211     case Intrinsic::mips_srari_w: Max = 31; break;
2212     case Intrinsic::mips_srari_d: Max = 63; break;
2213     default: llvm_unreachable("Unmatched intrinsic");
2214     }
2215     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2216     if (Value < 0 || Value > Max)
2217       report_fatal_error("Immediate out of range");
2218     return SDValue();
2219   }
2220   case Intrinsic::mips_srl_b:
2221   case Intrinsic::mips_srl_h:
2222   case Intrinsic::mips_srl_w:
2223   case Intrinsic::mips_srl_d:
2224     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2225                        truncateVecElts(Op, DAG));
2226   case Intrinsic::mips_srli_b:
2227   case Intrinsic::mips_srli_h:
2228   case Intrinsic::mips_srli_w:
2229   case Intrinsic::mips_srli_d:
2230     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2231                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2232   case Intrinsic::mips_srlri_b:
2233   case Intrinsic::mips_srlri_h:
2234   case Intrinsic::mips_srlri_w:
2235   case Intrinsic::mips_srlri_d: {
2236     // Report an error for out of range values.
2237     int64_t Max;
2238     switch (Intrinsic) {
2239     case Intrinsic::mips_srlri_b: Max = 7; break;
2240     case Intrinsic::mips_srlri_h: Max = 15; break;
2241     case Intrinsic::mips_srlri_w: Max = 31; break;
2242     case Intrinsic::mips_srlri_d: Max = 63; break;
2243     default: llvm_unreachable("Unmatched intrinsic");
2244     }
2245     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2246     if (Value < 0 || Value > Max)
2247       report_fatal_error("Immediate out of range");
2248     return SDValue();
2249   }
2250   case Intrinsic::mips_subv_b:
2251   case Intrinsic::mips_subv_h:
2252   case Intrinsic::mips_subv_w:
2253   case Intrinsic::mips_subv_d:
2254     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2255                        Op->getOperand(2));
2256   case Intrinsic::mips_subvi_b:
2257   case Intrinsic::mips_subvi_h:
2258   case Intrinsic::mips_subvi_w:
2259   case Intrinsic::mips_subvi_d:
2260     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2261                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2262   case Intrinsic::mips_vshf_b:
2263   case Intrinsic::mips_vshf_h:
2264   case Intrinsic::mips_vshf_w:
2265   case Intrinsic::mips_vshf_d:
2266     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2267                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2268   case Intrinsic::mips_xor_v:
2269     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2270                        Op->getOperand(2));
2271   case Intrinsic::mips_xori_b:
2272     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2273                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2274   case Intrinsic::thread_pointer: {
2275     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2276     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2277   }
2278   }
2279 }
2280 
2281 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2282                                 const MipsSubtarget &Subtarget) {
2283   SDLoc DL(Op);
2284   SDValue ChainIn = Op->getOperand(0);
2285   SDValue Address = Op->getOperand(2);
2286   SDValue Offset  = Op->getOperand(3);
2287   EVT ResTy = Op->getValueType(0);
2288   EVT PtrTy = Address->getValueType(0);
2289 
2290   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2291   // however takes an i32 signed constant offset. The actual type of the
2292   // intrinsic is a scaled signed i10.
2293   if (Subtarget.isABI_N64())
2294     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2295 
2296   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2297   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2298                      Align(16));
2299 }
2300 
2301 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2302                                                      SelectionDAG &DAG) const {
2303   unsigned Intr = Op->getConstantOperandVal(1);
2304   switch (Intr) {
2305   default:
2306     return SDValue();
2307   case Intrinsic::mips_extp:
2308     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2309   case Intrinsic::mips_extpdp:
2310     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2311   case Intrinsic::mips_extr_w:
2312     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2313   case Intrinsic::mips_extr_r_w:
2314     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2315   case Intrinsic::mips_extr_rs_w:
2316     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2317   case Intrinsic::mips_extr_s_h:
2318     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2319   case Intrinsic::mips_mthlip:
2320     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2321   case Intrinsic::mips_mulsaq_s_w_ph:
2322     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2323   case Intrinsic::mips_maq_s_w_phl:
2324     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2325   case Intrinsic::mips_maq_s_w_phr:
2326     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2327   case Intrinsic::mips_maq_sa_w_phl:
2328     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2329   case Intrinsic::mips_maq_sa_w_phr:
2330     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2331   case Intrinsic::mips_dpaq_s_w_ph:
2332     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2333   case Intrinsic::mips_dpsq_s_w_ph:
2334     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2335   case Intrinsic::mips_dpaq_sa_l_w:
2336     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2337   case Intrinsic::mips_dpsq_sa_l_w:
2338     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2339   case Intrinsic::mips_dpaqx_s_w_ph:
2340     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2341   case Intrinsic::mips_dpaqx_sa_w_ph:
2342     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2343   case Intrinsic::mips_dpsqx_s_w_ph:
2344     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2345   case Intrinsic::mips_dpsqx_sa_w_ph:
2346     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2347   case Intrinsic::mips_ld_b:
2348   case Intrinsic::mips_ld_h:
2349   case Intrinsic::mips_ld_w:
2350   case Intrinsic::mips_ld_d:
2351    return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2352   }
2353 }
2354 
2355 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2356                                  const MipsSubtarget &Subtarget) {
2357   SDLoc DL(Op);
2358   SDValue ChainIn = Op->getOperand(0);
2359   SDValue Value   = Op->getOperand(2);
2360   SDValue Address = Op->getOperand(3);
2361   SDValue Offset  = Op->getOperand(4);
2362   EVT PtrTy = Address->getValueType(0);
2363 
2364   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2365   // however takes an i32 signed constant offset. The actual type of the
2366   // intrinsic is a scaled signed i10.
2367   if (Subtarget.isABI_N64())
2368     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2369 
2370   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2371 
2372   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2373                       Align(16));
2374 }
2375 
2376 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2377                                                   SelectionDAG &DAG) const {
2378   unsigned Intr = Op->getConstantOperandVal(1);
2379   switch (Intr) {
2380   default:
2381     return SDValue();
2382   case Intrinsic::mips_st_b:
2383   case Intrinsic::mips_st_h:
2384   case Intrinsic::mips_st_w:
2385   case Intrinsic::mips_st_d:
2386     return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2387   }
2388 }
2389 
2390 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2391 //
2392 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2393 // choose to sign-extend but we could have equally chosen zero-extend. The
2394 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2395 // result into this node later (possibly changing it to a zero-extend in the
2396 // process).
