1 //===- HexagonEarlyIfConv.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a Hexagon-specific if-conversion pass that runs on the 10 // SSA form. 11 // In SSA it is not straightforward to represent instructions that condi- 12 // tionally define registers, since a conditionally-defined register may 13 // only be used under the same condition on which the definition was based. 14 // To avoid complications of this nature, this patch will only generate 15 // predicated stores, and speculate other instructions from the "if-conver- 16 // ted" block. 17 // The code will recognize CFG patterns where a block with a conditional 18 // branch "splits" into a "true block" and a "false block". Either of these 19 // could be omitted (in case of a triangle, for example). 20 // If after conversion of the side block(s) the CFG allows it, the resul- 21 // ting blocks may be merged. If the "join" block contained PHI nodes, they 22 // will be replaced with MUX (or MUX-like) instructions to maintain the 23 // semantics of the PHI. 24 // 25 // Example: 26 // 27 // %40 = L2_loadrub_io killed %39, 1 28 // %41 = S2_tstbit_i killed %40, 0 29 // J2_jumpt killed %41, <%bb.5>, implicit dead %pc 30 // J2_jump <%bb.4>, implicit dead %pc 31 // Successors according to CFG: %bb.4(62) %bb.5(62) 32 // 33 // %bb.4: derived from LLVM BB %if.then 34 // Predecessors according to CFG: %bb.3 35 // %11 = A2_addp %6, %10 36 // S2_storerd_io %32, 16, %11 37 // Successors according to CFG: %bb.5 38 // 39 // %bb.5: derived from LLVM BB %if.end 40 // Predecessors according to CFG: %bb.3 %bb.4 41 // %12 = PHI %6, <%bb.3>, %11, <%bb.4> 42 // %13 = A2_addp %7, %12 43 // %42 = C2_cmpeqi %9, 10 44 // J2_jumpf killed %42, <%bb.3>, implicit dead %pc 45 // J2_jump <%bb.6>, implicit dead %pc 46 // Successors according to CFG: %bb.6(4) %bb.3(124) 47 // 48 // would become: 49 // 50 // %40 = L2_loadrub_io killed %39, 1 51 // %41 = S2_tstbit_i killed %40, 0 52 // spec-> %11 = A2_addp %6, %10 53 // pred-> S2_pstorerdf_io %41, %32, 16, %11 54 // %46 = PS_pselect %41, %6, %11 55 // %13 = A2_addp %7, %46 56 // %42 = C2_cmpeqi %9, 10 57 // J2_jumpf killed %42, <%bb.3>, implicit dead %pc 58 // J2_jump <%bb.6>, implicit dead %pc 59 // Successors according to CFG: %bb.6 %bb.3 60 61 #include "Hexagon.h" 62 #include "HexagonInstrInfo.h" 63 #include "HexagonSubtarget.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/CodeGen/MachineBasicBlock.h" 69 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 70 #include "llvm/CodeGen/MachineDominators.h" 71 #include "llvm/CodeGen/MachineFunction.h" 72 #include "llvm/CodeGen/MachineFunctionPass.h" 73 #include "llvm/CodeGen/MachineInstr.h" 74 #include "llvm/CodeGen/MachineInstrBuilder.h" 75 #include "llvm/CodeGen/MachineLoopInfo.h" 76 #include "llvm/CodeGen/MachineOperand.h" 77 #include "llvm/CodeGen/MachineRegisterInfo.h" 78 #include "llvm/CodeGen/TargetRegisterInfo.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BranchProbability.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <cassert> 88 #include <iterator> 89 90 #define DEBUG_TYPE "hexagon-eif" 91 92 using namespace llvm; 93 94 namespace llvm { 95 96 FunctionPass *createHexagonEarlyIfConversion(); 97 void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry); 98 99 } // end namespace llvm 100 101 static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden, 102 cl::init(true), cl::desc("Enable branch probability info")); 103 static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden, 104 cl::desc("Size limit in Hexagon early if-conversion")); 105 static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false), 106 cl::Hidden, cl::desc("Do not convert branches that may exit the loop")); 107 108 namespace { 109 110 struct PrintMB { 111 PrintMB(const MachineBasicBlock *B) : MB(B) {} 112 113 const MachineBasicBlock *MB; 114 }; 115 raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) { 116 if (!P.MB) 117 return OS << "<none>"; 118 return OS << '#' << P.MB->getNumber(); 119 } 120 121 struct FlowPattern { 122 FlowPattern() = default; 123 FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB, 124 MachineBasicBlock *FB, MachineBasicBlock *JB) 125 : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {} 126 127 MachineBasicBlock *SplitB = nullptr; 128 MachineBasicBlock *TrueB = nullptr; 129 MachineBasicBlock *FalseB = nullptr; 130 MachineBasicBlock *JoinB = nullptr; 131 unsigned PredR = 0; 132 }; 133 134 struct PrintFP { 135 PrintFP(const FlowPattern &P, const TargetRegisterInfo &T) 136 : FP(P), TRI(T) {} 137 138 const FlowPattern &FP; 139 const TargetRegisterInfo &TRI; 140 friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P); 141 }; 142 raw_ostream &operator<<(raw_ostream &OS, 143 const PrintFP &P) LLVM_ATTRIBUTE_UNUSED; 144 raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) { 145 OS << "{ SplitB:" << PrintMB(P.FP.SplitB) 146 << ", PredR:" << printReg(P.FP.PredR, &P.TRI) 147 << ", TrueB:" << PrintMB(P.FP.TrueB) 148 << ", FalseB:" << PrintMB(P.FP.FalseB) 149 << ", JoinB:" << PrintMB(P.FP.JoinB) << " }"; 150 return OS; 151 } 152 153 class HexagonEarlyIfConversion : public MachineFunctionPass { 154 public: 155 static char ID; 156 157 HexagonEarlyIfConversion() : MachineFunctionPass(ID) {} 158 159 StringRef getPassName() const override { 160 return "Hexagon early if conversion"; 161 } 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override { 164 AU.addRequired<MachineBranchProbabilityInfo>(); 165 AU.addRequired<MachineDominatorTree>(); 166 AU.addPreserved<MachineDominatorTree>(); 167 AU.addRequired<MachineLoopInfo>(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 } 170 171 bool runOnMachineFunction(MachineFunction &MF) override; 172 173 private: 174 using BlockSetType = DenseSet<MachineBasicBlock *>; 175 176 bool isPreheader(const MachineBasicBlock *B) const; 177 bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L, 178 FlowPattern &FP); 179 bool visitBlock(MachineBasicBlock *B, MachineLoop *L); 180 bool visitLoop(MachineLoop *L); 181 182 bool hasEHLabel(const MachineBasicBlock *B) const; 183 bool hasUncondBranch(const MachineBasicBlock *B) const; 184 bool isValidCandidate(const MachineBasicBlock *B) const; 185 bool usesUndefVReg(const MachineInstr *MI) const; 186 bool isValid(const FlowPattern &FP) const; 187 unsigned countPredicateDefs(const MachineBasicBlock *B) const; 188 unsigned computePhiCost(const MachineBasicBlock *B, 189 const FlowPattern &FP) const; 190 bool isProfitable(const FlowPattern &FP) const; 191 bool isPredicableStore(const MachineInstr *MI) const; 192 bool isSafeToSpeculate(const MachineInstr *MI) const; 193 bool isPredicate(unsigned R) const; 194 195 unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const; 196 void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, 197 MachineInstr *MI, unsigned PredR, bool IfTrue); 198 void predicateBlockNB(MachineBasicBlock *ToB, 199 MachineBasicBlock::iterator At, MachineBasicBlock *FromB, 200 unsigned PredR, bool IfTrue); 201 202 unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At, 203 const TargetRegisterClass *DRC, unsigned PredR, unsigned TR, 204 unsigned TSR, unsigned FR, unsigned FSR); 205 void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP); 206 void convert(const FlowPattern &FP); 207 208 void removeBlock(MachineBasicBlock *B); 209 void eliminatePhis(MachineBasicBlock *B); 210 void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB); 211 void simplifyFlowGraph(const FlowPattern &FP); 212 213 const HexagonInstrInfo *HII = nullptr; 214 const TargetRegisterInfo *TRI = nullptr; 215 MachineFunction *MFN = nullptr; 216 MachineRegisterInfo *MRI = nullptr; 217 MachineDominatorTree *MDT = nullptr; 218 MachineLoopInfo *MLI = nullptr; 219 BlockSetType Deleted; 220 const MachineBranchProbabilityInfo *MBPI = nullptr; 221 }; 222 223 } // end anonymous namespace 224 225 char HexagonEarlyIfConversion::ID = 0; 226 227 INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if", 228 "Hexagon early if conversion", false, false) 229 230 bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const { 231 if (B->succ_size() != 1) 232 return false; 233 MachineBasicBlock *SB = *B->succ_begin(); 234 MachineLoop *L = MLI->getLoopFor(SB); 235 return L && SB == L->getHeader() && MDT->dominates(B, SB); 236 } 237 238 bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B, 239 MachineLoop *L, FlowPattern &FP) { 240 LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B) 241 << "\n"); 242 243 // Interested only in conditional branches, no .new, no new-value, etc. 244 // Check the terminators directly, it's easier than handling all responses 245 // from analyzeBranch. 246 MachineBasicBlock *TB = nullptr, *FB = nullptr; 247 MachineBasicBlock::const_iterator T1I = B->getFirstTerminator(); 248 if (T1I == B->end()) 249 return false; 250 unsigned Opc = T1I->getOpcode(); 251 if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf) 252 return false; 253 Register PredR = T1I->getOperand(0).getReg(); 254 255 // Get the layout successor, or 0 if B does not have one. 256 MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B)); 257 MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr; 258 259 MachineBasicBlock *T1B = T1I->getOperand(1).getMBB(); 260 MachineBasicBlock::const_iterator T2I = std::next(T1I); 261 // The second terminator should be an unconditional branch. 