1 //===- HexagonEarlyIfConv.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a Hexagon-specific if-conversion pass that runs on the 10 // SSA form. 11 // In SSA it is not straightforward to represent instructions that condi- 12 // tionally define registers, since a conditionally-defined register may 13 // only be used under the same condition on which the definition was based. 14 // To avoid complications of this nature, this patch will only generate 15 // predicated stores, and speculate other instructions from the "if-conver- 16 // ted" block. 17 // The code will recognize CFG patterns where a block with a conditional 18 // branch "splits" into a "true block" and a "false block". Either of these 19 // could be omitted (in case of a triangle, for example). 20 // If after conversion of the side block(s) the CFG allows it, the resul- 21 // ting blocks may be merged. If the "join" block contained PHI nodes, they 22 // will be replaced with MUX (or MUX-like) instructions to maintain the 23 // semantics of the PHI. 24 // 25 // Example: 26 // 27 // %40 = L2_loadrub_io killed %39, 1 28 // %41 = S2_tstbit_i killed %40, 0 29 // J2_jumpt killed %41, <%bb.5>, implicit dead %pc 30 // J2_jump <%bb.4>, implicit dead %pc 31 // Successors according to CFG: %bb.4(62) %bb.5(62) 32 // 33 // %bb.4: derived from LLVM BB %if.then 34 // Predecessors according to CFG: %bb.3 35 // %11 = A2_addp %6, %10 36 // S2_storerd_io %32, 16, %11 37 // Successors according to CFG: %bb.5 38 // 39 // %bb.5: derived from LLVM BB %if.end 40 // Predecessors according to CFG: %bb.3 %bb.4 41 // %12 = PHI %6, <%bb.3>, %11, <%bb.4> 42 // %13 = A2_addp %7, %12 43 // %42 = C2_cmpeqi %9, 10 44 // J2_jumpf killed %42, <%bb.3>, implicit dead %pc 45 // J2_jump <%bb.6>, implicit dead %pc 46 // Successors according to CFG: %bb.6(4) %bb.3(124) 47 // 48 // would become: 49 // 50 // %40 = L2_loadrub_io killed %39, 1 51 // %41 = S2_tstbit_i killed %40, 0 52 // spec-> %11 = A2_addp %6, %10 53 // pred-> S2_pstorerdf_io %41, %32, 16, %11 54 // %46 = PS_pselect %41, %6, %11 55 // %13 = A2_addp %7, %46 56 // %42 = C2_cmpeqi %9, 10 57 // J2_jumpf killed %42, <%bb.3>, implicit dead %pc 58 // J2_jump <%bb.6>, implicit dead %pc 59 // Successors according to CFG: %bb.6 %bb.3 60 61 #include "Hexagon.h" 62 #include "HexagonInstrInfo.h" 63 #include "HexagonSubtarget.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/CodeGen/MachineBasicBlock.h" 69 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 70 #include "llvm/CodeGen/MachineDominators.h" 71 #include "llvm/CodeGen/MachineFunction.h" 72 #include "llvm/CodeGen/MachineFunctionPass.h" 73 #include "llvm/CodeGen/MachineInstr.h" 74 #include "llvm/CodeGen/MachineInstrBuilder.h" 75 #include "llvm/CodeGen/MachineLoopInfo.h" 76 #include "llvm/CodeGen/MachineOperand.h" 77 #include "llvm/CodeGen/MachineRegisterInfo.h" 78 #include "llvm/CodeGen/TargetRegisterInfo.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BranchProbability.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <cassert> 88 #include <iterator> 89 90 #define DEBUG_TYPE "hexagon-eif" 91 92 using namespace llvm; 93 94 namespace llvm { 95 96 FunctionPass *createHexagonEarlyIfConversion(); 97 void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry); 98 99 } // end namespace llvm 100 101 static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden, 102 cl::init(true), cl::desc("Enable branch probability info")); 103 static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden, 104 cl::desc("Size limit in Hexagon early if-conversion")); 105 static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false), 106 cl::Hidden, cl::desc("Do not convert branches that may exit the loop")); 107 108 namespace { 109 110 struct PrintMB { 111 PrintMB(const MachineBasicBlock *B) : MB(B) {} 112 113 const MachineBasicBlock *MB; 114 }; 115 raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) { 116 if (!P.MB) 117 return OS << "<none>"; 118 return OS << '#' << P.MB->getNumber(); 119 } 120 121 struct FlowPattern { 122 FlowPattern() = default; 123 FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB, 124 MachineBasicBlock *FB, MachineBasicBlock *JB) 125 : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {} 126 127 MachineBasicBlock *SplitB = nullptr; 128 MachineBasicBlock *TrueB = nullptr; 