xref: /freebsd/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- HexagonEarlyIfConv.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a Hexagon-specific if-conversion pass that runs on the
10 // SSA form.
11 // In SSA it is not straightforward to represent instructions that condi-
12 // tionally define registers, since a conditionally-defined register may
13 // only be used under the same condition on which the definition was based.
14 // To avoid complications of this nature, this patch will only generate
15 // predicated stores, and speculate other instructions from the "if-conver-
16 // ted" block.
17 // The code will recognize CFG patterns where a block with a conditional
18 // branch "splits" into a "true block" and a "false block". Either of these
19 // could be omitted (in case of a triangle, for example).
20 // If after conversion of the side block(s) the CFG allows it, the resul-
21 // ting blocks may be merged. If the "join" block contained PHI nodes, they
22 // will be replaced with MUX (or MUX-like) instructions to maintain the
23 // semantics of the PHI.
24 //
25 // Example:
26 //
27 //         %40 = L2_loadrub_io killed %39, 1
28 //         %41 = S2_tstbit_i killed %40, 0
29 //         J2_jumpt killed %41, <%bb.5>, implicit dead %pc
30 //         J2_jump <%bb.4>, implicit dead %pc
31 //     Successors according to CFG: %bb.4(62) %bb.5(62)
32 //
33 // %bb.4: derived from LLVM BB %if.then
34 //     Predecessors according to CFG: %bb.3
35 //         %11 = A2_addp %6, %10
36 //         S2_storerd_io %32, 16, %11
37 //     Successors according to CFG: %bb.5
38 //
39 // %bb.5: derived from LLVM BB %if.end
40 //     Predecessors according to CFG: %bb.3 %bb.4
41 //         %12 = PHI %6, <%bb.3>, %11, <%bb.4>
42 //         %13 = A2_addp %7, %12
43 //         %42 = C2_cmpeqi %9, 10
44 //         J2_jumpf killed %42, <%bb.3>, implicit dead %pc
45 //         J2_jump <%bb.6>, implicit dead %pc
46 //     Successors according to CFG: %bb.6(4) %bb.3(124)
47 //
48 // would become:
49 //
50 //         %40 = L2_loadrub_io killed %39, 1
51 //         %41 = S2_tstbit_i killed %40, 0
52 // spec->  %11 = A2_addp %6, %10
53 // pred->  S2_pstorerdf_io %41, %32, 16, %11
54 //         %46 = PS_pselect %41, %6, %11
55 //         %13 = A2_addp %7, %46
56 //         %42 = C2_cmpeqi %9, 10
57 //         J2_jumpf killed %42, <%bb.3>, implicit dead %pc
58 //         J2_jump <%bb.6>, implicit dead %pc
59 //     Successors according to CFG: %bb.6 %bb.3
60 
61 #include "Hexagon.h"
62 #include "HexagonInstrInfo.h"
63 #include "HexagonSubtarget.h"
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/SmallVector.h"
66 #include "llvm/ADT/StringRef.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/CodeGen/MachineBasicBlock.h"
69 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
70 #include "llvm/CodeGen/MachineDominators.h"
71 #include "llvm/CodeGen/MachineFunction.h"
72 #include "llvm/CodeGen/MachineFunctionPass.h"
73 #include "llvm/CodeGen/MachineInstr.h"
74 #include "llvm/CodeGen/MachineInstrBuilder.h"
75 #include "llvm/CodeGen/MachineLoopInfo.h"
76 #include "llvm/CodeGen/MachineOperand.h"
77 #include "llvm/CodeGen/MachineRegisterInfo.h"
78 #include "llvm/CodeGen/TargetRegisterInfo.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include <cassert>
88 #include <iterator>
89 
90 #define DEBUG_TYPE "hexagon-eif"
91 
92 using namespace llvm;
93 
94 namespace llvm {
95 
96   FunctionPass *createHexagonEarlyIfConversion();
97   void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
98 
99 } // end namespace llvm
100 
101 static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
102   cl::init(true), cl::desc("Enable branch probability info"));
103 static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
104   cl::desc("Size limit in Hexagon early if-conversion"));
105 static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false),
106   cl::Hidden, cl::desc("Do not convert branches that may exit the loop"));
107 
108 namespace {
109 
110   struct PrintMB {
PrintMB__anon363a33cb0111::PrintMB111     PrintMB(const MachineBasicBlock *B) : MB(B) {}
112 
113     const MachineBasicBlock *MB;
114   };
operator <<(raw_ostream & OS,const PrintMB & P)115   raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
116     if (!P.MB)
117       return OS << "<none>";
118     return OS << '#' << P.MB->getNumber();
119   }
120 
121   struct FlowPattern {
122     FlowPattern() = default;
FlowPattern__anon363a33cb0111::FlowPattern123     FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
124           MachineBasicBlock *FB, MachineBasicBlock *JB)
125       : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
126 
127     MachineBasicBlock *SplitB = nullptr;
128     MachineBasicBlock *TrueB = nullptr;
129     MachineBasicBlock *FalseB = nullptr;
130     MachineBasicBlock *JoinB = nullptr;
131     unsigned PredR = 0;
132   };
133 
134   struct PrintFP {
PrintFP__anon363a33cb0111::PrintFP135     PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
136       : FP(P), TRI(T) {}
137 
138     const FlowPattern &FP;
139     const TargetRegisterInfo &TRI;