262 assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump); 263 MachineBasicBlock *T2B = (T2I == B->end()) ? NextB 264 : T2I->getOperand(0).getMBB(); 265 if (T1B == T2B) { 266 // XXX merge if T1B == NextB, or convert branch to unconditional. 267 // mark as diamond with both sides equal? 268 return false; 269 } 270 271 // Record the true/false blocks in such a way that "true" means "if (PredR)", 272 // and "false" means "if (!PredR)". 273 if (Opc == Hexagon::J2_jumpt) 274 TB = T1B, FB = T2B; 275 else 276 TB = T2B, FB = T1B; 277 278 if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB)) 279 return false; 280 281 // Detect triangle first. In case of a triangle, one of the blocks TB/FB 282 // can fall through into the other, in other words, it will be executed 283 // in both cases. We only want to predicate the block that is executed 284 // conditionally. 285 assert(TB && FB && "Failed to find triangle control flow blocks"); 286 unsigned TNP = TB->pred_size(), FNP = FB->pred_size(); 287 unsigned TNS = TB->succ_size(), FNS = FB->succ_size(); 288 289 // A block is predicable if it has one predecessor (it must be B), and 290 // it has a single successor. In fact, the block has to end either with 291 // an unconditional branch (which can be predicated), or with a fall- 292 // through. 293 // Also, skip blocks that do not belong to the same loop. 294 bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L); 295 bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L); 296 297 // If requested (via an option), do not consider branches where the 298 // true and false targets do not belong to the same loop. 299 if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB)) 300 return false; 301 302 // If neither is predicable, there is nothing interesting. 303 if (!TOk && !FOk) 304 return false; 305 306 MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr; 307 MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr; 308 MachineBasicBlock *JB = nullptr; 309 310 if (TOk) { 311 if (FOk) { 312 if (TSB == FSB) 313 JB = TSB; 314 // Diamond: "if (P) then TB; else FB;". 315 } else { 316 // TOk && !FOk 317 if (TSB == FB) 318 JB = FB; 319 FB = nullptr; 320 } 321 } else { 322 // !TOk && FOk (at least one must be true by now). 323 if (FSB == TB) 324 JB = TB; 325 TB = nullptr; 326 } 327 // Don't try to predicate loop preheaders. 328 if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) { 329 LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB) 330 << " is a loop preheader. Skipping.\n"); 331 return false; 332 } 333 334 FP = FlowPattern(B, PredR, TB, FB, JB); 335 LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n"); 336 return true; 337 } 338 339 // KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that 340 // contains EH_LABEL. 341 bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const { 342 for (auto &I : *B) 343 if (I.isEHLabel()) 344 return true; 345 return false; 346 } 347 348 // KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize 349 // that a block can never fall-through. 350 bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B) 351 const { 352 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); 353 while (I != E) { 354 if (I->isBarrier()) 355 return true; 356 ++I; 357 } 358 return false; 359 } 360 361 bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B) 362 const { 363 if (!B) 364 return true; 365 if (B->isEHPad() || B->hasAddressTaken()) 366 return false; 367 if (B->succ_size() == 0) 368 return false; 369 370 for (auto &MI : *B) { 371 if (MI.isDebugInstr()) 372 continue; 373 if (MI.isConditionalBranch()) 374 return false; 375 unsigned Opc = MI.getOpcode(); 376 bool IsJMP = (Opc == Hexagon::J2_jump); 377 if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI)) 378 return false; 379 // Look for predicate registers defined by this instruction. It's ok 380 // to speculate such an instruction, but the predicate register cannot 381 // be used outside of this block (or else it won't be possible to 382 // update the use of it after predication). PHI uses will be updated 383 // to use a result of a MUX, and a MUX cannot be created for predicate 384 // registers. 