129 MachineBasicBlock *FalseB = nullptr; 130 MachineBasicBlock *JoinB = nullptr; 131 unsigned PredR = 0; 132 }; 133 134 struct PrintFP { 135 PrintFP(const FlowPattern &P, const TargetRegisterInfo &T) 136 : FP(P), TRI(T) {} 137 138 const FlowPattern &FP; 139 const TargetRegisterInfo &TRI; 140 friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P); 141 }; 142 raw_ostream &operator<<(raw_ostream &OS, 143 const PrintFP &P) LLVM_ATTRIBUTE_UNUSED; 144 raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) { 145 OS << "{ SplitB:" << PrintMB(P.FP.SplitB) 146 << ", PredR:" << printReg(P.FP.PredR, &P.TRI) 147 << ", TrueB:" << PrintMB(P.FP.TrueB) 148 << ", FalseB:" << PrintMB(P.FP.FalseB) 149 << ", JoinB:" << PrintMB(P.FP.JoinB) << " }"; 150 return OS; 151 } 152 153 class HexagonEarlyIfConversion : public MachineFunctionPass { 154 public: 155 static char ID; 156 157 HexagonEarlyIfConversion() : MachineFunctionPass(ID) {} 158 159 StringRef getPassName() const override { 160 return "Hexagon early if conversion"; 161 } 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override { 164 AU.addRequired<MachineBranchProbabilityInfo>(); 165 AU.addRequired<MachineDominatorTree>(); 166 AU.addPreserved<MachineDominatorTree>(); 167 AU.addRequired<MachineLoopInfo>(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 } 170 171 bool runOnMachineFunction(MachineFunction &MF) override; 172 173 private: 174 using BlockSetType = DenseSet<MachineBasicBlock *>; 175 176 bool isPreheader(const MachineBasicBlock *B) const; 177 bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L, 178 FlowPattern &FP); 179 bool visitBlock(MachineBasicBlock *B, MachineLoop *L); 180 bool visitLoop(MachineLoop *L); 181 182 bool hasEHLabel(const MachineBasicBlock *B) const; 183 bool hasUncondBranch(const MachineBasicBlock *B) const; 184 bool isValidCandidate(const MachineBasicBlock *B) const; 185 bool usesUndefVReg(const MachineInstr *MI) const; 186 bool isValid(const FlowPattern &FP) const; 187 unsigned countPredicateDefs(const MachineBasicBlock *B) const; 188 unsigned computePhiCost(const MachineBasicBlock *B, 189 const FlowPattern &FP) const; 190 bool isProfitable(const FlowPattern &FP) const; 191 bool isPredicableStore(const MachineInstr *MI) const; 192 bool isSafeToSpeculate(const MachineInstr *MI) const; 193 bool isPredicate(unsigned R) const; 194 195 unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const; 196 void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, 197 MachineInstr *MI, unsigned PredR, bool IfTrue); 198 void predicateBlockNB(MachineBasicBlock *ToB, 199 MachineBasicBlock::iterator At, MachineBasicBlock *FromB, 200 unsigned PredR, bool IfTrue); 201 202 unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At, 203 const TargetRegisterClass *DRC, unsigned PredR, unsigned TR, 204 unsigned TSR, unsigned FR, unsigned FSR); 205 void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP); 206 void convert(const FlowPattern &FP); 207 208 void removeBlock(MachineBasicBlock *B); 209 void eliminatePhis(MachineBasicBlock *B); 210 void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB); 211 void simplifyFlowGraph(const FlowPattern &FP); 212 213 const HexagonInstrInfo *HII = nullptr; 214 const TargetRegisterInfo *TRI = nullptr; 215 MachineFunction *MFN = nullptr; 216 MachineRegisterInfo *MRI = nullptr; 217 MachineDominatorTree *MDT = nullptr; 218 MachineLoopInfo *MLI = nullptr; 219 BlockSetType Deleted; 220 const MachineBranchProbabilityInfo *MBPI; 221 }; 222 223 } // end anonymous namespace 224 225 char HexagonEarlyIfConversion::ID = 0; 226 227 INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if", 228 "Hexagon early if conversion", false, false) 229 230 bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const { 231 if (B->succ_size() != 1) 232 return false; 233 MachineBasicBlock *SB = *B->succ_begin(); 234 MachineLoop *L = MLI->getLoopFor(SB); 235 return L && SB == L->getHeader() && MDT->dominates(B, SB); 236 } 237 238 bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B, 239 MachineLoop *L, FlowPattern &FP) { 240 LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B) 241 << "\n"); 242 243 // Interested only in conditional branches, no .new, no new-value, etc. 244 // Check the terminators directly, it's easier than handling all responses 245 // from analyzeBranch. 