140     friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
141   };
142   raw_ostream &operator<<(raw_ostream &OS,
143                           const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
operator <<(raw_ostream & OS,const PrintFP & P)144   raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
145     OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
146        << ", PredR:" << printReg(P.FP.PredR, &P.TRI)
147        << ", TrueB:" << PrintMB(P.FP.TrueB)
148        << ", FalseB:" << PrintMB(P.FP.FalseB)
149        << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
150     return OS;
151   }
152 
153   class HexagonEarlyIfConversion : public MachineFunctionPass {
154   public:
155     static char ID;
156 
HexagonEarlyIfConversion()157     HexagonEarlyIfConversion() : MachineFunctionPass(ID) {}
158 
getPassName() const159     StringRef getPassName() const override {
160       return "Hexagon early if conversion";
161     }
162 
getAnalysisUsage(AnalysisUsage & AU) const163     void getAnalysisUsage(AnalysisUsage &AU) const override {
164       AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
165       AU.addRequired<MachineDominatorTreeWrapperPass>();
166       AU.addPreserved<MachineDominatorTreeWrapperPass>();
167       AU.addRequired<MachineLoopInfoWrapperPass>();
168       MachineFunctionPass::getAnalysisUsage(AU);
169     }
170 
171     bool runOnMachineFunction(MachineFunction &MF) override;
172 
173   private:
174     using BlockSetType = DenseSet<MachineBasicBlock *>;
175 
176     bool isPreheader(const MachineBasicBlock *B) const;
177     bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
178           FlowPattern &FP);
179     bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
180     bool visitLoop(MachineLoop *L);
181 
182     bool hasEHLabel(const MachineBasicBlock *B) const;
183     bool hasUncondBranch(const MachineBasicBlock *B) const;
184     bool isValidCandidate(const MachineBasicBlock *B) const;
185     bool usesUndefVReg(const MachineInstr *MI) const;
186     bool isValid(const FlowPattern &FP) const;
187     unsigned countPredicateDefs(const MachineBasicBlock *B) const;
188     unsigned computePhiCost(const MachineBasicBlock *B,
189           const FlowPattern &FP) const;
190     bool isProfitable(const FlowPattern &FP) const;
191     bool isPredicableStore(const MachineInstr *MI) const;
192     bool isSafeToSpeculate(const MachineInstr *MI) const;
193     bool isPredicate(unsigned R) const;
194 
195     unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
196     void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
197           MachineInstr *MI, unsigned PredR, bool IfTrue);
198     void predicateBlockNB(MachineBasicBlock *ToB,
199           MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
200           unsigned PredR, bool IfTrue);
201 
202     unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At,
203           const TargetRegisterClass *DRC, unsigned PredR, unsigned TR,
204           unsigned TSR, unsigned FR, unsigned FSR);
205     void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
206     void convert(const FlowPattern &FP);
207 
208     void removeBlock(MachineBasicBlock *B);
209     void eliminatePhis(MachineBasicBlock *B);
210     void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
211     void simplifyFlowGraph(const FlowPattern &FP);
212 
213     const HexagonInstrInfo *HII = nullptr;
214     const TargetRegisterInfo *TRI = nullptr;
215     MachineFunction *MFN = nullptr;
216     MachineRegisterInfo *MRI = nullptr;
217     MachineDominatorTree *MDT = nullptr;
218     MachineLoopInfo *MLI = nullptr;
219     BlockSetType Deleted;
220     const MachineBranchProbabilityInfo *MBPI = nullptr;
221   };
222 
223 } // end anonymous namespace
224 
225 char HexagonEarlyIfConversion::ID = 0;
226 
227 INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if",
228   "Hexagon early if conversion", false, false)
229 
isPreheader(const MachineBasicBlock * B) const230 bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
231   if (B->succ_size() != 1)
232     return false;
233   MachineBasicBlock *SB = *B->succ_begin();
234   MachineLoop *L = MLI->getLoopFor(SB);
235   return L && SB == L->getHeader() && MDT->dominates(B, SB);
236 }
237 
matchFlowPattern(MachineBasicBlock * B,MachineLoop * L,FlowPattern & FP)238 bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
239     MachineLoop *L, FlowPattern &FP) {
240   LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B)
241                     << "\n");
242 
243   // Interested only in conditional branches, no .new, no new-value, etc.
244   // Check the terminators directly, it's easier than handling all responses
245   // from analyzeBranch.
246   MachineBasicBlock *TB = nullptr, *FB = nullptr;
247   MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
248   if (T1I == B->end())
249     return false;
250   unsigned Opc = T1I->getOpcode();
251   if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
252     return false;
253   Register PredR = T1I->getOperand(0).getReg();
254 
255   // Get the layout successor, or 0 if B does not have one.
