10b57cec5SDimitry Andric //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric 90b57cec5SDimitry Andric #include "Hexagon.h" 100b57cec5SDimitry Andric #include "HexagonISelDAGToDAG.h" 110b57cec5SDimitry Andric #include "HexagonISelLowering.h" 120b57cec5SDimitry Andric #include "HexagonTargetMachine.h" 13bdd1243dSDimitry Andric #include "llvm/ADT/BitVector.h" 140b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h" 150b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 160b57cec5SDimitry Andric #include "llvm/CodeGen/SelectionDAGISel.h" 170b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 18480093f4SDimitry Andric #include "llvm/IR/IntrinsicsHexagon.h" 190b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 200b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 21bdd1243dSDimitry Andric #include "llvm/Support/MathExtras.h" 220b57cec5SDimitry Andric 23bdd1243dSDimitry Andric #include <algorithm> 24bdd1243dSDimitry Andric #include <cmath> 250b57cec5SDimitry Andric #include <deque> 26bdd1243dSDimitry Andric #include <functional> 270b57cec5SDimitry Andric #include <map> 28bdd1243dSDimitry Andric #include <optional> 290b57cec5SDimitry Andric #include <set> 30bdd1243dSDimitry Andric #include <unordered_map> 310b57cec5SDimitry Andric #include <utility> 320b57cec5SDimitry Andric #include <vector> 330b57cec5SDimitry Andric 340b57cec5SDimitry Andric #define DEBUG_TYPE "hexagon-isel" 350b57cec5SDimitry Andric using namespace llvm; 360b57cec5SDimitry Andric 370b57cec5SDimitry Andric namespace { 380b57cec5SDimitry Andric 390b57cec5SDimitry Andric // -------------------------------------------------------------------- 400b57cec5SDimitry Andric // Implementation of permutation networks. 410b57cec5SDimitry Andric 420b57cec5SDimitry Andric // Implementation of the node routing through butterfly networks: 430b57cec5SDimitry Andric // - Forward delta. 440b57cec5SDimitry Andric // - Reverse delta. 450b57cec5SDimitry Andric // - Benes. 460b57cec5SDimitry Andric // 470b57cec5SDimitry Andric // 480b57cec5SDimitry Andric // Forward delta network consists of log(N) steps, where N is the number 490b57cec5SDimitry Andric // of inputs. In each step, an input can stay in place, or it can get 500b57cec5SDimitry Andric // routed to another position[1]. The step after that consists of two 510b57cec5SDimitry Andric // networks, each half in size in terms of the number of nodes. In those 520b57cec5SDimitry Andric // terms, in the given step, an input can go to either the upper or the 530b57cec5SDimitry Andric // lower network in the next step. 540b57cec5SDimitry Andric // 550b57cec5SDimitry Andric // [1] Hexagon's vdelta/vrdelta allow an element to be routed to both 560b57cec5SDimitry Andric // positions as long as there is no conflict. 570b57cec5SDimitry Andric 580b57cec5SDimitry Andric // Here's a delta network for 8 inputs, only the switching routes are 590b57cec5SDimitry Andric // shown: 600b57cec5SDimitry Andric // 610b57cec5SDimitry Andric // Steps: 620b57cec5SDimitry Andric // |- 1 ---------------|- 2 -----|- 3 -| 630b57cec5SDimitry Andric // 640b57cec5SDimitry Andric // Inp[0] *** *** *** *** Out[0] 650b57cec5SDimitry Andric // \ / \ / \ / 660b57cec5SDimitry Andric // \ / \ / X 670b57cec5SDimitry Andric // \ / \ / / \ 680b57cec5SDimitry Andric // Inp[1] *** \ / *** X *** *** Out[1] 690b57cec5SDimitry Andric // \ \ / / \ / \ / 700b57cec5SDimitry Andric // \ \ / / X X 710b57cec5SDimitry Andric // \ \ / / / \ / \ 720b57cec5SDimitry Andric // Inp[2] *** \ \ / / *** X *** *** Out[2] 730b57cec5SDimitry Andric // \ \ X / / / \ \ / 740b57cec5SDimitry Andric // \ \ / \ / / / \ X 750b57cec5SDimitry Andric // \ X X / / \ / \ 760b57cec5SDimitry Andric // Inp[3] *** \ / \ / \ / *** *** *** Out[3] 770b57cec5SDimitry Andric // \ X X X / 780b57cec5SDimitry Andric // \ / \ / \ / \ / 790b57cec5SDimitry Andric // X X X X 800b57cec5SDimitry Andric // / \ / \ / \ / \ 810b57cec5SDimitry Andric // / X X X \ 820b57cec5SDimitry Andric // Inp[4] *** / \ / \ / \ *** *** *** Out[4] 830b57cec5SDimitry Andric // / X X \ \ / \ / 840b57cec5SDimitry Andric // / / \ / \ \ \ / X 850b57cec5SDimitry Andric // / / X \ \ \ / / \ 860b57cec5SDimitry Andric // Inp[5] *** / / \ \ *** X *** *** Out[5] 870b57cec5SDimitry Andric // / / \ \ \ / \ / 880b57cec5SDimitry Andric // / / \ \ X X 890b57cec5SDimitry Andric // / / \ \ / \ / \ 900b57cec5SDimitry Andric // Inp[6] *** / \ *** X *** *** Out[6] 910b57cec5SDimitry Andric // / \ / \ \ / 920b57cec5SDimitry Andric // / \ / \ X 930b57cec5SDimitry Andric // / \ / \ / \ 940b57cec5SDimitry Andric // Inp[7] *** *** *** *** Out[7] 950b57cec5SDimitry Andric // 960b57cec5SDimitry Andric // 970b57cec5SDimitry Andric // Reverse delta network is same as delta network, with the steps in 980b57cec5SDimitry Andric // the opposite order. 990b57cec5SDimitry Andric // 1000b57cec5SDimitry Andric // 1010b57cec5SDimitry Andric // Benes network is a forward delta network immediately followed by 1020b57cec5SDimitry Andric // a reverse delta network. 1030b57cec5SDimitry Andric 1040b57cec5SDimitry Andric enum class ColorKind { None, Red, Black }; 1050b57cec5SDimitry Andric 1060b57cec5SDimitry Andric // Graph coloring utility used to partition nodes into two groups: 1070b57cec5SDimitry Andric // they will correspond to nodes routed to the upper and lower networks. 1080b57cec5SDimitry Andric struct Coloring { 1090b57cec5SDimitry Andric using Node = int; 1100b57cec5SDimitry Andric using MapType = std::map<Node, ColorKind>; 1110b57cec5SDimitry Andric static constexpr Node Ignore = Node(-1); 1120b57cec5SDimitry Andric 1130b57cec5SDimitry Andric Coloring(ArrayRef<Node> Ord) : Order(Ord) { 1140b57cec5SDimitry Andric build(); 1150b57cec5SDimitry Andric if (!color()) 1160b57cec5SDimitry Andric Colors.clear(); 1170b57cec5SDimitry Andric } 1180b57cec5SDimitry Andric 1190b57cec5SDimitry Andric const MapType &colors() const { 1200b57cec5SDimitry Andric return Colors; 1210b57cec5SDimitry Andric } 1220b57cec5SDimitry Andric 1230b57cec5SDimitry Andric ColorKind other(ColorKind Color) { 1240b57cec5SDimitry Andric if (Color == ColorKind::None) 1250b57cec5SDimitry Andric return ColorKind::Red; 1260b57cec5SDimitry Andric return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red; 1270b57cec5SDimitry Andric } 1280b57cec5SDimitry Andric 1290b57cec5SDimitry Andric LLVM_DUMP_METHOD void dump() const; 1300b57cec5SDimitry Andric 1310b57cec5SDimitry Andric private: 1320b57cec5SDimitry Andric ArrayRef<Node> Order; 1330b57cec5SDimitry Andric MapType Colors; 1340b57cec5SDimitry Andric std::set<Node> Needed; 1350b57cec5SDimitry Andric 1360b57cec5SDimitry Andric using NodeSet = std::set<Node>; 1370b57cec5SDimitry Andric std::map<Node,NodeSet> Edges; 1380b57cec5SDimitry Andric 1390b57cec5SDimitry Andric Node conj(Node Pos) { 1400b57cec5SDimitry Andric Node Num = Order.size(); 1410b57cec5SDimitry Andric return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2; 1420b57cec5SDimitry Andric } 1430b57cec5SDimitry Andric 1440b57cec5SDimitry Andric ColorKind getColor(Node N) { 1450b57cec5SDimitry Andric auto F = Colors.find(N); 1460b57cec5SDimitry Andric return F != Colors.end() ? F->second : ColorKind::None; 1470b57cec5SDimitry Andric } 1480b57cec5SDimitry Andric 1490b57cec5SDimitry Andric std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes); 1500b57cec5SDimitry Andric 1510b57cec5SDimitry Andric void build(); 1520b57cec5SDimitry Andric bool color(); 1530b57cec5SDimitry Andric }; 1540b57cec5SDimitry Andric } // namespace 1550b57cec5SDimitry Andric 1560b57cec5SDimitry Andric std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) { 1570b57cec5SDimitry Andric auto Color = ColorKind::None; 1580b57cec5SDimitry Andric for (Node N : Nodes) { 1590b57cec5SDimitry Andric ColorKind ColorN = getColor(N); 1600b57cec5SDimitry Andric if (ColorN == ColorKind::None) 1610b57cec5SDimitry Andric continue; 1620b57cec5SDimitry Andric if (Color == ColorKind::None) 1630b57cec5SDimitry Andric Color = ColorN; 1640b57cec5SDimitry Andric else if (Color != ColorKind::None && Color != ColorN) 1650b57cec5SDimitry Andric return { false, ColorKind::None }; 1660b57cec5SDimitry Andric } 1670b57cec5SDimitry Andric return { true, Color }; 1680b57cec5SDimitry Andric } 1690b57cec5SDimitry Andric 1700b57cec5SDimitry Andric void Coloring::build() { 1710b57cec5SDimitry Andric // Add Order[P] and Order[conj(P)] to Edges. 1720b57cec5SDimitry Andric for (unsigned P = 0; P != Order.size(); ++P) { 1730b57cec5SDimitry Andric Node I = Order[P]; 1740b57cec5SDimitry Andric if (I != Ignore) { 1750b57cec5SDimitry Andric Needed.insert(I); 1760b57cec5SDimitry Andric Node PC = Order[conj(P)]; 1770b57cec5SDimitry Andric if (PC != Ignore && PC != I) 1780b57cec5SDimitry Andric Edges[I].insert(PC); 1790b57cec5SDimitry Andric } 1800b57cec5SDimitry Andric } 1810b57cec5SDimitry Andric // Add I and conj(I) to Edges. 1820b57cec5SDimitry Andric for (unsigned I = 0; I != Order.size(); ++I) { 1830b57cec5SDimitry Andric if (!Needed.count(I)) 1840b57cec5SDimitry Andric continue; 1850b57cec5SDimitry Andric Node C = conj(I); 1860b57cec5SDimitry Andric // This will create an entry in the edge table, even if I is not 1870b57cec5SDimitry Andric // connected to any other node. This is necessary, because it still 1880b57cec5SDimitry Andric // needs to be colored. 1890b57cec5SDimitry Andric NodeSet &Is = Edges[I]; 1900b57cec5SDimitry Andric if (Needed.count(C)) 1910b57cec5SDimitry Andric Is.insert(C); 1920b57cec5SDimitry Andric } 1930b57cec5SDimitry Andric } 1940b57cec5SDimitry Andric 1950b57cec5SDimitry Andric bool Coloring::color() { 1960b57cec5SDimitry Andric SetVector<Node> FirstQ; 1970b57cec5SDimitry Andric auto Enqueue = [this,&FirstQ] (Node N) { 1980b57cec5SDimitry Andric SetVector<Node> Q; 1990b57cec5SDimitry Andric Q.insert(N); 2000b57cec5SDimitry Andric for (unsigned I = 0; I != Q.size(); ++I) { 2010b57cec5SDimitry Andric NodeSet &Ns = Edges[Q[I]]; 2020b57cec5SDimitry Andric Q.insert(Ns.begin(), Ns.end()); 2030b57cec5SDimitry Andric } 2040b57cec5SDimitry Andric FirstQ.insert(Q.begin(), Q.end()); 2050b57cec5SDimitry Andric }; 2060b57cec5SDimitry Andric for (Node N : Needed) 2070b57cec5SDimitry Andric Enqueue(N); 2080b57cec5SDimitry Andric 2090b57cec5SDimitry Andric for (Node N : FirstQ) { 2100b57cec5SDimitry Andric if (Colors.count(N)) 2110b57cec5SDimitry Andric continue; 2120b57cec5SDimitry Andric NodeSet &Ns = Edges[N]; 2130b57cec5SDimitry Andric auto P = getUniqueColor(Ns); 2140b57cec5SDimitry Andric if (!P.first) 2150b57cec5SDimitry Andric return false; 2160b57cec5SDimitry Andric Colors[N] = other(P.second); 2170b57cec5SDimitry Andric } 2180b57cec5SDimitry Andric 2190b57cec5SDimitry Andric // First, color nodes that don't have any dups. 2200b57cec5SDimitry Andric for (auto E : Edges) { 2210b57cec5SDimitry Andric Node N = E.first; 2220b57cec5SDimitry Andric if (!Needed.count(conj(N)) || Colors.count(N)) 2230b57cec5SDimitry Andric continue; 2240b57cec5SDimitry Andric auto P = getUniqueColor(E.second); 2250b57cec5SDimitry Andric if (!P.first) 2260b57cec5SDimitry Andric return false; 2270b57cec5SDimitry Andric Colors[N] = other(P.second); 2280b57cec5SDimitry Andric } 2290b57cec5SDimitry Andric 2300b57cec5SDimitry Andric // Now, nodes that are still uncolored. Since the graph can be modified 2310b57cec5SDimitry Andric // in this step, create a work queue. 2320b57cec5SDimitry Andric std::vector<Node> WorkQ; 2330b57cec5SDimitry Andric for (auto E : Edges) { 2340b57cec5SDimitry Andric Node N = E.first; 2350b57cec5SDimitry Andric if (!Colors.count(N)) 2360b57cec5SDimitry Andric WorkQ.push_back(N); 2370b57cec5SDimitry Andric } 2380b57cec5SDimitry Andric 23904eeddc0SDimitry Andric for (Node N : WorkQ) { 2400b57cec5SDimitry Andric NodeSet &Ns = Edges[N]; 2410b57cec5SDimitry Andric auto P = getUniqueColor(Ns); 2420b57cec5SDimitry Andric if (P.first) { 2430b57cec5SDimitry Andric Colors[N] = other(P.second); 2440b57cec5SDimitry Andric continue; 2450b57cec5SDimitry Andric } 2460b57cec5SDimitry Andric 2470b57cec5SDimitry Andric // Coloring failed. Split this node. 2480b57cec5SDimitry Andric Node C = conj(N); 2490b57cec5SDimitry Andric ColorKind ColorN = other(ColorKind::None); 2500b57cec5SDimitry Andric ColorKind ColorC = other(ColorN); 2510b57cec5SDimitry Andric NodeSet &Cs = Edges[C]; 2520b57cec5SDimitry Andric NodeSet CopyNs = Ns; 2530b57cec5SDimitry Andric for (Node M : CopyNs) { 2540b57cec5SDimitry Andric ColorKind ColorM = getColor(M); 2550b57cec5SDimitry Andric if (ColorM == ColorC) { 2560b57cec5SDimitry Andric // Connect M with C, disconnect M from N. 2570b57cec5SDimitry Andric Cs.insert(M); 2580b57cec5SDimitry Andric Edges[M].insert(C); 2590b57cec5SDimitry Andric Ns.erase(M); 2600b57cec5SDimitry Andric Edges[M].erase(N); 2610b57cec5SDimitry Andric } 2620b57cec5SDimitry Andric } 2630b57cec5SDimitry Andric Colors[N] = ColorN; 2640b57cec5SDimitry Andric Colors[C] = ColorC; 2650b57cec5SDimitry Andric } 2660b57cec5SDimitry Andric 2670b57cec5SDimitry Andric // Explicitly assign "None" to all uncolored nodes. 2680b57cec5SDimitry Andric for (unsigned I = 0; I != Order.size(); ++I) 2690b57cec5SDimitry Andric if (Colors.count(I) == 0) 2700b57cec5SDimitry Andric Colors[I] = ColorKind::None; 2710b57cec5SDimitry Andric 2720b57cec5SDimitry Andric return true; 2730b57cec5SDimitry Andric } 2740b57cec5SDimitry Andric 2750b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2760b57cec5SDimitry Andric void Coloring::dump() const { 2770b57cec5SDimitry Andric dbgs() << "{ Order: {"; 27804eeddc0SDimitry Andric for (Node P : Order) { 2790b57cec5SDimitry Andric if (P != Ignore) 2800b57cec5SDimitry Andric dbgs() << ' ' << P; 2810b57cec5SDimitry Andric else 2820b57cec5SDimitry Andric dbgs() << " -"; 2830b57cec5SDimitry Andric } 2840b57cec5SDimitry Andric dbgs() << " }\n"; 2850b57cec5SDimitry Andric dbgs() << " Needed: {"; 2860b57cec5SDimitry Andric for (Node N : Needed) 2870b57cec5SDimitry Andric dbgs() << ' ' << N; 2880b57cec5SDimitry Andric dbgs() << " }\n"; 2890b57cec5SDimitry Andric 2900b57cec5SDimitry Andric dbgs() << " Edges: {\n"; 2910b57cec5SDimitry Andric for (auto E : Edges) { 2920b57cec5SDimitry Andric dbgs() << " " << E.first << " -> {"; 2930b57cec5SDimitry Andric for (auto N : E.second) 2940b57cec5SDimitry Andric dbgs() << ' ' << N; 2950b57cec5SDimitry Andric dbgs() << " }\n"; 2960b57cec5SDimitry Andric } 2970b57cec5SDimitry Andric dbgs() << " }\n"; 2980b57cec5SDimitry Andric 2990b57cec5SDimitry Andric auto ColorKindToName = [](ColorKind C) { 3000b57cec5SDimitry Andric switch (C) { 3010b57cec5SDimitry Andric case ColorKind::None: 3020b57cec5SDimitry Andric return "None"; 3030b57cec5SDimitry Andric case ColorKind::Red: 3040b57cec5SDimitry Andric return "Red"; 3050b57cec5SDimitry Andric case ColorKind::Black: 3060b57cec5SDimitry Andric return "Black"; 3070b57cec5SDimitry Andric } 3080b57cec5SDimitry Andric llvm_unreachable("all ColorKinds should be handled by the switch above"); 3090b57cec5SDimitry Andric }; 3100b57cec5SDimitry Andric 3110b57cec5SDimitry Andric dbgs() << " Colors: {\n"; 3120b57cec5SDimitry Andric for (auto C : Colors) 3130b57cec5SDimitry Andric dbgs() << " " << C.first << " -> " << ColorKindToName(C.second) << "\n"; 3140b57cec5SDimitry Andric dbgs() << " }\n}\n"; 3150b57cec5SDimitry Andric } 3160b57cec5SDimitry Andric #endif 3170b57cec5SDimitry Andric 3180b57cec5SDimitry Andric namespace { 3190b57cec5SDimitry Andric // Base class of for reordering networks. They don't strictly need to be 3200b57cec5SDimitry Andric // permutations, as outputs with repeated occurrences of an input element 3210b57cec5SDimitry Andric // are allowed. 3220b57cec5SDimitry Andric struct PermNetwork { 3230b57cec5SDimitry Andric using Controls = std::vector<uint8_t>; 3240b57cec5SDimitry Andric using ElemType = int; 3250b57cec5SDimitry Andric static constexpr ElemType Ignore = ElemType(-1); 3260b57cec5SDimitry Andric 3270b57cec5SDimitry Andric enum : uint8_t { 3280b57cec5SDimitry Andric None, 3290b57cec5SDimitry Andric Pass, 3300b57cec5SDimitry Andric Switch 3310b57cec5SDimitry Andric }; 3320b57cec5SDimitry Andric enum : uint8_t { 3330b57cec5SDimitry Andric Forward, 3340b57cec5SDimitry Andric Reverse 3350b57cec5SDimitry Andric }; 3360b57cec5SDimitry Andric 3370b57cec5SDimitry Andric PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) { 3380b57cec5SDimitry Andric Order.assign(Ord.data(), Ord.data()+Ord.size()); 3390b57cec5SDimitry Andric Log = 0; 3400b57cec5SDimitry Andric 3410b57cec5SDimitry Andric unsigned S = Order.size(); 3420b57cec5SDimitry Andric while (S >>= 1) 3430b57cec5SDimitry Andric ++Log; 3440b57cec5SDimitry Andric 3450b57cec5SDimitry Andric Table.resize(Order.size()); 3460b57cec5SDimitry Andric for (RowType &Row : Table) 3470b57cec5SDimitry Andric Row.resize(Mult*Log, None); 3480b57cec5SDimitry Andric } 3490b57cec5SDimitry Andric 3500b57cec5SDimitry Andric void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const { 3510b57cec5SDimitry Andric unsigned Size = Order.size(); 3520b57cec5SDimitry Andric V.resize(Size); 3530b57cec5SDimitry Andric for (unsigned I = 0; I != Size; ++I) { 3540b57cec5SDimitry Andric unsigned W = 0; 3550b57cec5SDimitry Andric for (unsigned L = 0; L != Log; ++L) { 3560b57cec5SDimitry Andric unsigned C = ctl(I, StartAt+L) == Switch; 3570b57cec5SDimitry Andric if (Dir == Forward) 3580b57cec5SDimitry Andric W |= C << (Log-1-L); 3590b57cec5SDimitry Andric else 3600b57cec5SDimitry Andric W |= C << L; 3610b57cec5SDimitry Andric } 3620b57cec5SDimitry Andric assert(isUInt<8>(W)); 3630b57cec5SDimitry Andric V[I] = uint8_t(W); 3640b57cec5SDimitry Andric } 3650b57cec5SDimitry Andric } 3660b57cec5SDimitry Andric 3670b57cec5SDimitry Andric uint8_t ctl(ElemType Pos, unsigned Step) const { 3680b57cec5SDimitry Andric return Table[Pos][Step]; 3690b57cec5SDimitry Andric } 3700b57cec5SDimitry Andric unsigned size() const { 3710b57cec5SDimitry Andric return Order.size(); 3720b57cec5SDimitry Andric } 3730b57cec5SDimitry Andric unsigned steps() const { 3740b57cec5SDimitry Andric return Log; 3750b57cec5SDimitry Andric } 3760b57cec5SDimitry Andric 3770b57cec5SDimitry Andric protected: 3780b57cec5SDimitry Andric unsigned Log; 3790b57cec5SDimitry Andric std::vector<ElemType> Order; 3800b57cec5SDimitry Andric using RowType = std::vector<uint8_t>; 3810b57cec5SDimitry Andric std::vector<RowType> Table; 3820b57cec5SDimitry Andric }; 3830b57cec5SDimitry Andric 3840b57cec5SDimitry Andric struct ForwardDeltaNetwork : public PermNetwork { 3850b57cec5SDimitry Andric ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 3860b57cec5SDimitry Andric 3870b57cec5SDimitry Andric bool run(Controls &V) { 3880b57cec5SDimitry Andric if (!route(Order.data(), Table.data(), size(), 0)) 3890b57cec5SDimitry Andric return false; 3900b57cec5SDimitry Andric getControls(V, 0, Forward); 3910b57cec5SDimitry Andric return true; 3920b57cec5SDimitry Andric } 3930b57cec5SDimitry Andric 3940b57cec5SDimitry Andric private: 3950b57cec5SDimitry Andric bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 3960b57cec5SDimitry Andric }; 3970b57cec5SDimitry Andric 3980b57cec5SDimitry Andric struct ReverseDeltaNetwork : public PermNetwork { 3990b57cec5SDimitry Andric ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {} 4000b57cec5SDimitry Andric 4010b57cec5SDimitry Andric bool run(Controls &V) { 4020b57cec5SDimitry Andric if (!route(Order.data(), Table.data(), size(), 0)) 4030b57cec5SDimitry Andric return false; 4040b57cec5SDimitry Andric getControls(V, 0, Reverse); 4050b57cec5SDimitry Andric return true; 4060b57cec5SDimitry Andric } 4070b57cec5SDimitry Andric 4080b57cec5SDimitry Andric private: 4090b57cec5SDimitry Andric bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 4100b57cec5SDimitry Andric }; 4110b57cec5SDimitry Andric 4120b57cec5SDimitry Andric struct BenesNetwork : public PermNetwork { 4130b57cec5SDimitry Andric BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {} 4140b57cec5SDimitry Andric 4150b57cec5SDimitry Andric bool run(Controls &F, Controls &R) { 4160b57cec5SDimitry Andric if (!route(Order.data(), Table.data(), size(), 0)) 4170b57cec5SDimitry Andric return false; 4180b57cec5SDimitry Andric 4190b57cec5SDimitry Andric getControls(F, 0, Forward); 4200b57cec5SDimitry Andric getControls(R, Log, Reverse); 4210b57cec5SDimitry Andric return true; 4220b57cec5SDimitry Andric } 4230b57cec5SDimitry Andric 4240b57cec5SDimitry Andric private: 4250b57cec5SDimitry Andric bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step); 4260b57cec5SDimitry Andric }; 4270b57cec5SDimitry Andric } // namespace 4280b57cec5SDimitry Andric 4290b57cec5SDimitry Andric bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 4300b57cec5SDimitry Andric unsigned Step) { 4310b57cec5SDimitry Andric bool UseUp = false, UseDown = false; 4320b57cec5SDimitry Andric ElemType Num = Size; 4330b57cec5SDimitry Andric 4340b57cec5SDimitry Andric // Cannot use coloring here, because coloring is used to determine 4350b57cec5SDimitry Andric // the "big" switch, i.e. the one that changes halves, and in a forward 4360b57cec5SDimitry Andric // network, a color can be simultaneously routed to both halves in the 4370b57cec5SDimitry Andric // step we're working on. 4380b57cec5SDimitry Andric for (ElemType J = 0; J != Num; ++J) { 4390b57cec5SDimitry Andric ElemType I = P[J]; 4400b57cec5SDimitry Andric // I is the position in the input, 4410b57cec5SDimitry Andric // J is the position in the output. 