385 for (const MachineOperand &MO : MI.operands()) { 386 if (!MO.isReg() || !MO.isDef()) 387 continue; 388 Register R = MO.getReg(); 389 if (!Register::isVirtualRegister(R)) 390 continue; 391 if (!isPredicate(R)) 392 continue; 393 for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U) 394 if (U->getParent()->isPHI()) 395 return false; 396 } 397 } 398 return true; 399 } 400 401 bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const { 402 for (const MachineOperand &MO : MI->operands()) { 403 if (!MO.isReg() || !MO.isUse()) 404 continue; 405 Register R = MO.getReg(); 406 if (!Register::isVirtualRegister(R)) 407 continue; 408 const MachineInstr *DefI = MRI->getVRegDef(R); 409 // "Undefined" virtual registers are actually defined via IMPLICIT_DEF. 410 assert(DefI && "Expecting a reaching def in MRI"); 411 if (DefI->isImplicitDef()) 412 return true; 413 } 414 return false; 415 } 416 417 bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const { 418 if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition 419 return false; 420 if (FP.TrueB && !isValidCandidate(FP.TrueB)) 421 return false; 422 if (FP.FalseB && !isValidCandidate(FP.FalseB)) 423 return false; 424 // Check the PHIs in the join block. If any of them use a register 425 // that is defined as IMPLICIT_DEF, do not convert this. This can 426 // legitimately happen if one side of the split never executes, but 427 // the compiler is unable to prove it. That side may then seem to 428 // provide an "undef" value to the join block, however it will never 429 // execute at run-time. If we convert this case, the "undef" will 430 // be used in a MUX instruction, and that may seem like actually 431 // using an undefined value to other optimizations. This could lead 432 // to trouble further down the optimization stream, cause assertions 433 // to fail, etc. 434 if (FP.JoinB) { 435 const MachineBasicBlock &B = *FP.JoinB; 436 for (auto &MI : B) { 437 if (!MI.isPHI()) 438 break; 439 if (usesUndefVReg(&MI)) 440 return false; 441 Register DefR = MI.getOperand(0).getReg(); 442 if (isPredicate(DefR)) 443 return false; 444 } 445 } 446 return true; 447 } 448 449 unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B, 450 const FlowPattern &FP) const { 451 if (B->pred_size() < 2) 452 return 0; 453 454 unsigned Cost = 0; 455 for (const MachineInstr &MI : *B) { 456 if (!MI.isPHI()) 457 break; 458 // If both incoming blocks are one of the TrueB/FalseB/SplitB, then 459 // a MUX may be needed. Otherwise the PHI will need to be updated at 460 // no extra cost. 461 // Find the interesting PHI operands for further checks. 462 SmallVector<unsigned,2> Inc; 463 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 464 const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB(); 465 if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB) 466 Inc.push_back(i); 467 } 468 assert(Inc.size() <= 2); 469 if (Inc.size() < 2) 470 continue; 471 472 const MachineOperand &RA = MI.getOperand(1); 473 const MachineOperand &RB = MI.getOperand(3); 474 assert(RA.isReg() && RB.isReg()); 475 // Must have a MUX if the phi uses a subregister. 476 if (RA.getSubReg() != 0 || RB.getSubReg() != 0) { 477 Cost++; 478 continue; 479 } 480 const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg()); 481 const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg()); 482 if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3)) 483 Cost++; 484 } 485 return Cost; 486 } 487 488 unsigned HexagonEarlyIfConversion::countPredicateDefs( 489 const MachineBasicBlock *B) const { 490 unsigned PredDefs = 0; 491 for (auto &MI : *B) { 492 for (const MachineOperand &MO : MI.operands()) { 493 if (!MO.isReg() || !MO.isDef()) 494 continue; 495 Register R = MO.getReg(); 496 if (!Register::isVirtualRegister(R)) 497 continue; 498 if (isPredicate(R)) 499 PredDefs++; 500 } 501 } 502 return PredDefs; 503 } 504 505 bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const { 506 BranchProbability JumpProb(1, 10); 507 BranchProbability Prob(9, 10); 508 if (MBPI && FP.TrueB && !FP.FalseB && 509 (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) < JumpProb || 510 MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)) 511 return false; 512 513 if (MBPI && !FP.TrueB && FP.FalseB && 514 (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) < JumpProb || 515 MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)) 516 return false; 517 518 if (FP.TrueB && FP.FalseB) { 519 // Do not IfCovert if the branch is one sided. 520 if (MBPI) { 521 if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob) 522 return false; 523 if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob) 524 return false; 525 } 526 527 // If both sides are predicable, convert them if they join, and the 528 // join block has no other predecessors. 529 MachineBasicBlock *TSB = *FP.TrueB->succ_begin(); 530 MachineBasicBlock *FSB = *FP.FalseB->succ_begin(); 531 if (TSB != FSB) 532 return false; 533 if (TSB->pred_size() != 2) 534 return false; 535 } 536 537 // Calculate the total size of the predicated blocks. 