2397 SDValue MipsSETargetLowering::
2398 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2399   SDLoc DL(Op);
2400   EVT ResTy = Op->getValueType(0);
2401   SDValue Op0 = Op->getOperand(0);
2402   EVT VecTy = Op0->getValueType(0);
2403 
2404   if (!VecTy.is128BitVector())
2405     return SDValue();
2406 
2407   if (ResTy.isInteger()) {
2408     SDValue Op1 = Op->getOperand(1);
2409     EVT EltTy = VecTy.getVectorElementType();
2410     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2411                        DAG.getValueType(EltTy));
2412   }
2413 
2414   return Op;
2415 }
2416 
2417 static bool isConstantOrUndef(const SDValue Op) {
2418   if (Op->isUndef())
2419     return true;
2420   if (isa<ConstantSDNode>(Op))
2421     return true;
2422   if (isa<ConstantFPSDNode>(Op))
2423     return true;
2424   return false;
2425 }
2426 
2427 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2428   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2429     if (isConstantOrUndef(Op->getOperand(i)))
2430       return true;
2431   return false;
2432 }
2433 
2434 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2435 // backend.
2436 //
2437 // Lowers according to the following rules:
2438 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2439 //   2 less than or equal to 64 and the value fits into a signed 10-bit
2440 //   immediate
2441 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2442 //   is a power of 2 less than or equal to 64 and the value does not fit into a
2443 //   signed 10-bit immediate
2444 // - Non-constant splats are legal as-is.
2445 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2446 // - All others are illegal and must be expanded.
2447 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2448                                                 SelectionDAG &DAG) const {
2449   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2450   EVT ResTy = Op->getValueType(0);
2451   SDLoc DL(Op);
2452   APInt SplatValue, SplatUndef;
2453   unsigned SplatBitSize;
2454   bool HasAnyUndefs;
2455 
2456   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2457     return SDValue();
2458 
2459   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2460                             HasAnyUndefs, 8,
2461                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
2462     // We can only cope with 8, 16, 32, or 64-bit elements
2463     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2464         SplatBitSize != 64)
2465       return SDValue();
2466 
2467     // If the value isn't an integer type we will have to bitcast
2468     // from an integer type first. Also, if there are any undefs, we must
2469     // lower them to defined values first.
2470     if (ResTy.isInteger() && !HasAnyUndefs)
2471       return Op;
2472 
2473     EVT ViaVecTy;
2474 
2475     switch (SplatBitSize) {
2476     default:
2477       return SDValue();
2478     case 8:
2479       ViaVecTy = MVT::v16i8;
2480       break;
2481     case 16:
2482       ViaVecTy = MVT::v8i16;
2483       break;
2484     case 32:
2485       ViaVecTy = MVT::v4i32;
2486       break;
2487     case 64:
2488       // There's no fill.d to fall back on for 64-bit values
2489       return SDValue();
2490     }
2491 
2492     // SelectionDAG::getConstant will promote SplatValue appropriately.
2493     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2494 
2495     // Bitcast to the type we originally wanted
2496     if (ViaVecTy != ResTy)
2497       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2498 
2499     return Result;
2500   } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false))
2501     return Op;
2502   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2503     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2504     // The resulting code is the same length as the expansion, but it doesn't
2505     // use memory operations
2506     EVT ResTy = Node->getValueType(0);
2507 
2508     assert(ResTy.isVector());
2509 
2510     unsigned NumElts = ResTy.getVectorNumElements();
2511     SDValue Vector = DAG.getUNDEF(ResTy);
2512     for (unsigned i = 0; i < NumElts; ++i) {
2513       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2514                            Node->getOperand(i),
2515                            DAG.getConstant(i, DL, MVT::i32));
2516     }
2517     return Vector;
2518   }
2519 
2520   return SDValue();
2521 }
2522 
2523 // Lower VECTOR_SHUFFLE into SHF (if possible).
2524 //
2525 // SHF splits the vector into blocks of four elements, then shuffles these
2526 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2527 //
2528 // It is therefore possible to lower into SHF when the mask takes the form:
2529 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2530 // When undef's appear they are treated as if they were whatever value is
2531 // necessary in order to fit the above forms.
2532 //
2533 // For example:
2534 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2535 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2536 //                                 i32 7, i32 6, i32 5, i32 4>
2537 // is lowered to:
2538 //   (SHF_H $w0, $w1, 27)
2539 // where the 27 comes from:
2540 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
2541 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2542                                        SmallVector<int, 16> Indices,
2543                                        SelectionDAG &DAG) {
2544   int SHFIndices[4] = { -1, -1, -1, -1 };
2545 
2546   if (Indices.size() < 4)
2547     return SDValue();
2548 
2549   for (unsigned i = 0; i < 4; ++i) {
2550     for (unsigned j = i; j < Indices.size(); j += 4) {
2551       int Idx = Indices[j];
2552 
2553       // Convert from vector index to 4-element subvector index
2554       // If an index refers to an element outside of the subvector then give up
2555       if (Idx != -1) {
2556         Idx -= 4 * (j / 4);
2557         if (Idx < 0 || Idx >= 4)
2558           return SDValue();
2559       }
2560 
2561       // If the mask has an undef, replace it with the current index.
2562       // Note that it might still be undef if the current index is also undef
2563       if (SHFIndices[i] == -1)
2564         SHFIndices[i] = Idx;
2565 
2566       // Check that non-undef values are the same as in the mask. If they
2567       // aren't then give up
2568       if (!(Idx == -1 || Idx == SHFIndices[i]))
2569         return SDValue();
2570     }
2571   }
2572 
2573   // Calculate the immediate. Replace any remaining undefs with zero
2574   APInt Imm(32, 0);
2575   for (int i = 3; i >= 0; --i) {
2576     int Idx = SHFIndices[i];
2577 
2578     if (Idx == -1)
2579       Idx = 0;
2580 
2581     Imm <<= 2;
2582     Imm |= Idx & 0x3;
2583   }
2584 
2585   SDLoc DL(Op);
2586   return DAG.getNode(MipsISD::SHF, DL, ResTy,
2587                      DAG.getTargetConstant(Imm, DL, MVT::i32),
2588                      Op->getOperand(0));
2589 }
2590 
2591 /// Determine whether a range fits a regular pattern of values.
2592 /// This function accounts for the possibility of jumping over the End iterator.
2593 template <typename ValType>
2594 static bool
2595 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2596                    unsigned CheckStride,
2597                    typename SmallVectorImpl<ValType>::const_iterator End,
2598                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2599   auto &I = Begin;
2600 
2601   while (I != End) {
2602     if (*I != -1 && *I != ExpectedIndex)
2603       return false;
2604     ExpectedIndex += ExpectedIndexStride;
2605 
2606     // Incrementing past End is undefined behaviour so we must increment one
2607     // step at a time and check for End at each step.