4420b57cec5SDimitry Andric if (I == Ignore) 4430b57cec5SDimitry Andric continue; 4440b57cec5SDimitry Andric uint8_t S; 4450b57cec5SDimitry Andric if (I < Num/2) 4460b57cec5SDimitry Andric S = (J < Num/2) ? Pass : Switch; 4470b57cec5SDimitry Andric else 4480b57cec5SDimitry Andric S = (J < Num/2) ? Switch : Pass; 4490b57cec5SDimitry Andric 4500b57cec5SDimitry Andric // U is the element in the table that needs to be updated. 4510b57cec5SDimitry Andric ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2); 4520b57cec5SDimitry Andric if (U < Num/2) 4530b57cec5SDimitry Andric UseUp = true; 4540b57cec5SDimitry Andric else 4550b57cec5SDimitry Andric UseDown = true; 4560b57cec5SDimitry Andric if (T[U][Step] != S && T[U][Step] != None) 4570b57cec5SDimitry Andric return false; 4580b57cec5SDimitry Andric T[U][Step] = S; 4590b57cec5SDimitry Andric } 4600b57cec5SDimitry Andric 4610b57cec5SDimitry Andric for (ElemType J = 0; J != Num; ++J) 4620b57cec5SDimitry Andric if (P[J] != Ignore && P[J] >= Num/2) 4630b57cec5SDimitry Andric P[J] -= Num/2; 4640b57cec5SDimitry Andric 4650b57cec5SDimitry Andric if (Step+1 < Log) { 4660b57cec5SDimitry Andric if (UseUp && !route(P, T, Size/2, Step+1)) 4670b57cec5SDimitry Andric return false; 4680b57cec5SDimitry Andric if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 4690b57cec5SDimitry Andric return false; 4700b57cec5SDimitry Andric } 4710b57cec5SDimitry Andric return true; 4720b57cec5SDimitry Andric } 4730b57cec5SDimitry Andric 4740b57cec5SDimitry Andric bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size, 4750b57cec5SDimitry Andric unsigned Step) { 4760b57cec5SDimitry Andric unsigned Pets = Log-1 - Step; 4770b57cec5SDimitry Andric bool UseUp = false, UseDown = false; 4780b57cec5SDimitry Andric ElemType Num = Size; 4790b57cec5SDimitry Andric 4800b57cec5SDimitry Andric // In this step half-switching occurs, so coloring can be used. 4810b57cec5SDimitry Andric Coloring G({P,Size}); 4820b57cec5SDimitry Andric const Coloring::MapType &M = G.colors(); 4830b57cec5SDimitry Andric if (M.empty()) 4840b57cec5SDimitry Andric return false; 4850b57cec5SDimitry Andric 4860b57cec5SDimitry Andric ColorKind ColorUp = ColorKind::None; 4870b57cec5SDimitry Andric for (ElemType J = 0; J != Num; ++J) { 4880b57cec5SDimitry Andric ElemType I = P[J]; 4890b57cec5SDimitry Andric // I is the position in the input, 4900b57cec5SDimitry Andric // J is the position in the output. 4910b57cec5SDimitry Andric if (I == Ignore) 4920b57cec5SDimitry Andric continue; 4930b57cec5SDimitry Andric ColorKind C = M.at(I); 4940b57cec5SDimitry Andric if (C == ColorKind::None) 4950b57cec5SDimitry Andric continue; 4960b57cec5SDimitry Andric // During "Step", inputs cannot switch halves, so if the "up" color 4970b57cec5SDimitry Andric // is still unknown, make sure that it is selected in such a way that 4980b57cec5SDimitry Andric // "I" will stay in the same half. 4990b57cec5SDimitry Andric bool InpUp = I < Num/2; 5000b57cec5SDimitry Andric if (ColorUp == ColorKind::None) 5010b57cec5SDimitry Andric ColorUp = InpUp ? C : G.other(C); 5020b57cec5SDimitry Andric if ((C == ColorUp) != InpUp) { 5030b57cec5SDimitry Andric // If I should go to a different half than where is it now, give up. 5040b57cec5SDimitry Andric return false; 5050b57cec5SDimitry Andric } 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric uint8_t S; 5080b57cec5SDimitry Andric if (InpUp) { 5090b57cec5SDimitry Andric S = (J < Num/2) ? Pass : Switch; 5100b57cec5SDimitry Andric UseUp = true; 5110b57cec5SDimitry Andric } else { 5120b57cec5SDimitry Andric S = (J < Num/2) ? Switch : Pass; 5130b57cec5SDimitry Andric UseDown = true; 5140b57cec5SDimitry Andric } 5150b57cec5SDimitry Andric T[J][Pets] = S; 5160b57cec5SDimitry Andric } 5170b57cec5SDimitry Andric 5180b57cec5SDimitry Andric // Reorder the working permutation according to the computed switch table 5190b57cec5SDimitry Andric // for the last step (i.e. Pets). 5200b57cec5SDimitry Andric for (ElemType J = 0, E = Size / 2; J != E; ++J) { 5210b57cec5SDimitry Andric ElemType PJ = P[J]; // Current values of P[J] 5220b57cec5SDimitry Andric ElemType PC = P[J+Size/2]; // and P[conj(J)] 5230b57cec5SDimitry Andric ElemType QJ = PJ; // New values of P[J] 5240b57cec5SDimitry Andric ElemType QC = PC; // and P[conj(J)] 5250b57cec5SDimitry Andric if (T[J][Pets] == Switch) 5260b57cec5SDimitry Andric QC = PJ; 5270b57cec5SDimitry Andric if (T[J+Size/2][Pets] == Switch) 5280b57cec5SDimitry Andric QJ = PC; 5290b57cec5SDimitry Andric P[J] = QJ; 5300b57cec5SDimitry Andric P[J+Size/2] = QC; 5310b57cec5SDimitry Andric } 5320b57cec5SDimitry Andric 5330b57cec5SDimitry Andric for (ElemType J = 0; J != Num; ++J) 5340b57cec5SDimitry Andric if (P[J] != Ignore && P[J] >= Num/2) 5350b57cec5SDimitry Andric P[J] -= Num/2; 5360b57cec5SDimitry Andric 5370b57cec5SDimitry Andric if (Step+1 < Log) { 5380b57cec5SDimitry Andric if (UseUp && !route(P, T, Size/2, Step+1)) 5390b57cec5SDimitry Andric return false; 5400b57cec5SDimitry Andric if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 5410b57cec5SDimitry Andric return false; 5420b57cec5SDimitry Andric } 5430b57cec5SDimitry Andric return true; 5440b57cec5SDimitry Andric } 5450b57cec5SDimitry Andric 5460b57cec5SDimitry Andric bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size, 5470b57cec5SDimitry Andric unsigned Step) { 5480b57cec5SDimitry Andric Coloring G({P,Size}); 5490b57cec5SDimitry Andric const Coloring::MapType &M = G.colors(); 5500b57cec5SDimitry Andric if (M.empty()) 5510b57cec5SDimitry Andric return false; 5520b57cec5SDimitry Andric ElemType Num = Size; 5530b57cec5SDimitry Andric 5540b57cec5SDimitry Andric unsigned Pets = 2*Log-1 - Step; 5550b57cec5SDimitry Andric bool UseUp = false, UseDown = false; 5560b57cec5SDimitry Andric 5570b57cec5SDimitry Andric // Both assignments, i.e. Red->Up and Red->Down are valid, but they will 5580b57cec5SDimitry Andric // result in different controls. Let's pick the one where the first 5590b57cec5SDimitry Andric // control will be "Pass". 5600b57cec5SDimitry Andric ColorKind ColorUp = ColorKind::None; 5610b57cec5SDimitry Andric for (ElemType J = 0; J != Num; ++J) { 5620b57cec5SDimitry Andric ElemType I = P[J]; 5630b57cec5SDimitry Andric if (I == Ignore) 5640b57cec5SDimitry Andric continue; 5650b57cec5SDimitry Andric ColorKind C = M.at(I); 5660b57cec5SDimitry Andric if (C == ColorKind::None) 5670b57cec5SDimitry Andric continue; 5680b57cec5SDimitry Andric if (ColorUp == ColorKind::None) { 5690b57cec5SDimitry Andric ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black; 5700b57cec5SDimitry Andric } 5710b57cec5SDimitry Andric unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2; 5720b57cec5SDimitry Andric if (C == ColorUp) { 5730b57cec5SDimitry Andric if (I < Num/2) 5740b57cec5SDimitry Andric T[I][Step] = Pass; 5750b57cec5SDimitry Andric else 5760b57cec5SDimitry Andric T[CI][Step] = Switch; 5770b57cec5SDimitry Andric T[J][Pets] = (J < Num/2) ? Pass : Switch; 5780b57cec5SDimitry Andric UseUp = true; 5790b57cec5SDimitry Andric } else { // Down 5800b57cec5SDimitry Andric if (I < Num/2) 5810b57cec5SDimitry Andric T[CI][Step] = Switch; 5820b57cec5SDimitry Andric else 5830b57cec5SDimitry Andric T[I][Step] = Pass; 5840b57cec5SDimitry Andric T[J][Pets] = (J < Num/2) ? Switch : Pass; 5850b57cec5SDimitry Andric UseDown = true; 5860b57cec5SDimitry Andric } 5870b57cec5SDimitry Andric } 5880b57cec5SDimitry Andric 5890b57cec5SDimitry Andric // Reorder the working permutation according to the computed switch table 5900b57cec5SDimitry Andric // for the last step (i.e. Pets). 5910b57cec5SDimitry Andric for (ElemType J = 0; J != Num/2; ++J) { 5920b57cec5SDimitry Andric ElemType PJ = P[J]; // Current values of P[J] 5930b57cec5SDimitry Andric ElemType PC = P[J+Num/2]; // and P[conj(J)] 5940b57cec5SDimitry Andric ElemType QJ = PJ; // New values of P[J] 5950b57cec5SDimitry Andric ElemType QC = PC; // and P[conj(J)] 5960b57cec5SDimitry Andric if (T[J][Pets] == Switch) 5970b57cec5SDimitry Andric QC = PJ; 5980b57cec5SDimitry Andric if (T[J+Num/2][Pets] == Switch) 5990b57cec5SDimitry Andric QJ = PC; 6000b57cec5SDimitry Andric P[J] = QJ; 6010b57cec5SDimitry Andric P[J+Num/2] = QC; 6020b57cec5SDimitry Andric } 6030b57cec5SDimitry Andric 6040b57cec5SDimitry Andric for (ElemType J = 0; J != Num; ++J) 6050b57cec5SDimitry Andric if (P[J] != Ignore && P[J] >= Num/2) 6060b57cec5SDimitry Andric P[J] -= Num/2; 6070b57cec5SDimitry Andric 6080b57cec5SDimitry Andric if (Step+1 < Log) { 6090b57cec5SDimitry Andric if (UseUp && !route(P, T, Size/2, Step+1)) 6100b57cec5SDimitry Andric return false; 6110b57cec5SDimitry Andric if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1)) 6120b57cec5SDimitry Andric return false; 6130b57cec5SDimitry Andric } 6140b57cec5SDimitry Andric return true; 6150b57cec5SDimitry Andric } 6160b57cec5SDimitry Andric 6170b57cec5SDimitry Andric // -------------------------------------------------------------------- 6180b57cec5SDimitry Andric // Support for building selection results (output instructions that are 6190b57cec5SDimitry Andric // parts of the final selection). 6200b57cec5SDimitry Andric 6210b57cec5SDimitry Andric namespace { 6220b57cec5SDimitry Andric struct OpRef { 6230b57cec5SDimitry Andric OpRef(SDValue V) : OpV(V) {} 6240b57cec5SDimitry Andric bool isValue() const { return OpV.getNode() != nullptr; } 6250b57cec5SDimitry Andric bool isValid() const { return isValue() || !(OpN & Invalid); } 626bdd1243dSDimitry Andric bool isUndef() const { return OpN & Undef; } 6270b57cec5SDimitry Andric static OpRef res(int N) { return OpRef(Whole | (N & Index)); } 6280b57cec5SDimitry Andric static OpRef fail() { return OpRef(Invalid); } 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric static OpRef lo(const OpRef &R) { 6310b57cec5SDimitry Andric assert(!R.isValue()); 6320b57cec5SDimitry Andric return OpRef(R.OpN & (Undef | Index | LoHalf)); 6330b57cec5SDimitry Andric } 6340b57cec5SDimitry Andric static OpRef hi(const OpRef &R) { 6350b57cec5SDimitry Andric assert(!R.isValue()); 6360b57cec5SDimitry Andric return OpRef(R.OpN & (Undef | Index | HiHalf)); 6370b57cec5SDimitry Andric } 6380b57cec5SDimitry Andric static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); } 6390b57cec5SDimitry Andric 6400b57cec5SDimitry Andric // Direct value. 6410b57cec5SDimitry Andric SDValue OpV = SDValue(); 6420b57cec5SDimitry Andric 6430b57cec5SDimitry Andric // Reference to the operand of the input node: 6440b57cec5SDimitry Andric // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the 6450b57cec5SDimitry Andric // operand index: 6460b57cec5SDimitry Andric // If bit 30 is set, it's the high half of the operand. 6470b57cec5SDimitry Andric // If bit 29 is set, it's the low half of the operand. 6480b57cec5SDimitry Andric unsigned OpN = 0; 6490b57cec5SDimitry Andric 6500b57cec5SDimitry Andric enum : unsigned { 6510b57cec5SDimitry Andric Invalid = 0x10000000, 6520b57cec5SDimitry Andric LoHalf = 0x20000000, 6530b57cec5SDimitry Andric HiHalf = 0x40000000, 6540b57cec5SDimitry Andric Whole = LoHalf | HiHalf, 6550b57cec5SDimitry Andric Undef = 0x80000000, 6560b57cec5SDimitry Andric Index = 0x0FFFFFFF, // Mask of the index value. 6570b57cec5SDimitry Andric IndexBits = 28, 6580b57cec5SDimitry Andric }; 6590b57cec5SDimitry Andric 6600b57cec5SDimitry Andric LLVM_DUMP_METHOD 6610b57cec5SDimitry Andric void print(raw_ostream &OS, const SelectionDAG &G) const; 6620b57cec5SDimitry Andric 6630b57cec5SDimitry Andric private: 6640b57cec5SDimitry Andric OpRef(unsigned N) : OpN(N) {} 6650b57cec5SDimitry Andric }; 6660b57cec5SDimitry Andric 6670b57cec5SDimitry Andric struct NodeTemplate { 6680b57cec5SDimitry Andric NodeTemplate() = default; 6690b57cec5SDimitry Andric unsigned Opc = 0; 6700b57cec5SDimitry Andric MVT Ty = MVT::Other; 6710b57cec5SDimitry Andric std::vector<OpRef> Ops; 6720b57cec5SDimitry Andric 6730b57cec5SDimitry Andric LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const; 6740b57cec5SDimitry Andric }; 6750b57cec5SDimitry Andric 6760b57cec5SDimitry Andric struct ResultStack { 6770b57cec5SDimitry Andric ResultStack(SDNode *Inp) 6780b57cec5SDimitry Andric : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {} 6790b57cec5SDimitry Andric SDNode *InpNode; 6800b57cec5SDimitry Andric MVT InpTy; 6810b57cec5SDimitry Andric unsigned push(const NodeTemplate &Res) { 6820b57cec5SDimitry Andric List.push_back(Res); 6830b57cec5SDimitry Andric return List.size()-1; 6840b57cec5SDimitry Andric } 6850b57cec5SDimitry Andric unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) { 6860b57cec5SDimitry Andric NodeTemplate Res; 6870b57cec5SDimitry Andric Res.Opc = Opc; 6880b57cec5SDimitry Andric Res.Ty = Ty; 6890b57cec5SDimitry Andric Res.Ops = Ops; 6900b57cec5SDimitry Andric return push(Res); 6910b57cec5SDimitry Andric } 6920b57cec5SDimitry Andric bool empty() const { return List.empty(); } 6930b57cec5SDimitry Andric unsigned size() const { return List.size(); } 6940b57cec5SDimitry Andric unsigned top() const { return size()-1; } 6950b57cec5SDimitry Andric const NodeTemplate &operator[](unsigned I) const { return List[I]; } 6960b57cec5SDimitry Andric unsigned reset(unsigned NewTop) { 6970b57cec5SDimitry Andric List.resize(NewTop+1); 6980b57cec5SDimitry Andric return NewTop; 6990b57cec5SDimitry Andric } 7000b57cec5SDimitry Andric 7010b57cec5SDimitry Andric using BaseType = std::vector<NodeTemplate>; 7020b57cec5SDimitry Andric BaseType::iterator begin() { return List.begin(); } 7030b57cec5SDimitry Andric BaseType::iterator end() { return List.end(); } 7040b57cec5SDimitry Andric BaseType::const_iterator begin() const { return List.begin(); } 7050b57cec5SDimitry Andric BaseType::const_iterator end() const { return List.end(); } 7060b57cec5SDimitry Andric 7070b57cec5SDimitry Andric BaseType List; 7080b57cec5SDimitry Andric 7090b57cec5SDimitry Andric LLVM_DUMP_METHOD 7100b57cec5SDimitry Andric void print(raw_ostream &OS, const SelectionDAG &G) const; 7110b57cec5SDimitry Andric }; 7120b57cec5SDimitry Andric } // namespace 7130b57cec5SDimitry Andric 7140b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7150b57cec5SDimitry Andric void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const { 7160b57cec5SDimitry Andric if (isValue()) { 7170b57cec5SDimitry Andric OpV.getNode()->print(OS, &G); 7180b57cec5SDimitry Andric return; 7190b57cec5SDimitry Andric } 7200b57cec5SDimitry Andric if (OpN & Invalid) { 7210b57cec5SDimitry Andric OS << "invalid"; 7220b57cec5SDimitry Andric return; 7230b57cec5SDimitry Andric } 7240b57cec5SDimitry Andric if (OpN & Undef) { 7250b57cec5SDimitry Andric OS << "undef"; 7260b57cec5SDimitry Andric return; 7270b57cec5SDimitry Andric } 7280b57cec5SDimitry Andric if ((OpN & Whole) != Whole) { 7290b57cec5SDimitry Andric assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf); 7300b57cec5SDimitry Andric if (OpN & LoHalf) 7310b57cec5SDimitry Andric OS << "lo "; 7320b57cec5SDimitry Andric else 7330b57cec5SDimitry Andric OS << "hi "; 7340b57cec5SDimitry Andric } 7350b57cec5SDimitry Andric OS << '#' << SignExtend32(OpN & Index, IndexBits); 7360b57cec5SDimitry Andric } 7370b57cec5SDimitry Andric 7380b57cec5SDimitry Andric void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const { 7390b57cec5SDimitry Andric const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo(); 7400b57cec5SDimitry Andric OS << format("%8s", EVT(Ty).getEVTString().c_str()) << " " 7410b57cec5SDimitry Andric << TII.getName(Opc); 7420b57cec5SDimitry Andric bool Comma = false; 7430b57cec5SDimitry Andric for (const auto &R : Ops) { 7440b57cec5SDimitry Andric if (Comma) 7450b57cec5SDimitry Andric OS << ','; 7460b57cec5SDimitry Andric Comma = true; 7470b57cec5SDimitry Andric OS << ' '; 7480b57cec5SDimitry Andric R.print(OS, G); 7490b57cec5SDimitry Andric } 7500b57cec5SDimitry Andric } 7510b57cec5SDimitry Andric 7520b57cec5SDimitry Andric void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const { 7530b57cec5SDimitry Andric OS << "Input node:\n"; 7540b57cec5SDimitry Andric #ifndef NDEBUG 7550b57cec5SDimitry Andric InpNode->dumpr(&G); 7560b57cec5SDimitry Andric #endif 7570b57cec5SDimitry Andric OS << "Result templates:\n"; 7580b57cec5SDimitry Andric for (unsigned I = 0, E = List.size(); I != E; ++I) { 7590b57cec5SDimitry Andric OS << '[' << I << "] "; 7600b57cec5SDimitry Andric List[I].print(OS, G); 7610b57cec5SDimitry Andric OS << '\n'; 7620b57cec5SDimitry Andric } 7630b57cec5SDimitry Andric } 7640b57cec5SDimitry Andric #endif 7650b57cec5SDimitry Andric 7660b57cec5SDimitry Andric namespace { 7670b57cec5SDimitry Andric struct ShuffleMask { 7680b57cec5SDimitry Andric ShuffleMask(ArrayRef<int> M) : Mask(M) { 76904eeddc0SDimitry Andric for (int M : Mask) { 7700b57cec5SDimitry Andric if (M == -1) 7710b57cec5SDimitry Andric continue; 7720b57cec5SDimitry Andric MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M); 7730b57cec5SDimitry Andric MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M); 7740b57cec5SDimitry Andric } 7750b57cec5SDimitry Andric } 7760b57cec5SDimitry Andric 7770b57cec5SDimitry Andric ArrayRef<int> Mask; 7780b57cec5SDimitry Andric int MinSrc = -1, MaxSrc = -1; 7790b57cec5SDimitry Andric 7800b57cec5SDimitry Andric ShuffleMask lo() const { 7810b57cec5SDimitry Andric size_t H = Mask.size()/2; 7820b57cec5SDimitry Andric return ShuffleMask(Mask.take_front(H)); 7830b57cec5SDimitry Andric } 7840b57cec5SDimitry Andric ShuffleMask hi() const { 7850b57cec5SDimitry Andric size_t H = Mask.size()/2; 7860b57cec5SDimitry Andric return ShuffleMask(Mask.take_back(H)); 7870b57cec5SDimitry Andric } 7880b57cec5SDimitry Andric 7890b57cec5SDimitry Andric void print(raw_ostream &OS) const { 7900b57cec5SDimitry Andric OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {"; 7910b57cec5SDimitry Andric for (int M : Mask) 7920b57cec5SDimitry Andric OS << ' ' << M; 7930b57cec5SDimitry Andric OS << " }"; 7940b57cec5SDimitry Andric } 7950b57cec5SDimitry Andric }; 796e8d8bef9SDimitry Andric 797e8d8bef9SDimitry Andric LLVM_ATTRIBUTE_UNUSED 798e8d8bef9SDimitry Andric raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) { 799e8d8bef9SDimitry Andric SM.print(OS); 800e8d8bef9SDimitry Andric return OS; 801e8d8bef9SDimitry Andric } 8020b57cec5SDimitry Andric } // namespace 8030b57cec5SDimitry Andric 804bdd1243dSDimitry Andric namespace shuffles { 805bdd1243dSDimitry Andric using MaskT = SmallVector<int, 128>; 806bdd1243dSDimitry Andric // Vdd = vshuffvdd(Vu, Vv, Rt) 807bdd1243dSDimitry Andric // Vdd = vdealvdd(Vu, Vv, Rt) 808bdd1243dSDimitry Andric // Vd = vpack(Vu, Vv, Size, TakeOdd) 809bdd1243dSDimitry Andric // Vd = vshuff(Vu, Vv, Size, TakeOdd) 810bdd1243dSDimitry Andric // Vd = vdeal(Vu, Vv, Size, TakeOdd) 811bdd1243dSDimitry Andric // Vd = vdealb4w(Vu, Vv) 812bdd1243dSDimitry Andric 813bdd1243dSDimitry Andric ArrayRef<int> lo(ArrayRef<int> Vuu) { return Vuu.take_front(Vuu.size() / 2); } 814bdd1243dSDimitry Andric ArrayRef<int> hi(ArrayRef<int> Vuu) { return Vuu.take_back(Vuu.size() / 2); } 815bdd1243dSDimitry Andric 816bdd1243dSDimitry Andric MaskT vshuffvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) { 817bdd1243dSDimitry Andric int Len = Vu.size(); 818bdd1243dSDimitry Andric MaskT Vdd(2 * Len); 819bdd1243dSDimitry Andric std::copy(Vv.begin(), Vv.end(), Vdd.begin()); 820bdd1243dSDimitry Andric std::copy(Vu.begin(), Vu.end(), Vdd.begin() + Len); 821bdd1243dSDimitry Andric 822bdd1243dSDimitry Andric auto Vd0 = MutableArrayRef<int>(Vdd).take_front(Len); 823bdd1243dSDimitry Andric auto Vd1 = MutableArrayRef<int>(Vdd).take_back(Len); 824bdd1243dSDimitry Andric 825bdd1243dSDimitry Andric for (int Offset = 1; Offset < Len; Offset *= 2) { 826bdd1243dSDimitry Andric if ((Rt & Offset) == 0) 827bdd1243dSDimitry Andric continue; 828bdd1243dSDimitry Andric for (int i = 0; i != Len; ++i) { 829bdd1243dSDimitry Andric if ((i & Offset) == 0) 830bdd1243dSDimitry Andric std::swap(Vd1[i], Vd0[i + Offset]); 831bdd1243dSDimitry Andric } 832bdd1243dSDimitry Andric } 833bdd1243dSDimitry Andric return Vdd; 834bdd1243dSDimitry Andric } 835bdd1243dSDimitry Andric 836bdd1243dSDimitry Andric MaskT vdealvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) { 837bdd1243dSDimitry Andric int Len = Vu.size(); 838bdd1243dSDimitry Andric MaskT Vdd(2 * Len); 839bdd1243dSDimitry Andric std::copy(Vv.begin(), Vv.end(), Vdd.begin()); 840bdd1243dSDimitry