538 // Assume instruction counts without branches to be the approximation of 539 // the code size. If the predicated blocks are smaller than a packet size, 540 // approximate the spare room in the packet that could be filled with the 541 // predicated/speculated instructions. 542 auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) { 543 if (!B) 544 return 0u; 545 unsigned T = std::count_if(B->begin(), B->getFirstTerminator(), 546 [](const MachineInstr &MI) { 547 return !MI.isMetaInstruction(); 548 }); 549 if (T < HEXAGON_PACKET_SIZE) 550 Spare += HEXAGON_PACKET_SIZE-T; 551 return T; 552 }; 553 unsigned Spare = 0; 554 unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare); 555 LLVM_DEBUG( 556 dbgs() << "Total number of instructions to be predicated/speculated: " 557 << TotalIn << ", spare room: " << Spare << "\n"); 558 if (TotalIn >= SizeLimit+Spare) 559 return false; 560 561 // Count the number of PHI nodes that will need to be updated (converted 562 // to MUX). Those can be later converted to predicated instructions, so 563 // they aren't always adding extra cost. 564 // KLUDGE: Also, count the number of predicate register definitions in 565 // each block. The scheduler may increase the pressure of these and cause 566 // expensive spills (e.g. bitmnp01). 567 unsigned TotalPh = 0; 568 unsigned PredDefs = countPredicateDefs(FP.SplitB); 569 if (FP.JoinB) { 570 TotalPh = computePhiCost(FP.JoinB, FP); 571 PredDefs += countPredicateDefs(FP.JoinB); 572 } else { 573 if (FP.TrueB && FP.TrueB->succ_size() > 0) { 574 MachineBasicBlock *SB = *FP.TrueB->succ_begin(); 575 TotalPh += computePhiCost(SB, FP); 576 PredDefs += countPredicateDefs(SB); 577 } 578 if (FP.FalseB && FP.FalseB->succ_size() > 0) { 579 MachineBasicBlock *SB = *FP.FalseB->succ_begin(); 580 TotalPh += computePhiCost(SB, FP); 581 PredDefs += countPredicateDefs(SB); 582 } 583 } 584 LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: " 585 << TotalPh << "\n"); 586 if (TotalIn+TotalPh >= SizeLimit+Spare) 587 return false; 588 589 LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs 590 << "\n"); 591 if (PredDefs > 4) 592 return false; 593 594 return true; 595 } 596 597 bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B, 598 MachineLoop *L) { 599 bool Changed = false; 600 601 // Visit all dominated blocks from the same loop first, then process B. 602 MachineDomTreeNode *N = MDT->getNode(B); 603 604 using GTN = GraphTraits<MachineDomTreeNode *>; 605 606 // We will change CFG/DT during this traversal, so take precautions to 607 // avoid problems related to invalidated iterators. In fact, processing 608 // a child C of B cannot cause another child to be removed, but it can 609 // cause a new child to be added (which was a child of C before C itself 610 // was removed. This new child C, however, would have been processed 611 // prior to processing B, so there is no need to process it again. 612 // Simply keep a list of children of B, and traverse that list. 613 using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; 614 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); 615 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { 616 MachineBasicBlock *SB = (*I)->getBlock(); 617 if (!Deleted.count(SB)) 618 Changed |= visitBlock(SB, L); 619 } 620 // When walking down the dominator tree, we want to traverse through 621 // blocks from nested (other) loops, because they can dominate blocks 622 // that are in L. Skip the non-L blocks only after the tree traversal. 623 if (MLI->getLoopFor(B) != L) 624 return Changed; 625 626 FlowPattern FP; 627 if (!matchFlowPattern(B, L, FP)) 628 return Changed; 629 630 if (!isValid(FP)) { 631 LLVM_DEBUG(dbgs() << "Conversion is not valid\n"); 632 return Changed; 633 } 634 if (!isProfitable(FP)) { 635 LLVM_DEBUG(dbgs() << "Conversion is not profitable\n"); 636 return Changed; 637 } 638 639 convert(FP); 640 simplifyFlowGraph(FP); 641 return true; 642 } 643 644 bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) { 645 MachineBasicBlock *HB = L ? L->getHeader() : nullptr; 646 LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB) 647 : dbgs() << "Visiting function") 648 << "\n"); 649 bool Changed = false; 650 if (L) { 651 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 652 Changed |= visitLoop(*I); 653 } 654 655 MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN); 656 Changed |= visitBlock(L ? HB : EntryB, L); 657 return Changed; 658 } 659 660 bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI) 661 const { 662 // HexagonInstrInfo::isPredicable will consider these stores are non- 663 // -predicable if the offset would become constant-extended after 664 // predication. 