246 MachineBasicBlock *TB = nullptr, *FB = nullptr; 247 MachineBasicBlock::const_iterator T1I = B->getFirstTerminator(); 248 if (T1I == B->end()) 249 return false; 250 unsigned Opc = T1I->getOpcode(); 251 if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf) 252 return false; 253 unsigned PredR = T1I->getOperand(0).getReg(); 254 255 // Get the layout successor, or 0 if B does not have one. 256 MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B)); 257 MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr; 258 259 MachineBasicBlock *T1B = T1I->getOperand(1).getMBB(); 260 MachineBasicBlock::const_iterator T2I = std::next(T1I); 261 // The second terminator should be an unconditional branch. 262 assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump); 263 MachineBasicBlock *T2B = (T2I == B->end()) ? NextB 264 : T2I->getOperand(0).getMBB(); 265 if (T1B == T2B) { 266 // XXX merge if T1B == NextB, or convert branch to unconditional. 267 // mark as diamond with both sides equal? 268 return false; 269 } 270 271 // Record the true/false blocks in such a way that "true" means "if (PredR)", 272 // and "false" means "if (!PredR)". 273 if (Opc == Hexagon::J2_jumpt) 274 TB = T1B, FB = T2B; 275 else 276 TB = T2B, FB = T1B; 277 278 if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB)) 279 return false; 280 281 // Detect triangle first. In case of a triangle, one of the blocks TB/FB 282 // can fall through into the other, in other words, it will be executed 283 // in both cases. We only want to predicate the block that is executed 284 // conditionally. 285 unsigned TNP = TB->pred_size(), FNP = FB->pred_size(); 286 unsigned TNS = TB->succ_size(), FNS = FB->succ_size(); 287 288 // A block is predicable if it has one predecessor (it must be B), and 289 // it has a single successor. In fact, the block has to end either with 290 // an unconditional branch (which can be predicated), or with a fall- 291 // through. 292 // Also, skip blocks that do not belong to the same loop. 293 bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L); 294 bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L); 295 296 // If requested (via an option), do not consider branches where the 297 // true and false targets do not belong to the same loop. 298 if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB)) 299 return false; 300 301 // If neither is predicable, there is nothing interesting. 302 if (!TOk && !FOk) 303 return false; 304 305 MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr; 306 MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr; 307 MachineBasicBlock *JB = nullptr; 308 309 if (TOk) { 310 if (FOk) { 311 if (TSB == FSB) 312 JB = TSB; 313 // Diamond: "if (P) then TB; else FB;". 314 } else { 315 // TOk && !FOk 316 if (TSB == FB) 317 JB = FB; 318 FB = nullptr; 319 } 320 } else { 321 // !TOk && FOk (at least one must be true by now). 322 if (FSB == TB) 323 JB = TB; 324 TB = nullptr; 325 } 326 // Don't try to predicate loop preheaders. 327 if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) { 328 LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB) 329 << " is a loop preheader. Skipping.\n"); 330 return false; 331 } 332 333 FP = FlowPattern(B, PredR, TB, FB, JB); 334 LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n"); 335 return true; 336 } 337 338 // KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that 339 // contains EH_LABEL. 340 bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const { 341 for (auto &I : *B) 342 if (I.isEHLabel()) 343 return true; 344 return false; 345 } 346 347 // KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize 348 // that a block can never fall-through. 349 bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B) 350 const { 351 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); 352 while (I != E) { 353 if (I->isBarrier()) 354 return true; 355 ++I; 356 } 357 return false; 358 } 359 360 bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B) 361 const { 362 if (!B) 363 return true; 364 if (B->isEHPad() || B->hasAddressTaken()) 365 return false; 366 if (B->succ_size() == 0) 367 return false; 368 369 for (auto &MI : *B) { 370 if (MI.isDebugInstr()) 371 continue; 372 if (MI.isConditionalBranch()) 373 return false; 374 unsigned Opc = MI.getOpcode(); 375 bool IsJMP = (Opc == Hexagon::J2_jump); 376 if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI)) 377 return false; 378 // Look for predicate registers defined by this instruction. It's ok 379 // to speculate such an instruction, but the predicate register cannot 380 // be used outside of this block (or else it won't be possible to 381 // update the use of it after predication). PHI uses will be updated 382 // to use a result of a MUX, and a MUX cannot be created for predicate 383 // registers. 