Andric std::copy(Vu.begin(), Vu.end(), Vdd.begin() + Len); 841bdd1243dSDimitry Andric 842bdd1243dSDimitry Andric auto Vd0 = MutableArrayRef<int>(Vdd).take_front(Len); 843bdd1243dSDimitry Andric auto Vd1 = MutableArrayRef<int>(Vdd).take_back(Len); 844bdd1243dSDimitry Andric 845bdd1243dSDimitry Andric for (int Offset = Len / 2; Offset > 0; Offset /= 2) { 846bdd1243dSDimitry Andric if ((Rt & Offset) == 0) 847bdd1243dSDimitry Andric continue; 848bdd1243dSDimitry Andric for (int i = 0; i != Len; ++i) { 849bdd1243dSDimitry Andric if ((i & Offset) == 0) 850bdd1243dSDimitry Andric std::swap(Vd1[i], Vd0[i + Offset]); 851bdd1243dSDimitry Andric } 852bdd1243dSDimitry Andric } 853bdd1243dSDimitry Andric return Vdd; 854bdd1243dSDimitry Andric } 855bdd1243dSDimitry Andric 856bdd1243dSDimitry Andric MaskT vpack(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { 857bdd1243dSDimitry Andric int Len = Vu.size(); 858bdd1243dSDimitry Andric MaskT Vd(Len); 859bdd1243dSDimitry Andric auto Odd = static_cast<int>(TakeOdd); 860bdd1243dSDimitry Andric for (int i = 0, e = Len / (2 * Size); i != e; ++i) { 861bdd1243dSDimitry Andric for (int b = 0; b != static_cast<int>(Size); ++b) { 862bdd1243dSDimitry Andric // clang-format off 863bdd1243dSDimitry Andric Vd[i * Size + b] = Vv[(2 * i + Odd) * Size + b]; 864bdd1243dSDimitry Andric Vd[i * Size + b + Len / 2] = Vu[(2 * i + Odd) * Size + b]; 865bdd1243dSDimitry Andric // clang-format on 866bdd1243dSDimitry Andric } 867bdd1243dSDimitry Andric } 868bdd1243dSDimitry Andric return Vd; 869bdd1243dSDimitry Andric } 870bdd1243dSDimitry Andric 871bdd1243dSDimitry Andric MaskT vshuff(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { 872bdd1243dSDimitry Andric int Len = Vu.size(); 873bdd1243dSDimitry Andric MaskT Vd(Len); 874bdd1243dSDimitry Andric auto Odd = static_cast<int>(TakeOdd); 875bdd1243dSDimitry Andric for (int i = 0, e = Len / (2 * Size); i != e; ++i) { 876bdd1243dSDimitry Andric for (int b = 0; b != static_cast<int>(Size); ++b) { 877bdd1243dSDimitry Andric Vd[(2 * i + 0) * Size + b] = Vv[(2 * i + Odd) * Size + b]; 878bdd1243dSDimitry Andric Vd[(2 * i + 1) * Size + b] = Vu[(2 * i + Odd) * Size + b]; 879bdd1243dSDimitry Andric } 880bdd1243dSDimitry Andric } 881bdd1243dSDimitry Andric return Vd; 882bdd1243dSDimitry Andric } 883bdd1243dSDimitry Andric 884bdd1243dSDimitry Andric MaskT vdeal(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) { 885bdd1243dSDimitry Andric int Len = Vu.size(); 886bdd1243dSDimitry Andric MaskT T = vdealvdd(Vu, Vv, Len - 2 * Size); 887bdd1243dSDimitry Andric return vpack(hi(T), lo(T), Size, TakeOdd); 888bdd1243dSDimitry Andric } 889bdd1243dSDimitry Andric 890bdd1243dSDimitry Andric MaskT vdealb4w(ArrayRef<int> Vu, ArrayRef<int> Vv) { 891bdd1243dSDimitry Andric int Len = Vu.size(); 892bdd1243dSDimitry Andric MaskT Vd(Len); 893bdd1243dSDimitry Andric for (int i = 0, e = Len / 4; i != e; ++i) { 894bdd1243dSDimitry Andric Vd[0 * (Len / 4) + i] = Vv[4 * i + 0]; 895bdd1243dSDimitry Andric Vd[1 * (Len / 4) + i] = Vv[4 * i + 2]; 896bdd1243dSDimitry Andric Vd[2 * (Len / 4) + i] = Vu[4 * i + 0]; 897bdd1243dSDimitry Andric Vd[3 * (Len / 4) + i] = Vu[4 * i + 2]; 898bdd1243dSDimitry Andric } 899bdd1243dSDimitry Andric return Vd; 900bdd1243dSDimitry Andric } 901bdd1243dSDimitry Andric 902bdd1243dSDimitry Andric template <typename ShuffFunc, typename... OptArgs> 903bdd1243dSDimitry Andric auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT { 904bdd1243dSDimitry Andric MaskT Vu(Length), Vv(Length); 905bdd1243dSDimitry Andric std::iota(Vu.begin(), Vu.end(), Length); // High 906bdd1243dSDimitry Andric std::iota(Vv.begin(), Vv.end(), 0); // Low 907bdd1243dSDimitry Andric return S(Vu, Vv, args...); 908bdd1243dSDimitry Andric } 909bdd1243dSDimitry Andric 910bdd1243dSDimitry Andric } // namespace shuffles 911bdd1243dSDimitry Andric 9120b57cec5SDimitry Andric // -------------------------------------------------------------------- 9130b57cec5SDimitry Andric // The HvxSelector class. 9140b57cec5SDimitry Andric 9150b57cec5SDimitry Andric static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) { 9160b57cec5SDimitry Andric return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo()); 9170b57cec5SDimitry Andric } 9180b57cec5SDimitry Andric static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) { 91981ad6265SDimitry Andric return G.getSubtarget<HexagonSubtarget>(); 9200b57cec5SDimitry Andric } 9210b57cec5SDimitry Andric 9220b57cec5SDimitry Andric namespace llvm { 9230b57cec5SDimitry Andric struct HvxSelector { 9240b57cec5SDimitry Andric const HexagonTargetLowering &Lower; 9250b57cec5SDimitry Andric HexagonDAGToDAGISel &ISel; 9260b57cec5SDimitry Andric SelectionDAG &DAG; 9270b57cec5SDimitry Andric const HexagonSubtarget &HST; 9280b57cec5SDimitry Andric const unsigned HwLen; 9290b57cec5SDimitry Andric 9300b57cec5SDimitry Andric HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G) 9310b57cec5SDimitry Andric : Lower(getHexagonLowering(G)), ISel(HS), DAG(G), 9320b57cec5SDimitry Andric HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {} 9330b57cec5SDimitry Andric 9340b57cec5SDimitry Andric MVT getSingleVT(MVT ElemTy) const { 935fe6060f1SDimitry Andric assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates"); 9360b57cec5SDimitry Andric unsigned NumElems = HwLen / (ElemTy.getSizeInBits() / 8); 9370b57cec5SDimitry Andric return MVT::getVectorVT(ElemTy, NumElems); 9380b57cec5SDimitry Andric } 9390b57cec5SDimitry Andric 9400b57cec5SDimitry Andric MVT getPairVT(MVT ElemTy) const { 941fe6060f1SDimitry Andric assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs. 9420b57cec5SDimitry Andric unsigned NumElems = (2 * HwLen) / (ElemTy.getSizeInBits() / 8); 9430b57cec5SDimitry Andric return MVT::getVectorVT(ElemTy, NumElems); 9440b57cec5SDimitry Andric } 9450b57cec5SDimitry Andric 946fe6060f1SDimitry Andric MVT getBoolVT() const { 947fe6060f1SDimitry Andric // Return HwLen x i1. 948fe6060f1SDimitry Andric return MVT::getVectorVT(MVT::i1, HwLen); 949fe6060f1SDimitry Andric } 950fe6060f1SDimitry Andric 951bdd1243dSDimitry Andric void selectExtractSubvector(SDNode *N); 9520b57cec5SDimitry Andric void selectShuffle(SDNode *N); 9530b57cec5SDimitry Andric void selectRor(SDNode *N); 9540b57cec5SDimitry Andric void selectVAlign(SDNode *N); 9550b57cec5SDimitry Andric 956bdd1243dSDimitry Andric static SmallVector<uint32_t, 8> getPerfectCompletions(ShuffleMask SM, 957bdd1243dSDimitry Andric unsigned Width); 958bdd1243dSDimitry Andric static SmallVector<uint32_t, 8> completeToPerfect( 959bdd1243dSDimitry Andric ArrayRef<uint32_t> Completions, unsigned Width); 960bdd1243dSDimitry Andric static std::optional<int> rotationDistance(ShuffleMask SM, unsigned WrapAt); 961bdd1243dSDimitry Andric 9620b57cec5SDimitry Andric private: 963e8d8bef9SDimitry Andric void select(SDNode *ISelN); 9640b57cec5SDimitry Andric void materialize(const ResultStack &Results); 9650b57cec5SDimitry Andric 966fe6060f1SDimitry Andric SDValue getConst32(int Val, const SDLoc &dl); 9670b57cec5SDimitry Andric SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl); 9680b57cec5SDimitry Andric 9690b57cec5SDimitry Andric enum : unsigned { 9700b57cec5SDimitry Andric None, 9710b57cec5SDimitry Andric PackMux, 9720b57cec5SDimitry Andric }; 973fe6060f1SDimitry Andric OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results); 974bdd1243dSDimitry Andric OpRef funnels(OpRef Va, OpRef Vb, int Amount, ResultStack &Results); 975bdd1243dSDimitry Andric 9760b57cec5SDimitry Andric OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 9770b57cec5SDimitry Andric MutableArrayRef<int> NewMask, unsigned Options = None); 9780b57cec5SDimitry Andric OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results, 9790b57cec5SDimitry Andric MutableArrayRef<int> NewMask); 9800b57cec5SDimitry Andric OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 9810b57cec5SDimitry Andric ResultStack &Results); 9820b57cec5SDimitry Andric OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 9830b57cec5SDimitry Andric ResultStack &Results); 9840b57cec5SDimitry Andric 9850b57cec5SDimitry Andric OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results); 9860b57cec5SDimitry Andric OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 9870b57cec5SDimitry Andric OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results); 9880b57cec5SDimitry Andric OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 9890b57cec5SDimitry Andric 9900b57cec5SDimitry Andric OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results); 9910b57cec5SDimitry Andric OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results); 9920b57cec5SDimitry Andric OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results); 9930b57cec5SDimitry Andric OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results); 9940b57cec5SDimitry Andric 9950b57cec5SDimitry Andric bool selectVectorConstants(SDNode *N); 9960b57cec5SDimitry Andric bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy, 9970b57cec5SDimitry Andric SDValue Va, SDValue Vb, SDNode *N); 9980b57cec5SDimitry Andric }; 999bdd1243dSDimitry Andric } // namespace llvm 10000b57cec5SDimitry Andric 10010b57cec5SDimitry Andric static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL, 10020b57cec5SDimitry Andric MutableArrayRef<int> MaskR) { 10030b57cec5SDimitry Andric unsigned VecLen = Mask.size(); 10040b57cec5SDimitry Andric assert(MaskL.size() == VecLen && MaskR.size() == VecLen); 10050b57cec5SDimitry Andric for (unsigned I = 0; I != VecLen; ++I) { 10060b57cec5SDimitry Andric int M = Mask[I]; 10070b57cec5SDimitry Andric if (M < 0) { 10080b57cec5SDimitry Andric MaskL[I] = MaskR[I] = -1; 10090b57cec5SDimitry Andric } else if (unsigned(M) < VecLen) { 10100b57cec5SDimitry Andric MaskL[I] = M; 10110b57cec5SDimitry Andric MaskR[I] = -1; 10120b57cec5SDimitry Andric } else { 10130b57cec5SDimitry Andric MaskL[I] = -1; 10140b57cec5SDimitry Andric MaskR[I] = M-VecLen; 10150b57cec5SDimitry Andric } 10160b57cec5SDimitry Andric } 10170b57cec5SDimitry Andric } 10180b57cec5SDimitry Andric 10190b57cec5SDimitry Andric static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc, 10200b57cec5SDimitry Andric unsigned MaxLen) { 10210b57cec5SDimitry Andric assert(A.size() > 0 && A.size() >= MaxLen); 10220b57cec5SDimitry Andric int F = A[0]; 10230b57cec5SDimitry Andric int E = F; 10240b57cec5SDimitry Andric for (unsigned I = 1; I != MaxLen; ++I) { 10250b57cec5SDimitry Andric if (A[I] - E != Inc) 10260b57cec5SDimitry Andric return { F, I }; 10270b57cec5SDimitry Andric E = A[I]; 10280b57cec5SDimitry Andric } 10290b57cec5SDimitry Andric return { F, MaxLen }; 10300b57cec5SDimitry Andric } 10310b57cec5SDimitry Andric 10320b57cec5SDimitry Andric static bool isUndef(ArrayRef<int> Mask) { 10330b57cec5SDimitry Andric for (int Idx : Mask) 10340b57cec5SDimitry Andric if (Idx != -1) 10350b57cec5SDimitry Andric return false; 10360b57cec5SDimitry Andric return true; 10370b57cec5SDimitry Andric } 10380b57cec5SDimitry Andric 10390b57cec5SDimitry Andric static bool isIdentity(ArrayRef<int> Mask) { 10400b57cec5SDimitry Andric for (int I = 0, E = Mask.size(); I != E; ++I) { 10410b57cec5SDimitry Andric int M = Mask[I]; 10420b57cec5SDimitry Andric if (M >= 0 && M != I) 10430b57cec5SDimitry Andric return false; 10440b57cec5SDimitry Andric } 10450b57cec5SDimitry Andric return true; 10460b57cec5SDimitry Andric } 10470b57cec5SDimitry Andric 1048bdd1243dSDimitry Andric static bool isLowHalfOnly(ArrayRef<int> Mask) { 1049bdd1243dSDimitry Andric int L = Mask.size(); 1050bdd1243dSDimitry Andric assert(L % 2 == 0); 1051bdd1243dSDimitry Andric // Check if the second half of the mask is all-undef. 1052bdd1243dSDimitry Andric return llvm::all_of(Mask.drop_front(L / 2), [](int M) { return M < 0; }); 1053bdd1243dSDimitry Andric } 1054bdd1243dSDimitry Andric 1055fe6060f1SDimitry Andric static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM, 1056fe6060f1SDimitry Andric unsigned SegLen) { 1057fe6060f1SDimitry Andric assert(isPowerOf2_32(SegLen)); 1058fe6060f1SDimitry Andric SmallVector<unsigned, 4> SegList; 1059fe6060f1SDimitry Andric if (SM.MaxSrc == -1) 1060fe6060f1SDimitry Andric return SegList; 1061fe6060f1SDimitry Andric 1062fe6060f1SDimitry Andric unsigned Shift = Log2_32(SegLen); 1063fe6060f1SDimitry Andric BitVector Segs(alignTo(SM.MaxSrc + 1, SegLen) >> Shift); 1064fe6060f1SDimitry Andric 106504eeddc0SDimitry Andric for (int M : SM.Mask) { 1066fe6060f1SDimitry Andric if (M >= 0) 1067fe6060f1SDimitry Andric Segs.set(M >> Shift); 1068fe6060f1SDimitry Andric } 1069fe6060f1SDimitry Andric 1070fe6060f1SDimitry Andric for (unsigned B : Segs.set_bits()) 1071fe6060f1SDimitry Andric SegList.push_back(B); 1072fe6060f1SDimitry Andric return SegList; 1073fe6060f1SDimitry Andric } 1074fe6060f1SDimitry Andric 1075fe6060f1SDimitry Andric static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM, 1076fe6060f1SDimitry Andric unsigned SegLen) { 1077fe6060f1SDimitry Andric // Calculate the layout of the output segments in terms of the input 1078fe6060f1SDimitry Andric // segments. 1079fe6060f1SDimitry Andric // For example [1,3,1,0] means that the output consists of 4 output 1080fe6060f1SDimitry Andric // segments, where the first output segment has only elements of the 1081fe6060f1SDimitry Andric // input segment at index 1. The next output segment only has elements 1082fe6060f1SDimitry Andric // of the input segment 3, etc. 1083fe6060f1SDimitry Andric // If an output segment only has undef elements, the value will be ~0u. 1084fe6060f1SDimitry Andric // If an output segment has elements from more than one input segment, 1085fe6060f1SDimitry Andric // the corresponding value will be ~1u. 1086fe6060f1SDimitry Andric unsigned MaskLen = SM.Mask.size(); 1087fe6060f1SDimitry Andric assert(MaskLen % SegLen == 0); 1088fe6060f1SDimitry Andric SmallVector<unsigned, 4> Map(MaskLen / SegLen); 1089fe6060f1SDimitry Andric 1090fe6060f1SDimitry Andric for (int S = 0, E = Map.size(); S != E; ++S) { 1091fe6060f1SDimitry Andric unsigned Idx = ~0u; 1092fe6060f1SDimitry Andric for (int I = 0; I != static_cast<int>(SegLen); ++I) { 1093fe6060f1SDimitry Andric int M = SM.Mask[S*SegLen + I]; 1094fe6060f1SDimitry Andric if (M < 0) 1095fe6060f1SDimitry Andric continue; 1096fe6060f1SDimitry Andric unsigned G = M / SegLen; // Input segment of this element. 1097fe6060f1SDimitry Andric if (Idx == ~0u) { 1098fe6060f1SDimitry Andric Idx = G; 1099fe6060f1SDimitry Andric } else if (Idx != G) { 1100fe6060f1SDimitry Andric Idx = ~1u; 1101fe6060f1SDimitry Andric break; 1102fe6060f1SDimitry Andric } 1103fe6060f1SDimitry Andric } 1104fe6060f1SDimitry Andric Map[S] = Idx; 1105fe6060f1SDimitry Andric } 1106fe6060f1SDimitry Andric 1107fe6060f1SDimitry Andric return Map; 1108fe6060f1SDimitry Andric } 1109fe6060f1SDimitry Andric 1110fe6060f1SDimitry Andric static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap, 1111fe6060f1SDimitry Andric unsigned SegLen, MutableArrayRef<int> PackedMask) { 1112fe6060f1SDimitry Andric SmallVector<unsigned, 4> InvMap; 1113fe6060f1SDimitry Andric for (int I = OutSegMap.size() - 1; I >= 0; --I) { 1114fe6060f1SDimitry Andric unsigned S = OutSegMap[I]; 1115fe6060f1SDimitry Andric assert(S != ~0u && "Unexpected undef"); 1116fe6060f1SDimitry Andric assert(S != ~1u && "Unexpected multi"); 1117fe6060f1SDimitry Andric if (InvMap.size() <= S) 1118fe6060f1SDimitry Andric InvMap.resize(S+1); 1119fe6060f1SDimitry Andric InvMap[S] = I; 1120fe6060f1SDimitry Andric } 1121fe6060f1SDimitry Andric 1122fe6060f1SDimitry Andric unsigned Shift = Log2_32(SegLen); 1123fe6060f1SDimitry Andric for (int I = 0, E = Mask.size(); I != E; ++I) { 1124fe6060f1SDimitry Andric int M = Mask[I]; 1125fe6060f1SDimitry Andric if (M >= 0) { 1126fe6060f1SDimitry Andric int OutIdx = InvMap[M >> Shift]; 1127fe6060f1SDimitry Andric M = (M & (SegLen-1)) + SegLen*OutIdx; 1128fe6060f1SDimitry Andric } 1129fe6060f1SDimitry Andric PackedMask[I] = M; 1130fe6060f1SDimitry Andric } 1131fe6060f1SDimitry Andric } 1132fe6060f1SDimitry Andric 11330b57cec5SDimitry Andric bool HvxSelector::selectVectorConstants(SDNode *N) { 11340b57cec5SDimitry Andric // Constant vectors are generated as loads from constant pools or as 11350b57cec5SDimitry Andric // splats of a constant value. Since they are generated during the 11360b57cec5SDimitry Andric // selection process, the main selection algorithm is not aware of them. 11370b57cec5SDimitry Andric // Select them directly here. 11380b57cec5SDimitry Andric SmallVector<SDNode*,4> Nodes; 11390b57cec5SDimitry Andric SetVector<SDNode*> WorkQ; 11400b57cec5SDimitry Andric 11410b57cec5SDimitry Andric // The DAG can change (due to CSE) during selection, so cache all the 11420b57cec5SDimitry Andric // unselected nodes first to avoid traversing a mutating DAG. 11430b57cec5SDimitry Andric WorkQ.insert(N); 11440b57cec5SDimitry Andric for (unsigned i = 0; i != WorkQ.size(); ++i) { 11450b57cec5SDimitry Andric SDNode *W = WorkQ[i]; 1146e8d8bef9SDimitry Andric if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL) 11470b57cec5SDimitry Andric Nodes.push_back(W); 11480b57cec5SDimitry Andric for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j) 11490b57cec5SDimitry Andric WorkQ.insert(W->getOperand(j).getNode()); 11500b57cec5SDimitry Andric } 11510b57cec5SDimitry Andric 11520b57cec5SDimitry Andric for (SDNode *L : Nodes) 1153e8d8bef9SDimitry Andric select(L); 11540b57cec5SDimitry Andric 11550b57cec5SDimitry Andric return !Nodes.empty(); 11560b57cec5SDimitry Andric } 11570b57cec5SDimitry Andric 11580b57cec5SDimitry Andric void HvxSelector::materialize(const ResultStack &Results) { 11590b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", { 11600b57cec5SDimitry Andric dbgs() << "Materializing\n"; 11610b57cec5SDimitry Andric Results.print(dbgs(), DAG); 11620b57cec5SDimitry Andric }); 11630b57cec5SDimitry Andric if (Results.empty()) 11640b57cec5SDimitry Andric return; 11650b57cec5SDimitry Andric const SDLoc &dl(Results.InpNode); 11660b57cec5SDimitry Andric std::vector<SDValue> Output; 11670b57cec5SDimitry Andric 11680b57cec5SDimitry Andric for (unsigned I = 0, E = Results.size(); I != E; ++I) { 11690b57cec5SDimitry Andric const NodeTemplate &Node = Results[I]; 11700b57cec5SDimitry Andric std::vector<SDValue> Ops; 11710b57cec5SDimitry Andric for (const OpRef &R : Node.Ops) { 11720b57cec5SDimitry Andric assert(R.isValid()); 11730b57cec5SDimitry Andric if (R.isValue()) { 11740b57cec5SDimitry Andric Ops.push_back(R.OpV); 11750b57cec5SDimitry Andric continue; 11760b57cec5SDimitry Andric } 11770b57cec5SDimitry Andric if (R.OpN & OpRef::Undef) { 11780b57cec5SDimitry Andric MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index); 11790b57cec5SDimitry Andric Ops.push_back(ISel.selectUndef(dl, MVT(SVT))); 11800b57cec5SDimitry Andric continue; 11810b57cec5SDimitry Andric } 11820b57cec5SDimitry Andric // R is an index of a result. 11830b57cec5SDimitry Andric unsigned Part = R.OpN & OpRef::Whole; 11840b57cec5SDimitry Andric int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits); 11850b57cec5SDimitry Andric if (Idx < 0) 11860b57cec5SDimitry Andric Idx += I; 11870b57cec5SDimitry Andric assert(Idx >= 0 && unsigned(Idx) < Output.size()); 11880b57cec5SDimitry Andric SDValue Op = Output[Idx]; 11890b57cec5SDimitry Andric MVT OpTy = Op.getValueType().getSimpleVT(); 11900b57cec5SDimitry Andric if (Part != OpRef::Whole) { 11910b57cec5SDimitry Andric assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf); 11920b57cec5SDimitry Andric MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(), 11930b57cec5SDimitry Andric OpTy.getVectorNumElements()/2); 11940b57cec5SDimitry Andric unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo 11950b57cec5SDimitry Andric : Hexagon::vsub_hi; 11960b57cec5SDimitry Andric Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op); 11970b57cec5SDimitry Andric } 11980b57cec5SDimitry Andric Ops.push_back(Op); 11990b57cec5SDimitry Andric } // for (Node : Results) 12000b57cec5SDimitry Andric 12010b57cec5SDimitry Andric assert(Node.Ty != MVT::Other); 12020b57cec5SDimitry Andric SDNode *ResN = (Node.Opc == TargetOpcode::COPY) 12030b57cec5SDimitry Andric ? Ops.front().getNode() 12040b57cec5SDimitry Andric : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops); 12050b57cec5SDimitry Andric Output.push_back(SDValue(ResN, 0)); 12060b57cec5SDimitry Andric } 12070b57cec5SDimitry Andric 12080b57cec5SDimitry Andric SDNode *OutN = Output.back().getNode(); 12090b57cec5SDimitry Andric SDNode *InpN = Results.InpNode; 12100b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", { 12110b57cec5SDimitry Andric dbgs() << "Generated node:\n"; 12120b57cec5SDimitry Andric OutN->dumpr(&DAG); 12130b57cec5SDimitry Andric }); 12140b57cec5SDimitry Andric 12150b57cec5SDimitry Andric ISel.ReplaceNode(InpN, OutN); 12160b57cec5SDimitry Andric selectVectorConstants(OutN); 12170b57cec5SDimitry Andric DAG.RemoveDeadNodes(); 12180b57cec5SDimitry Andric } 12190b57cec5SDimitry Andric 1220fe6060f1SDimitry Andric OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) { 12210b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 12220b57cec5SDimitry Andric const SDLoc &dl(Results.InpNode); 12230b57cec5SDimitry Andric Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), { 1224fe6060f1SDimitry Andric getConst32(Hexagon::HvxWRRegClassID, dl), 1225fe6060f1SDimitry Andric Lo, getConst32(Hexagon::vsub_lo, dl), 1226fe6060f1SDimitry Andric Hi, getConst32(Hexagon::vsub_hi, dl), 12270b57cec5SDimitry Andric }); 12280b57cec5SDimitry Andric return OpRef::res(Results.top()); 12290b57cec5SDimitry Andric } 12300b57cec5SDimitry Andric 1231bdd1243dSDimitry Andric OpRef HvxSelector::funnels(OpRef Va, OpRef Vb, int Amount, 1232bdd1243dSDimitry Andric ResultStack &Results) { 1233bdd1243dSDimitry Andric // Do a funnel shift towards the low end (shift right) by Amount bytes. 