665 unsigned Opc = MI->getOpcode(); 666 switch (Opc) { 667 case Hexagon::S2_storerb_io: 668 case Hexagon::S2_storerbnew_io: 669 case Hexagon::S2_storerh_io: 670 case Hexagon::S2_storerhnew_io: 671 case Hexagon::S2_storeri_io: 672 case Hexagon::S2_storerinew_io: 673 case Hexagon::S2_storerd_io: 674 case Hexagon::S4_storeirb_io: 675 case Hexagon::S4_storeirh_io: 676 case Hexagon::S4_storeiri_io: 677 return true; 678 } 679 680 // TargetInstrInfo::isPredicable takes a non-const pointer. 681 return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI)); 682 } 683 684 bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI) 685 const { 686 if (MI->mayLoadOrStore()) 687 return false; 688 if (MI->isCall() || MI->isBarrier() || MI->isBranch()) 689 return false; 690 if (MI->hasUnmodeledSideEffects()) 691 return false; 692 if (MI->getOpcode() == TargetOpcode::LIFETIME_END) 693 return false; 694 695 return true; 696 } 697 698 bool HexagonEarlyIfConversion::isPredicate(unsigned R) const { 699 const TargetRegisterClass *RC = MRI->getRegClass(R); 700 return RC == &Hexagon::PredRegsRegClass || 701 RC == &Hexagon::HvxQRRegClass; 702 } 703 704 unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc, 705 bool IfTrue) const { 706 return HII->getCondOpcode(Opc, !IfTrue); 707 } 708 709 void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB, 710 MachineBasicBlock::iterator At, MachineInstr *MI, 711 unsigned PredR, bool IfTrue) { 712 DebugLoc DL; 713 if (At != ToB->end()) 714 DL = At->getDebugLoc(); 715 else if (!ToB->empty()) 716 DL = ToB->back().getDebugLoc(); 717 718 unsigned Opc = MI->getOpcode(); 719 720 if (isPredicableStore(MI)) { 721 unsigned COpc = getCondStoreOpcode(Opc, IfTrue); 722 assert(COpc); 723 MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc)); 724 MachineInstr::mop_iterator MOI = MI->operands_begin(); 725 if (HII->isPostIncrement(*MI)) { 726 MIB.add(*MOI); 727 ++MOI; 728 } 729 MIB.addReg(PredR); 730 for (const MachineOperand &MO : make_range(MOI, MI->operands_end())) 731 MIB.add(MO); 732 733 // Set memory references. 734 MIB.cloneMemRefs(*MI); 735 736 MI->eraseFromParent(); 737 return; 738 } 739 740 if (Opc == Hexagon::J2_jump) { 741 MachineBasicBlock *TB = MI->getOperand(0).getMBB(); 742 const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt 743 : Hexagon::J2_jumpf); 744 BuildMI(*ToB, At, DL, D) 745 .addReg(PredR) 746 .addMBB(TB); 747 MI->eraseFromParent(); 748 return; 749 } 750 751 // Print the offending instruction unconditionally as we are about to 752 // abort. 753 dbgs() << *MI; 754 llvm_unreachable("Unexpected instruction"); 755 } 756 757 // Predicate/speculate non-branch instructions from FromB into block ToB. 758 // Leave the branches alone, they will be handled later. Btw, at this point 759 // FromB should have at most one branch, and it should be unconditional. 760 void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB, 761 MachineBasicBlock::iterator At, MachineBasicBlock *FromB, 762 unsigned PredR, bool IfTrue) { 763 LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n"); 764 MachineBasicBlock::iterator End = FromB->getFirstTerminator(); 765 MachineBasicBlock::iterator I, NextI; 766 767 for (I = FromB->begin(); I != End; I = NextI) { 768 assert(!I->isPHI()); 769 NextI = std::next(I); 770 if (isSafeToSpeculate(&*I)) 771 ToB->splice(At, FromB, I); 772 else 773 predicateInstr(ToB, At, &*I, PredR, IfTrue); 774 } 775 } 776 777 unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B, 778 MachineBasicBlock::iterator At, const TargetRegisterClass *DRC, 779 unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) { 780 unsigned Opc = 0; 781 switch (DRC->getID()) { 782 case Hexagon::IntRegsRegClassID: 783 case Hexagon::IntRegsLow8RegClassID: 784 Opc = Hexagon::C2_mux; 785 break; 786 case Hexagon::DoubleRegsRegClassID: 787 case Hexagon::GeneralDoubleLow8RegsRegClassID: 788 Opc = Hexagon::PS_pselect; 789 break; 790 case Hexagon::HvxVRRegClassID: 791 Opc = Hexagon::PS_vselect; 792 break; 793 case Hexagon::HvxWRRegClassID: 794 Opc = Hexagon::PS_wselect; 795 break; 796 default: 797 llvm_unreachable("unexpected register type"); 798 } 799 const MCInstrDesc &D = HII->get(Opc); 800 801 DebugLoc DL = B->findBranchDebugLoc(); 802 Register MuxR = MRI->createVirtualRegister(DRC); 803 BuildMI(*B, At, DL, D, MuxR) 804 .addReg(PredR) 805 .addReg(TR, 0, TSR) 806 .addReg(FR, 0, FSR); 807 return MuxR; 808 } 809 810 void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB, 811 const FlowPattern &FP) { 812 // Visit all PHI nodes in the WhereB block and generate MUX instructions 813 // in the split block. Update the PHI nodes with the values of the MUX. 814 auto NonPHI = WhereB->getFirstNonPHI(); 815 for (auto I = WhereB->begin(); I != NonPHI; ++I) { 816 MachineInstr *PN = &*I; 817 // Registers and subregisters corresponding to TrueB, FalseB and SplitB. 