256   MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
257   MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr;
258 
259   MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
260   MachineBasicBlock::const_iterator T2I = std::next(T1I);
261   // The second terminator should be an unconditional branch.
262   assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
263   MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
264                                              : T2I->getOperand(0).getMBB();
265   if (T1B == T2B) {
266     // XXX merge if T1B == NextB, or convert branch to unconditional.
267     // mark as diamond with both sides equal?
268     return false;
269   }
270 
271   // Record the true/false blocks in such a way that "true" means "if (PredR)",
272   // and "false" means "if (!PredR)".
273   if (Opc == Hexagon::J2_jumpt)
274     TB = T1B, FB = T2B;
275   else
276     TB = T2B, FB = T1B;
277 
278   if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
279     return false;
280 
281   // Detect triangle first. In case of a triangle, one of the blocks TB/FB
282   // can fall through into the other, in other words, it will be executed
283   // in both cases. We only want to predicate the block that is executed
284   // conditionally.
285   assert(TB && FB && "Failed to find triangle control flow blocks");
286   unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
287   unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
288 
289   // A block is predicable if it has one predecessor (it must be B), and
290   // it has a single successor. In fact, the block has to end either with
291   // an unconditional branch (which can be predicated), or with a fall-
292   // through.
293   // Also, skip blocks that do not belong to the same loop.
294   bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L);
295   bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L);
296 
297   // If requested (via an option), do not consider branches where the
298   // true and false targets do not belong to the same loop.
299   if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB))
300     return false;
301 
302   // If neither is predicable, there is nothing interesting.
303   if (!TOk && !FOk)
304     return false;
305 
306   MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr;
307   MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr;
308   MachineBasicBlock *JB = nullptr;
309 
310   if (TOk) {
311     if (FOk) {
312       if (TSB == FSB)
313         JB = TSB;
314       // Diamond: "if (P) then TB; else FB;".
315     } else {
316       // TOk && !FOk
317       if (TSB == FB)
318         JB = FB;
319       FB = nullptr;
320     }
321   } else {
322     // !TOk && FOk  (at least one must be true by now).
323     if (FSB == TB)
324       JB = TB;
325     TB = nullptr;
326   }
327   // Don't try to predicate loop preheaders.
328   if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
329     LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
330                       << " is a loop preheader. Skipping.\n");
331     return false;
332   }
333 
334   FP = FlowPattern(B, PredR, TB, FB, JB);
335   LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
336   return true;
337 }
338 
339 // KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that
340 // contains EH_LABEL.
hasEHLabel(const MachineBasicBlock * B) const341 bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
342   for (auto &I : *B)
343     if (I.isEHLabel())
344       return true;
345   return false;
346 }
347 
348 // KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize
349 // that a block can never fall-through.
hasUncondBranch(const MachineBasicBlock * B) const350 bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
351       const {
352   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
353   while (I != E) {
354     if (I->isBarrier())
355       return true;
356     ++I;
357   }
358   return false;
359 }
360 
isValidCandidate(const MachineBasicBlock * B) const361 bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
362       const {
363   if (!B)
364     return true;
365   if (B->isEHPad() || B->hasAddressTaken())
366     return false;
367   if (B->succ_empty())
368     return false;
369 
370   for (auto &MI : *B) {
371     if (MI.isDebugInstr())
372       continue;
373     if (MI.isConditionalBranch())
374       return false;
375     unsigned Opc = MI.getOpcode();
376     bool IsJMP = (Opc == Hexagon::J2_jump);
377     if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
378       return false;
379     // Look for predicate registers defined by this instruction. It's ok
380     // to speculate such an instruction, but the predicate register cannot
381     // be used outside of this block (or else it won't be possible to
382     // update the use of it after predication). PHI uses will be updated
383     // to use a result of a MUX, and a MUX cannot be created for predicate
384     // registers.
385     for (const MachineOperand &MO : MI.operands()) {
386       if (!MO.isReg() || !MO.isDef())
387         continue;
388       Register R = MO.getReg();
389       if (!R.isVirtual())
390         continue;
391       if (!isPredicate(R))
392         continue;
393       for (const MachineOperand &U : MRI->use_operands(R))
394         if (U.getParent()->isPHI())
395           return false;
396     }
397   }
398   return true;
399 }
400 
usesUndefVReg(const MachineInstr * MI) const401 bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
402   for (const MachineOperand &MO : MI->operands()) {
403     if (!MO.isReg() || !MO.isUse())
404       continue;
405     Register R = MO.getReg();
406     if (!R.isVirtual())
407       continue;
408     const MachineInstr *DefI = MRI->getVRegDef(R);
409     // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
410     assert(DefI && "Expecting a reaching def in MRI");
411     if (DefI->isImplicitDef())
412       return true;
413   }
414   return false;
415 }
416 
isValid(const FlowPattern & FP) const417 bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
418   if (hasEHLabel(FP.SplitB))  // KLUDGE: see function definition
419     return false;
420   if (FP.TrueB && !isValidCandidate(FP.TrueB))
421     return false;
422   if (FP.FalseB && !isValidCandidate(FP.FalseB))
423     return false;
424   // Check the PHIs in the join block. If any of them use a register
425   // that is defined as IMPLICIT_DEF, do not convert this. This can
426   // legitimately happen if one side of the split never executes, but
427   // the compiler is unable to prove it. That side may then seem to
428   // provide an "undef" value to the join block, however it will never
429   // execute at run-time. If we convert this case, the "undef" will
430   // be used in a MUX instruction, and that may seem like actually
431   // using an undefined value to other optimizations. This could lead
432   // to trouble further down the optimization stream, cause assertions
433   // to fail, etc.