1234bdd1243dSDimitry Andric // If Amount < 0, treat it as shift left, i.e. do a shift right by 1235bdd1243dSDimitry Andric // Amount + HwLen. 1236bdd1243dSDimitry Andric auto VecLen = static_cast<int>(HwLen); 1237bdd1243dSDimitry Andric 1238bdd1243dSDimitry Andric if (Amount == 0) 1239bdd1243dSDimitry Andric return Va; 1240bdd1243dSDimitry Andric if (Amount == VecLen) 1241bdd1243dSDimitry Andric return Vb; 1242bdd1243dSDimitry Andric 1243bdd1243dSDimitry Andric MVT Ty = getSingleVT(MVT::i8); 1244bdd1243dSDimitry Andric const SDLoc &dl(Results.InpNode); 1245bdd1243dSDimitry Andric 1246bdd1243dSDimitry Andric if (Amount < 0) 1247bdd1243dSDimitry Andric Amount += VecLen; 1248bdd1243dSDimitry Andric if (Amount > VecLen) { 1249bdd1243dSDimitry Andric Amount -= VecLen; 1250bdd1243dSDimitry Andric std::swap(Va, Vb); 1251bdd1243dSDimitry Andric } 1252bdd1243dSDimitry Andric 1253bdd1243dSDimitry Andric if (isUInt<3>(Amount)) { 1254bdd1243dSDimitry Andric SDValue A = getConst32(Amount, dl); 1255bdd1243dSDimitry Andric Results.push(Hexagon::V6_valignbi, Ty, {Vb, Va, A}); 1256bdd1243dSDimitry Andric } else if (isUInt<3>(VecLen - Amount)) { 1257bdd1243dSDimitry Andric SDValue A = getConst32(VecLen - Amount, dl); 1258bdd1243dSDimitry Andric Results.push(Hexagon::V6_vlalignbi, Ty, {Vb, Va, A}); 1259bdd1243dSDimitry Andric } else { 1260bdd1243dSDimitry Andric SDValue A = getConst32(Amount, dl); 1261bdd1243dSDimitry Andric Results.push(Hexagon::A2_tfrsi, Ty, {A}); 1262bdd1243dSDimitry Andric Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(-1)}); 1263bdd1243dSDimitry Andric } 1264bdd1243dSDimitry Andric return OpRef::res(Results.top()); 1265bdd1243dSDimitry Andric } 1266bdd1243dSDimitry Andric 1267fe6060f1SDimitry Andric // Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb, 1268fe6060f1SDimitry Andric // pack these halves into a single vector, and remap SM into NewMask to use 1269fe6060f1SDimitry Andric // the new vector instead. 12700b57cec5SDimitry Andric OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb, 12710b57cec5SDimitry Andric ResultStack &Results, MutableArrayRef<int> NewMask, 12720b57cec5SDimitry Andric unsigned Options) { 12730b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 12740b57cec5SDimitry Andric if (!Va.isValid() || !Vb.isValid()) 12750b57cec5SDimitry Andric return OpRef::fail(); 12760b57cec5SDimitry Andric 1277bdd1243dSDimitry Andric if (Vb.isUndef()) { 1278bdd1243dSDimitry Andric std::copy(SM.Mask.begin(), SM.Mask.end(), NewMask.begin()); 1279bdd1243dSDimitry Andric return Va; 1280bdd1243dSDimitry Andric } 1281bdd1243dSDimitry Andric if (Va.isUndef()) { 1282bdd1243dSDimitry Andric std::copy(SM.Mask.begin(), SM.Mask.end(), NewMask.begin()); 1283bdd1243dSDimitry Andric ShuffleVectorSDNode::commuteMask(NewMask); 1284bdd1243dSDimitry Andric return Vb; 1285bdd1243dSDimitry Andric } 1286bdd1243dSDimitry Andric 12870b57cec5SDimitry Andric MVT Ty = getSingleVT(MVT::i8); 1288fe6060f1SDimitry Andric MVT PairTy = getPairVT(MVT::i8); 1289fe6060f1SDimitry Andric OpRef Inp[2] = {Va, Vb}; 1290fe6060f1SDimitry Andric unsigned VecLen = SM.Mask.size(); 12910b57cec5SDimitry Andric 1292fe6060f1SDimitry Andric auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty, 1293fe6060f1SDimitry Andric ResultStack &Results) { 1294fe6060f1SDimitry Andric if (Amt == 0) 1295fe6060f1SDimitry Andric return Lo; 12960b57cec5SDimitry Andric const SDLoc &dl(Results.InpNode); 1297fe6060f1SDimitry Andric if (isUInt<3>(Amt) || isUInt<3>(HwLen - Amt)) { 1298fe6060f1SDimitry Andric bool IsRight = isUInt<3>(Amt); // Right align. 1299fe6060f1SDimitry Andric SDValue S = getConst32(IsRight ? Amt : HwLen - Amt, dl); 1300fe6060f1SDimitry Andric unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi; 1301fe6060f1SDimitry Andric Results.push(Opc, Ty, {Hi, Lo, S}); 13020b57cec5SDimitry Andric return OpRef::res(Results.top()); 13030b57cec5SDimitry Andric } 1304fe6060f1SDimitry Andric Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(Amt, dl)}); 1305fe6060f1SDimitry Andric OpRef A = OpRef::res(Results.top()); 1306fe6060f1SDimitry Andric Results.push(Hexagon::V6_valignb, Ty, {Hi, Lo, A}); 1307fe6060f1SDimitry Andric return OpRef::res(Results.top()); 1308fe6060f1SDimitry Andric }; 1309fe6060f1SDimitry Andric 1310fe6060f1SDimitry Andric // Segment is a vector half. 1311fe6060f1SDimitry Andric unsigned SegLen = HwLen / 2; 1312fe6060f1SDimitry Andric 1313fe6060f1SDimitry Andric // Check if we can shuffle vector halves around to get the used elements 1314fe6060f1SDimitry Andric // into a single vector. 1315bdd1243dSDimitry Andric shuffles::MaskT MaskH(SM.Mask); 1316fe6060f1SDimitry Andric SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, SegLen); 1317fe6060f1SDimitry Andric unsigned SegCount = SegList.size(); 1318fe6060f1SDimitry Andric SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM.Mask, SegLen); 1319fe6060f1SDimitry Andric 1320fe6060f1SDimitry Andric if (SegList.empty()) 1321fe6060f1SDimitry Andric return OpRef::undef(Ty); 1322fe6060f1SDimitry Andric 1323fe6060f1SDimitry Andric // NOTE: 1324fe6060f1SDimitry Andric // In the following part of the function, where the segments are rearranged, 1325fe6060f1SDimitry Andric // the shuffle mask SM can be of any length that is a multiple of a vector 1326fe6060f1SDimitry Andric // (i.e. a multiple of 2*SegLen), and non-zero. 1327fe6060f1SDimitry Andric // The output segment map is computed, and it may have any even number of 1328fe6060f1SDimitry Andric // entries, but the rearrangement of input segments will be done based only 1329fe6060f1SDimitry Andric // on the first two (non-undef) entries in the segment map. 1330fe6060f1SDimitry Andric // For example, if the output map is 3, 1, 1, 3 (it can have at most two 1331fe6060f1SDimitry Andric // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into 1332fe6060f1SDimitry Andric // a single vector V = 3:1. The output mask will then be updated to use 1333fe6060f1SDimitry Andric // seg(0,V), seg(1,V), seg(1,V), seg(0,V). 1334fe6060f1SDimitry Andric // 1335fe6060f1SDimitry Andric // Picking the segments based on the output map is an optimization. For 1336fe6060f1SDimitry Andric // correctness it is only necessary that Seg0 and Seg1 are the two input 1337fe6060f1SDimitry Andric // segments that are used in the output. 1338fe6060f1SDimitry Andric 1339fe6060f1SDimitry Andric unsigned Seg0 = ~0u, Seg1 = ~0u; 1340cb14a3feSDimitry Andric for (unsigned X : SegMap) { 1341fe6060f1SDimitry Andric if (X == ~0u) 1342fe6060f1SDimitry Andric continue; 1343fe6060f1SDimitry Andric if (Seg0 == ~0u) 1344fe6060f1SDimitry Andric Seg0 = X; 1345fe6060f1SDimitry Andric else if (Seg1 != ~0u) 1346fe6060f1SDimitry Andric break; 1347fe6060f1SDimitry Andric if (X == ~1u || X != Seg0) 1348fe6060f1SDimitry Andric Seg1 = X; 1349fe6060f1SDimitry Andric } 1350fe6060f1SDimitry Andric 1351fe6060f1SDimitry Andric if (SegCount == 1) { 1352fe6060f1SDimitry Andric unsigned SrcOp = SegList[0] / 2; 1353fe6060f1SDimitry Andric for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1354fe6060f1SDimitry Andric int M = SM.Mask[I]; 1355fe6060f1SDimitry Andric if (M >= 0) { 1356fe6060f1SDimitry Andric M -= SrcOp * HwLen; 1357fe6060f1SDimitry Andric assert(M >= 0); 1358fe6060f1SDimitry Andric } 1359fe6060f1SDimitry Andric NewMask[I] = M; 1360fe6060f1SDimitry Andric } 1361fe6060f1SDimitry Andric return Inp[SrcOp]; 1362fe6060f1SDimitry Andric } 1363fe6060f1SDimitry Andric 1364fe6060f1SDimitry Andric if (SegCount == 2) { 1365fe6060f1SDimitry Andric // Seg0 should not be undef here: this would imply a SegList 1366fe6060f1SDimitry Andric // with <= 1 elements, which was checked earlier. 1367fe6060f1SDimitry Andric assert(Seg0 != ~0u); 1368fe6060f1SDimitry Andric 1369fe6060f1SDimitry Andric // If Seg0 or Seg1 are "multi-defined", pick them from the input 1370fe6060f1SDimitry Andric // segment list instead. 1371fe6060f1SDimitry Andric if (Seg0 == ~1u || Seg1 == ~1u) { 1372fe6060f1SDimitry Andric if (Seg0 == Seg1) { 1373fe6060f1SDimitry Andric Seg0 = SegList[0]; 1374fe6060f1SDimitry Andric Seg1 = SegList[1]; 1375fe6060f1SDimitry Andric } else if (Seg0 == ~1u) { 1376fe6060f1SDimitry Andric Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1]; 1377fe6060f1SDimitry Andric } else { 13784824e7fdSDimitry Andric assert(Seg1 == ~1u); 1379fe6060f1SDimitry Andric Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1]; 1380fe6060f1SDimitry Andric } 1381fe6060f1SDimitry Andric } 1382fe6060f1SDimitry Andric assert(Seg0 != ~1u && Seg1 != ~1u); 1383fe6060f1SDimitry Andric 1384fe6060f1SDimitry Andric assert(Seg0 != Seg1 && "Expecting different segments"); 1385fe6060f1SDimitry Andric const SDLoc &dl(Results.InpNode); 1386fe6060f1SDimitry Andric Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(SegLen, dl)}); 1387fe6060f1SDimitry Andric OpRef HL = OpRef::res(Results.top()); 1388fe6060f1SDimitry Andric 1389fe6060f1SDimitry Andric // Va = AB, Vb = CD 1390fe6060f1SDimitry Andric 1391fe6060f1SDimitry Andric if (Seg0 / 2 == Seg1 / 2) { 1392fe6060f1SDimitry Andric // Same input vector. 1393fe6060f1SDimitry Andric Va = Inp[Seg0 / 2]; 1394fe6060f1SDimitry Andric if (Seg0 > Seg1) { 1395fe6060f1SDimitry Andric // Swap halves. 1396fe6060f1SDimitry Andric Results.push(Hexagon::V6_vror, Ty, {Inp[Seg0 / 2], HL}); 1397fe6060f1SDimitry Andric Va = OpRef::res(Results.top()); 1398fe6060f1SDimitry Andric } 1399fe6060f1SDimitry Andric packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1400fe6060f1SDimitry Andric } else if (Seg0 % 2 == Seg1 % 2) { 1401fe6060f1SDimitry Andric // Picking AC, BD, CA, or DB. 1402fe6060f1SDimitry Andric // vshuff(CD,AB,HL) -> BD:AC 1403fe6060f1SDimitry Andric // vshuff(AB,CD,HL) -> DB:CA 1404fe6060f1SDimitry Andric auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(Vb, Va) // AC or BD 1405fe6060f1SDimitry Andric : std::make_pair(Va, Vb); // CA or DB 1406fe6060f1SDimitry Andric Results.push(Hexagon::V6_vshuffvdd, PairTy, {Vs.first, Vs.second, HL}); 1407fe6060f1SDimitry Andric OpRef P = OpRef::res(Results.top()); 1408fe6060f1SDimitry Andric Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(P) : OpRef::hi(P); 1409fe6060f1SDimitry Andric packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1410fe6060f1SDimitry Andric } else { 1411fe6060f1SDimitry Andric // Picking AD, BC, CB, or DA. 1412fe6060f1SDimitry Andric if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) { 1413fe6060f1SDimitry Andric // AD or BC: this can be done using vmux. 1414fe6060f1SDimitry Andric // Q = V6_pred_scalar2 SegLen 1415fe6060f1SDimitry Andric // V = V6_vmux Q, (Va, Vb) or (Vb, Va) 1416fe6060f1SDimitry Andric Results.push(Hexagon::V6_pred_scalar2, getBoolVT(), {HL}); 1417fe6060f1SDimitry Andric OpRef Qt = OpRef::res(Results.top()); 1418fe6060f1SDimitry Andric auto Vs = (Seg0 == 0) ? std::make_pair(Va, Vb) // AD 1419fe6060f1SDimitry Andric : std::make_pair(Vb, Va); // CB 1420fe6060f1SDimitry Andric Results.push(Hexagon::V6_vmux, Ty, {Qt, Vs.first, Vs.second}); 1421fe6060f1SDimitry Andric Va = OpRef::res(Results.top()); 1422fe6060f1SDimitry Andric packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH); 1423fe6060f1SDimitry Andric } else { 1424fe6060f1SDimitry Andric // BC or DA: this could be done via valign by SegLen. 1425fe6060f1SDimitry Andric // Do nothing here, because valign (if possible) will be generated 14264824e7fdSDimitry Andric // later on (make sure the Seg0 values are as expected). 1427fe6060f1SDimitry Andric assert(Seg0 == 1 || Seg0 == 3); 1428fe6060f1SDimitry Andric } 1429fe6060f1SDimitry Andric } 1430fe6060f1SDimitry Andric } 1431fe6060f1SDimitry Andric 1432fe6060f1SDimitry Andric // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va). 1433bdd1243dSDimitry Andric // FIXME: maybe remove this? 1434fe6060f1SDimitry Andric ShuffleMask SMH(MaskH); 1435fe6060f1SDimitry Andric assert(SMH.Mask.size() == VecLen); 1436bdd1243dSDimitry Andric shuffles::MaskT MaskA(SMH.Mask); 1437fe6060f1SDimitry Andric 1438fe6060f1SDimitry Andric if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) { 1439fe6060f1SDimitry Andric // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb. 1440bdd1243dSDimitry Andric shuffles::MaskT Swapped(SMH.Mask); 1441fe6060f1SDimitry Andric ShuffleVectorSDNode::commuteMask(Swapped); 1442fe6060f1SDimitry Andric ShuffleMask SW(Swapped); 1443fe6060f1SDimitry Andric if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) { 1444fe6060f1SDimitry Andric MaskA.assign(SW.Mask.begin(), SW.Mask.end()); 1445fe6060f1SDimitry Andric std::swap(Va, Vb); 1446fe6060f1SDimitry Andric } 1447fe6060f1SDimitry Andric } 1448fe6060f1SDimitry Andric ShuffleMask SMA(MaskA); 1449fe6060f1SDimitry Andric assert(SMA.Mask.size() == VecLen); 1450fe6060f1SDimitry Andric 1451fe6060f1SDimitry Andric if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) { 1452fe6060f1SDimitry Andric int ShiftR = SMA.MinSrc; 1453fe6060f1SDimitry Andric if (ShiftR >= static_cast<int>(HwLen)) { 1454fe6060f1SDimitry Andric Va = Vb; 1455fe6060f1SDimitry Andric Vb = OpRef::undef(Ty); 1456fe6060f1SDimitry Andric ShiftR -= HwLen; 1457fe6060f1SDimitry Andric } 1458fe6060f1SDimitry Andric OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results); 1459fe6060f1SDimitry Andric 1460fe6060f1SDimitry Andric for (int I = 0; I != static_cast<int>(VecLen); ++I) { 1461fe6060f1SDimitry Andric int M = SMA.Mask[I]; 1462fe6060f1SDimitry Andric if (M != -1) 1463fe6060f1SDimitry Andric M -= SMA.MinSrc; 1464fe6060f1SDimitry Andric NewMask[I] = M; 1465fe6060f1SDimitry Andric } 1466fe6060f1SDimitry Andric return RetVal; 1467fe6060f1SDimitry Andric } 1468fe6060f1SDimitry Andric 1469fe6060f1SDimitry Andric // By here, packing by segment (half-vector) shuffling, and vector alignment 1470fe6060f1SDimitry Andric // failed. Try vmux. 1471fe6060f1SDimitry Andric // Note: since this is using the original mask, Va and Vb must not have been 1472fe6060f1SDimitry Andric // modified. 14730b57cec5SDimitry Andric 14740b57cec5SDimitry Andric if (Options & PackMux) { 14750b57cec5SDimitry Andric // If elements picked from Va and Vb have all different (source) indexes 14760b57cec5SDimitry Andric // (relative to the start of the argument), do a mux, and update the mask. 14770b57cec5SDimitry Andric BitVector Picked(HwLen); 14780b57cec5SDimitry Andric SmallVector<uint8_t,128> MuxBytes(HwLen); 14790b57cec5SDimitry Andric bool CanMux = true; 1480fe6060f1SDimitry Andric for (int I = 0; I != static_cast<int>(VecLen); ++I) { 14810b57cec5SDimitry Andric int M = SM.Mask[I]; 14820b57cec5SDimitry Andric if (M == -1) 14830b57cec5SDimitry Andric continue; 1484fe6060f1SDimitry Andric if (M >= static_cast<int>(HwLen)) 14850b57cec5SDimitry Andric M -= HwLen; 14860b57cec5SDimitry Andric else 14870b57cec5SDimitry Andric MuxBytes[M] = 0xFF; 14880b57cec5SDimitry Andric if (Picked[M]) { 14890b57cec5SDimitry Andric CanMux = false; 14900b57cec5SDimitry Andric break; 14910b57cec5SDimitry Andric } 14920b57cec5SDimitry Andric NewMask[I] = M; 14930b57cec5SDimitry Andric } 14940b57cec5SDimitry Andric if (CanMux) 14950b57cec5SDimitry Andric return vmuxs(MuxBytes, Va, Vb, Results); 14960b57cec5SDimitry Andric } 14970b57cec5SDimitry Andric return OpRef::fail(); 14980b57cec5SDimitry Andric } 14990b57cec5SDimitry Andric 1500fe6060f1SDimitry Andric // Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb, 1501fe6060f1SDimitry Andric // pack these vectors into a pair, and remap SM into NewMask to use the 1502fe6060f1SDimitry Andric // new pair instead. 15030b57cec5SDimitry Andric OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb, 15040b57cec5SDimitry Andric ResultStack &Results, MutableArrayRef<int> NewMask) { 15050b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 1506fe6060f1SDimitry Andric SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, HwLen); 1507fe6060f1SDimitry Andric if (SegList.empty()) 15080b57cec5SDimitry Andric return OpRef::undef(getPairVT(MVT::i8)); 15090b57cec5SDimitry Andric 15100b57cec5SDimitry Andric // If more than two halves are used, bail. 15110b57cec5SDimitry Andric // TODO: be more aggressive here? 1512fe6060f1SDimitry Andric unsigned SegCount = SegList.size(); 1513fe6060f1SDimitry Andric if (SegCount > 2) 15140b57cec5SDimitry Andric return OpRef::fail(); 15150b57cec5SDimitry Andric 15160b57cec5SDimitry Andric MVT HalfTy = getSingleVT(MVT::i8); 15170b57cec5SDimitry Andric 15180b57cec5SDimitry Andric OpRef Inp[2] = { Va, Vb }; 15190b57cec5SDimitry Andric OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) }; 15200b57cec5SDimitry Andric 1521fe6060f1SDimitry Andric // Really make sure we have at most 2 vectors used in the mask. 1522fe6060f1SDimitry Andric assert(SegCount <= 2); 1523fe6060f1SDimitry Andric 1524fe6060f1SDimitry Andric for (int I = 0, E = SegList.size(); I != E; ++I) { 1525fe6060f1SDimitry Andric unsigned S = SegList[I]; 1526fe6060f1SDimitry Andric OpRef Op = Inp[S / 2]; 1527fe6060f1SDimitry Andric Out[I] = (S & 1) ? OpRef::hi(Op) : OpRef::lo(Op); 15280b57cec5SDimitry Andric } 15290b57cec5SDimitry Andric 1530fe6060f1SDimitry Andric // NOTE: Using SegList as the packing map here (not SegMap). This works, 1531fe6060f1SDimitry Andric // because we're not concerned here about the order of the segments (i.e. 1532fe6060f1SDimitry Andric // single vectors) in the output pair. Changing the order of vectors is 1533fe6060f1SDimitry Andric // free (as opposed to changing the order of vector halves as in packs), 1534fe6060f1SDimitry Andric // and so there is no extra cost added in case the order needs to be 1535fe6060f1SDimitry Andric // changed later. 1536fe6060f1SDimitry Andric packSegmentMask(SM.Mask, SegList, HwLen, NewMask); 1537fe6060f1SDimitry Andric return concats(Out[0], Out[1], Results); 15380b57cec5SDimitry Andric } 15390b57cec5SDimitry Andric 15400b57cec5SDimitry Andric OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 15410b57cec5SDimitry Andric ResultStack &Results) { 15420b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 15430b57cec5SDimitry Andric MVT ByteTy = getSingleVT(MVT::i8); 15445ffd83dbSDimitry Andric MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); 15450b57cec5SDimitry Andric const SDLoc &dl(Results.InpNode); 15460b57cec5SDimitry Andric SDValue B = getVectorConstant(Bytes, dl); 15470b57cec5SDimitry Andric Results.push(Hexagon::V6_vd0, ByteTy, {}); 15480b57cec5SDimitry Andric Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)}); 15490b57cec5SDimitry Andric Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va}); 15500b57cec5SDimitry Andric return OpRef::res(Results.top()); 15510b57cec5SDimitry Andric } 15520b57cec5SDimitry Andric 15530b57cec5SDimitry Andric OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb, 15540b57cec5SDimitry Andric ResultStack &Results) { 15550b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 15560b57cec5SDimitry Andric size_t S = Bytes.size() / 2; 15570b57cec5SDimitry Andric OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results); 15580b57cec5SDimitry Andric OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results); 1559fe6060f1SDimitry Andric return concats(L, H, Results); 15600b57cec5SDimitry Andric } 15610b57cec5SDimitry Andric 15620b57cec5SDimitry Andric OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 15630b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 15640b57cec5SDimitry Andric unsigned VecLen = SM.Mask.size(); 15650b57cec5SDimitry Andric assert(HwLen == VecLen); 15660b57cec5SDimitry Andric (void)VecLen; 15670b57cec5SDimitry Andric assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); })); 15680b57cec5SDimitry Andric 15690b57cec5SDimitry Andric if (isIdentity(SM.Mask)) 15700b57cec5SDimitry Andric return Va; 15710b57cec5SDimitry Andric if (isUndef(SM.Mask)) 15720b57cec5SDimitry Andric return OpRef::undef(getSingleVT(MVT::i8)); 15730b57cec5SDimitry Andric 1574bdd1243dSDimitry Andric // First, check for rotations. 