2608     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2609       ; // Empty loop body.
2610   }
2611   return true;
2612 }
2613 
2614 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2615 //
2616 // It is a SPLATI when the mask is:
2617 //   <x, x, x, ...>
2618 // where x is any valid index.
2619 //
2620 // When undef's appear in the mask they are treated as if they were whatever
2621 // value is necessary in order to fit the above form.
2622 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2623                                     SmallVector<int, 16> Indices,
2624                                     SelectionDAG &DAG) {
2625   assert((Indices.size() % 2) == 0);
2626 
2627   int SplatIndex = -1;
2628   for (const auto &V : Indices) {
2629     if (V != -1) {
2630       SplatIndex = V;
2631       break;
2632     }
2633   }
2634 
2635   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2636                                  0);
2637 }
2638 
2639 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2640 //
2641 // ILVEV interleaves the even elements from each vector.
2642 //
2643 // It is possible to lower into ILVEV when the mask consists of two of the
2644 // following forms interleaved:
2645 //   <0, 2, 4, ...>
2646 //   <n, n+2, n+4, ...>
2647 // where n is the number of elements in the vector.
2648 // For example:
2649 //   <0, 0, 2, 2, 4, 4, ...>
2650 //   <0, n, 2, n+2, 4, n+4, ...>
2651 //
2652 // When undef's appear in the mask they are treated as if they were whatever
2653 // value is necessary in order to fit the above forms.
2654 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2655                                          SmallVector<int, 16> Indices,
2656                                          SelectionDAG &DAG) {
2657   assert((Indices.size() % 2) == 0);
2658 
2659   SDValue Wt;
2660   SDValue Ws;
2661   const auto &Begin = Indices.begin();
2662   const auto &End = Indices.end();
2663 
2664   // Check even elements are taken from the even elements of one half or the
2665   // other and pick an operand accordingly.
2666   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2667     Wt = Op->getOperand(0);
2668   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2669     Wt = Op->getOperand(1);
2670   else
2671     return SDValue();
2672 
2673   // Check odd elements are taken from the even elements of one half or the
2674   // other and pick an operand accordingly.
2675   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2676     Ws = Op->getOperand(0);
2677   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2678     Ws = Op->getOperand(1);
2679   else
2680     return SDValue();
2681 
2682   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2683 }
2684 
2685 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2686 //
2687 // ILVOD interleaves the odd elements from each vector.
2688 //
2689 // It is possible to lower into ILVOD when the mask consists of two of the
2690 // following forms interleaved:
2691 //   <1, 3, 5, ...>
2692 //   <n+1, n+3, n+5, ...>
2693 // where n is the number of elements in the vector.
2694 // For example:
2695 //   <1, 1, 3, 3, 5, 5, ...>
2696 //   <1, n+1, 3, n+3, 5, n+5, ...>
2697 //
2698 // When undef's appear in the mask they are treated as if they were whatever
2699 // value is necessary in order to fit the above forms.
2700 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2701                                          SmallVector<int, 16> Indices,
2702                                          SelectionDAG &DAG) {
2703   assert((Indices.size() % 2) == 0);
2704 
2705   SDValue Wt;
2706   SDValue Ws;
2707   const auto &Begin = Indices.begin();
2708   const auto &End = Indices.end();
2709 
2710   // Check even elements are taken from the odd elements of one half or the
2711   // other and pick an operand accordingly.
2712   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2713     Wt = Op->getOperand(0);
2714   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2715     Wt = Op->getOperand(1);
2716   else
2717     return SDValue();
2718 
2719   // Check odd elements are taken from the odd elements of one half or the
2720   // other and pick an operand accordingly.
2721   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2722     Ws = Op->getOperand(0);
2723   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2724     Ws = Op->getOperand(1);
2725   else
2726     return SDValue();
2727 
2728   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2729 }
2730 
2731 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2732 //
2733 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2734 // each vector.
2735 //
2736 // It is possible to lower into ILVR when the mask consists of two of the
2737 // following forms interleaved:
2738 //   <0, 1, 2, ...>
2739 //   <n, n+1, n+2, ...>
2740 // where n is the number of elements in the vector.
2741 // For example:
2742 //   <0, 0, 1, 1, 2, 2, ...>
2743 //   <0, n, 1, n+1, 2, n+2, ...>
2744 //
2745 // When undef's appear in the mask they are treated as if they were whatever
2746 // value is necessary in order to fit the above forms.
2747 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2748                                         SmallVector<int, 16> Indices,
2749                                         SelectionDAG &DAG) {
2750   assert((Indices.size() % 2) == 0);
2751 
2752   SDValue Wt;
2753   SDValue Ws;
2754   const auto &Begin = Indices.begin();
2755   const auto &End = Indices.end();
2756 
2757   // Check even elements are taken from the right (lowest-indexed) elements of
2758   // one half or the other and pick an operand accordingly.
2759   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2760     Wt = Op->getOperand(0);
2761   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2762     Wt = Op->getOperand(1);
2763   else
2764     return SDValue();
2765 
2766   // Check odd elements are taken from the right (lowest-indexed) elements of
2767   // one half or the other and pick an operand accordingly.
2768   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2769     Ws = Op->getOperand(0);
2770   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2771     Ws = Op->getOperand(1);
2772   else
2773     return SDValue();
2774 
2775   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2776 }
2777 
2778 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2779 //
2780 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2781 // of each vector.
2782 //
2783 // It is possible to lower into ILVL when the mask consists of two of the
2784 // following forms interleaved:
2785 //   <x, x+1, x+2, ...>
2786 //   <n+x, n+x+1, n+x+2, ...>
2787 // where n is the number of elements in the vector and x is half n.
2788 // For example:
2789 //   <x, x, x+1, x+1, x+2, x+2, ...>
2790 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2791 //
2792 // When undef's appear in the mask they are treated as if they were whatever
2793 // value is necessary in order to fit the above forms.
2794 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2795                                         SmallVector<int, 16> Indices,
2796                                         SelectionDAG &DAG) {
2797   assert((Indices.size() % 2) == 0);
2798 
2799   unsigned HalfSize = Indices.size() / 2;
2800   SDValue Wt;
2801   SDValue Ws;
2802   const auto &Begin = Indices.begin();
2803   const auto &End = Indices.end();
2804 
2805   // Check even elements are taken from the left (highest-indexed) elements of
2806   // one half or the other and pick an operand accordingly.