434   if (FP.JoinB) {
435     const MachineBasicBlock &B = *FP.JoinB;
436     for (auto &MI : B) {
437       if (!MI.isPHI())
438         break;
439       if (usesUndefVReg(&MI))
440         return false;
441       Register DefR = MI.getOperand(0).getReg();
442       if (isPredicate(DefR))
443         return false;
444     }
445   }
446   return true;
447 }
448 
computePhiCost(const MachineBasicBlock * B,const FlowPattern & FP) const449 unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B,
450       const FlowPattern &FP) const {
451   if (B->pred_size() < 2)
452     return 0;
453 
454   unsigned Cost = 0;
455   for (const MachineInstr &MI : *B) {
456     if (!MI.isPHI())
457       break;
458     // If both incoming blocks are one of the TrueB/FalseB/SplitB, then
459     // a MUX may be needed. Otherwise the PHI will need to be updated at
460     // no extra cost.
461     // Find the interesting PHI operands for further checks.
462     SmallVector<unsigned,2> Inc;
463     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
464       const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB();
465       if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB)
466         Inc.push_back(i);
467     }
468     assert(Inc.size() <= 2);
469     if (Inc.size() < 2)
470       continue;
471 
472     const MachineOperand &RA = MI.getOperand(1);
473     const MachineOperand &RB = MI.getOperand(3);
474     assert(RA.isReg() && RB.isReg());
475     // Must have a MUX if the phi uses a subregister.
476     if (RA.getSubReg() != 0 || RB.getSubReg() != 0) {
477       Cost++;
478       continue;
479     }
480     const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg());
481     const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg());
482     if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3))
483       Cost++;
484   }
485   return Cost;
486 }
487 
countPredicateDefs(const MachineBasicBlock * B) const488 unsigned HexagonEarlyIfConversion::countPredicateDefs(
489       const MachineBasicBlock *B) const {
490   unsigned PredDefs = 0;
491   for (auto &MI : *B) {
492     for (const MachineOperand &MO : MI.operands()) {
493       if (!MO.isReg() || !MO.isDef())
494         continue;
495       Register R = MO.getReg();
496       if (!R.isVirtual())
497         continue;
498       if (isPredicate(R))
499         PredDefs++;
500     }
501   }
502   return PredDefs;
503 }
504 
isProfitable(const FlowPattern & FP) const505 bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
506   BranchProbability JumpProb(1, 10);
507   BranchProbability Prob(9, 10);
508   if (MBPI && FP.TrueB && !FP.FalseB &&
509       (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) < JumpProb ||
510        MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob))
511     return false;
512 
513   if (MBPI && !FP.TrueB && FP.FalseB &&
514       (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) < JumpProb ||
515        MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob))
516     return false;
517 
518   if (FP.TrueB && FP.FalseB) {
519     // Do not IfCovert if the branch is one sided.
520     if (MBPI) {
521       if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
522         return false;
523       if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
524         return false;
525     }
526 
527     // If both sides are predicable, convert them if they join, and the
528     // join block has no other predecessors.
529     MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
530     MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
531     if (TSB != FSB)
532       return false;
533     if (TSB->pred_size() != 2)
534       return false;
535   }
536 
537   // Calculate the total size of the predicated blocks.
538   // Assume instruction counts without branches to be the approximation of
539   // the code size. If the predicated blocks are smaller than a packet size,
540   // approximate the spare room in the packet that could be filled with the
541   // predicated/speculated instructions.
542   auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) {
543     if (!B)
544       return 0u;
545     unsigned T = std::count_if(B->begin(), B->getFirstTerminator(),
546                                [](const MachineInstr &MI) {
547                                  return !MI.isMetaInstruction();
548                                });
549     if (T < HEXAGON_PACKET_SIZE)
550       Spare += HEXAGON_PACKET_SIZE-T;
551     return T;
552   };
553   unsigned Spare = 0;
554   unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare);
555   LLVM_DEBUG(
556       dbgs() << "Total number of instructions to be predicated/speculated: "
557              << TotalIn << ", spare room: " << Spare << "\n");
558   if (TotalIn >= SizeLimit+Spare)
559     return false;
560 
561   // Count the number of PHI nodes that will need to be updated (converted
562   // to MUX). Those can be later converted to predicated instructions, so
563   // they aren't always adding extra cost.