818 unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0; 819 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 820 const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1); 821 if (BO.getMBB() == FP.SplitB) 822 SR = RO.getReg(), SSR = RO.getSubReg(); 823 else if (BO.getMBB() == FP.TrueB) 824 TR = RO.getReg(), TSR = RO.getSubReg(); 825 else if (BO.getMBB() == FP.FalseB) 826 FR = RO.getReg(), FSR = RO.getSubReg(); 827 else 828 continue; 829 PN->RemoveOperand(i+1); 830 PN->RemoveOperand(i); 831 } 832 if (TR == 0) 833 TR = SR, TSR = SSR; 834 else if (FR == 0) 835 FR = SR, FSR = SSR; 836 837 assert(TR || FR); 838 unsigned MuxR = 0, MuxSR = 0; 839 840 if (TR && FR) { 841 Register DR = PN->getOperand(0).getReg(); 842 const TargetRegisterClass *RC = MRI->getRegClass(DR); 843 MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC, 844 FP.PredR, TR, TSR, FR, FSR); 845 } else if (TR) { 846 MuxR = TR; 847 MuxSR = TSR; 848 } else { 849 MuxR = FR; 850 MuxSR = FSR; 851 } 852 853 PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false, 854 false, false, MuxSR)); 855 PN->addOperand(MachineOperand::CreateMBB(FP.SplitB)); 856 } 857 } 858 859 void HexagonEarlyIfConversion::convert(const FlowPattern &FP) { 860 MachineBasicBlock *TSB = nullptr, *FSB = nullptr; 861 MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator(); 862 assert(OldTI != FP.SplitB->end()); 863 DebugLoc DL = OldTI->getDebugLoc(); 864 865 if (FP.TrueB) { 866 TSB = *FP.TrueB->succ_begin(); 867 predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true); 868 } 869 if (FP.FalseB) { 870 FSB = *FP.FalseB->succ_begin(); 871 MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator(); 872 predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false); 873 } 874 875 // Regenerate new terminators in the split block and update the successors. 876 // First, remember any information that may be needed later and remove the 877 // existing terminators/successors from the split block. 878 MachineBasicBlock *SSB = nullptr; 879 FP.SplitB->erase(OldTI, FP.SplitB->end()); 880 while (FP.SplitB->succ_size() > 0) { 881 MachineBasicBlock *T = *FP.SplitB->succ_begin(); 882 // It's possible that the split block had a successor that is not a pre- 883 // dicated block. This could only happen if there was only one block to 884 // be predicated. Example: 885 // split_b: 886 // if (p) jump true_b 887 // jump unrelated2_b 888 // unrelated1_b: 889 // ... 890 // unrelated2_b: ; can have other predecessors, so it's not "false_b" 891 // jump other_b 892 // true_b: ; only reachable from split_b, can be predicated 893 // ... 894 // 895 // Find this successor (SSB) if it exists. 896 if (T != FP.TrueB && T != FP.FalseB) { 897 assert(!SSB); 898 SSB = T; 899 } 900 FP.SplitB->removeSuccessor(FP.SplitB->succ_begin()); 901 } 902 903 // Insert new branches and update the successors of the split block. This 904 // may create unconditional branches to the layout successor, etc., but 905 // that will be cleaned up later. For now, make sure that correct code is 906 // generated. 907 if (FP.JoinB) { 908 assert(!SSB || SSB == FP.JoinB); 909 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump)) 910 .addMBB(FP.JoinB); 911 FP.SplitB->addSuccessor(FP.JoinB); 912 } else { 913 bool HasBranch = false; 914 if (TSB) { 915 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt)) 916 .addReg(FP.PredR) 917 .addMBB(TSB); 918 FP.SplitB->addSuccessor(TSB); 919 HasBranch = true; 920 } 921 if (FSB) { 922 const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump) 923 : HII->get(Hexagon::J2_jumpf); 924 MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D); 925 if (!HasBranch) 926 MIB.addReg(FP.PredR); 927 MIB.addMBB(FSB); 928 FP.SplitB->addSuccessor(FSB); 929 } 930 if (SSB) { 931 // This cannot happen if both TSB and FSB are set. [TF]SB are the 932 // successor blocks of the TrueB and FalseB (or null of the TrueB 933 // or FalseB block is null). SSB is the potential successor block 934 // of the SplitB that is neither TrueB nor FalseB. 935 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump)) 936 .addMBB(SSB); 937 FP.SplitB->addSuccessor(SSB); 938 } 939 } 940 941 // What is left to do is to update the PHI nodes that could have entries 942 // referring to predicated blocks. 