2807   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2808     Wt = Op->getOperand(0);
2809   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2810     Wt = Op->getOperand(1);
2811   else
2812     return SDValue();
2813 
2814   // Check odd elements are taken from the left (highest-indexed) elements of
2815   // one half or the other and pick an operand accordingly.
2816   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2817     Ws = Op->getOperand(0);
2818   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2819                                    1))
2820     Ws = Op->getOperand(1);
2821   else
2822     return SDValue();
2823 
2824   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2825 }
2826 
2827 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2828 //
2829 // PCKEV copies the even elements of each vector into the result vector.
2830 //
2831 // It is possible to lower into PCKEV when the mask consists of two of the
2832 // following forms concatenated:
2833 //   <0, 2, 4, ...>
2834 //   <n, n+2, n+4, ...>
2835 // where n is the number of elements in the vector.
2836 // For example:
2837 //   <0, 2, 4, ..., 0, 2, 4, ...>
2838 //   <0, 2, 4, ..., n, n+2, n+4, ...>
2839 //
2840 // When undef's appear in the mask they are treated as if they were whatever
2841 // value is necessary in order to fit the above forms.
2842 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2843                                          SmallVector<int, 16> Indices,
2844                                          SelectionDAG &DAG) {
2845   assert((Indices.size() % 2) == 0);
2846 
2847   SDValue Wt;
2848   SDValue Ws;
2849   const auto &Begin = Indices.begin();
2850   const auto &Mid = Indices.begin() + Indices.size() / 2;
2851   const auto &End = Indices.end();
2852 
2853   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2854     Wt = Op->getOperand(0);
2855   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2856     Wt = Op->getOperand(1);
2857   else
2858     return SDValue();
2859 
2860   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2861     Ws = Op->getOperand(0);
2862   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2863     Ws = Op->getOperand(1);
2864   else
2865     return SDValue();
2866 
2867   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2868 }
2869 
2870 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2871 //
2872 // PCKOD copies the odd elements of each vector into the result vector.
2873 //
2874 // It is possible to lower into PCKOD when the mask consists of two of the
2875 // following forms concatenated:
2876 //   <1, 3, 5, ...>
2877 //   <n+1, n+3, n+5, ...>
2878 // where n is the number of elements in the vector.
2879 // For example:
2880 //   <1, 3, 5, ..., 1, 3, 5, ...>
2881 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2882 //
2883 // When undef's appear in the mask they are treated as if they were whatever
2884 // value is necessary in order to fit the above forms.
2885 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2886                                          SmallVector<int, 16> Indices,
2887                                          SelectionDAG &DAG) {
2888   assert((Indices.size() % 2) == 0);
2889 
2890   SDValue Wt;
2891   SDValue Ws;
2892   const auto &Begin = Indices.begin();
2893   const auto &Mid = Indices.begin() + Indices.size() / 2;
2894   const auto &End = Indices.end();
2895 
2896   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2897     Wt = Op->getOperand(0);
2898   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2899     Wt = Op->getOperand(1);
2900   else
2901     return SDValue();
2902 
2903   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2904     Ws = Op->getOperand(0);
2905   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2906     Ws = Op->getOperand(1);
2907   else
2908     return SDValue();
2909 
2910   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2911 }
2912 
2913 // Lower VECTOR_SHUFFLE into VSHF.
2914 //
2915 // This mostly consists of converting the shuffle indices in Indices into a
2916 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2917 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2918 // if the type is v8i16 and all the indices are less than 8 then the second
2919 // operand is unused and can be replaced with anything. We choose to replace it
2920 // with the used operand since this reduces the number of instructions overall.
2921 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2922                                         const SmallVector<int, 16> &Indices,
2923                                         SelectionDAG &DAG) {
2924   SmallVector<SDValue, 16> Ops;
2925   SDValue Op0;
2926   SDValue Op1;
2927   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2928   EVT MaskEltTy = MaskVecTy.getVectorElementType();
2929   bool Using1stVec = false;
2930   bool Using2ndVec = false;
2931   SDLoc DL(Op);
2932   int ResTyNumElts = ResTy.getVectorNumElements();
2933 
2934   for (int i = 0; i < ResTyNumElts; ++i) {
2935     // Idx == -1 means UNDEF
2936     int Idx = Indices[i];
2937 
2938     if (0 <= Idx && Idx < ResTyNumElts)
2939       Using1stVec = true;
2940     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2941       Using2ndVec = true;
2942   }
2943 
2944   for (int Idx : Indices)
2945     Ops.push_back(DAG.getTargetConstant(Idx, DL, MaskEltTy));
2946 
2947   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2948 
2949   if (Using1stVec && Using2ndVec) {
2950     Op0 = Op->getOperand(0);
2951     Op1 = Op->getOperand(1);
2952   } else if (Using1stVec)
2953     Op0 = Op1 = Op->getOperand(0);
2954   else if (Using2ndVec)
2955     Op0 = Op1 = Op->getOperand(1);
2956   else
2957     llvm_unreachable("shuffle vector mask references neither vector operand?");
2958 
2959   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2960   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2961   // VSHF concatenates the vectors in a bitwise fashion:
2962   // <0b00, 0b01> + <0b10, 0b11> ->
2963   // 0b0100       + 0b1110       -> 0b01001110
2964   //                                <0b10, 0b11, 0b00, 0b01>
2965   // We must therefore swap the operands to get the correct result.
2966   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2967 }
2968 
2969 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2970 // indices in the shuffle.
2971 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2972                                                   SelectionDAG &DAG) const {
2973   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2974   EVT ResTy = Op->getValueType(0);
2975 
2976   if (!ResTy.is128BitVector())
2977     return SDValue();
2978 
2979   int ResTyNumElts = ResTy.getVectorNumElements();
2980   SmallVector<int, 16> Indices;
2981 
2982   for (int i = 0; i < ResTyNumElts; ++i)
2983     Indices.push_back(Node->getMaskElt(i));
2984 
2985   // splati.[bhwd] is preferable to the others but is matched from
2986   // MipsISD::VSHF.