564   // KLUDGE: Also, count the number of predicate register definitions in
565   // each block. The scheduler may increase the pressure of these and cause
566   // expensive spills (e.g. bitmnp01).
567   unsigned TotalPh = 0;
568   unsigned PredDefs = countPredicateDefs(FP.SplitB);
569   if (FP.JoinB) {
570     TotalPh = computePhiCost(FP.JoinB, FP);
571     PredDefs += countPredicateDefs(FP.JoinB);
572   } else {
573     if (FP.TrueB && !FP.TrueB->succ_empty()) {
574       MachineBasicBlock *SB = *FP.TrueB->succ_begin();
575       TotalPh += computePhiCost(SB, FP);
576       PredDefs += countPredicateDefs(SB);
577     }
578     if (FP.FalseB && !FP.FalseB->succ_empty()) {
579       MachineBasicBlock *SB = *FP.FalseB->succ_begin();
580       TotalPh += computePhiCost(SB, FP);
581       PredDefs += countPredicateDefs(SB);
582     }
583   }
584   LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
585                     << TotalPh << "\n");
586   if (TotalIn+TotalPh >= SizeLimit+Spare)
587     return false;
588 
589   LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs
590                     << "\n");
591   if (PredDefs > 4)
592     return false;
593 
594   return true;
595 }
596 
visitBlock(MachineBasicBlock * B,MachineLoop * L)597 bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
598       MachineLoop *L) {
599   bool Changed = false;
600 
601   // Visit all dominated blocks from the same loop first, then process B.
602   MachineDomTreeNode *N = MDT->getNode(B);
603 
604   // We will change CFG/DT during this traversal, so take precautions to
605   // avoid problems related to invalidated iterators. In fact, processing
606   // a child C of B cannot cause another child to be removed, but it can
607   // cause a new child to be added (which was a child of C before C itself
608   // was removed. This new child C, however, would have been processed
609   // prior to processing B, so there is no need to process it again.
610   // Simply keep a list of children of B, and traverse that list.
611   using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
612   DTNodeVectType Cn(llvm::children<MachineDomTreeNode *>(N));
613   for (auto &I : Cn) {
614     MachineBasicBlock *SB = I->getBlock();
615     if (!Deleted.count(SB))
616       Changed |= visitBlock(SB, L);
617   }
618   // When walking down the dominator tree, we want to traverse through
619   // blocks from nested (other) loops, because they can dominate blocks
620   // that are in L. Skip the non-L blocks only after the tree traversal.
621   if (MLI->getLoopFor(B) != L)
622     return Changed;
623 
624   FlowPattern FP;
625   if (!matchFlowPattern(B, L, FP))
626     return Changed;
627 
628   if (!isValid(FP)) {
629     LLVM_DEBUG(dbgs() << "Conversion is not valid\n");
630     return Changed;
631   }
632   if (!isProfitable(FP)) {
633     LLVM_DEBUG(dbgs() << "Conversion is not profitable\n");
634     return Changed;
635   }
636 
637   convert(FP);
638   simplifyFlowGraph(FP);
639   return true;
640 }
641 
visitLoop(MachineLoop * L)642 bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
643   MachineBasicBlock *HB = L ? L->getHeader() : nullptr;
644   LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
645                 : dbgs() << "Visiting function")
646              << "\n");
647   bool Changed = false;
648   if (L) {
649     for (MachineLoop *I : *L)
650       Changed |= visitLoop(I);
651   }
652 
653   MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
654   Changed |= visitBlock(L ? HB : EntryB, L);
655   return Changed;
656 }
657 
isPredicableStore(const MachineInstr * MI) const658 bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
659       const {
660   // HexagonInstrInfo::isPredicable will consider these stores are non-
661   // -predicable if the offset would become constant-extended after
662   // predication.
663   unsigned Opc = MI->getOpcode();
664   switch (Opc) {
665     case Hexagon::S2_storerb_io:
666     case Hexagon::S2_storerbnew_io:
667     case Hexagon::S2_storerh_io:
668     case Hexagon::S2_storerhnew_io:
669     case Hexagon::S2_storeri_io:
670     case Hexagon::S2_storerinew_io:
671     case Hexagon::S2_storerd_io:
672     case Hexagon::S4_storeirb_io:
673     case Hexagon::S4_storeirh_io:
674     case Hexagon::S4_storeiri_io:
675       return true;
676   }
677 
678   // TargetInstrInfo::isPredicable takes a non-const pointer.