943 if (FP.JoinB) { 944 updatePhiNodes(FP.JoinB, FP); 945 } else { 946 if (TSB) 947 updatePhiNodes(TSB, FP); 948 if (FSB) 949 updatePhiNodes(FSB, FP); 950 // Nothing to update in SSB, since SSB's predecessors haven't changed. 951 } 952 } 953 954 void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) { 955 LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n"); 956 957 // Transfer the immediate dominator information from B to its descendants. 958 MachineDomTreeNode *N = MDT->getNode(B); 959 MachineDomTreeNode *IDN = N->getIDom(); 960 if (IDN) { 961 MachineBasicBlock *IDB = IDN->getBlock(); 962 963 using GTN = GraphTraits<MachineDomTreeNode *>; 964 using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; 965 966 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); 967 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { 968 MachineBasicBlock *SB = (*I)->getBlock(); 969 MDT->changeImmediateDominator(SB, IDB); 970 } 971 } 972 973 while (B->succ_size() > 0) 974 B->removeSuccessor(B->succ_begin()); 975 976 for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I) 977 (*I)->removeSuccessor(B, true); 978 979 Deleted.insert(B); 980 MDT->eraseNode(B); 981 MFN->erase(B->getIterator()); 982 } 983 984 void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) { 985 LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n"); 986 MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI(); 987 for (I = B->begin(); I != NonPHI; I = NextI) { 988 NextI = std::next(I); 989 MachineInstr *PN = &*I; 990 assert(PN->getNumOperands() == 3 && "Invalid phi node"); 991 MachineOperand &UO = PN->getOperand(1); 992 Register UseR = UO.getReg(), UseSR = UO.getSubReg(); 993 Register DefR = PN->getOperand(0).getReg(); 994 unsigned NewR = UseR; 995 if (UseSR) { 996 // MRI.replaceVregUsesWith does not allow to update the subregister, 997 // so instead of doing the use-iteration here, create a copy into a 998 // "non-subregistered" register. 999 const DebugLoc &DL = PN->getDebugLoc(); 1000 const TargetRegisterClass *RC = MRI->getRegClass(DefR); 1001 NewR = MRI->createVirtualRegister(RC); 1002 NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR) 1003 .addReg(UseR, 0, UseSR); 1004 } 1005 MRI->replaceRegWith(DefR, NewR); 1006 B->erase(I); 1007 } 1008 } 1009 1010 void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB, 1011 MachineBasicBlock *SuccB) { 1012 LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and " 1013 << PrintMB(SuccB) << "\n"); 1014 bool TermOk = hasUncondBranch(SuccB); 1015 eliminatePhis(SuccB); 1016 HII->removeBranch(*PredB); 1017 PredB->removeSuccessor(SuccB); 1018 PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end()); 1019 PredB->transferSuccessorsAndUpdatePHIs(SuccB); 1020 removeBlock(SuccB); 1021 if (!TermOk) 1022 PredB->updateTerminator(); 1023 } 1024 1025 void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) { 1026 if (FP.TrueB) 1027 removeBlock(FP.TrueB); 1028 if (FP.FalseB) 1029 removeBlock(FP.FalseB); 1030 1031 FP.SplitB->updateTerminator(); 1032 if (FP.SplitB->succ_size() != 1) 1033 return; 1034 1035 MachineBasicBlock *SB = *FP.SplitB->succ_begin(); 1036 if (SB->pred_size() != 1) 1037 return; 1038 1039 // By now, the split block has only one successor (SB), and SB has only 1040 // one predecessor. We can try to merge them. We will need to update ter- 1041 // minators in FP.Split+SB, and that requires working analyzeBranch, which 1042 // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends 1043 // with an unconditional branch, we won't need to touch the terminators. 1044 if (!hasEHLabel(SB) || hasUncondBranch(SB)) 1045 mergeBlocks(FP.SplitB, SB); 1046 } 1047 1048 bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) { 1049 if (skipFunction(MF.getFunction())) 1050 return false; 1051 1052 auto &ST = MF.getSubtarget<HexagonSubtarget>(); 1053 HII = ST.getInstrInfo(); 1054 TRI = ST.getRegisterInfo(); 1055 MFN = &MF; 1056 MRI = &MF.getRegInfo(); 1057 MDT = &getAnalysis<MachineDominatorTree>(); 1058 MLI = &getAnalysis<MachineLoopInfo>(); 1059 MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() : 1060 nullptr; 1061 1062 Deleted.clear(); 1063 bool Changed = false; 1064 1065 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) 1066 Changed |= visitLoop(*I); 1067 Changed |= visitLoop(nullptr); 1068 1069 return Changed; 1070 } 1071 1072 //===----------------------------------------------------------------------===// 1073 // Public Constructor Functions 1074 //===----------------------------------------------------------------------===// 1075 FunctionPass *llvm::createHexagonEarlyIfConversion() { 1076 return new HexagonEarlyIfConversion(); 1077 } 1078