2987   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2988     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2989   SDValue Result;
2990   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
2991     return Result;
2992   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
2993     return Result;
2994   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
2995     return Result;
2996   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
2997     return Result;
2998   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
2999     return Result;
3000   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
3001     return Result;
3002   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
3003     return Result;
3004   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3005 }
3006 
3007 MachineBasicBlock *
3008 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3009                                    MachineBasicBlock *BB) const {
3010   // $bb:
3011   //  bposge32_pseudo $vr0
3012   //  =>
3013   // $bb:
3014   //  bposge32 $tbb
3015   // $fbb:
3016   //  li $vr2, 0
3017   //  b $sink
3018   // $tbb:
3019   //  li $vr1, 1
3020   // $sink:
3021   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3022 
3023   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3024   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3025   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3026   DebugLoc DL = MI.getDebugLoc();
3027   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3028   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3029   MachineFunction *F = BB->getParent();
3030   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3031   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3032   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3033   F->insert(It, FBB);
3034   F->insert(It, TBB);
3035   F->insert(It, Sink);
3036 
3037   // Transfer the remainder of BB and its successor edges to Sink.
3038   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3039                BB->end());
3040   Sink->transferSuccessorsAndUpdatePHIs(BB);
3041 
3042   // Add successors.
3043   BB->addSuccessor(FBB);
3044   BB->addSuccessor(TBB);
3045   FBB->addSuccessor(Sink);
3046   TBB->addSuccessor(Sink);
3047 
3048   // Insert the real bposge32 instruction to $BB.
3049   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3050   // Insert the real bposge32c instruction to $BB.
3051   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3052 
3053   // Fill $FBB.
3054   Register VR2 = RegInfo.createVirtualRegister(RC);
3055   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3056     .addReg(Mips::ZERO).addImm(0);
3057   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3058 
3059   // Fill $TBB.
3060   Register VR1 = RegInfo.createVirtualRegister(RC);
3061   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3062     .addReg(Mips::ZERO).addImm(1);
3063 
3064   // Insert phi function to $Sink.
3065   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3066           MI.getOperand(0).getReg())
3067       .addReg(VR2)
3068       .addMBB(FBB)
3069       .addReg(VR1)
3070       .addMBB(TBB);
3071 
3072   MI.eraseFromParent(); // The pseudo instruction is gone now.
3073   return Sink;
3074 }
3075 
3076 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3077     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3078   // $bb:
3079   //  vany_nonzero $rd, $ws
3080   //  =>
3081   // $bb:
3082   //  bnz.b $ws, $tbb
3083   //  b $fbb
3084   // $fbb:
3085   //  li $rd1, 0
3086   //  b $sink
3087   // $tbb:
3088   //  li $rd2, 1
3089   // $sink:
3090   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
3091 
3092   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3093   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3094   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3095   DebugLoc DL = MI.getDebugLoc();
3096   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3097   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3098   MachineFunction *F = BB->getParent();
3099   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3100   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3101   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3102   F->insert(It, FBB);
3103   F->insert(It, TBB);
3104   F->insert(It, Sink);
3105 
3106   // Transfer the remainder of BB and its successor edges to Sink.
3107   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3108                BB->end());
3109   Sink->transferSuccessorsAndUpdatePHIs(BB);
3110 
3111   // Add successors.
3112   BB->addSuccessor(FBB);
3113   BB->addSuccessor(TBB);
3114   FBB->addSuccessor(Sink);
3115   TBB->addSuccessor(Sink);
3116 
3117   // Insert the real bnz.b instruction to $BB.
3118   BuildMI(BB, DL, TII->get(BranchOp))
3119       .addReg(MI.getOperand(1).getReg())
3120       .addMBB(TBB);
3121 
3122   // Fill $FBB.
3123   Register RD1 = RegInfo.createVirtualRegister(RC);
3124   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3125     .addReg(Mips::ZERO).addImm(0);
3126   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3127 
3128   // Fill $TBB.
3129   Register RD2 = RegInfo.createVirtualRegister(RC);
3130   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3131     .addReg(Mips::ZERO).addImm(1);
3132 
3133   // Insert phi function to $Sink.
3134   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3135           MI.getOperand(0).getReg())
3136       .addReg(RD1)
3137       .addMBB(FBB)
3138       .addReg(RD2)
3139       .addMBB(TBB);
3140 
3141   MI.eraseFromParent(); // The pseudo instruction is gone now.
3142   return Sink;
3143 }
3144 
3145 // Emit the COPY_FW pseudo instruction.
3146 //
3147 // copy_fw_pseudo $fd, $ws, n
3148 // =>
3149 // copy_u_w $rt, $ws, $n
3150 // mtc1     $rt, $fd
3151 //
3152 // When n is zero, the equivalent operation can be performed with (potentially)
3153 // zero instructions due to register overlaps. This optimization is never valid
3154 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3155 MachineBasicBlock *
3156 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3157                                   MachineBasicBlock *BB) const {
3158   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3159   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3160   DebugLoc DL = MI.getDebugLoc();
3161   Register Fd = MI.getOperand(0).getReg();
3162   Register Ws = MI.getOperand(1).getReg();
3163   unsigned Lane = MI.getOperand(2).getImm();
3164 
3165   if (Lane == 0) {
3166     unsigned Wt = Ws;
3167     if (!Subtarget.useOddSPReg()) {
3168       // We must copy to an even-numbered MSA register so that the
3169       // single-precision sub-register is also guaranteed to be even-numbered.
3170       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3171 
3172       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3173     }
3174 
3175     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3176   } else {
3177     Register Wt = RegInfo.createVirtualRegister(
3178         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3179                                 : &Mips::MSA128WEvensRegClass);
3180 
3181     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3182     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3183   }
3184 
3185   MI.eraseFromParent(); // The pseudo instruction is gone now.
3186   return BB;
3187 }
3188 
3189 // Emit the COPY_FD pseudo instruction.
3190 //
3191 // copy_fd_pseudo $fd, $ws, n
3192 // =>
3193 // splati.d $wt, $ws, $n
3194 // copy $fd, $wt:sub_64
3195 //
3196 // When n is zero, the equivalent operation can be performed with (potentially)
3197 // zero instructions due to register overlaps. This optimization is always
3198 // valid because FR=1 mode which is the only supported mode in MSA.
3199 MachineBasicBlock *
3200 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3201                                   MachineBasicBlock *BB) const {
3202   assert(Subtarget.isFP64bit());
3203 
3204   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3205   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3206   Register Fd = MI.getOperand(0).getReg();
3207   Register Ws = MI.getOperand(1).getReg();
3208   unsigned Lane = MI.getOperand(2).getImm() * 2;
3209   DebugLoc DL = MI.getDebugLoc();
3210 
3211   if (Lane == 0)
3212     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3213   else {
3214     Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3215 
3216     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3217     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3218   }
3219 
3220   MI.eraseFromParent(); // The pseudo instruction is gone now.
3221   return BB;
3222 }
3223 
3224 // Emit the INSERT_FW pseudo instruction.