1575bdd1243dSDimitry Andric if (auto Dist = rotationDistance(SM, VecLen)) { 1576bdd1243dSDimitry Andric OpRef Rotate = funnels(Va, Va, *Dist, Results); 1577bdd1243dSDimitry Andric if (Rotate.isValid()) 1578bdd1243dSDimitry Andric return Rotate; 1579bdd1243dSDimitry Andric } 1580fe6060f1SDimitry Andric unsigned HalfLen = HwLen / 2; 15814824e7fdSDimitry Andric assert(isPowerOf2_32(HalfLen)); 1582fe6060f1SDimitry Andric 1583fe6060f1SDimitry Andric // Handle special case where the output is the same half of the input 1584fe6060f1SDimitry Andric // repeated twice, i.e. if Va = AB, then handle the output of AA or BB. 1585fe6060f1SDimitry Andric std::pair<int, unsigned> Strip1 = findStrip(SM.Mask, 1, HalfLen); 1586fe6060f1SDimitry Andric if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) { 1587fe6060f1SDimitry Andric std::pair<int, unsigned> Strip2 = 1588fe6060f1SDimitry Andric findStrip(SM.Mask.drop_front(HalfLen), 1, HalfLen); 1589fe6060f1SDimitry Andric if (Strip1 == Strip2) { 1590fe6060f1SDimitry Andric const SDLoc &dl(Results.InpNode); 1591fe6060f1SDimitry Andric Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(HalfLen, dl)}); 1592fe6060f1SDimitry Andric Results.push(Hexagon::V6_vshuffvdd, getPairVT(MVT::i8), 1593fe6060f1SDimitry Andric {Va, Va, OpRef::res(Results.top())}); 1594fe6060f1SDimitry Andric OpRef S = OpRef::res(Results.top()); 1595fe6060f1SDimitry Andric return (Strip1.first == 0) ? OpRef::lo(S) : OpRef::hi(S); 1596fe6060f1SDimitry Andric } 1597fe6060f1SDimitry Andric } 1598fe6060f1SDimitry Andric 15990b57cec5SDimitry Andric OpRef P = perfect(SM, Va, Results); 16000b57cec5SDimitry Andric if (P.isValid()) 16010b57cec5SDimitry Andric return P; 16020b57cec5SDimitry Andric return butterfly(SM, Va, Results); 16030b57cec5SDimitry Andric } 16040b57cec5SDimitry Andric 16050b57cec5SDimitry Andric OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, 16060b57cec5SDimitry Andric ResultStack &Results) { 16070b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 16080b57cec5SDimitry Andric if (isUndef(SM.Mask)) 16090b57cec5SDimitry Andric return OpRef::undef(getSingleVT(MVT::i8)); 16100b57cec5SDimitry Andric 16110b57cec5SDimitry Andric OpRef C = contracting(SM, Va, Vb, Results); 16120b57cec5SDimitry Andric if (C.isValid()) 16130b57cec5SDimitry Andric return C; 16140b57cec5SDimitry Andric 16150b57cec5SDimitry Andric int VecLen = SM.Mask.size(); 1616bdd1243dSDimitry Andric shuffles::MaskT PackedMask(VecLen); 1617fe6060f1SDimitry Andric OpRef P = packs(SM, Va, Vb, Results, PackedMask); 16180b57cec5SDimitry Andric if (P.isValid()) 1619fe6060f1SDimitry Andric return shuffs1(ShuffleMask(PackedMask), P, Results); 1620fe6060f1SDimitry Andric 1621fe6060f1SDimitry Andric // TODO: Before we split the mask, try perfect shuffle on concatenated 1622bdd1243dSDimitry Andric // operands. 16230b57cec5SDimitry Andric 1624bdd1243dSDimitry Andric shuffles::MaskT MaskL(VecLen), MaskR(VecLen); 16250b57cec5SDimitry Andric splitMask(SM.Mask, MaskL, MaskR); 16260b57cec5SDimitry Andric 16270b57cec5SDimitry Andric OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results); 16280b57cec5SDimitry Andric OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results); 16290b57cec5SDimitry Andric if (!L.isValid() || !R.isValid()) 16300b57cec5SDimitry Andric return OpRef::fail(); 16310b57cec5SDimitry Andric 16320b57cec5SDimitry Andric SmallVector<uint8_t, 128> Bytes(VecLen); 16330b57cec5SDimitry Andric for (int I = 0; I != VecLen; ++I) { 16340b57cec5SDimitry Andric if (MaskL[I] != -1) 16350b57cec5SDimitry Andric Bytes[I] = 0xFF; 16360b57cec5SDimitry Andric } 16370b57cec5SDimitry Andric return vmuxs(Bytes, L, R, Results); 16380b57cec5SDimitry Andric } 16390b57cec5SDimitry Andric 16400b57cec5SDimitry Andric OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) { 16410b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 16420b57cec5SDimitry Andric int VecLen = SM.Mask.size(); 16430b57cec5SDimitry Andric 16440b57cec5SDimitry Andric if (isIdentity(SM.Mask)) 16450b57cec5SDimitry Andric return Va; 16460b57cec5SDimitry Andric if (isUndef(SM.Mask)) 16470b57cec5SDimitry Andric return OpRef::undef(getPairVT(MVT::i8)); 16480b57cec5SDimitry Andric 1649bdd1243dSDimitry Andric shuffles::MaskT PackedMask(VecLen); 16500b57cec5SDimitry Andric OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask); 16510b57cec5SDimitry Andric if (P.isValid()) { 16520b57cec5SDimitry Andric ShuffleMask PM(PackedMask); 16530b57cec5SDimitry Andric OpRef E = expanding(PM, P, Results); 16540b57cec5SDimitry Andric if (E.isValid()) 16550b57cec5SDimitry Andric return E; 16560b57cec5SDimitry Andric 16570b57cec5SDimitry Andric OpRef L = shuffs1(PM.lo(), P, Results); 16580b57cec5SDimitry Andric OpRef H = shuffs1(PM.hi(), P, Results); 16590b57cec5SDimitry Andric if (L.isValid() && H.isValid()) 1660fe6060f1SDimitry Andric return concats(L, H, Results); 16610b57cec5SDimitry Andric } 16620b57cec5SDimitry Andric 1663bdd1243dSDimitry Andric if (!isLowHalfOnly(SM.Mask)) { 1664bdd1243dSDimitry Andric // Doing a perfect shuffle on a low-half mask (i.e. where the upper half 1665bdd1243dSDimitry Andric // is all-undef) may produce a perfect shuffle that generates legitimate 1666bdd1243dSDimitry Andric // upper half. This isn't wrong, but if the perfect shuffle was possible, 1667bdd1243dSDimitry Andric // then there is a good chance that a shorter (contracting) code may be 1668bdd1243dSDimitry Andric // used as well (e.g. V6_vshuffeb, etc). 16690b57cec5SDimitry Andric OpRef R = perfect(SM, Va, Results); 16700b57cec5SDimitry Andric if (R.isValid()) 16710b57cec5SDimitry Andric return R; 16720b57cec5SDimitry Andric // TODO commute the mask and try the opposite order of the halves. 1673bdd1243dSDimitry Andric } 16740b57cec5SDimitry Andric 16750b57cec5SDimitry Andric OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results); 16760b57cec5SDimitry Andric OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results); 16770b57cec5SDimitry Andric if (L.isValid() && H.isValid()) 1678fe6060f1SDimitry Andric return concats(L, H, Results); 16790b57cec5SDimitry Andric 16800b57cec5SDimitry Andric return OpRef::fail(); 16810b57cec5SDimitry Andric } 16820b57cec5SDimitry Andric 16830b57cec5SDimitry Andric OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, 16840b57cec5SDimitry Andric ResultStack &Results) { 16850b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 16860b57cec5SDimitry Andric if (isUndef(SM.Mask)) 16870b57cec5SDimitry Andric return OpRef::undef(getPairVT(MVT::i8)); 16880b57cec5SDimitry Andric 16890b57cec5SDimitry Andric int VecLen = SM.Mask.size(); 16900b57cec5SDimitry Andric SmallVector<int,256> PackedMask(VecLen); 16910b57cec5SDimitry Andric OpRef P = packp(SM, Va, Vb, Results, PackedMask); 16920b57cec5SDimitry Andric if (P.isValid()) 16930b57cec5SDimitry Andric return shuffp1(ShuffleMask(PackedMask), P, Results); 16940b57cec5SDimitry Andric 16950b57cec5SDimitry Andric SmallVector<int,256> MaskL(VecLen), MaskR(VecLen); 16960b57cec5SDimitry Andric splitMask(SM.Mask, MaskL, MaskR); 16970b57cec5SDimitry Andric 16980b57cec5SDimitry Andric OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results); 16990b57cec5SDimitry Andric OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results); 17000b57cec5SDimitry Andric if (!L.isValid() || !R.isValid()) 17010b57cec5SDimitry Andric return OpRef::fail(); 17020b57cec5SDimitry Andric 17030b57cec5SDimitry Andric // Mux the results. 17040b57cec5SDimitry Andric SmallVector<uint8_t,256> Bytes(VecLen); 17050b57cec5SDimitry Andric for (int I = 0; I != VecLen; ++I) { 17060b57cec5SDimitry Andric if (MaskL[I] != -1) 17070b57cec5SDimitry Andric Bytes[I] = 0xFF; 17080b57cec5SDimitry Andric } 17090b57cec5SDimitry Andric return vmuxp(Bytes, L, R, Results); 17100b57cec5SDimitry Andric } 17110b57cec5SDimitry Andric 17120b57cec5SDimitry Andric namespace { 17130b57cec5SDimitry Andric struct Deleter : public SelectionDAG::DAGNodeDeletedListener { 17140b57cec5SDimitry Andric template <typename T> 17150b57cec5SDimitry Andric Deleter(SelectionDAG &D, T &C) 17160b57cec5SDimitry Andric : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) { 17170b57cec5SDimitry Andric C.erase(N); 17180b57cec5SDimitry Andric }) {} 17190b57cec5SDimitry Andric }; 17200b57cec5SDimitry Andric 17210b57cec5SDimitry Andric template <typename T> 17220b57cec5SDimitry Andric struct NullifyingVector : public T { 17230b57cec5SDimitry Andric DenseMap<SDNode*, SDNode**> Refs; 17240b57cec5SDimitry Andric NullifyingVector(T &&V) : T(V) { 17250b57cec5SDimitry Andric for (unsigned i = 0, e = T::size(); i != e; ++i) { 17260b57cec5SDimitry Andric SDNode *&N = T::operator[](i); 17270b57cec5SDimitry Andric Refs[N] = &N; 17280b57cec5SDimitry Andric } 17290b57cec5SDimitry Andric } 17300b57cec5SDimitry Andric void erase(SDNode *N) { 17310b57cec5SDimitry Andric auto F = Refs.find(N); 17320b57cec5SDimitry Andric if (F != Refs.end()) 17330b57cec5SDimitry Andric *F->second = nullptr; 17340b57cec5SDimitry Andric } 17350b57cec5SDimitry Andric }; 17360b57cec5SDimitry Andric } 17370b57cec5SDimitry Andric 1738e8d8bef9SDimitry Andric void HvxSelector::select(SDNode *ISelN) { 1739e8d8bef9SDimitry Andric // What's important here is to select the right set of nodes. The main 1740e8d8bef9SDimitry Andric // selection algorithm loops over nodes in a topological order, i.e. users 1741e8d8bef9SDimitry Andric // are visited before their operands. 1742e8d8bef9SDimitry Andric // 1743e8d8bef9SDimitry Andric // It is an error to have an unselected node with a selected operand, and 1744e8d8bef9SDimitry Andric // there is an assertion in the main selector code to enforce that. 1745e8d8bef9SDimitry Andric // 1746e8d8bef9SDimitry Andric // Such a situation could occur if we selected a node, which is both a 1747e8d8bef9SDimitry Andric // subnode of ISelN, and a subnode of an unrelated (and yet unselected) 1748e8d8bef9SDimitry Andric // node in the DAG. 1749e8d8bef9SDimitry Andric assert(ISelN->getOpcode() == HexagonISD::ISEL); 1750e8d8bef9SDimitry Andric SDNode *N0 = ISelN->getOperand(0).getNode(); 1751e8d8bef9SDimitry Andric 1752e8d8bef9SDimitry Andric // There could have been nodes created (i.e. inserted into the DAG) 1753e8d8bef9SDimitry Andric // that are now dead. Remove them, in case they use any of the nodes 1754e8d8bef9SDimitry Andric // to select (and make them look shared). 1755e8d8bef9SDimitry Andric DAG.RemoveDeadNodes(); 1756e8d8bef9SDimitry Andric 175706c3fb27SDimitry Andric SetVector<SDNode *> SubNodes; 1758e8d8bef9SDimitry Andric 175906c3fb27SDimitry Andric if (!N0->isMachineOpcode()) { 1760e8d8bef9SDimitry Andric // Don't want to select N0 if it's shared with another node, except if 1761e8d8bef9SDimitry Andric // it's shared with other ISELs. 1762e8d8bef9SDimitry Andric auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; }; 1763e8d8bef9SDimitry Andric if (llvm::all_of(N0->uses(), IsISelN)) 1764e8d8bef9SDimitry Andric SubNodes.insert(N0); 176506c3fb27SDimitry Andric } 176606c3fb27SDimitry Andric if (SubNodes.empty()) { 176706c3fb27SDimitry Andric ISel.ReplaceNode(ISelN, N0); 176806c3fb27SDimitry Andric return; 176906c3fb27SDimitry Andric } 1770e8d8bef9SDimitry Andric 177106c3fb27SDimitry Andric // Need to manually select the nodes that are dominated by the ISEL. Other 177206c3fb27SDimitry Andric // nodes are reachable from the rest of the DAG, and so will be selected 177306c3fb27SDimitry Andric // by the DAG selection routine. 177406c3fb27SDimitry Andric SetVector<SDNode*> Dom, NonDom; 177506c3fb27SDimitry Andric Dom.insert(N0); 177606c3fb27SDimitry Andric 177706c3fb27SDimitry Andric auto IsDomRec = [&Dom, &NonDom] (SDNode *T, auto Rec) -> bool { 177806c3fb27SDimitry Andric if (Dom.count(T)) 177906c3fb27SDimitry Andric return true; 178006c3fb27SDimitry Andric if (T->use_empty() || NonDom.count(T)) 178106c3fb27SDimitry Andric return false; 178206c3fb27SDimitry Andric for (SDNode *U : T->uses()) { 178306c3fb27SDimitry Andric // If T is reachable from a known non-dominated node, then T itself 178406c3fb27SDimitry Andric // is non-dominated. 178506c3fb27SDimitry Andric if (!Rec(U, Rec)) { 178606c3fb27SDimitry Andric NonDom.insert(T); 178706c3fb27SDimitry Andric return false; 178806c3fb27SDimitry Andric } 178906c3fb27SDimitry Andric } 179006c3fb27SDimitry Andric Dom.insert(T); 179106c3fb27SDimitry Andric return true; 179206c3fb27SDimitry Andric }; 179306c3fb27SDimitry Andric 179406c3fb27SDimitry Andric auto IsDom = [&IsDomRec] (SDNode *T) { return IsDomRec(T, IsDomRec); }; 179506c3fb27SDimitry Andric 179606c3fb27SDimitry Andric // Add the rest of nodes dominated by ISEL to SubNodes. 1797e8d8bef9SDimitry Andric for (unsigned I = 0; I != SubNodes.size(); ++I) { 179806c3fb27SDimitry Andric for (SDValue Op : SubNodes[I]->ops()) { 1799e8d8bef9SDimitry Andric SDNode *O = Op.getNode(); 180006c3fb27SDimitry Andric if (IsDom(O)) 1801e8d8bef9SDimitry Andric SubNodes.insert(O); 1802e8d8bef9SDimitry Andric } 1803e8d8bef9SDimitry Andric } 180406c3fb27SDimitry Andric 180506c3fb27SDimitry Andric // Do a topological sort of nodes from Dom. 180606c3fb27SDimitry Andric SetVector<SDNode*> TmpQ; 180706c3fb27SDimitry Andric 180806c3fb27SDimitry Andric std::map<SDNode *, unsigned> OpCount; 180906c3fb27SDimitry Andric for (SDNode *T : Dom) { 181006c3fb27SDimitry Andric unsigned NumDomOps = llvm::count_if(T->ops(), [&Dom](const SDUse &U) { 181106c3fb27SDimitry Andric return Dom.count(U.getNode()); 181206c3fb27SDimitry Andric }); 181306c3fb27SDimitry Andric 181406c3fb27SDimitry Andric OpCount.insert({T, NumDomOps}); 181506c3fb27SDimitry Andric if (NumDomOps == 0) 181606c3fb27SDimitry Andric TmpQ.insert(T); 1817e8d8bef9SDimitry Andric } 1818e8d8bef9SDimitry Andric 1819e8d8bef9SDimitry Andric for (unsigned I = 0; I != TmpQ.size(); ++I) { 1820e8d8bef9SDimitry Andric SDNode *S = TmpQ[I]; 1821e8d8bef9SDimitry Andric for (SDNode *U : S->uses()) { 1822e8d8bef9SDimitry Andric if (U == ISelN) 1823e8d8bef9SDimitry Andric continue; 182406c3fb27SDimitry Andric auto F = OpCount.find(U); 182506c3fb27SDimitry Andric assert(F != OpCount.end()); 1826e8d8bef9SDimitry Andric if (F->second > 0 && !--F->second) 1827e8d8bef9SDimitry Andric TmpQ.insert(F->first); 1828e8d8bef9SDimitry Andric } 1829e8d8bef9SDimitry Andric } 1830e8d8bef9SDimitry Andric 1831e8d8bef9SDimitry Andric // Remove the marker. 1832e8d8bef9SDimitry Andric ISel.ReplaceNode(ISelN, N0); 1833e8d8bef9SDimitry Andric 1834e8d8bef9SDimitry Andric assert(SubNodes.size() == TmpQ.size()); 1835e8d8bef9SDimitry Andric NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector()); 1836e8d8bef9SDimitry Andric 1837e8d8bef9SDimitry Andric Deleter DUQ(DAG, Queue); 1838e8d8bef9SDimitry Andric for (SDNode *S : reverse(Queue)) { 1839e8d8bef9SDimitry Andric if (S == nullptr) 1840e8d8bef9SDimitry Andric continue; 1841e8d8bef9SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << "HVX selecting: "; S->dump(&DAG);}); 1842e8d8bef9SDimitry Andric ISel.Select(S); 1843e8d8bef9SDimitry Andric } 1844e8d8bef9SDimitry Andric } 1845e8d8bef9SDimitry Andric 18460b57cec5SDimitry Andric bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, 18470b57cec5SDimitry Andric MVT ResTy, SDValue Va, SDValue Vb, 18480b57cec5SDimitry Andric SDNode *N) { 18490b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 18500b57cec5SDimitry Andric MVT ElemTy = ResTy.getVectorElementType(); 18510b57cec5SDimitry Andric assert(ElemTy == MVT::i8); 18520b57cec5SDimitry Andric unsigned VecLen = Mask.size(); 18530b57cec5SDimitry Andric bool HavePairs = (2*HwLen == VecLen); 18540b57cec5SDimitry Andric MVT SingleTy = getSingleVT(MVT::i8); 18550b57cec5SDimitry Andric 18560b57cec5SDimitry Andric // The prior attempts to handle this shuffle may have left a bunch of 18570b57cec5SDimitry Andric // dead nodes in the DAG (such as constants). These nodes will be added 18580b57cec5SDimitry Andric // at the end of DAG's node list, which at that point had already been 18590b57cec5SDimitry Andric // sorted topologically. In the main selection loop, the node list is 18600b57cec5SDimitry Andric // traversed backwards from the root node, which means that any new 18610b57cec5SDimitry Andric // nodes (from the end of the list) will not be visited. 18620b57cec5SDimitry Andric // Scalarization will replace the shuffle node with the scalarized 18630b57cec5SDimitry Andric // expression, and if that expression reused any if the leftoever (dead) 18640b57cec5SDimitry Andric // nodes, these nodes would not be selected (since the "local" selection 18650b57cec5SDimitry Andric // only visits nodes that are not in AllNodes). 18660b57cec5SDimitry Andric // To avoid this issue, remove all dead nodes from the DAG now. 1867e8d8bef9SDimitry Andric // DAG.RemoveDeadNodes(); 18680b57cec5SDimitry Andric 18690b57cec5SDimitry Andric SmallVector<SDValue,128> Ops; 18700b57cec5SDimitry Andric LLVMContext &Ctx = *DAG.getContext(); 18710b57cec5SDimitry Andric MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT(); 18720b57cec5SDimitry Andric for (int I : Mask) { 18730b57cec5SDimitry Andric if (I < 0) { 18740b57cec5SDimitry Andric Ops.push_back(ISel.selectUndef(dl, LegalTy)); 18750b57cec5SDimitry Andric continue; 18760b57cec5SDimitry Andric } 18770b57cec5SDimitry Andric SDValue Vec; 18780b57cec5SDimitry Andric unsigned M = I; 18790b57cec5SDimitry Andric if (M < VecLen) { 18800b57cec5SDimitry Andric Vec = Va; 18810b57cec5SDimitry Andric } else { 18820b57cec5SDimitry Andric Vec = Vb; 18830b57cec5SDimitry Andric M -= VecLen; 18840b57cec5SDimitry Andric } 18850b57cec5SDimitry Andric if (HavePairs) { 18860b57cec5SDimitry Andric if (M < HwLen) { 18870b57cec5SDimitry Andric Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec); 18880b57cec5SDimitry Andric } else { 18890b57cec5SDimitry Andric Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec); 18900b57cec5SDimitry Andric M -= HwLen; 18910b57cec5SDimitry Andric } 18920b57cec5SDimitry Andric } 18930b57cec5SDimitry Andric SDValue Idx = DAG.getConstant(M, dl, MVT::i32); 18940b57cec5SDimitry Andric SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx}); 18950b57cec5SDimitry Andric SDValue L = Lower.LowerOperation(Ex, DAG); 18960b57cec5SDimitry Andric assert(L.getNode()); 18970b57cec5SDimitry Andric Ops.push_back(L); 18980b57cec5SDimitry Andric } 18990b57cec5SDimitry Andric 19000b57cec5SDimitry Andric SDValue LV; 19010b57cec5SDimitry Andric if (2*HwLen == VecLen) { 19020b57cec5SDimitry Andric SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen}); 19030b57cec5SDimitry Andric SDValue L0 = Lower.LowerOperation(B0, DAG); 19040b57cec5SDimitry Andric SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen}); 19050b57cec5SDimitry Andric SDValue L1 = Lower.LowerOperation(B1, DAG); 19060b57cec5SDimitry Andric // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering) 19070b57cec5SDimitry Andric // functions may expect to be called only for illegal operations, so 19080b57cec5SDimitry Andric // make sure that they are not called for legal ones. Develop a better 19090b57cec5SDimitry Andric // mechanism for dealing with this. 19100b57cec5SDimitry Andric LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1}); 19110b57cec5SDimitry Andric } else { 19120b57cec5SDimitry Andric SDValue BV = DAG.getBuildVector(ResTy, dl, Ops); 19130b57cec5SDimitry Andric LV = Lower.LowerOperation(BV, DAG); 19140b57cec5SDimitry Andric } 19150b57cec5SDimitry Andric 19160b57cec5SDimitry Andric assert(!N->use_empty()); 1917e8d8bef9SDimitry Andric SDValue IS = DAG.getNode(HexagonISD::ISEL, dl, ResTy, LV); 1918e8d8bef9SDimitry Andric ISel.ReplaceNode(N, IS.getNode()); 1919e8d8bef9SDimitry Andric select(IS.getNode()); 19200b57cec5SDimitry Andric DAG.RemoveDeadNodes(); 19210b57cec5SDimitry Andric return true; 19220b57cec5SDimitry Andric } 19230b57cec5SDimitry Andric 1924bdd1243dSDimitry Andric SmallVector<uint32_t, 8> HvxSelector::getPerfectCompletions(ShuffleMask SM, 1925bdd1243dSDimitry Andric unsigned Width) { 1926bdd1243dSDimitry Andric auto possibilities = [](ArrayRef<uint8_t> Bs, unsigned Width) -> uint32_t { 1927bdd1243dSDimitry Andric unsigned Impossible = ~(1u << Width) + 1; 1928bdd1243dSDimitry Andric for (unsigned I = 0, E = Bs.size(); I != E; ++I) { 1929bdd1243dSDimitry Andric uint8_t B = Bs[I]; 1930bdd1243dSDimitry Andric if (B == 0xff) 1931bdd1243dSDimitry Andric continue; 1932bdd1243dSDimitry Andric if (~Impossible == 0) 1933bdd1243dSDimitry Andric break; 1934bdd1243dSDimitry Andric for (unsigned Log = 0; Log != Width; ++Log) { 1935bdd1243dSDimitry Andric if (Impossible & (1u << Log)) 1936bdd1243dSDimitry Andric continue; 1937bdd1243dSDimitry Andric unsigned Expected = (I >> Log) % 2; 1938bdd1243dSDimitry Andric if (B != Expected) 1939bdd1243dSDimitry Andric Impossible |= (1u << Log); 1940bdd1243dSDimitry Andric } 1941bdd1243dSDimitry Andric } 1942bdd1243dSDimitry Andric return ~Impossible; 1943bdd1243dSDimitry Andric }; 1944bdd1243dSDimitry Andric 1945bdd1243dSDimitry Andric SmallVector<uint32_t, 8> Worklist(Width); 1946bdd1243dSDimitry Andric 1947bdd1243dSDimitry Andric for (unsigned BitIdx = 0; BitIdx != Width; ++BitIdx) { 1948bdd1243dSDimitry Andric SmallVector<uint8_t> BitValues(SM.Mask.size()); 1949bdd1243dSDimitry Andric for (int i = 0, e = SM.Mask.size(); i != e; ++i) { 1950bdd1243dSDimitry Andric int M = SM.Mask[i]; 1951bdd1243dSDimitry Andric if (M < 0) 1952bdd1243dSDimitry Andric BitValues[i] = 0xff; 1953bdd1243dSDimitry Andric else 1954bdd1243dSDimitry Andric BitValues[i] = (M & (1u << BitIdx)) != 0; 1955bdd1243dSDimitry Andric } 1956bdd1243dSDimitry Andric Worklist[BitIdx] = possibilities(BitValues, Width); 1957bdd1243dSDimitry Andric } 1958bdd1243dSDimitry Andric 1959bdd1243dSDimitry Andric // If there is a word P in Worklist that matches multiple possibilities, 1960bdd1243dSDimitry Andric // then if any other word Q matches any of the possibilities matched by P, 1961bdd1243dSDimitry Andric // then Q matches all the possibilities matched by P. In fact, P == Q. 1962bdd1243dSDimitry Andric // In other words, for each words P, Q, the sets of possibilities matched 1963bdd1243dSDimitry Andric // by P and Q are either equal or disjoint (no partial overlap). 