679   return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI));
680 }
681 
isSafeToSpeculate(const MachineInstr * MI) const682 bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
683       const {
684   if (MI->mayLoadOrStore())
685     return false;
686   if (MI->isCall() || MI->isBarrier() || MI->isBranch())
687     return false;
688   if (MI->hasUnmodeledSideEffects())
689     return false;
690   if (MI->getOpcode() == TargetOpcode::LIFETIME_END)
691     return false;
692 
693   return true;
694 }
695 
isPredicate(unsigned R) const696 bool HexagonEarlyIfConversion::isPredicate(unsigned R) const {
697   const TargetRegisterClass *RC = MRI->getRegClass(R);
698   return RC == &Hexagon::PredRegsRegClass ||
699          RC == &Hexagon::HvxQRRegClass;
700 }
701 
getCondStoreOpcode(unsigned Opc,bool IfTrue) const702 unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
703       bool IfTrue) const {
704   return HII->getCondOpcode(Opc, !IfTrue);
705 }
706 
predicateInstr(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineInstr * MI,unsigned PredR,bool IfTrue)707 void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
708       MachineBasicBlock::iterator At, MachineInstr *MI,
709       unsigned PredR, bool IfTrue) {
710   DebugLoc DL;
711   if (At != ToB->end())
712     DL = At->getDebugLoc();
713   else if (!ToB->empty())
714     DL = ToB->back().getDebugLoc();
715 
716   unsigned Opc = MI->getOpcode();
717 
718   if (isPredicableStore(MI)) {
719     unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
720     assert(COpc);
721     MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc));
722     MachineInstr::mop_iterator MOI = MI->operands_begin();
723     if (HII->isPostIncrement(*MI)) {
724       MIB.add(*MOI);
725       ++MOI;
726     }
727     MIB.addReg(PredR);
728     for (const MachineOperand &MO : make_range(MOI, MI->operands_end()))
729       MIB.add(MO);
730 
731     // Set memory references.
732     MIB.cloneMemRefs(*MI);
733 
734     MI->eraseFromParent();
735     return;
736   }
737 
738   if (Opc == Hexagon::J2_jump) {
739     MachineBasicBlock *TB = MI->getOperand(0).getMBB();
740     const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt
741                                            : Hexagon::J2_jumpf);
742     BuildMI(*ToB, At, DL, D)
743       .addReg(PredR)
744       .addMBB(TB);
745     MI->eraseFromParent();
746     return;
747   }
748 
749   // Print the offending instruction unconditionally as we are about to
750   // abort.
751   dbgs() << *MI;
752   llvm_unreachable("Unexpected instruction");
753 }
754 
755 // Predicate/speculate non-branch instructions from FromB into block ToB.
756 // Leave the branches alone, they will be handled later. Btw, at this point
757 // FromB should have at most one branch, and it should be unconditional.
predicateBlockNB(MachineBasicBlock * ToB,MachineBasicBlock::iterator At,MachineBasicBlock * FromB,unsigned PredR,bool IfTrue)758 void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
759       MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
760       unsigned PredR, bool IfTrue) {
761   LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
762   MachineBasicBlock::iterator End = FromB->getFirstTerminator();
763   MachineBasicBlock::iterator I, NextI;
764 
765   for (I = FromB->begin(); I != End; I = NextI) {
766     assert(!I->isPHI());
767     NextI = std::next(I);
768     if (isSafeToSpeculate(&*I))
769       ToB->splice(At, FromB, I);
770     else
771       predicateInstr(ToB, At, &*I, PredR, IfTrue);
772   }
773 }
774 
buildMux(MachineBasicBlock * B,MachineBasicBlock::iterator At,const TargetRegisterClass * DRC,unsigned PredR,unsigned TR,unsigned TSR,unsigned FR,unsigned FSR)775 unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B,
776       MachineBasicBlock::iterator At, const TargetRegisterClass *DRC,
777       unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) {
778   unsigned Opc = 0;
779   switch (DRC->getID()) {
780     case Hexagon::IntRegsRegClassID:
781     case Hexagon::IntRegsLow8RegClassID:
782       Opc = Hexagon::C2_mux;
783       break;
784     case Hexagon::DoubleRegsRegClassID:
785     case Hexagon::GeneralDoubleLow8RegsRegClassID:
786       Opc = Hexagon::PS_pselect;
787       break;
788     case Hexagon::HvxVRRegClassID:
789       Opc = Hexagon::PS_vselect;
790       break;
791     case Hexagon::HvxWRRegClassID:
792       Opc = Hexagon::PS_wselect;
793       break;
794     default:
795       llvm_unreachable("unexpected register type");
796   }
797   const MCInstrDesc &D = HII->get(Opc);
798 
799   DebugLoc DL = B->findBranchDebugLoc();
800   Register MuxR = MRI->createVirtualRegister(DRC);
801   BuildMI(*B, At, DL, D, MuxR)
802     .addReg(PredR)
803     .addReg(TR, 0, TSR)
804     .addReg(FR, 0, FSR);
805   return MuxR;
806 }
807 
updatePhiNodes(MachineBasicBlock * WhereB,const FlowPattern & FP)808 void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
809       const FlowPattern &FP) {
810   // Visit all PHI nodes in the WhereB block and generate MUX instructions
811   // in the split block. Update the PHI nodes with the values of the MUX.