3225 //
3226 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3227 // =>
3228 // subreg_to_reg $wt:sub_lo, $fs
3229 // insve_w $wd[$n], $wd_in, $wt[0]
3230 MachineBasicBlock *
3231 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3232                                     MachineBasicBlock *BB) const {
3233   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3234   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3235   DebugLoc DL = MI.getDebugLoc();
3236   Register Wd = MI.getOperand(0).getReg();
3237   Register Wd_in = MI.getOperand(1).getReg();
3238   unsigned Lane = MI.getOperand(2).getImm();
3239   Register Fs = MI.getOperand(3).getReg();
3240   Register Wt = RegInfo.createVirtualRegister(
3241       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3242                               : &Mips::MSA128WEvensRegClass);
3243 
3244   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3245       .addImm(0)
3246       .addReg(Fs)
3247       .addImm(Mips::sub_lo);
3248   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3249       .addReg(Wd_in)
3250       .addImm(Lane)
3251       .addReg(Wt)
3252       .addImm(0);
3253 
3254   MI.eraseFromParent(); // The pseudo instruction is gone now.
3255   return BB;
3256 }
3257 
3258 // Emit the INSERT_FD pseudo instruction.
3259 //
3260 // insert_fd_pseudo $wd, $fs, n
3261 // =>
3262 // subreg_to_reg $wt:sub_64, $fs
3263 // insve_d $wd[$n], $wd_in, $wt[0]
3264 MachineBasicBlock *
3265 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3266                                     MachineBasicBlock *BB) const {
3267   assert(Subtarget.isFP64bit());
3268 
3269   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3270   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3271   DebugLoc DL = MI.getDebugLoc();
3272   Register Wd = MI.getOperand(0).getReg();
3273   Register Wd_in = MI.getOperand(1).getReg();
3274   unsigned Lane = MI.getOperand(2).getImm();
3275   Register Fs = MI.getOperand(3).getReg();
3276   Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3277 
3278   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3279       .addImm(0)
3280       .addReg(Fs)
3281       .addImm(Mips::sub_64);
3282   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3283       .addReg(Wd_in)
3284       .addImm(Lane)
3285       .addReg(Wt)
3286       .addImm(0);
3287 
3288   MI.eraseFromParent(); // The pseudo instruction is gone now.
3289   return BB;
3290 }
3291 
3292 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3293 //
3294 // For integer:
3295 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3296 // =>
3297 // (SLL $lanetmp1, $lane, <log2size)
3298 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3299 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3300 // (NEG $lanetmp2, $lanetmp1)
3301 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3302 //
3303 // For floating point:
3304 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3305 // =>
3306 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3307 // (SLL $lanetmp1, $lane, <log2size)
3308 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3309 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3310 // (NEG $lanetmp2, $lanetmp1)
3311 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3312 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3313     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3314     bool IsFP) const {
3315   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3316   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3317   DebugLoc DL = MI.getDebugLoc();
3318   Register Wd = MI.getOperand(0).getReg();
3319   Register SrcVecReg = MI.getOperand(1).getReg();
3320   Register LaneReg = MI.getOperand(2).getReg();
3321   Register SrcValReg = MI.getOperand(3).getReg();
3322 
3323   const TargetRegisterClass *VecRC = nullptr;
3324   // FIXME: This should be true for N32 too.
3325   const TargetRegisterClass *GPRRC =
3326       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3327   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3328   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3329   unsigned EltLog2Size;
3330   unsigned InsertOp = 0;
3331   unsigned InsveOp = 0;
3332   switch (EltSizeInBytes) {
3333   default:
3334     llvm_unreachable("Unexpected size");
3335   case 1:
3336     EltLog2Size = 0;
3337     InsertOp = Mips::INSERT_B;
3338     InsveOp = Mips::INSVE_B;
3339     VecRC = &Mips::MSA128BRegClass;
3340     break;
3341   case 2:
3342     EltLog2Size = 1;
3343     InsertOp = Mips::INSERT_H;
3344     InsveOp = Mips::INSVE_H;
3345     VecRC = &Mips::MSA128HRegClass;
3346     break;
3347   case 4:
3348     EltLog2Size = 2;
3349     InsertOp = Mips::INSERT_W;
3350     InsveOp = Mips::INSVE_W;
3351     VecRC = &Mips::MSA128WRegClass;
3352     break;
3353   case 8:
3354     EltLog2Size = 3;
3355     InsertOp = Mips::INSERT_D;
3356     InsveOp = Mips::INSVE_D;
3357     VecRC = &Mips::MSA128DRegClass;
3358     break;
3359   }
3360 
3361   if (IsFP) {
3362     Register Wt = RegInfo.createVirtualRegister(VecRC);
3363     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3364         .addImm(0)
3365         .addReg(SrcValReg)
3366         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3367     SrcValReg = Wt;
3368   }
3369 
3370   // Convert the lane index into a byte index
3371   if (EltSizeInBytes != 1) {
3372     Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3373     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3374         .addReg(LaneReg)
3375         .addImm(EltLog2Size);
3376     LaneReg = LaneTmp1;
3377   }
3378 
3379   // Rotate bytes around so that the desired lane is element zero
3380   Register WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3381   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3382       .addReg(SrcVecReg)
3383       .addReg(SrcVecReg)
3384       .addReg(LaneReg, 0, SubRegIdx);
3385 
3386   Register WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3387   if (IsFP) {
3388     // Use insve.df to insert to element zero
3389     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3390         .addReg(WdTmp1)
3391         .addImm(0)
3392         .addReg(SrcValReg)
3393         .addImm(0);
3394   } else {
3395     // Use insert.df to insert to element zero
3396     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3397         .addReg(WdTmp1)
3398         .addReg(SrcValReg)
3399         .addImm(0);
3400   }
3401 
3402   // Rotate elements the rest of the way for a full rotation.
3403   // sld.df inteprets $rt modulo the number of columns so we only need to negate
3404   // the lane index to do this.
3405   Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3406   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3407           LaneTmp2)
3408       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3409       .addReg(LaneReg);
3410   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3411       .addReg(WdTmp2)
3412       .addReg(WdTmp2)
3413       .addReg(LaneTmp2, 0, SubRegIdx);
3414 
3415   MI.eraseFromParent(); // The pseudo instruction is gone now.
3416   return BB;
3417 }
3418 
3419 // Emit the FILL_FW pseudo instruction.