1964bdd1243dSDimitry Andric // 1965bdd1243dSDimitry Andric // Illustration: For 4-bit values there are 4 complete sequences: 1966bdd1243dSDimitry Andric // a: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1967bdd1243dSDimitry Andric // b: 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1968bdd1243dSDimitry Andric // c: 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1969bdd1243dSDimitry Andric // d: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1970bdd1243dSDimitry Andric // 1971bdd1243dSDimitry Andric // Words containing unknown bits that match two of the complete 1972bdd1243dSDimitry Andric // sequences: 1973bdd1243dSDimitry Andric // ab: 0 u u 1 0 u u 1 0 u u 1 0 u u 1 1974bdd1243dSDimitry Andric // ac: 0 u 0 u u 1 u 1 0 u 0 u u 1 u 1 1975bdd1243dSDimitry Andric // ad: 0 u 0 u 0 u 0 u u 1 u 1 u 1 u 1 1976bdd1243dSDimitry Andric // bc: 0 0 u u u u 1 1 0 0 u u u u 1 1 1977bdd1243dSDimitry Andric // bd: 0 0 u u 0 0 u u u u 1 1 u u 1 1 1978bdd1243dSDimitry Andric // cd: 0 0 0 0 u u u u u u u u 1 1 1 1 1979bdd1243dSDimitry Andric // 1980bdd1243dSDimitry Andric // Proof of the claim above: 1981bdd1243dSDimitry Andric // Let P be a word that matches s0 and s1. For that to happen, all known 1982bdd1243dSDimitry Andric // bits in P must match s0 and s1 exactly. 1983bdd1243dSDimitry Andric // Assume there is Q that matches s1. Note that since P and Q came from 1984bdd1243dSDimitry Andric // the same shuffle mask, the positions of unknown bits in P and Q match 1985bdd1243dSDimitry Andric // exactly, which makes the indices of known bits be exactly the same 1986bdd1243dSDimitry Andric // between P and Q. Since P matches s0 and s1, the known bits of P much 1987bdd1243dSDimitry Andric // match both s0 and s1. Also, since Q matches s1, the known bits in Q 1988bdd1243dSDimitry Andric // are exactly the same as in s1, which means that they are exactly the 1989bdd1243dSDimitry Andric // same as in P. This implies that P == Q. 1990bdd1243dSDimitry Andric 1991bdd1243dSDimitry Andric // There can be a situation where there are more entries with the same 1992bdd1243dSDimitry Andric // bits set than there are set bits (e.g. value 9 occuring more than 2 1993bdd1243dSDimitry Andric // times). In such cases it will be impossible to complete this to a 1994bdd1243dSDimitry Andric // perfect shuffle. 1995bdd1243dSDimitry Andric SmallVector<uint32_t, 8> Sorted(Worklist); 1996bdd1243dSDimitry Andric llvm::sort(Sorted.begin(), Sorted.end()); 1997bdd1243dSDimitry Andric 1998bdd1243dSDimitry Andric for (unsigned I = 0, E = Sorted.size(); I != E;) { 1999bdd1243dSDimitry Andric unsigned P = Sorted[I], Count = 1; 2000bdd1243dSDimitry Andric while (++I != E && P == Sorted[I]) 2001bdd1243dSDimitry Andric ++Count; 2002bdd1243dSDimitry Andric if ((unsigned)llvm::popcount(P) < Count) { 2003bdd1243dSDimitry Andric // Reset all occurences of P, if there are more occurrences of P 2004bdd1243dSDimitry Andric // than there are bits in P. 20055f757f3fSDimitry Andric for (unsigned &Q : Worklist) { 2006bdd1243dSDimitry Andric if (Q == P) 2007bdd1243dSDimitry Andric Q = 0; 20085f757f3fSDimitry Andric } 2009bdd1243dSDimitry Andric } 2010bdd1243dSDimitry Andric } 2011bdd1243dSDimitry Andric 2012bdd1243dSDimitry Andric return Worklist; 2013bdd1243dSDimitry Andric } 2014bdd1243dSDimitry Andric 2015bdd1243dSDimitry Andric SmallVector<uint32_t, 8> 2016bdd1243dSDimitry Andric HvxSelector::completeToPerfect(ArrayRef<uint32_t> Completions, unsigned Width) { 2017bdd1243dSDimitry Andric // Pick a completion if there are multiple possibilities. For now just 2018bdd1243dSDimitry Andric // select any valid completion. 2019bdd1243dSDimitry Andric SmallVector<uint32_t, 8> Comps(Completions); 2020bdd1243dSDimitry Andric 2021bdd1243dSDimitry Andric for (unsigned I = 0; I != Width; ++I) { 2022bdd1243dSDimitry Andric uint32_t P = Comps[I]; 2023bdd1243dSDimitry Andric assert(P != 0); 2024bdd1243dSDimitry Andric if (isPowerOf2_32(P)) 2025bdd1243dSDimitry Andric continue; 2026bdd1243dSDimitry Andric // T = least significant bit of P. 2027bdd1243dSDimitry Andric uint32_t T = P ^ ((P - 1) & P); 2028bdd1243dSDimitry Andric // Clear T in all remaining words matching P. 2029bdd1243dSDimitry Andric for (unsigned J = I + 1; J != Width; ++J) { 2030bdd1243dSDimitry Andric if (Comps[J] == P) 2031bdd1243dSDimitry Andric Comps[J] ^= T; 2032bdd1243dSDimitry Andric } 2033bdd1243dSDimitry Andric Comps[I] = T; 2034bdd1243dSDimitry Andric } 2035bdd1243dSDimitry Andric 2036bdd1243dSDimitry Andric #ifndef NDEBUG 2037bdd1243dSDimitry Andric // Check that we have generated a valid completion. 2038bdd1243dSDimitry Andric uint32_t OrAll = 0; 2039cb14a3feSDimitry Andric for (uint32_t C : Comps) { 2040bdd1243dSDimitry Andric assert(isPowerOf2_32(C)); 2041bdd1243dSDimitry Andric OrAll |= C; 2042bdd1243dSDimitry Andric } 2043bdd1243dSDimitry Andric assert(OrAll == (1u << Width) -1); 2044bdd1243dSDimitry Andric #endif 2045bdd1243dSDimitry Andric 2046bdd1243dSDimitry Andric return Comps; 2047bdd1243dSDimitry Andric } 2048bdd1243dSDimitry Andric 2049bdd1243dSDimitry Andric std::optional<int> HvxSelector::rotationDistance(ShuffleMask SM, 2050bdd1243dSDimitry Andric unsigned WrapAt) { 2051bdd1243dSDimitry Andric std::optional<int> Dist; 2052bdd1243dSDimitry Andric for (int I = 0, E = SM.Mask.size(); I != E; ++I) { 2053bdd1243dSDimitry Andric int M = SM.Mask[I]; 2054bdd1243dSDimitry Andric if (M < 0) 2055bdd1243dSDimitry Andric continue; 2056bdd1243dSDimitry Andric if (Dist) { 2057bdd1243dSDimitry Andric if ((I + *Dist) % static_cast<int>(WrapAt) != M) 2058bdd1243dSDimitry Andric return std::nullopt; 2059bdd1243dSDimitry Andric } else { 2060bdd1243dSDimitry Andric // Integer a%b operator assumes rounding towards zero by /, so it 2061bdd1243dSDimitry Andric // "misbehaves" when a crosses 0 (the remainder also changes sign). 2062bdd1243dSDimitry Andric // Add WrapAt in an attempt to keep I+Dist non-negative. 2063bdd1243dSDimitry Andric Dist = M - I; 2064bdd1243dSDimitry Andric if (Dist < 0) 2065bdd1243dSDimitry Andric Dist = *Dist + WrapAt; 2066bdd1243dSDimitry Andric } 2067bdd1243dSDimitry Andric } 2068bdd1243dSDimitry Andric return Dist; 2069bdd1243dSDimitry Andric } 2070bdd1243dSDimitry Andric 20710b57cec5SDimitry Andric OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb, 20720b57cec5SDimitry Andric ResultStack &Results) { 20730b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", { dbgs() << __func__ << '\n'; }); 20740b57cec5SDimitry Andric if (!Va.isValid() || !Vb.isValid()) 20750b57cec5SDimitry Andric return OpRef::fail(); 20760b57cec5SDimitry Andric 20770b57cec5SDimitry Andric // Contracting shuffles, i.e. instructions that always discard some bytes 20780b57cec5SDimitry Andric // from the operand vectors. 20790b57cec5SDimitry Andric // 2080bdd1243dSDimitry Andric // Funnel shifts 20810b57cec5SDimitry Andric // V6_vshuff{e,o}b 2082bdd1243dSDimitry Andric // V6_vshuf{e,o}h 20830b57cec5SDimitry Andric // V6_vdealb4w 20840b57cec5SDimitry Andric // V6_vpack{e,o}{b,h} 20850b57cec5SDimitry Andric 20860b57cec5SDimitry Andric int VecLen = SM.Mask.size(); 20870b57cec5SDimitry Andric 2088bdd1243dSDimitry Andric // First, check for funnel shifts. 2089bdd1243dSDimitry Andric if (auto Dist = rotationDistance(SM, 2 * VecLen)) { 2090bdd1243dSDimitry Andric OpRef Funnel = funnels(Va, Vb, *Dist, Results); 2091bdd1243dSDimitry Andric if (Funnel.isValid()) 2092bdd1243dSDimitry Andric return Funnel; 2093bdd1243dSDimitry Andric } 20940b57cec5SDimitry Andric 2095bdd1243dSDimitry Andric MVT SingleTy = getSingleVT(MVT::i8); 2096bdd1243dSDimitry Andric MVT PairTy = getPairVT(MVT::i8); 20970b57cec5SDimitry Andric 2098bdd1243dSDimitry Andric auto same = [](ArrayRef<int> Mask1, ArrayRef<int> Mask2) -> bool { 2099bdd1243dSDimitry Andric return Mask1 == Mask2; 2100bdd1243dSDimitry Andric }; 21010b57cec5SDimitry Andric 2102bdd1243dSDimitry Andric using PackConfig = std::pair<unsigned, bool>; 2103bdd1243dSDimitry Andric PackConfig Packs[] = { 2104bdd1243dSDimitry Andric {1, false}, // byte, even 2105bdd1243dSDimitry Andric {1, true}, // byte, odd 2106bdd1243dSDimitry Andric {2, false}, // half, even 2107bdd1243dSDimitry Andric {2, true}, // half, odd 2108bdd1243dSDimitry Andric }; 2109bdd1243dSDimitry Andric 2110bdd1243dSDimitry Andric { // Check vpack 2111bdd1243dSDimitry Andric unsigned Opcodes[] = { 2112bdd1243dSDimitry Andric Hexagon::V6_vpackeb, 2113bdd1243dSDimitry Andric Hexagon::V6_vpackob, 2114bdd1243dSDimitry Andric Hexagon::V6_vpackeh, 2115bdd1243dSDimitry Andric Hexagon::V6_vpackoh, 2116bdd1243dSDimitry Andric }; 2117bdd1243dSDimitry Andric for (int i = 0, e = std::size(Opcodes); i != e; ++i) { 2118bdd1243dSDimitry Andric auto [Size, Odd] = Packs[i]; 2119bdd1243dSDimitry Andric if (same(SM.Mask, shuffles::mask(shuffles::vpack, HwLen, Size, Odd))) { 2120bdd1243dSDimitry Andric Results.push(Opcodes[i], SingleTy, {Vb, Va}); 2121bdd1243dSDimitry Andric return OpRef::res(Results.top()); 2122bdd1243dSDimitry Andric } 2123bdd1243dSDimitry Andric } 2124bdd1243dSDimitry Andric } 2125bdd1243dSDimitry Andric 2126bdd1243dSDimitry Andric { // Check vshuff 2127bdd1243dSDimitry Andric unsigned Opcodes[] = { 2128bdd1243dSDimitry Andric Hexagon::V6_vshuffeb, 2129bdd1243dSDimitry Andric Hexagon::V6_vshuffob, 2130bdd1243dSDimitry Andric Hexagon::V6_vshufeh, 2131bdd1243dSDimitry Andric Hexagon::V6_vshufoh, 2132bdd1243dSDimitry Andric }; 2133bdd1243dSDimitry Andric for (int i = 0, e = std::size(Opcodes); i != e; ++i) { 2134bdd1243dSDimitry Andric auto [Size, Odd] = Packs[i]; 2135bdd1243dSDimitry Andric if (same(SM.Mask, shuffles::mask(shuffles::vshuff, HwLen, Size, Odd))) { 2136bdd1243dSDimitry Andric Results.push(Opcodes[i], SingleTy, {Vb, Va}); 2137bdd1243dSDimitry Andric return OpRef::res(Results.top()); 2138bdd1243dSDimitry Andric } 2139bdd1243dSDimitry Andric } 2140bdd1243dSDimitry Andric } 2141bdd1243dSDimitry Andric 2142bdd1243dSDimitry Andric { // Check vdeal 2143bdd1243dSDimitry Andric // There is no "V6_vdealeb", etc, but the supposed behavior of vdealeb 2144bdd1243dSDimitry Andric // is equivalent to "(V6_vpackeb (V6_vdealvdd Vu, Vv, -2))". Other such 2145bdd1243dSDimitry Andric // variants of "deal" can be done similarly. 2146bdd1243dSDimitry Andric unsigned Opcodes[] = { 2147bdd1243dSDimitry Andric Hexagon::V6_vpackeb, 2148bdd1243dSDimitry Andric Hexagon::V6_vpackob, 2149bdd1243dSDimitry Andric Hexagon::V6_vpackeh, 2150bdd1243dSDimitry Andric Hexagon::V6_vpackoh, 2151bdd1243dSDimitry Andric }; 2152bdd1243dSDimitry Andric const SDLoc &dl(Results.InpNode); 2153bdd1243dSDimitry Andric 2154bdd1243dSDimitry Andric for (int i = 0, e = std::size(Opcodes); i != e; ++i) { 2155bdd1243dSDimitry Andric auto [Size, Odd] = Packs[i]; 2156bdd1243dSDimitry Andric if (same(SM.Mask, shuffles::mask(shuffles::vdeal, HwLen, Size, Odd))) { 2157bdd1243dSDimitry Andric Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(-2 * Size, dl)}); 2158bdd1243dSDimitry Andric Results.push(Hexagon::V6_vdealvdd, PairTy, {Vb, Va, OpRef::res(-1)}); 2159bdd1243dSDimitry Andric auto vdeal = OpRef::res(Results.top()); 2160bdd1243dSDimitry Andric Results.push(Opcodes[i], SingleTy, 2161bdd1243dSDimitry Andric {OpRef::hi(vdeal), OpRef::lo(vdeal)}); 2162bdd1243dSDimitry Andric return OpRef::res(Results.top()); 2163bdd1243dSDimitry Andric } 2164bdd1243dSDimitry Andric } 2165bdd1243dSDimitry Andric } 2166bdd1243dSDimitry Andric 2167bdd1243dSDimitry Andric if (same(SM.Mask, shuffles::mask(shuffles::vdealb4w, HwLen))) { 2168bdd1243dSDimitry Andric Results.push(Hexagon::V6_vdealb4w, SingleTy, {Vb, Va}); 21690b57cec5SDimitry Andric return OpRef::res(Results.top()); 21700b57cec5SDimitry Andric } 21710b57cec5SDimitry Andric 21720b57cec5SDimitry Andric return OpRef::fail(); 21730b57cec5SDimitry Andric } 21740b57cec5SDimitry Andric 21750b57cec5SDimitry Andric OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) { 21760b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 21770b57cec5SDimitry Andric // Expanding shuffles (using all elements and inserting into larger vector): 21780b57cec5SDimitry Andric // 21790b57cec5SDimitry Andric // V6_vunpacku{b,h} [*] 21800b57cec5SDimitry Andric // 21810b57cec5SDimitry Andric // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask. 21820b57cec5SDimitry Andric // 21830b57cec5SDimitry Andric // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so 21840b57cec5SDimitry Andric // they are not shuffles. 21850b57cec5SDimitry Andric // 21860b57cec5SDimitry Andric // The argument is a single vector. 21870b57cec5SDimitry Andric 21880b57cec5SDimitry Andric int VecLen = SM.Mask.size(); 21890b57cec5SDimitry Andric assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type"); 21900b57cec5SDimitry Andric 21910b57cec5SDimitry Andric std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen); 21920b57cec5SDimitry Andric 21930b57cec5SDimitry Andric // The patterns for the unpacks, in terms of the starting offsets of the 21940b57cec5SDimitry Andric // consecutive strips (L = length of the strip, N = VecLen): 21950b57cec5SDimitry Andric // 21960b57cec5SDimitry Andric // vunpacku: 0, -1, L, -1, 2L, -1 ... 21970b57cec5SDimitry Andric 21980b57cec5SDimitry Andric if (Strip.first != 0) 21990b57cec5SDimitry Andric return OpRef::fail(); 22000b57cec5SDimitry Andric 22010b57cec5SDimitry Andric // The vunpackus only handle byte and half-word. 22020b57cec5SDimitry Andric if (Strip.second != 1 && Strip.second != 2) 22030b57cec5SDimitry Andric return OpRef::fail(); 22040b57cec5SDimitry Andric 22050b57cec5SDimitry Andric int N = VecLen; 22060b57cec5SDimitry Andric int L = Strip.second; 22070b57cec5SDimitry Andric 22080b57cec5SDimitry Andric // First, check the non-ignored strips. 2209fe6060f1SDimitry Andric for (int I = 2*L; I < N; I += 2*L) { 22100b57cec5SDimitry Andric auto S = findStrip(SM.Mask.drop_front(I), 1, N-I); 22110b57cec5SDimitry Andric if (S.second != unsigned(L)) 22120b57cec5SDimitry Andric return OpRef::fail(); 22130b57cec5SDimitry Andric if (2*S.first != I) 22140b57cec5SDimitry Andric return OpRef::fail(); 22150b57cec5SDimitry Andric } 22160b57cec5SDimitry Andric // Check the -1s. 2217fe6060f1SDimitry Andric for (int I = L; I < N; I += 2*L) { 22180b57cec5SDimitry Andric auto S = findStrip(SM.Mask.drop_front(I), 0, N-I); 22190b57cec5SDimitry Andric if (S.first != -1 || S.second != unsigned(L)) 22200b57cec5SDimitry Andric return OpRef::fail(); 22210b57cec5SDimitry Andric } 22220b57cec5SDimitry Andric 22230b57cec5SDimitry Andric unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub 22240b57cec5SDimitry Andric : Hexagon::V6_vunpackuh; 22250b57cec5SDimitry Andric Results.push(Opc, getPairVT(MVT::i8), {Va}); 22260b57cec5SDimitry Andric return OpRef::res(Results.top()); 22270b57cec5SDimitry Andric } 22280b57cec5SDimitry Andric 22290b57cec5SDimitry Andric OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) { 22300b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", { dbgs() << __func__ << '\n'; }); 22310b57cec5SDimitry Andric // V6_vdeal{b,h} 22320b57cec5SDimitry Andric // V6_vshuff{b,h} 22330b57cec5SDimitry Andric 22340b57cec5SDimitry Andric // V6_vshufoe{b,h} those are quivalent to vshuffvdd(..,{1,2}) 22350b57cec5SDimitry Andric // V6_vshuffvdd (V6_vshuff) 22360b57cec5SDimitry Andric // V6_dealvdd (V6_vdeal) 22370b57cec5SDimitry Andric 22380b57cec5SDimitry Andric int VecLen = SM.Mask.size(); 22390b57cec5SDimitry Andric assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8); 22400b57cec5SDimitry Andric unsigned LogLen = Log2_32(VecLen); 22410b57cec5SDimitry Andric unsigned HwLog = Log2_32(HwLen); 22420b57cec5SDimitry Andric // The result length must be the same as the length of a single vector, 22430b57cec5SDimitry Andric // or a vector pair. 22440b57cec5SDimitry Andric assert(LogLen == HwLog || LogLen == HwLog + 1); 2245e8d8bef9SDimitry Andric bool HavePairs = LogLen == HwLog + 1; 22460b57cec5SDimitry Andric 22470b57cec5SDimitry Andric SmallVector<unsigned, 8> Perm(LogLen); 22480b57cec5SDimitry Andric 22490b57cec5SDimitry Andric // Check if this could be a perfect shuffle, or a combination of perfect 22500b57cec5SDimitry Andric // shuffles. 22510b57cec5SDimitry Andric // 22520b57cec5SDimitry Andric // Consider this permutation (using hex digits to make the ASCII diagrams 22530b57cec5SDimitry Andric // easier to read): 22540b57cec5SDimitry Andric // { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }. 22550b57cec5SDimitry Andric // This is a "deal" operation: divide the input into two halves, and 22560b57cec5SDimitry Andric // create the output by picking elements by alternating between these two 22570b57cec5SDimitry Andric // halves: 22580b57cec5SDimitry Andric // 0 1 2 3 4 5 6 7 --> 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F [*] 22590b57cec5SDimitry Andric // 8 9 A B C D E F 22600b57cec5SDimitry Andric // 22610b57cec5SDimitry Andric // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides 22620b57cec5SDimitry Andric // a somwehat different mechanism that could be used to perform shuffle/ 22630b57cec5SDimitry Andric // deal operations: a 2x2 transpose. 22640b57cec5SDimitry Andric // Consider the halves of inputs again, they can be interpreted as a 2x8 22650b57cec5SDimitry Andric // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated 22660b57cec5SDimitry Andric // together. Now, when considering 2 elements at a time, it will be a 2x4 22670b57cec5SDimitry Andric // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices: 22680b57cec5SDimitry Andric // 01 23 45 67 22690b57cec5SDimitry Andric // 89 AB CD EF 22700b57cec5SDimitry Andric // With groups of 4, this will become a single 2x2 matrix, and so on. 22710b57cec5SDimitry Andric // 22720b57cec5SDimitry Andric // The 2x2 transpose instruction works by transposing each of the 2x2 22730b57cec5SDimitry Andric // matrices (or "sub-matrices"), given a specific group size. For example, 22740b57cec5SDimitry Andric // if the group size is 1 (i.e. each element is its own group), there 22750b57cec5SDimitry Andric // will be four transposes of the four 2x2 matrices that form the 2x8. 22760b57cec5SDimitry Andric // For example, with the inputs as above, the result will be: 22770b57cec5SDimitry Andric // 0 8 2 A 4 C 6 E 22780b57cec5SDimitry Andric // 1 9 3 B 5 D 7 F 22790b57cec5SDimitry Andric // Now, this result can be tranposed again, but with the group size of 2: 22800b57cec5SDimitry Andric // 08 19 4C 5D 22810b57cec5SDimitry Andric // 2A 3B 6E 7F 22820b57cec5SDimitry Andric // If we then transpose that result, but with the group size of 4, we get: 22830b57cec5SDimitry Andric // 0819 2A3B 22840b57cec5SDimitry Andric // 4C5D 6E7F 22850b57cec5SDimitry Andric // If we concatenate these two rows, it will be 22860b57cec5SDimitry Andric // 0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F 22870b57cec5SDimitry Andric // which is the same as the "deal" [*] above. 22880b57cec5SDimitry Andric // 22890b57cec5SDimitry Andric // In general, a "deal" of individual elements is a series of 2x2 transposes, 22900b57cec5SDimitry Andric // with changing group size. HVX has two instructions: 22910b57cec5SDimitry Andric // Vdd = V6_vdealvdd Vu, Vv, Rt 22920b57cec5SDimitry Andric // Vdd = V6_shufvdd Vu, Vv, Rt 22930b57cec5SDimitry Andric // that perform exactly that. The register Rt controls which transposes are 22940b57cec5SDimitry Andric // going to happen: a bit at position n (counting from 0) indicates that a 22950b57cec5SDimitry Andric // transpose with a group size of 2^n will take place. If multiple bits are 22960b57cec5SDimitry Andric // set, multiple transposes will happen: vdealvdd will perform them starting 22970b57cec5SDimitry Andric // with the largest group size, vshuffvdd will do them in the reverse order. 