384 for (const MachineOperand &MO : MI.operands()) { 385 if (!MO.isReg() || !MO.isDef()) 386 continue; 387 unsigned R = MO.getReg(); 388 if (!TargetRegisterInfo::isVirtualRegister(R)) 389 continue; 390 if (!isPredicate(R)) 391 continue; 392 for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U) 393 if (U->getParent()->isPHI()) 394 return false; 395 } 396 } 397 return true; 398 } 399 400 bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const { 401 for (const MachineOperand &MO : MI->operands()) { 402 if (!MO.isReg() || !MO.isUse()) 403 continue; 404 unsigned R = MO.getReg(); 405 if (!TargetRegisterInfo::isVirtualRegister(R)) 406 continue; 407 const MachineInstr *DefI = MRI->getVRegDef(R); 408 // "Undefined" virtual registers are actually defined via IMPLICIT_DEF. 409 assert(DefI && "Expecting a reaching def in MRI"); 410 if (DefI->isImplicitDef()) 411 return true; 412 } 413 return false; 414 } 415 416 bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const { 417 if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition 418 return false; 419 if (FP.TrueB && !isValidCandidate(FP.TrueB)) 420 return false; 421 if (FP.FalseB && !isValidCandidate(FP.FalseB)) 422 return false; 423 // Check the PHIs in the join block. If any of them use a register 424 // that is defined as IMPLICIT_DEF, do not convert this. This can 425 // legitimately happen if one side of the split never executes, but 426 // the compiler is unable to prove it. That side may then seem to 427 // provide an "undef" value to the join block, however it will never 428 // execute at run-time. If we convert this case, the "undef" will 429 // be used in a MUX instruction, and that may seem like actually 430 // using an undefined value to other optimizations. This could lead 431 // to trouble further down the optimization stream, cause assertions 432 // to fail, etc. 433 if (FP.JoinB) { 434 const MachineBasicBlock &B = *FP.JoinB; 435 for (auto &MI : B) { 436 if (!MI.isPHI()) 437 break; 438 if (usesUndefVReg(&MI)) 439 return false; 440 unsigned DefR = MI.getOperand(0).getReg(); 441 if (isPredicate(DefR)) 442 return false; 443 } 444 } 445 return true; 446 } 447 448 unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B, 449 const FlowPattern &FP) const { 450 if (B->pred_size() < 2) 451 return 0; 452 453 unsigned Cost = 0; 454 for (const MachineInstr &MI : *B) { 455 if (!MI.isPHI()) 456 break; 457 // If both incoming blocks are one of the TrueB/FalseB/SplitB, then 458 // a MUX may be needed. Otherwise the PHI will need to be updated at 459 // no extra cost. 460 // Find the interesting PHI operands for further checks. 461 SmallVector<unsigned,2> Inc; 462 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 463 const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB(); 464 if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB) 465 Inc.push_back(i); 466 } 467 assert(Inc.size() <= 2); 468 if (Inc.size() < 2) 469 continue; 470 471 const MachineOperand &RA = MI.getOperand(1); 472 const MachineOperand &RB = MI.getOperand(3); 473 assert(RA.isReg() && RB.isReg()); 474 // Must have a MUX if the phi uses a subregister. 475 if (RA.getSubReg() != 0 || RB.getSubReg() != 0) { 476 Cost++; 477 continue; 478 } 479 const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg()); 480 const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg()); 481 if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3)) 482 Cost++; 483 } 484 return Cost; 485 } 486 487 unsigned HexagonEarlyIfConversion::countPredicateDefs( 488 const MachineBasicBlock *B) const { 489 unsigned PredDefs = 0; 490 for (auto &MI : *B) { 491 for (const MachineOperand &MO : MI.operands()) { 492 if (!MO.isReg() || !MO.isDef()) 493 continue; 494 unsigned R = MO.getReg(); 495 if (!TargetRegisterInfo::isVirtualRegister(R)) 496 