3420 //
3421 // fill_fw_pseudo $wd, $fs
3422 // =>
3423 // implicit_def $wt1
3424 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3425 // splati.w $wd, $wt2[0]
3426 MachineBasicBlock *
3427 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3428                                   MachineBasicBlock *BB) const {
3429   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3430   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3431   DebugLoc DL = MI.getDebugLoc();
3432   Register Wd = MI.getOperand(0).getReg();
3433   Register Fs = MI.getOperand(1).getReg();
3434   Register Wt1 = RegInfo.createVirtualRegister(
3435       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3436                               : &Mips::MSA128WEvensRegClass);
3437   Register Wt2 = RegInfo.createVirtualRegister(
3438       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3439                               : &Mips::MSA128WEvensRegClass);
3440 
3441   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3442   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3443       .addReg(Wt1)
3444       .addReg(Fs)
3445       .addImm(Mips::sub_lo);
3446   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3447 
3448   MI.eraseFromParent(); // The pseudo instruction is gone now.
3449   return BB;
3450 }
3451 
3452 // Emit the FILL_FD pseudo instruction.
3453 //
3454 // fill_fd_pseudo $wd, $fs
3455 // =>
3456 // implicit_def $wt1
3457 // insert_subreg $wt2:subreg_64, $wt1, $fs
3458 // splati.d $wd, $wt2[0]
3459 MachineBasicBlock *
3460 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3461                                   MachineBasicBlock *BB) const {
3462   assert(Subtarget.isFP64bit());
3463 
3464   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3465   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3466   DebugLoc DL = MI.getDebugLoc();
3467   Register Wd = MI.getOperand(0).getReg();
3468   Register Fs = MI.getOperand(1).getReg();
3469   Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3470   Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3471 
3472   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3473   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3474       .addReg(Wt1)
3475       .addReg(Fs)
3476       .addImm(Mips::sub_64);
3477   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3478 
3479   MI.eraseFromParent(); // The pseudo instruction is gone now.
3480   return BB;
3481 }
3482 
3483 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3484 // register.
3485 //
3486 // STF16 MSA128F16:$wd, mem_simm10:$addr
3487 // =>
3488 //  copy_u.h $rtemp,$wd[0]
3489 //  sh $rtemp, $addr
3490 //
3491 // Safety: We can't use st.h & co as they would over write the memory after
3492 // the destination. It would require half floats be allocated 16 bytes(!) of
3493 // space.
3494 MachineBasicBlock *
3495 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3496                                        MachineBasicBlock *BB) const {
3497 
3498   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3499   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3500   DebugLoc DL = MI.getDebugLoc();
3501   Register Ws = MI.getOperand(0).getReg();
3502   Register Rt = MI.getOperand(1).getReg();
3503   const MachineMemOperand &MMO = **MI.memoperands_begin();
3504   unsigned Imm = MMO.getOffset();
3505 
3506   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3507   //          spill and reload can expand as a GPR64 operand. Examine the
3508   //          operand in detail and default to ABI.
3509   const TargetRegisterClass *RC =
3510       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3511                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3512                                                         : &Mips::GPR64RegClass);
3513   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3514   Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3515 
3516   BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3517   if(!UsingMips32) {
3518     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3519     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3520         .addImm(0)
3521         .addReg(Rs)
3522         .addImm(Mips::sub_32);
3523     Rs = Tmp;
3524   }
3525   BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3526       .addReg(Rs)
3527       .addReg(Rt)
3528       .addImm(Imm)
3529       .addMemOperand(BB->getParent()->getMachineMemOperand(
3530           &MMO, MMO.getOffset(), MMO.getSize()));
3531 
3532   MI.eraseFromParent();
3533   return BB;
3534 }
3535 
3536 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3537 //
3538 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3539 // =>
3540 //  lh $rtemp, $addr
3541 //  fill.h $wd, $rtemp
3542 //
3543 // Safety: We can't use ld.h & co as they over-read from the source.
3544 // Additionally, if the address is not modulo 16, 2 cases can occur:
3545 //  a) Segmentation fault as the load instruction reads from a memory page
3546 //     memory it's not supposed to.
3547 //  b) The load crosses an implementation specific boundary, requiring OS
3548 //     intervention.
3549 MachineBasicBlock *
3550 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3551                                        MachineBasicBlock *BB) const {
3552 
3553   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3554   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3555   DebugLoc DL = MI.getDebugLoc();
3556   Register Wd = MI.getOperand(0).getReg();
3557 
3558   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3559   //          spill and reload can expand as a GPR64 operand. Examine the
3560   //          operand in detail and default to ABI.
3561   const TargetRegisterClass *RC =
3562       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3563                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3564                                                         : &Mips::GPR64RegClass);
3565 
3566   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3567   Register Rt = RegInfo.createVirtualRegister(RC);
3568 
3569   MachineInstrBuilder MIB =
3570       BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3571   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
3572     MIB.add(MO);
3573 
3574   if(!UsingMips32) {
3575     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3576     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3577     Rt = Tmp;
3578   }
3579 
3580   BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3581 
3582   MI.eraseFromParent();
3583   return BB;
3584 }
3585 
3586 // Emit the FPROUND_PSEUDO instruction.
3587 //
3588 // Round an FGR64Opnd, FGR32Opnd to an f16.
3589 //
3590 // Safety: Cycle the operand through the GPRs so the result always ends up
3591 //         the correct MSA register.
3592 //
3593 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3594 //        / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3595 //        (which they can be, as the MSA registers are defined to alias the
3596 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3597 //        the correct register class. That requires operands be tie-able across
3598 //        register classes which have a sub/super register class relationship.
3599 //
3600 // For FPG32Opnd:
3601 //
3602 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3603 // =>
3604 //  mfc1 $rtemp, $fs
3605 //  fill.w $rtemp, $wtemp
3606 //  fexdo.w $wd, $wtemp, $wtemp
3607 //
3608 // For FPG64Opnd on mips32r2+:
3609 //
3610 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3611 // =>
3612 //  mfc1 $rtemp, $fs
3613 //  fill.w $rtemp, $wtemp
3614 //  mfhc1 $rtemp2, $fs
3615 //  insert.w $wtemp[1], $rtemp2
3616 //  insert.w $wtemp[3], $rtemp2
3617 //  fexdo.w $wtemp2, $wtemp, $wtemp
3618 //  fexdo.h $wd, $temp2, $temp2
3619 //
3620 // For FGR64Opnd on mips64r2+:
3621 //
3622 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3623 // =>
3624 //  dmfc1 $rtemp, $fs
3625 //  fill.d $rtemp, $wtemp
3626 //  fexdo.w $wtemp2, $wtemp, $wtemp
3627 //  fexdo.h $wd, $wtemp2, $wtemp2
3628 //
3629 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3630 //              undef bits are "just right" and the exception enable bits are
3631 //              set. By using fill.w to replicate $fs into all elements over
3632 //              insert.w for one element, we avoid that potiential case. If
3633 //              fexdo.[hw] causes an exception in, the exception is valid and it
3634 //              occurs for all elements.