22980b57cec5SDimitry Andric // 22990b57cec5SDimitry Andric // The main observation is that each 2x2 transpose corresponds to swapping 23000b57cec5SDimitry Andric // columns of bits in the binary representation of the values. 23010b57cec5SDimitry Andric // 23020b57cec5SDimitry Andric // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits 23030b57cec5SDimitry Andric // in a given column. The * denote the columns that will be swapped. 23040b57cec5SDimitry Andric // The transpose with the group size 2^n corresponds to swapping columns 23050b57cec5SDimitry Andric // 3 (the highest log) and log2(n): 23060b57cec5SDimitry Andric // 23070b57cec5SDimitry Andric // 3 2 1 0 0 2 1 3 0 2 3 1 23080b57cec5SDimitry Andric // * * * * * * 23090b57cec5SDimitry Andric // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23100b57cec5SDimitry Andric // 1 0 0 0 1 8 1 0 0 0 8 1 0 0 0 8 1 0 0 0 23110b57cec5SDimitry Andric // 2 0 0 1 0 2 0 0 1 0 1 0 0 0 1 1 0 0 0 1 23120b57cec5SDimitry Andric // 3 0 0 1 1 A 1 0 1 0 9 1 0 0 1 9 1 0 0 1 23130b57cec5SDimitry Andric // 4 0 1 0 0 4 0 1 0 0 4 0 1 0 0 2 0 0 1 0 23140b57cec5SDimitry Andric // 5 0 1 0 1 C 1 1 0 0 C 1 1 0 0 A 1 0 1 0 23150b57cec5SDimitry Andric // 6 0 1 1 0 6 0 1 1 0 5 0 1 0 1 3 0 0 1 1 23160b57cec5SDimitry Andric // 7 0 1 1 1 E 1 1 1 0 D 1 1 0 1 B 1 0 1 1 23170b57cec5SDimitry Andric // 8 1 0 0 0 1 0 0 0 1 2 0 0 1 0 4 0 1 0 0 23180b57cec5SDimitry Andric // 9 1 0 0 1 9 1 0 0 1 A 1 0 1 0 C 1 1 0 0 23190b57cec5SDimitry Andric // A 1 0 1 0 3 0 0 1 1 3 0 0 1 1 5 0 1 0 1 23200b57cec5SDimitry Andric // B 1 0 1 1 B 1 0 1 1 B 1 0 1 1 D 1 1 0 1 23210b57cec5SDimitry Andric // C 1 1 0 0 5 0 1 0 1 6 0 1 1 0 6 0 1 1 0 23220b57cec5SDimitry Andric // D 1 1 0 1 D 1 1 0 1 E 1 1 1 0 E 1 1 1 0 23230b57cec5SDimitry Andric // E 1 1 1 0 7 0 1 1 1 7 0 1 1 1 7 0 1 1 1 23240b57cec5SDimitry Andric // F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 F 1 1 1 1 23250b57cec5SDimitry Andric 2326bdd1243dSDimitry Andric // There is one special case that is not a perfect shuffle, but can be 2327bdd1243dSDimitry Andric // turned into one easily: when the shuffle operates on a vector pair, 2328bdd1243dSDimitry Andric // but the two vectors in the pair are swapped. The code that identifies 2329bdd1243dSDimitry Andric // perfect shuffles will reject it, unless the order is reversed. 2330bdd1243dSDimitry Andric shuffles::MaskT MaskStorage(SM.Mask); 2331e8d8bef9SDimitry Andric bool InvertedPair = false; 2332e8d8bef9SDimitry Andric if (HavePairs && SM.Mask[0] >= int(HwLen)) { 2333e8d8bef9SDimitry Andric for (int i = 0, e = SM.Mask.size(); i != e; ++i) { 2334e8d8bef9SDimitry Andric int M = SM.Mask[i]; 2335e8d8bef9SDimitry Andric MaskStorage[i] = M >= int(HwLen) ? M - HwLen : M + HwLen; 2336e8d8bef9SDimitry Andric } 2337e8d8bef9SDimitry Andric InvertedPair = true; 2338bdd1243dSDimitry Andric SM = ShuffleMask(MaskStorage); 2339e8d8bef9SDimitry Andric } 2340e8d8bef9SDimitry Andric 2341bdd1243dSDimitry Andric auto Comps = getPerfectCompletions(SM, LogLen); 23425f757f3fSDimitry Andric if (llvm::is_contained(Comps, 0)) 2343bdd1243dSDimitry Andric return OpRef::fail(); 23440b57cec5SDimitry Andric 2345bdd1243dSDimitry Andric auto Pick = completeToPerfect(Comps, LogLen); 2346bdd1243dSDimitry Andric for (unsigned I = 0; I != LogLen; ++I) 2347bdd1243dSDimitry Andric Perm[I] = Log2_32(Pick[I]); 23480b57cec5SDimitry Andric 23490b57cec5SDimitry Andric // Once we have Perm, represent it as cycles. Denote the maximum log2 23500b57cec5SDimitry Andric // (equal to log2(VecLen)-1) as M. The cycle containing M can then be 23510b57cec5SDimitry Andric // written as (M a1 a2 a3 ... an). That cycle can be broken up into 23520b57cec5SDimitry Andric // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition 23530b57cec5SDimitry Andric // order being from left to right. Any (contiguous) segment where the 23540b57cec5SDimitry Andric // values ai, ai+1...aj are either all increasing or all decreasing, 23550b57cec5SDimitry Andric // can be implemented via a single vshuffvdd/vdealvdd respectively. 23560b57cec5SDimitry Andric // 23570b57cec5SDimitry Andric // If there is a cycle (a1 a2 ... an) that does not involve M, it can 23580b57cec5SDimitry Andric // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can 23590b57cec5SDimitry Andric // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure 23600b57cec5SDimitry Andric // can be used to generate a sequence of vshuffvdd/vdealvdd. 23610b57cec5SDimitry Andric // 23620b57cec5SDimitry Andric // Example: 23630b57cec5SDimitry Andric // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written 23640b57cec5SDimitry Andric // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply 23650b57cec5SDimitry Andric // (4 0 1)(4 0)(4 2 3)(4 2). 23660b57cec5SDimitry Andric // It can then be expanded into swaps as 23670b57cec5SDimitry Andric // (4 0)(4 1)(4 0)(4 2)(4 3)(4 2), 23680b57cec5SDimitry Andric // and broken up into "increasing" segments as 23690b57cec5SDimitry Andric // [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)]. 23700b57cec5SDimitry Andric // This is equivalent to 23710b57cec5SDimitry Andric // (4 0 1)(4 0 2 3)(4 2), 23720b57cec5SDimitry Andric // which can be implemented as 3 vshufvdd instructions. 23730b57cec5SDimitry Andric 23740b57cec5SDimitry Andric using CycleType = SmallVector<unsigned, 8>; 23750b57cec5SDimitry Andric std::set<CycleType> Cycles; 23760b57cec5SDimitry Andric std::set<unsigned> All; 23770b57cec5SDimitry Andric 23780b57cec5SDimitry Andric for (unsigned I : Perm) 23790b57cec5SDimitry Andric All.insert(I); 23800b57cec5SDimitry Andric 23810b57cec5SDimitry Andric // If the cycle contains LogLen-1, move it to the front of the cycle. 23820b57cec5SDimitry Andric // Otherwise, return the cycle unchanged. 23830b57cec5SDimitry Andric auto canonicalize = [LogLen](const CycleType &C) -> CycleType { 23840b57cec5SDimitry Andric unsigned LogPos, N = C.size(); 23850b57cec5SDimitry Andric for (LogPos = 0; LogPos != N; ++LogPos) 23860b57cec5SDimitry Andric if (C[LogPos] == LogLen - 1) 23870b57cec5SDimitry Andric break; 23880b57cec5SDimitry Andric if (LogPos == N) 23890b57cec5SDimitry Andric return C; 23900b57cec5SDimitry Andric 23910b57cec5SDimitry Andric CycleType NewC(C.begin() + LogPos, C.end()); 23920b57cec5SDimitry Andric NewC.append(C.begin(), C.begin() + LogPos); 23930b57cec5SDimitry Andric return NewC; 23940b57cec5SDimitry Andric }; 23950b57cec5SDimitry Andric 23960b57cec5SDimitry Andric auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) { 23970b57cec5SDimitry Andric // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6), 23980b57cec5SDimitry Andric // for bytes zero is included, for halfwords is not. 23990b57cec5SDimitry Andric if (Cs.size() != 1) 24000b57cec5SDimitry Andric return 0u; 24010b57cec5SDimitry Andric const CycleType &C = *Cs.begin(); 24020b57cec5SDimitry Andric if (C[0] != Len - 1) 24030b57cec5SDimitry Andric return 0u; 24040b57cec5SDimitry Andric int D = Len - C.size(); 24050b57cec5SDimitry Andric if (D != 0 && D != 1) 24060b57cec5SDimitry Andric return 0u; 24070b57cec5SDimitry Andric 24080b57cec5SDimitry Andric bool IsDeal = true, IsShuff = true; 24090b57cec5SDimitry Andric for (unsigned I = 1; I != Len - D; ++I) { 24100b57cec5SDimitry Andric if (C[I] != Len - 1 - I) 24110b57cec5SDimitry Andric IsDeal = false; 24120b57cec5SDimitry Andric if (C[I] != I - (1 - D)) // I-1, I 24130b57cec5SDimitry Andric IsShuff = false; 24140b57cec5SDimitry Andric } 24150b57cec5SDimitry Andric // At most one, IsDeal or IsShuff, can be non-zero. 24160b57cec5SDimitry Andric assert(!(IsDeal || IsShuff) || IsDeal != IsShuff); 24170b57cec5SDimitry Andric static unsigned Deals[] = {Hexagon::V6_vdealb, Hexagon::V6_vdealh}; 24180b57cec5SDimitry Andric static unsigned Shufs[] = {Hexagon::V6_vshuffb, Hexagon::V6_vshuffh}; 24190b57cec5SDimitry Andric return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0); 24200b57cec5SDimitry Andric }; 24210b57cec5SDimitry Andric 24220b57cec5SDimitry Andric while (!All.empty()) { 24230b57cec5SDimitry Andric unsigned A = *All.begin(); 24240b57cec5SDimitry Andric All.erase(A); 24250b57cec5SDimitry Andric CycleType C; 24260b57cec5SDimitry Andric C.push_back(A); 24270b57cec5SDimitry Andric for (unsigned B = Perm[A]; B != A; B = Perm[B]) { 24280b57cec5SDimitry Andric C.push_back(B); 24290b57cec5SDimitry Andric All.erase(B); 24300b57cec5SDimitry Andric } 24310b57cec5SDimitry Andric if (C.size() <= 1) 24320b57cec5SDimitry Andric continue; 24330b57cec5SDimitry Andric Cycles.insert(canonicalize(C)); 24340b57cec5SDimitry Andric } 24350b57cec5SDimitry Andric 24360b57cec5SDimitry Andric MVT SingleTy = getSingleVT(MVT::i8); 24370b57cec5SDimitry Andric MVT PairTy = getPairVT(MVT::i8); 24380b57cec5SDimitry Andric 24390b57cec5SDimitry Andric // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}. 24400b57cec5SDimitry Andric if (unsigned(VecLen) == HwLen) { 24410b57cec5SDimitry Andric if (unsigned SingleOpc = pfs(Cycles, LogLen)) { 24420b57cec5SDimitry Andric Results.push(SingleOpc, SingleTy, {Va}); 24430b57cec5SDimitry Andric return OpRef::res(Results.top()); 24440b57cec5SDimitry Andric } 24450b57cec5SDimitry Andric } 24460b57cec5SDimitry Andric 2447e8d8bef9SDimitry Andric // From the cycles, construct the sequence of values that will 2448e8d8bef9SDimitry Andric // then form the control values for vdealvdd/vshuffvdd, i.e. 2449e8d8bef9SDimitry Andric // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5 2450e8d8bef9SDimitry Andric // This essentially strips the M value from the cycles where 2451e8d8bef9SDimitry Andric // it's present, and performs the insertion of M (then stripping) 2452e8d8bef9SDimitry Andric // for cycles without M (as described in an earlier comment). 24530b57cec5SDimitry Andric SmallVector<unsigned, 8> SwapElems; 2454e8d8bef9SDimitry Andric // When the input is extended (i.e. single vector becomes a pair), 2455e8d8bef9SDimitry Andric // this is done by using an "undef" vector as the second input. 2456e8d8bef9SDimitry Andric // However, then we get 2457e8d8bef9SDimitry Andric // input 1: GOODBITS 2458e8d8bef9SDimitry Andric // input 2: ........ 2459e8d8bef9SDimitry Andric // but we need 2460e8d8bef9SDimitry Andric // input 1: ....BITS 2461e8d8bef9SDimitry Andric // input 2: ....GOOD 2462e8d8bef9SDimitry Andric // Then at the end, this needs to be undone. To accomplish this, 2463e8d8bef9SDimitry Andric // artificially add "LogLen-1" at both ends of the sequence. 2464e8d8bef9SDimitry Andric if (!HavePairs) 24650b57cec5SDimitry Andric SwapElems.push_back(LogLen - 1); 24660b57cec5SDimitry Andric for (const CycleType &C : Cycles) { 2467e8d8bef9SDimitry Andric // Do the transformation: (a1..an) -> (M a1..an)(M a1). 24680b57cec5SDimitry Andric unsigned First = (C[0] == LogLen - 1) ? 1 : 0; 24690b57cec5SDimitry Andric SwapElems.append(C.begin() + First, C.end()); 24700b57cec5SDimitry Andric if (First == 0) 24710b57cec5SDimitry Andric SwapElems.push_back(C[0]); 24720b57cec5SDimitry Andric } 2473e8d8bef9SDimitry Andric if (!HavePairs) 2474e8d8bef9SDimitry Andric SwapElems.push_back(LogLen - 1); 24750b57cec5SDimitry Andric 24760b57cec5SDimitry Andric const SDLoc &dl(Results.InpNode); 2477bdd1243dSDimitry Andric OpRef Arg = HavePairs ? Va : concats(Va, OpRef::undef(SingleTy), Results); 2478e8d8bef9SDimitry Andric if (InvertedPair) 2479fe6060f1SDimitry Andric Arg = concats(OpRef::hi(Arg), OpRef::lo(Arg), Results); 24800b57cec5SDimitry Andric 24810b57cec5SDimitry Andric for (unsigned I = 0, E = SwapElems.size(); I != E;) { 24820b57cec5SDimitry Andric bool IsInc = I == E - 1 || SwapElems[I] < SwapElems[I + 1]; 24830b57cec5SDimitry Andric unsigned S = (1u << SwapElems[I]); 24840b57cec5SDimitry Andric if (I < E - 1) { 24850b57cec5SDimitry Andric while (++I < E - 1 && IsInc == (SwapElems[I] < SwapElems[I + 1])) 24860b57cec5SDimitry Andric S |= 1u << SwapElems[I]; 24870b57cec5SDimitry Andric // The above loop will not add a bit for the final SwapElems[I+1], 24880b57cec5SDimitry Andric // so add it here. 24890b57cec5SDimitry Andric S |= 1u << SwapElems[I]; 24900b57cec5SDimitry Andric } 24910b57cec5SDimitry Andric ++I; 24920b57cec5SDimitry Andric 24930b57cec5SDimitry Andric NodeTemplate Res; 2494fe6060f1SDimitry Andric Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(S, dl)}); 24950b57cec5SDimitry Andric Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd; 24960b57cec5SDimitry Andric Res.Ty = PairTy; 24970b57cec5SDimitry Andric Res.Ops = {OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1)}; 24980b57cec5SDimitry Andric Results.push(Res); 24990b57cec5SDimitry Andric Arg = OpRef::res(Results.top()); 25000b57cec5SDimitry Andric } 25010b57cec5SDimitry Andric 2502e8d8bef9SDimitry Andric return HavePairs ? Arg : OpRef::lo(Arg); 25030b57cec5SDimitry Andric } 25040b57cec5SDimitry Andric 25050b57cec5SDimitry Andric OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) { 25060b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';}); 25070b57cec5SDimitry Andric // Butterfly shuffles. 25080b57cec5SDimitry Andric // 25090b57cec5SDimitry Andric // V6_vdelta 25100b57cec5SDimitry Andric // V6_vrdelta 25110b57cec5SDimitry Andric // V6_vror 25120b57cec5SDimitry Andric 25130b57cec5SDimitry Andric // The assumption here is that all elements picked by Mask are in the 25140b57cec5SDimitry Andric // first operand to the vector_shuffle. This assumption is enforced 25150b57cec5SDimitry Andric // by the caller. 25160b57cec5SDimitry Andric 25170b57cec5SDimitry Andric MVT ResTy = getSingleVT(MVT::i8); 25180b57cec5SDimitry Andric PermNetwork::Controls FC, RC; 25190b57cec5SDimitry Andric const SDLoc &dl(Results.InpNode); 25200b57cec5SDimitry Andric int VecLen = SM.Mask.size(); 25210b57cec5SDimitry Andric 25220b57cec5SDimitry Andric for (int M : SM.Mask) { 25230b57cec5SDimitry Andric if (M != -1 && M >= VecLen) 25240b57cec5SDimitry Andric return OpRef::fail(); 25250b57cec5SDimitry Andric } 25260b57cec5SDimitry Andric 25270b57cec5SDimitry Andric // Try the deltas/benes for both single vectors and vector pairs. 25280b57cec5SDimitry Andric ForwardDeltaNetwork FN(SM.Mask); 25290b57cec5SDimitry Andric if (FN.run(FC)) { 25300b57cec5SDimitry Andric SDValue Ctl = getVectorConstant(FC, dl); 25310b57cec5SDimitry Andric Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)}); 25320b57cec5SDimitry Andric return OpRef::res(Results.top()); 25330b57cec5SDimitry Andric } 25340b57cec5SDimitry Andric 25350b57cec5SDimitry Andric // Try reverse delta. 25360b57cec5SDimitry Andric ReverseDeltaNetwork RN(SM.Mask); 25370b57cec5SDimitry Andric if (RN.run(RC)) { 25380b57cec5SDimitry Andric SDValue Ctl = getVectorConstant(RC, dl); 25390b57cec5SDimitry Andric Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)}); 25400b57cec5SDimitry Andric return OpRef::res(Results.top()); 25410b57cec5SDimitry Andric } 25420b57cec5SDimitry Andric 25430b57cec5SDimitry Andric // Do Benes. 25440b57cec5SDimitry Andric BenesNetwork BN(SM.Mask); 25450b57cec5SDimitry Andric if (BN.run(FC, RC)) { 25460b57cec5SDimitry Andric SDValue CtlF = getVectorConstant(FC, dl); 25470b57cec5SDimitry Andric SDValue CtlR = getVectorConstant(RC, dl); 25480b57cec5SDimitry Andric Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)}); 25490b57cec5SDimitry Andric Results.push(Hexagon::V6_vrdelta, ResTy, 25500b57cec5SDimitry Andric {OpRef::res(-1), OpRef(CtlR)}); 25510b57cec5SDimitry Andric return OpRef::res(Results.top()); 25520b57cec5SDimitry Andric } 25530b57cec5SDimitry Andric 25540b57cec5SDimitry Andric return OpRef::fail(); 25550b57cec5SDimitry Andric } 25560b57cec5SDimitry Andric 2557fe6060f1SDimitry Andric SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) { 2558fe6060f1SDimitry Andric return DAG.getTargetConstant(Val, dl, MVT::i32); 2559fe6060f1SDimitry Andric } 2560fe6060f1SDimitry Andric 25610b57cec5SDimitry Andric SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data, 25620b57cec5SDimitry Andric const SDLoc &dl) { 25630b57cec5SDimitry Andric SmallVector<SDValue, 128> Elems; 25640b57cec5SDimitry Andric for (uint8_t C : Data) 25650b57cec5SDimitry Andric Elems.push_back(DAG.getConstant(C, dl, MVT::i8)); 25660b57cec5SDimitry Andric MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size()); 25670b57cec5SDimitry Andric SDValue BV = DAG.getBuildVector(VecTy, dl, Elems); 25680b57cec5SDimitry Andric SDValue LV = Lower.LowerOperation(BV, DAG); 25690b57cec5SDimitry Andric DAG.RemoveDeadNode(BV.getNode()); 2570e8d8bef9SDimitry Andric return DAG.getNode(HexagonISD::ISEL, dl, VecTy, LV); 25710b57cec5SDimitry Andric } 25720b57cec5SDimitry Andric 2573bdd1243dSDimitry Andric void HvxSelector::selectExtractSubvector(SDNode *N) { 2574bdd1243dSDimitry Andric SDValue Inp = N->getOperand(0); 2575bdd1243dSDimitry Andric MVT ResTy = N->getValueType(0).getSimpleVT(); 2576*7a6dacacSDimitry Andric unsigned Idx = N->getConstantOperandVal(1); 2577bdd1243dSDimitry Andric 2578bdd1243dSDimitry Andric [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT(); 2579bdd1243dSDimitry Andric [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements(); 2580bdd1243dSDimitry Andric assert(InpTy.getVectorElementType() == ResTy.getVectorElementType()); 2581bdd1243dSDimitry Andric assert(2 * ResLen == InpTy.getVectorNumElements()); 2582bdd1243dSDimitry Andric assert(Idx == 0 || Idx == ResLen); 2583bdd1243dSDimitry Andric 2584bdd1243dSDimitry Andric unsigned SubReg = Idx == 0 ? Hexagon::vsub_lo : Hexagon::vsub_hi; 2585bdd1243dSDimitry Andric SDValue Ext = DAG.getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp); 2586bdd1243dSDimitry Andric 2587bdd1243dSDimitry Andric ISel.ReplaceNode(N, Ext.getNode()); 2588bdd1243dSDimitry Andric } 2589bdd1243dSDimitry Andric 25900b57cec5SDimitry Andric void HvxSelector::selectShuffle(SDNode *N) { 25910b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", { 25920b57cec5SDimitry Andric dbgs() << "Starting " << __func__ << " on node:\n"; 25930b57cec5SDimitry Andric N->dump(&DAG); 25940b57cec5SDimitry Andric }); 25950b57cec5SDimitry Andric MVT ResTy = N->getValueType(0).getSimpleVT(); 25960b57cec5SDimitry Andric // Assume that vector shuffles operate on vectors of bytes. 25970b57cec5SDimitry Andric assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8); 25980b57cec5SDimitry Andric 25990b57cec5SDimitry Andric auto *SN = cast<ShuffleVectorSDNode>(N); 26000b57cec5SDimitry Andric std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end()); 26010b57cec5SDimitry Andric // This shouldn't really be necessary. Is it? 26020b57cec5SDimitry Andric for (int &Idx : Mask) 26030b57cec5SDimitry Andric if (Idx != -1 && Idx < 0) 26040b57cec5SDimitry Andric Idx = -1; 26050b57cec5SDimitry Andric 26060b57cec5SDimitry Andric unsigned VecLen = Mask.size(); 26070b57cec5SDimitry Andric bool HavePairs = (2*HwLen == VecLen); 26080b57cec5SDimitry Andric assert(ResTy.getSizeInBits() / 8 == VecLen); 26090b57cec5SDimitry Andric 26100b57cec5SDimitry Andric // Vd = vector_shuffle Va, Vb, Mask 26110b57cec5SDimitry Andric // 26120b57cec5SDimitry Andric 26130b57cec5SDimitry Andric bool UseLeft = false, UseRight = false; 26140b57cec5SDimitry Andric for (unsigned I = 0; I != VecLen; ++I) { 26150b57cec5SDimitry Andric if (Mask[I] == -1) 26160b57cec5SDimitry Andric continue; 26170b57cec5SDimitry Andric unsigned Idx = Mask[I]; 26180b57cec5SDimitry Andric assert(Idx < 2*VecLen); 26190b57cec5SDimitry Andric if (Idx < VecLen) 26200b57cec5SDimitry Andric UseLeft = true; 26210b57cec5SDimitry Andric else 26220b57cec5SDimitry Andric UseRight = true; 26230b57cec5SDimitry Andric } 26240b57cec5SDimitry Andric 26250b57cec5SDimitry Andric DEBUG_WITH_TYPE("isel", { 26260b57cec5SDimitry Andric dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft=" 26270b57cec5SDimitry Andric << UseLeft << " UseRight=" << UseRight << " HavePairs=" 26280b57cec5SDimitry Andric << HavePairs << '\n'; 26290b57cec5SDimitry Andric }); 26300b57cec5SDimitry Andric // If the mask is all -1's, generate "undef". 26310b57cec5SDimitry Andric if (!UseLeft && !UseRight) { 26320b57cec5SDimitry Andric ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode()); 26330b57cec5SDimitry Andric return; 26340b57cec5SDimitry Andric } 26350b57cec5SDimitry Andric 26360b57cec5SDimitry Andric SDValue Vec0 = N->getOperand(0); 26370b57cec5SDimitry Andric SDValue Vec1 = N->getOperand(1); 2638bdd1243dSDimitry Andric assert(Vec0.getValueType() == ResTy && Vec1.getValueType() == ResTy); 2639bdd1243dSDimitry Andric 26400b57cec5SDimitry Andric ResultStack Results(SN); 2641bdd1243dSDimitry Andric OpRef Va = OpRef::undef(ResTy); 2642bdd1243dSDimitry Andric OpRef Vb = OpRef::undef(ResTy); 2643bdd1243dSDimitry Andric 2644bdd1243dSDimitry Andric if (!Vec0.isUndef()) { 26450b57cec5SDimitry Andric Results.push(TargetOpcode::COPY, ResTy, {Vec0}); 2646bdd1243dSDimitry Andric Va = OpRef::OpRef::res(Results.top()); 2647bdd1243dSDimitry Andric } 2648bdd1243dSDimitry Andric if (!Vec1.isUndef()) { 26490b57cec5SDimitry Andric Results.push(TargetOpcode::COPY, ResTy, {Vec1}); 2650bdd1243dSDimitry Andric Vb = OpRef::res(Results.top()); 2651bdd1243dSDimitry Andric } 26520b57cec5SDimitry Andric 26530b57cec5SDimitry Andric OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results) 26540b57cec5SDimitry Andric : shuffp2(ShuffleMask(Mask), Va, Vb, Results); 26550b57cec5SDimitry Andric 26560b57cec5SDimitry Andric bool Done = Res.isValid(); 26570b57cec5SDimitry Andric if (Done) { 26580b57cec5SDimitry Andric // Make sure that Res is on the stack before materializing. 