continue; 497 if (isPredicate(R)) 498 PredDefs++; 499 } 500 } 501 return PredDefs; 502 } 503 504 bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const { 505 BranchProbability JumpProb(1, 10); 506 BranchProbability Prob(9, 10); 507 if (MBPI && FP.TrueB && !FP.FalseB && 508 (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) < JumpProb || 509 MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)) 510 return false; 511 512 if (MBPI && !FP.TrueB && FP.FalseB && 513 (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) < JumpProb || 514 MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)) 515 return false; 516 517 if (FP.TrueB && FP.FalseB) { 518 // Do not IfCovert if the branch is one sided. 519 if (MBPI) { 520 if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob) 521 return false; 522 if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob) 523 return false; 524 } 525 526 // If both sides are predicable, convert them if they join, and the 527 // join block has no other predecessors. 528 MachineBasicBlock *TSB = *FP.TrueB->succ_begin(); 529 MachineBasicBlock *FSB = *FP.FalseB->succ_begin(); 530 if (TSB != FSB) 531 return false; 532 if (TSB->pred_size() != 2) 533 return false; 534 } 535 536 // Calculate the total size of the predicated blocks. 537 // Assume instruction counts without branches to be the approximation of 538 // the code size. If the predicated blocks are smaller than a packet size, 539 // approximate the spare room in the packet that could be filled with the 540 // predicated/speculated instructions. 541 auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) { 542 if (!B) 543 return 0u; 544 unsigned T = std::count_if(B->begin(), B->getFirstTerminator(), 545 [](const MachineInstr &MI) { 546 return !MI.isMetaInstruction(); 547 }); 548 if (T < HEXAGON_PACKET_SIZE) 549 Spare += HEXAGON_PACKET_SIZE-T; 550 return T; 551 }; 552 unsigned Spare = 0; 553 unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare); 554 LLVM_DEBUG( 555 dbgs() << "Total number of instructions to be predicated/speculated: " 556 << TotalIn << ", spare room: " << Spare << "\n"); 557 if (TotalIn >= SizeLimit+Spare) 558 return false; 559 560 // Count the number of PHI nodes that will need to be updated (converted 561 // to MUX). Those can be later converted to predicated instructions, so 562 // they aren't always adding extra cost. 563 // KLUDGE: Also, count the number of predicate register definitions in 564 // each block. The scheduler may increase the pressure of these and cause 565 // expensive spills (e.g. bitmnp01). 566 unsigned TotalPh = 0; 567 unsigned PredDefs = countPredicateDefs(FP.SplitB); 568 if (FP.JoinB) { 569 TotalPh = computePhiCost(FP.JoinB, FP); 570 PredDefs += countPredicateDefs(FP.JoinB); 571 } else { 572 if (FP.TrueB && FP.TrueB->succ_size() > 0) { 573 MachineBasicBlock *SB = *FP.TrueB->succ_begin(); 574 TotalPh += computePhiCost(SB, FP); 575 PredDefs += countPredicateDefs(SB); 576 } 577 if (FP.FalseB && FP.FalseB->succ_size() > 0) { 578 MachineBasicBlock *SB = *FP.FalseB->succ_begin(); 579 TotalPh += computePhiCost(SB, FP); 580 PredDefs += countPredicateDefs(SB); 581 } 582 } 583 LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: " 584 << TotalPh << "\n"); 585 if (TotalIn+TotalPh >= SizeLimit+Spare) 586 return false; 587 588 LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs 589 << "\n"); 590 if (PredDefs > 4) 591 return false; 592 593 return true; 594 } 595 596 bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B, 597 MachineLoop *L) { 598 bool Changed = false; 599 600 // Visit all dominated blocks from the same loop first, then process B. 601 MachineDomTreeNode *N = MDT->getNode(B); 602 603 using GTN = GraphTraits<MachineDomTreeNode *>; 604 605 // We will change CFG/DT during this traversal, so take precautions to 606 // avoid problems related to invalidated iterators. In fact, processing 607 // a child C of B cannot cause another child to be removed, but it can 608 // cause a new child to be added (which was a child of C before C itself 609 // was removed. This new child C, however, would have been processed 610 // prior to processing B, so there is no need to process it again. 