3635 MachineBasicBlock *
3636 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3637                                          MachineBasicBlock *BB,
3638                                          bool IsFGR64) const {
3639 
3640   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3641   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3642   // it.
3643   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3644 
3645   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3646   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3647 
3648   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3649   DebugLoc DL = MI.getDebugLoc();
3650   Register Wd = MI.getOperand(0).getReg();
3651   Register Fs = MI.getOperand(1).getReg();
3652 
3653   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3654   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3655   const TargetRegisterClass *GPRRC =
3656       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3657   unsigned MFC1Opc = IsFGR64onMips64
3658                          ? Mips::DMFC1
3659                          : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3660   unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3661 
3662   // Perform the register class copy as mentioned above.
3663   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3664   BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3665   BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3666   unsigned WPHI = Wtemp;
3667 
3668   if (IsFGR64onMips32) {
3669     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3670     BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3671     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3672     Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3673     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3674         .addReg(Wtemp)
3675         .addReg(Rtemp2)
3676         .addImm(1);
3677     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3678         .addReg(Wtemp2)
3679         .addReg(Rtemp2)
3680         .addImm(3);
3681     WPHI = Wtemp3;
3682   }
3683 
3684   if (IsFGR64) {
3685     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3686     BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3687         .addReg(WPHI)
3688         .addReg(WPHI);
3689     WPHI = Wtemp2;
3690   }
3691 
3692   BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3693 
3694   MI.eraseFromParent();
3695   return BB;
3696 }
3697 
3698 // Emit the FPEXTEND_PSEUDO instruction.
3699 //
3700 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3701 //
3702 // Safety: Cycle the result through the GPRs so the result always ends up
3703 //         the correct floating point register.
3704 //
3705 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3706 //        / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3707 //        (which they can be, as the MSA registers are defined to alias the
3708 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3709 //        the correct register class. That requires operands be tie-able across
3710 //        register classes which have a sub/super register class relationship. I
3711 //        haven't checked.
3712 //
3713 // For FGR32Opnd:
3714 //
3715 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3716 // =>
3717 //  fexupr.w $wtemp, $ws
3718 //  copy_s.w $rtemp, $ws[0]
3719 //  mtc1 $rtemp, $fd
3720 //
3721 // For FGR64Opnd on Mips64:
3722 //
3723 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3724 // =>
3725 //  fexupr.w $wtemp, $ws
3726 //  fexupr.d $wtemp2, $wtemp
3727 //  copy_s.d $rtemp, $wtemp2s[0]
3728 //  dmtc1 $rtemp, $fd
3729 //
3730 // For FGR64Opnd on Mips32:
3731 //
3732 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3733 // =>
3734 //  fexupr.w $wtemp, $ws
3735 //  fexupr.d $wtemp2, $wtemp
3736 //  copy_s.w $rtemp, $wtemp2[0]
3737 //  mtc1 $rtemp, $ftemp
3738 //  copy_s.w $rtemp2, $wtemp2[1]
3739 //  $fd = mthc1 $rtemp2, $ftemp
3740 MachineBasicBlock *
3741 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3742                                           MachineBasicBlock *BB,
3743                                           bool IsFGR64) const {
3744 
3745   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3746   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3747   // it.
3748   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3749 
3750   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3751   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3752 
3753   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3754   DebugLoc DL = MI.getDebugLoc();
3755   Register Fd = MI.getOperand(0).getReg();
3756   Register Ws = MI.getOperand(1).getReg();
3757 
3758   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3759   const TargetRegisterClass *GPRRC =
3760       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3761   unsigned MTC1Opc = IsFGR64onMips64
3762                          ? Mips::DMTC1
3763                          : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3764   Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3765 
3766   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3767   Register WPHI = Wtemp;
3768 
3769   BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3770   if (IsFGR64) {
3771     WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3772     BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3773   }
3774 
3775   // Perform the safety regclass copy mentioned above.
3776   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3777   Register FPRPHI = IsFGR64onMips32
3778                         ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3779                         : Fd;
3780   BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3781   BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3782 
3783   if (IsFGR64onMips32) {
3784     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3785     BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3786         .addReg(WPHI)
3787         .addImm(1);
3788     BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3789         .addReg(FPRPHI)
3790         .addReg(Rtemp2);
3791   }
3792 
3793   MI.eraseFromParent();
3794   return BB;
3795 }
3796 
3797 // Emit the FEXP2_W_1 pseudo instructions.
3798 //
3799 // fexp2_w_1_pseudo $wd, $wt
3800 // =>
3801 // ldi.w $ws, 1
3802 // fexp2.w $wd, $ws, $wt
3803 MachineBasicBlock *
3804 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3805                                     MachineBasicBlock *BB) const {
3806   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3807   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3808   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3809   Register Ws1 = RegInfo.createVirtualRegister(RC);
3810   Register Ws2 = RegInfo.createVirtualRegister(RC);
3811   DebugLoc DL = MI.getDebugLoc();
3812 
3813   // Splat 1.0 into a vector
3814   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3815   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3816 
3817   // Emit 1.0 * fexp2(Wt)
3818   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3819       .addReg(Ws2)
3820       .addReg(MI.getOperand(1).getReg());
3821 
3822   MI.eraseFromParent(); // The pseudo instruction is gone now.
3823   return BB;
3824 }
3825 
3826 // Emit the FEXP2_D_1 pseudo instructions.
3827 //
3828 // fexp2_d_1_pseudo $wd, $wt
3829 // =>
3830 // ldi.d $ws, 1
3831 // fexp2.d $wd, $ws, $wt
3832 MachineBasicBlock *
3833 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3834                                     MachineBasicBlock *BB) const {
3835   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3836   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3837   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3838   Register Ws1 = RegInfo.createVirtualRegister(RC);
3839   Register Ws2 = RegInfo.createVirtualRegister(RC);
3840   DebugLoc DL = MI.getDebugLoc();
3841 
3842   // Splat 1.0 into a vector
3843   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3844   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3845 
3846   // Emit 1.0 * fexp2(Wt)
3847   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3848       .addReg(Ws2)
3849       .addReg(MI.getOperand(1).getReg());
3850 
3851   MI.eraseFromParent(); // The pseudo instruction is gone now.
3852   return BB;
3853 }
3854