812   auto NonPHI = WhereB->getFirstNonPHI();
813   for (auto I = WhereB->begin(); I != NonPHI; ++I) {
814     MachineInstr *PN = &*I;
815     // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
816     unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
817     for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
818       const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
819       if (BO.getMBB() == FP.SplitB)
820         SR = RO.getReg(), SSR = RO.getSubReg();
821       else if (BO.getMBB() == FP.TrueB)
822         TR = RO.getReg(), TSR = RO.getSubReg();
823       else if (BO.getMBB() == FP.FalseB)
824         FR = RO.getReg(), FSR = RO.getSubReg();
825       else
826         continue;
827       PN->removeOperand(i+1);
828       PN->removeOperand(i);
829     }
830     if (TR == 0)
831       TR = SR, TSR = SSR;
832     else if (FR == 0)
833       FR = SR, FSR = SSR;
834 
835     assert(TR || FR);
836     unsigned MuxR = 0, MuxSR = 0;
837 
838     if (TR && FR) {
839       Register DR = PN->getOperand(0).getReg();
840       const TargetRegisterClass *RC = MRI->getRegClass(DR);
841       MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC,
842                       FP.PredR, TR, TSR, FR, FSR);
843     } else if (TR) {
844       MuxR = TR;
845       MuxSR = TSR;
846     } else {
847       MuxR = FR;
848       MuxSR = FSR;
849     }
850 
851     PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false,
852                                              false, false, MuxSR));
853     PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
854   }
855 }
856 
convert(const FlowPattern & FP)857 void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
858   MachineBasicBlock *TSB = nullptr, *FSB = nullptr;
859   MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
860   assert(OldTI != FP.SplitB->end());
861   DebugLoc DL = OldTI->getDebugLoc();
862 
863   if (FP.TrueB) {
864     TSB = *FP.TrueB->succ_begin();
865     predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
866   }
867   if (FP.FalseB) {
868     FSB = *FP.FalseB->succ_begin();
869     MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
870     predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
871   }
872 
873   // Regenerate new terminators in the split block and update the successors.
874   // First, remember any information that may be needed later and remove the
875   // existing terminators/successors from the split block.
876   MachineBasicBlock *SSB = nullptr;
877   FP.SplitB->erase(OldTI, FP.SplitB->end());
878   while (!FP.SplitB->succ_empty()) {
879     MachineBasicBlock *T = *FP.SplitB->succ_begin();
880     // It's possible that the split block had a successor that is not a pre-
881     // dicated block. This could only happen if there was only one block to
882     // be predicated. Example:
883     //   split_b:
884     //     if (p) jump true_b
885     //     jump unrelated2_b
886     //   unrelated1_b:
887     //     ...
888     //   unrelated2_b:  ; can have other predecessors, so it's not "false_b"
889     //     jump other_b
890     //   true_b:        ; only reachable from split_b, can be predicated
891     //     ...
892     //
893     // Find this successor (SSB) if it exists.
894     if (T != FP.TrueB && T != FP.FalseB) {
895       assert(!SSB);
896       SSB = T;
897     }
898     FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
899   }
900 
901   // Insert new branches and update the successors of the split block. This
902   // may create unconditional branches to the layout successor, etc., but
903   // that will be cleaned up later. For now, make sure that correct code is
904   // generated.
905   if (FP.JoinB) {
906     assert(!SSB || SSB == FP.JoinB);
907     BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
908       .addMBB(FP.JoinB);
909     FP.SplitB->addSuccessor(FP.JoinB);
910   } else {
911     bool HasBranch = false;
912     if (TSB) {
913       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt))
914         .addReg(FP.PredR)
915         .addMBB(TSB);
916       FP.SplitB->addSuccessor(TSB);
917       HasBranch = true;
918     }
919     if (FSB) {
920       const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump)
921                                        : HII->get(Hexagon::J2_jumpf);
922       MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
923       if (!HasBranch)
924         MIB.addReg(FP.PredR);
925       MIB.addMBB(FSB);
926       FP.SplitB->addSuccessor(FSB);
927     }
928     if (SSB) {
929       // This cannot happen if both TSB and FSB are set. [TF]SB are the
930       // successor blocks of the TrueB and FalseB (or null of the TrueB
931       // or FalseB block is null). SSB is the potential successor block
932       // of the SplitB that is neither TrueB nor FalseB.
933       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
934         .addMBB(SSB);
935       FP.SplitB->addSuccessor(SSB);
936     }
937   }
938 
939   // What is left to do is to update the PHI nodes that could have entries
940   // referring to predicated blocks.
941   if (FP.JoinB) {
942     updatePhiNodes(FP.JoinB, FP);
943   } else {
944     if (TSB)
945       updatePhiNodes(TSB, FP);
946     if (FSB)
947       updatePhiNodes(FSB, FP);
948     // Nothing to update in SSB, since SSB's predecessors haven't changed.
949   }
950 }
951 
removeBlock(MachineBasicBlock * B)952 void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
953   LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
954 
955   // Transfer the immediate dominator information from B to its descendants.