26590b57cec5SDimitry Andric Results.push(TargetOpcode::COPY, ResTy, {Res}); 26600b57cec5SDimitry Andric materialize(Results); 26610b57cec5SDimitry Andric } else { 26620b57cec5SDimitry Andric Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N); 26630b57cec5SDimitry Andric } 26640b57cec5SDimitry Andric 26650b57cec5SDimitry Andric if (!Done) { 26660b57cec5SDimitry Andric #ifndef NDEBUG 26670b57cec5SDimitry Andric dbgs() << "Unhandled shuffle:\n"; 26680b57cec5SDimitry Andric SN->dumpr(&DAG); 26690b57cec5SDimitry Andric #endif 26700b57cec5SDimitry Andric llvm_unreachable("Failed to select vector shuffle"); 26710b57cec5SDimitry Andric } 26720b57cec5SDimitry Andric } 26730b57cec5SDimitry Andric 26740b57cec5SDimitry Andric void HvxSelector::selectRor(SDNode *N) { 26750b57cec5SDimitry Andric // If this is a rotation by less than 8, use V6_valignbi. 26760b57cec5SDimitry Andric MVT Ty = N->getValueType(0).getSimpleVT(); 26770b57cec5SDimitry Andric const SDLoc &dl(N); 26780b57cec5SDimitry Andric SDValue VecV = N->getOperand(0); 26790b57cec5SDimitry Andric SDValue RotV = N->getOperand(1); 26800b57cec5SDimitry Andric SDNode *NewN = nullptr; 26810b57cec5SDimitry Andric 26820b57cec5SDimitry Andric if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) { 26830b57cec5SDimitry Andric unsigned S = CN->getZExtValue() % HST.getVectorLength(); 26840b57cec5SDimitry Andric if (S == 0) { 26850b57cec5SDimitry Andric NewN = VecV.getNode(); 26860b57cec5SDimitry Andric } else if (isUInt<3>(S)) { 26870b57cec5SDimitry Andric NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty, 2688fe6060f1SDimitry Andric {VecV, VecV, getConst32(S, dl)}); 26890b57cec5SDimitry Andric } 26900b57cec5SDimitry Andric } 26910b57cec5SDimitry Andric 26920b57cec5SDimitry Andric if (!NewN) 26930b57cec5SDimitry Andric NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV}); 26940b57cec5SDimitry Andric 26950b57cec5SDimitry Andric ISel.ReplaceNode(N, NewN); 26960b57cec5SDimitry Andric } 26970b57cec5SDimitry Andric 26980b57cec5SDimitry Andric void HvxSelector::selectVAlign(SDNode *N) { 26990b57cec5SDimitry Andric SDValue Vv = N->getOperand(0); 27000b57cec5SDimitry Andric SDValue Vu = N->getOperand(1); 27010b57cec5SDimitry Andric SDValue Rt = N->getOperand(2); 27020b57cec5SDimitry Andric SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N), 27030b57cec5SDimitry Andric N->getValueType(0), {Vv, Vu, Rt}); 27040b57cec5SDimitry Andric ISel.ReplaceNode(N, NewN); 27050b57cec5SDimitry Andric DAG.RemoveDeadNode(N); 27060b57cec5SDimitry Andric } 27070b57cec5SDimitry Andric 2708bdd1243dSDimitry Andric void HexagonDAGToDAGISel::PreprocessHvxISelDAG() { 2709bdd1243dSDimitry Andric auto getNodes = [this]() -> std::vector<SDNode *> { 2710bdd1243dSDimitry Andric std::vector<SDNode *> T; 2711bdd1243dSDimitry Andric T.reserve(CurDAG->allnodes_size()); 2712bdd1243dSDimitry Andric for (SDNode &N : CurDAG->allnodes()) 2713bdd1243dSDimitry Andric T.push_back(&N); 2714bdd1243dSDimitry Andric return T; 2715bdd1243dSDimitry Andric }; 2716bdd1243dSDimitry Andric 2717bdd1243dSDimitry Andric ppHvxShuffleOfShuffle(getNodes()); 2718bdd1243dSDimitry Andric } 2719bdd1243dSDimitry Andric 2720bdd1243dSDimitry Andric template <> struct std::hash<SDValue> { 2721bdd1243dSDimitry Andric std::size_t operator()(SDValue V) const { 2722bdd1243dSDimitry Andric return std::hash<const void *>()(V.getNode()) + 2723bdd1243dSDimitry Andric std::hash<unsigned>()(V.getResNo()); 2724bdd1243dSDimitry Andric }; 2725bdd1243dSDimitry Andric }; 2726bdd1243dSDimitry Andric 2727bdd1243dSDimitry Andric void HexagonDAGToDAGISel::ppHvxShuffleOfShuffle(std::vector<SDNode *> &&Nodes) { 2728bdd1243dSDimitry Andric // Motivating case: 2729bdd1243dSDimitry Andric // t10: v64i32 = ... 2730bdd1243dSDimitry Andric // t46: v128i8 = vector_shuffle<...> t44, t45 2731bdd1243dSDimitry Andric // t48: v128i8 = vector_shuffle<...> t44, t45 2732bdd1243dSDimitry Andric // t42: v128i8 = vector_shuffle<...> t46, t48 2733bdd1243dSDimitry Andric // t12: v32i32 = extract_subvector t10, Constant:i32<0> 2734bdd1243dSDimitry Andric // t44: v128i8 = bitcast t12 2735bdd1243dSDimitry Andric // t15: v32i32 = extract_subvector t10, Constant:i32<32> 2736bdd1243dSDimitry Andric // t45: v128i8 = bitcast t15 2737bdd1243dSDimitry Andric SelectionDAG &DAG = *CurDAG; 2738bdd1243dSDimitry Andric unsigned HwLen = HST->getVectorLength(); 2739bdd1243dSDimitry Andric 2740bdd1243dSDimitry Andric struct SubVectorInfo { 2741bdd1243dSDimitry Andric SubVectorInfo(SDValue S, unsigned H) : Src(S), HalfIdx(H) {} 2742bdd1243dSDimitry Andric SDValue Src; 2743bdd1243dSDimitry Andric unsigned HalfIdx; 2744bdd1243dSDimitry Andric }; 2745bdd1243dSDimitry Andric 2746bdd1243dSDimitry Andric using MapType = std::unordered_map<SDValue, unsigned>; 2747bdd1243dSDimitry Andric 2748bdd1243dSDimitry Andric auto getMaskElt = [&](unsigned Idx, ShuffleVectorSDNode *Shuff0, 2749bdd1243dSDimitry Andric ShuffleVectorSDNode *Shuff1, 2750bdd1243dSDimitry Andric const MapType &OpMap) -> int { 2751bdd1243dSDimitry Andric // Treat Shuff0 and Shuff1 as operands to another vector shuffle, and 2752bdd1243dSDimitry Andric // Idx as a (non-undef) element of the top level shuffle's mask, that 2753bdd1243dSDimitry Andric // is, index into concat(Shuff0, Shuff1). 2754bdd1243dSDimitry Andric // Assuming that Shuff0 and Shuff1 both operate on subvectors of the 2755bdd1243dSDimitry Andric // same source vector (as described by OpMap), return the index of 2756bdd1243dSDimitry Andric // that source vector corresponding to Idx. 2757bdd1243dSDimitry Andric ShuffleVectorSDNode *OpShuff = Idx < HwLen ? Shuff0 : Shuff1; 2758bdd1243dSDimitry Andric if (Idx >= HwLen) 2759bdd1243dSDimitry Andric Idx -= HwLen; 2760bdd1243dSDimitry Andric 2761bdd1243dSDimitry Andric // Get the mask index that M points at in the corresponding operand. 2762bdd1243dSDimitry Andric int MaybeN = OpShuff->getMaskElt(Idx); 2763bdd1243dSDimitry Andric if (MaybeN < 0) 2764bdd1243dSDimitry Andric return -1; 2765bdd1243dSDimitry Andric 2766bdd1243dSDimitry Andric auto N = static_cast<unsigned>(MaybeN); 2767bdd1243dSDimitry Andric unsigned SrcBase = N < HwLen ? OpMap.at(OpShuff->getOperand(0)) 2768bdd1243dSDimitry Andric : OpMap.at(OpShuff->getOperand(1)); 2769bdd1243dSDimitry Andric if (N >= HwLen) 2770bdd1243dSDimitry Andric N -= HwLen; 2771bdd1243dSDimitry Andric 2772bdd1243dSDimitry Andric return N + SrcBase; 2773bdd1243dSDimitry Andric }; 2774bdd1243dSDimitry Andric 2775bdd1243dSDimitry Andric auto fold3 = [&](SDValue TopShuff, SDValue Inp, MapType &&OpMap) -> SDValue { 2776bdd1243dSDimitry Andric // Fold all 3 shuffles into a single one. 2777bdd1243dSDimitry Andric auto *This = cast<ShuffleVectorSDNode>(TopShuff); 2778bdd1243dSDimitry Andric auto *S0 = cast<ShuffleVectorSDNode>(TopShuff.getOperand(0)); 2779bdd1243dSDimitry Andric auto *S1 = cast<ShuffleVectorSDNode>(TopShuff.getOperand(1)); 2780bdd1243dSDimitry Andric ArrayRef<int> TopMask = This->getMask(); 2781bdd1243dSDimitry Andric // This should be guaranteed by type checks in the caller, and the fact 2782bdd1243dSDimitry Andric // that all shuffles should have been promoted to operate on MVT::i8. 2783bdd1243dSDimitry Andric assert(TopMask.size() == S0->getMask().size() && 2784bdd1243dSDimitry Andric TopMask.size() == S1->getMask().size()); 2785bdd1243dSDimitry Andric assert(TopMask.size() == HwLen); 2786bdd1243dSDimitry Andric 2787bdd1243dSDimitry Andric SmallVector<int, 256> FoldedMask(2 * HwLen); 2788bdd1243dSDimitry Andric for (unsigned I = 0; I != HwLen; ++I) { 2789bdd1243dSDimitry Andric int MaybeM = TopMask[I]; 2790bdd1243dSDimitry Andric if (MaybeM >= 0) { 2791bdd1243dSDimitry Andric FoldedMask[I] = 2792bdd1243dSDimitry Andric getMaskElt(static_cast<unsigned>(MaybeM), S0, S1, OpMap); 2793bdd1243dSDimitry Andric } else { 2794bdd1243dSDimitry Andric FoldedMask[I] = -1; 2795bdd1243dSDimitry Andric } 2796bdd1243dSDimitry Andric } 2797bdd1243dSDimitry Andric // The second half of the result will be all-undef. 2798bdd1243dSDimitry Andric std::fill(FoldedMask.begin() + HwLen, FoldedMask.end(), -1); 2799bdd1243dSDimitry Andric 2800bdd1243dSDimitry Andric // Return 2801bdd1243dSDimitry Andric // FoldedShuffle = (Shuffle Inp, undef, FoldedMask) 2802bdd1243dSDimitry Andric // (LoHalf FoldedShuffle) 2803bdd1243dSDimitry Andric const SDLoc &dl(TopShuff); 2804bdd1243dSDimitry Andric MVT SingleTy = MVT::getVectorVT(MVT::i8, HwLen); 2805bdd1243dSDimitry Andric MVT PairTy = MVT::getVectorVT(MVT::i8, 2 * HwLen); 2806bdd1243dSDimitry Andric SDValue FoldedShuff = 2807bdd1243dSDimitry Andric DAG.getVectorShuffle(PairTy, dl, DAG.getBitcast(PairTy, Inp), 2808bdd1243dSDimitry Andric DAG.getUNDEF(PairTy), FoldedMask); 2809bdd1243dSDimitry Andric return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SingleTy, FoldedShuff, 2810bdd1243dSDimitry Andric DAG.getConstant(0, dl, MVT::i32)); 2811bdd1243dSDimitry Andric }; 2812bdd1243dSDimitry Andric 2813bdd1243dSDimitry Andric auto getSourceInfo = [](SDValue V) -> std::optional<SubVectorInfo> { 2814bdd1243dSDimitry Andric while (V.getOpcode() == ISD::BITCAST) 2815bdd1243dSDimitry Andric V = V.getOperand(0); 2816bdd1243dSDimitry Andric if (V.getOpcode() != ISD::EXTRACT_SUBVECTOR) 2817bdd1243dSDimitry Andric return std::nullopt; 2818bdd1243dSDimitry Andric return SubVectorInfo(V.getOperand(0), 2819bdd1243dSDimitry Andric !cast<ConstantSDNode>(V.getOperand(1))->isZero()); 2820bdd1243dSDimitry Andric }; 2821bdd1243dSDimitry Andric 2822bdd1243dSDimitry Andric for (SDNode *N : Nodes) { 2823bdd1243dSDimitry Andric if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2824bdd1243dSDimitry Andric continue; 2825bdd1243dSDimitry Andric EVT ResTy = N->getValueType(0); 2826bdd1243dSDimitry Andric if (ResTy.getVectorElementType() != MVT::i8) 2827bdd1243dSDimitry Andric continue; 2828bdd1243dSDimitry Andric if (ResTy.getVectorNumElements() != HwLen) 2829bdd1243dSDimitry Andric continue; 2830bdd1243dSDimitry Andric 2831bdd1243dSDimitry Andric SDValue V0 = N->getOperand(0); 2832bdd1243dSDimitry Andric SDValue V1 = N->getOperand(1); 2833bdd1243dSDimitry Andric if (V0.getOpcode() != ISD::VECTOR_SHUFFLE) 2834bdd1243dSDimitry Andric continue; 2835bdd1243dSDimitry Andric if (V1.getOpcode() != ISD::VECTOR_SHUFFLE) 2836bdd1243dSDimitry Andric continue; 2837bdd1243dSDimitry Andric if (V0.getValueType() != ResTy || V1.getValueType() != ResTy) 2838bdd1243dSDimitry Andric continue; 2839bdd1243dSDimitry Andric 2840bdd1243dSDimitry Andric // Check if all operands of the two operand shuffles are extract_subvectors 2841bdd1243dSDimitry Andric // from the same vector pair. 2842bdd1243dSDimitry Andric auto V0A = getSourceInfo(V0.getOperand(0)); 2843bdd1243dSDimitry Andric if (!V0A.has_value()) 2844bdd1243dSDimitry Andric continue; 2845bdd1243dSDimitry Andric auto V0B = getSourceInfo(V0.getOperand(1)); 2846bdd1243dSDimitry Andric if (!V0B.has_value() || V0B->Src != V0A->Src) 2847bdd1243dSDimitry Andric continue; 2848bdd1243dSDimitry Andric auto V1A = getSourceInfo(V1.getOperand(0)); 2849bdd1243dSDimitry Andric if (!V1A.has_value() || V1A->Src != V0A->Src) 2850bdd1243dSDimitry Andric continue; 2851bdd1243dSDimitry Andric auto V1B = getSourceInfo(V1.getOperand(1)); 2852bdd1243dSDimitry Andric if (!V1B.has_value() || V1B->Src != V0A->Src) 2853bdd1243dSDimitry Andric continue; 2854bdd1243dSDimitry Andric 2855bdd1243dSDimitry Andric // The source must be a pair. This should be guaranteed here, 2856bdd1243dSDimitry Andric // but check just in case. 2857bdd1243dSDimitry Andric assert(V0A->Src.getValueType().getSizeInBits() == 16 * HwLen); 2858bdd1243dSDimitry Andric 2859bdd1243dSDimitry Andric MapType OpMap = { 2860bdd1243dSDimitry Andric {V0.getOperand(0), V0A->HalfIdx * HwLen}, 2861bdd1243dSDimitry Andric {V0.getOperand(1), V0B->HalfIdx * HwLen}, 2862bdd1243dSDimitry Andric {V1.getOperand(0), V1A->HalfIdx * HwLen}, 2863bdd1243dSDimitry Andric {V1.getOperand(1), V1B->HalfIdx * HwLen}, 2864bdd1243dSDimitry Andric }; 2865bdd1243dSDimitry Andric SDValue NewS = fold3(SDValue(N, 0), V0A->Src, std::move(OpMap)); 2866bdd1243dSDimitry Andric ReplaceNode(N, NewS.getNode()); 2867bdd1243dSDimitry Andric } 2868bdd1243dSDimitry Andric } 2869bdd1243dSDimitry Andric 2870bdd1243dSDimitry Andric void HexagonDAGToDAGISel::SelectHvxExtractSubvector(SDNode *N) { 2871bdd1243dSDimitry Andric HvxSelector(*this, *CurDAG).selectExtractSubvector(N); 2872bdd1243dSDimitry Andric } 2873bdd1243dSDimitry Andric 28740b57cec5SDimitry Andric void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) { 28750b57cec5SDimitry Andric HvxSelector(*this, *CurDAG).selectShuffle(N); 28760b57cec5SDimitry Andric } 28770b57cec5SDimitry Andric 28780b57cec5SDimitry Andric void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) { 28790b57cec5SDimitry Andric HvxSelector(*this, *CurDAG).selectRor(N); 28800b57cec5SDimitry Andric } 28810b57cec5SDimitry Andric 28820b57cec5SDimitry Andric void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) { 28830b57cec5SDimitry Andric HvxSelector(*this, *CurDAG).selectVAlign(N); 28840b57cec5SDimitry Andric } 28850b57cec5SDimitry Andric 28860b57cec5SDimitry Andric void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) { 28870b57cec5SDimitry Andric const SDLoc &dl(N); 28880b57cec5SDimitry Andric SDValue Chain = N->getOperand(0); 28890b57cec5SDimitry Andric SDValue Address = N->getOperand(2); 28900b57cec5SDimitry Andric SDValue Predicate = N->getOperand(3); 28910b57cec5SDimitry Andric SDValue Base = N->getOperand(4); 28920b57cec5SDimitry Andric SDValue Modifier = N->getOperand(5); 28930b57cec5SDimitry Andric SDValue Offset = N->getOperand(6); 289404eeddc0SDimitry Andric SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32); 28950b57cec5SDimitry Andric 28960b57cec5SDimitry Andric unsigned Opcode; 2897647cbc5dSDimitry Andric unsigned IntNo = N->getConstantOperandVal(1); 28980b57cec5SDimitry Andric switch (IntNo) { 28990b57cec5SDimitry Andric default: 29000b57cec5SDimitry Andric llvm_unreachable("Unexpected HVX gather intrinsic."); 29010b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhq: 29020b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhq_128B: 29030b57cec5SDimitry Andric Opcode = Hexagon::V6_vgathermhq_pseudo; 29040b57cec5SDimitry Andric break; 29050b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermwq: 29060b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermwq_128B: 29070b57cec5SDimitry Andric Opcode = Hexagon::V6_vgathermwq_pseudo; 29080b57cec5SDimitry Andric break; 29090b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhwq: 29100b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhwq_128B: 29110b57cec5SDimitry Andric Opcode = Hexagon::V6_vgathermhwq_pseudo; 29120b57cec5SDimitry Andric break; 29130b57cec5SDimitry Andric } 29140b57cec5SDimitry Andric 29150b57cec5SDimitry Andric SDVTList VTs = CurDAG->getVTList(MVT::Other); 291604eeddc0SDimitry Andric SDValue Ops[] = { Address, ImmOperand, 291704eeddc0SDimitry Andric Predicate, Base, Modifier, Offset, Chain }; 29180b57cec5SDimitry Andric SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 29190b57cec5SDimitry Andric 29200b57cec5SDimitry Andric MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 29210b57cec5SDimitry Andric CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 29220b57cec5SDimitry Andric 29230b57cec5SDimitry Andric ReplaceNode(N, Result); 29240b57cec5SDimitry Andric } 29250b57cec5SDimitry Andric 29260b57cec5SDimitry Andric void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) { 29270b57cec5SDimitry Andric const SDLoc &dl(N); 29280b57cec5SDimitry Andric SDValue Chain = N->getOperand(0); 29290b57cec5SDimitry Andric SDValue Address = N->getOperand(2); 29300b57cec5SDimitry Andric SDValue Base = N->getOperand(3); 29310b57cec5SDimitry Andric SDValue Modifier = N->getOperand(4); 29320b57cec5SDimitry Andric SDValue Offset = N->getOperand(5); 293304eeddc0SDimitry Andric SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32); 29340b57cec5SDimitry Andric 29350b57cec5SDimitry Andric unsigned Opcode; 2936647cbc5dSDimitry Andric unsigned IntNo = N->getConstantOperandVal(1); 29370b57cec5SDimitry Andric switch (IntNo) { 29380b57cec5SDimitry Andric default: 29390b57cec5SDimitry Andric llvm_unreachable("Unexpected HVX gather intrinsic."); 29400b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermh: 29410b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermh_128B: 29420b57cec5SDimitry Andric Opcode = Hexagon::V6_vgathermh_pseudo; 29430b57cec5SDimitry Andric break; 29440b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermw: 29450b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermw_128B: 29460b57cec5SDimitry Andric Opcode = Hexagon::V6_vgathermw_pseudo; 29470b57cec5SDimitry Andric break; 29480b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhw: 29490b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vgathermhw_128B: 29500b57cec5SDimitry Andric Opcode = Hexagon::V6_vgathermhw_pseudo; 29510b57cec5SDimitry Andric break; 29520b57cec5SDimitry Andric } 29530b57cec5SDimitry Andric 29540b57cec5SDimitry Andric SDVTList VTs = CurDAG->getVTList(MVT::Other); 295504eeddc0SDimitry Andric SDValue Ops[] = { Address, ImmOperand, Base, Modifier, Offset, Chain }; 29560b57cec5SDimitry Andric SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); 29570b57cec5SDimitry Andric 29580b57cec5SDimitry Andric MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand(); 29590b57cec5SDimitry Andric CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); 29600b57cec5SDimitry Andric 29610b57cec5SDimitry Andric ReplaceNode(N, Result); 29620b57cec5SDimitry Andric } 29630b57cec5SDimitry Andric 29640b57cec5SDimitry Andric void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) { 2965647cbc5dSDimitry Andric unsigned IID = N->getConstantOperandVal(0); 29660b57cec5SDimitry Andric SDNode *Result; 29670b57cec5SDimitry Andric switch (IID) { 29680b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vaddcarry: { 29695ffd83dbSDimitry Andric std::array<SDValue, 3> Ops = { 29705ffd83dbSDimitry Andric {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 29715ffd83dbSDimitry Andric SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1); 29720b57cec5SDimitry Andric Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 29730b57cec5SDimitry Andric break; 29740b57cec5SDimitry Andric } 29750b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vaddcarry_128B: { 29765ffd83dbSDimitry Andric std::array<SDValue, 3> Ops = { 29775ffd83dbSDimitry Andric {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 29785ffd83dbSDimitry Andric SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1); 29790b57cec5SDimitry Andric Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops); 29800b57cec5SDimitry Andric break; 29810b57cec5SDimitry Andric } 29820b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vsubcarry: { 29835ffd83dbSDimitry Andric std::array<SDValue, 3> Ops = { 29845ffd83dbSDimitry Andric {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 29855ffd83dbSDimitry Andric SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1); 29860b57cec5SDimitry Andric Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 29870b57cec5SDimitry Andric break; 29880b57cec5SDimitry Andric } 29890b57cec5SDimitry Andric case Intrinsic::hexagon_V6_vsubcarry_128B: { 29905ffd83dbSDimitry Andric std::array<SDValue, 3> Ops = { 29915ffd83dbSDimitry Andric {N->getOperand(1), N->getOperand(2), N->getOperand(3)}}; 29925ffd83dbSDimitry Andric SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1); 29930b57cec5SDimitry Andric Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops); 29940b57cec5SDimitry Andric break; 29950b57cec5SDimitry Andric } 29960b57cec5SDimitry Andric default: 29970b57cec5SDimitry Andric llvm_unreachable("Unexpected HVX dual output intrinsic."); 29980b57cec5SDimitry Andric } 29990b57cec5SDimitry Andric ReplaceUses(N, Result); 30000b57cec5SDimitry Andric ReplaceUses(SDValue(N, 0), SDValue(Result, 0)); 30010b57cec5SDimitry Andric ReplaceUses(SDValue(N, 1), SDValue(Result, 1)); 30020b57cec5SDimitry Andric CurDAG->RemoveDeadNode(N); 30030b57cec5SDimitry Andric } 3004