956   MachineDomTreeNode *N = MDT->getNode(B);
957   MachineDomTreeNode *IDN = N->getIDom();
958   if (IDN) {
959     MachineBasicBlock *IDB = IDN->getBlock();
960 
961     using GTN = GraphTraits<MachineDomTreeNode *>;
962     using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
963 
964     DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
965     for (auto &I : Cn) {
966       MachineBasicBlock *SB = I->getBlock();
967       MDT->changeImmediateDominator(SB, IDB);
968     }
969   }
970 
971   while (!B->succ_empty())
972     B->removeSuccessor(B->succ_begin());
973 
974   for (MachineBasicBlock *Pred : B->predecessors())
975     Pred->removeSuccessor(B, true);
976 
977   Deleted.insert(B);
978   MDT->eraseNode(B);
979   MFN->erase(B->getIterator());
980 }
981 
eliminatePhis(MachineBasicBlock * B)982 void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
983   LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
984   MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
985   for (I = B->begin(); I != NonPHI; I = NextI) {
986     NextI = std::next(I);
987     MachineInstr *PN = &*I;
988     assert(PN->getNumOperands() == 3 && "Invalid phi node");
989     MachineOperand &UO = PN->getOperand(1);
990     Register UseR = UO.getReg(), UseSR = UO.getSubReg();
991     Register DefR = PN->getOperand(0).getReg();
992     unsigned NewR = UseR;
993     if (UseSR) {
994       // MRI.replaceVregUsesWith does not allow to update the subregister,
995       // so instead of doing the use-iteration here, create a copy into a
996       // "non-subregistered" register.
997       const DebugLoc &DL = PN->getDebugLoc();
998       const TargetRegisterClass *RC = MRI->getRegClass(DefR);
999       NewR = MRI->createVirtualRegister(RC);
1000       NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR)
1001         .addReg(UseR, 0, UseSR);
1002     }
1003     MRI->replaceRegWith(DefR, NewR);
1004     B->erase(I);
1005   }
1006 }
1007 
mergeBlocks(MachineBasicBlock * PredB,MachineBasicBlock * SuccB)1008 void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
1009       MachineBasicBlock *SuccB) {
1010   LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
1011                     << PrintMB(SuccB) << "\n");
1012   bool TermOk = hasUncondBranch(SuccB);
1013   eliminatePhis(SuccB);
1014   HII->removeBranch(*PredB);
1015   PredB->removeSuccessor(SuccB);
1016   PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
1017   PredB->transferSuccessorsAndUpdatePHIs(SuccB);
1018   MachineBasicBlock *OldLayoutSuccessor = SuccB->getNextNode();
1019   removeBlock(SuccB);
1020   if (!TermOk)
1021     PredB->updateTerminator(OldLayoutSuccessor);
1022 }
1023 
simplifyFlowGraph(const FlowPattern & FP)1024 void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
1025   MachineBasicBlock *OldLayoutSuccessor = FP.SplitB->getNextNode();
1026   if (FP.TrueB)
1027     removeBlock(FP.TrueB);
1028   if (FP.FalseB)
1029     removeBlock(FP.FalseB);
1030 
1031   FP.SplitB->updateTerminator(OldLayoutSuccessor);
1032   if (FP.SplitB->succ_size() != 1)
1033     return;
1034 
1035   MachineBasicBlock *SB = *FP.SplitB->succ_begin();
1036   if (SB->pred_size() != 1)
1037     return;
1038 
1039   // By now, the split block has only one successor (SB), and SB has only
1040   // one predecessor. We can try to merge them. We will need to update ter-
1041   // minators in FP.Split+SB, and that requires working analyzeBranch, which
1042   // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
1043   // with an unconditional branch, we won't need to touch the terminators.
1044   if (!hasEHLabel(SB) || hasUncondBranch(SB))
1045     mergeBlocks(FP.SplitB, SB);
1046 }
1047 
runOnMachineFunction(MachineFunction & MF)1048 bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
1049   if (skipFunction(MF.getFunction()))
1050     return false;
1051 
1052   auto &ST = MF.getSubtarget<HexagonSubtarget>();
1053   HII = ST.getInstrInfo();
1054   TRI = ST.getRegisterInfo();
1055   MFN = &MF;
1056   MRI = &MF.getRegInfo();
1057   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1058   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1059   MBPI = EnableHexagonBP
1060              ? &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI()
1061              : nullptr;
1062 
1063   Deleted.clear();
1064   bool Changed = false;
1065 
1066   for (MachineLoop *L : *MLI)
1067     Changed |= visitLoop(L);
1068   Changed |= visitLoop(nullptr);
1069 
1070   return Changed;
1071 }
1072 
1073 //===----------------------------------------------------------------------===//
1074 //                         Public Constructor Functions
1075 //===----------------------------------------------------------------------===//
createHexagonEarlyIfConversion()1076 FunctionPass *llvm::createHexagonEarlyIfConversion() {
1077   return new HexagonEarlyIfConversion();
1078 }
1079