611 // Simply keep a list of children of B, and traverse that list. 612 using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; 613 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); 614 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { 615 MachineBasicBlock *SB = (*I)->getBlock(); 616 if (!Deleted.count(SB)) 617 Changed |= visitBlock(SB, L); 618 } 619 // When walking down the dominator tree, we want to traverse through 620 // blocks from nested (other) loops, because they can dominate blocks 621 // that are in L. Skip the non-L blocks only after the tree traversal. 622 if (MLI->getLoopFor(B) != L) 623 return Changed; 624 625 FlowPattern FP; 626 if (!matchFlowPattern(B, L, FP)) 627 return Changed; 628 629 if (!isValid(FP)) { 630 LLVM_DEBUG(dbgs() << "Conversion is not valid\n"); 631 return Changed; 632 } 633 if (!isProfitable(FP)) { 634 LLVM_DEBUG(dbgs() << "Conversion is not profitable\n"); 635 return Changed; 636 } 637 638 convert(FP); 639 simplifyFlowGraph(FP); 640 return true; 641 } 642 643 bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) { 644 MachineBasicBlock *HB = L ? L->getHeader() : nullptr; 645 LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB) 646 : dbgs() << "Visiting function") 647 << "\n"); 648 bool Changed = false; 649 if (L) { 650 for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 651 Changed |= visitLoop(*I); 652 } 653 654 MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN); 655 Changed |= visitBlock(L ? HB : EntryB, L); 656 return Changed; 657 } 658 659 bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI) 660 const { 661 // HexagonInstrInfo::isPredicable will consider these stores are non- 662 // -predicable if the offset would become constant-extended after 663 // predication. 664 unsigned Opc = MI->getOpcode(); 665 switch (Opc) { 666 case Hexagon::S2_storerb_io: 667 case Hexagon::S2_storerbnew_io: 668 case Hexagon::S2_storerh_io: 669 case Hexagon::S2_storerhnew_io: 670 case Hexagon::S2_storeri_io: 671 case Hexagon::S2_storerinew_io: 672 case Hexagon::S2_storerd_io: 673 case Hexagon::S4_storeirb_io: 674 case Hexagon::S4_storeirh_io: 675 case Hexagon::S4_storeiri_io: 676 return true; 677 } 678 679 // TargetInstrInfo::isPredicable takes a non-const pointer. 680 return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI)); 681 } 682 683 bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI) 684 const { 685 if (MI->mayLoad() || MI->mayStore()) 686 return false; 687 if (MI->isCall() || MI->isBarrier() || MI->isBranch()) 688 return false; 689 if (MI->hasUnmodeledSideEffects()) 690 return false; 691 if (MI->getOpcode() == TargetOpcode::LIFETIME_END) 692 return false; 693 694 return true; 695 } 696 697 bool HexagonEarlyIfConversion::isPredicate(unsigned R) const { 698 const TargetRegisterClass *RC = MRI->getRegClass(R); 699 return RC == &Hexagon::PredRegsRegClass || 700 RC == &Hexagon::HvxQRRegClass; 701 } 702 703 unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc, 704 bool IfTrue) const { 705 return HII->getCondOpcode(Opc, !IfTrue); 706 } 707 708 void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB, 709 MachineBasicBlock::iterator At, MachineInstr *MI, 710 unsigned PredR, bool IfTrue) { 711 DebugLoc DL; 712 if (At != ToB->end()) 713 DL = At->getDebugLoc(); 714 else if (!ToB->empty()) 715 DL = ToB->back().getDebugLoc(); 716 717 unsigned Opc = MI->getOpcode(); 718 719 if (isPredicableStore(MI)) { 720 unsigned COpc = getCondStoreOpcode(Opc, IfTrue); 721 assert(COpc); 722 MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc)); 723 MachineInstr::mop_iterator MOI = MI->operands_begin(); 724 if (HII->isPostIncrement(*MI)) { 725 MIB.add(*MOI); 726 ++MOI; 727 } 728 MIB.addReg(PredR); 729 for (const MachineOperand &MO : make_range(MOI, MI->operands_end())) 730 MIB.add(MO); 731 732 // Set memory references. 733 MIB.cloneMemRefs(*MI); 734 735 MI->eraseFromParent(); 736 return; 737 } 738 739 if (Opc == Hexagon::J2_jump) { 740 MachineBasicBlock *TB = MI->getOperand(0).getMBB(); 741 const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt 742 : Hexagon::J2_jumpf); 743 BuildMI(*ToB, At, DL, D) 744 .addReg(PredR) 745 .addMBB(TB); 746 MI->eraseFromParent(); 747 return; 748 } 749 750 // Print the offending instruction unconditionally as we are about to 751 // abort. 752 dbgs() << *MI; 753 llvm_unreachable("Unexpected instruction"); 754 } 755 756 // Predicate/speculate non-branch instructions from FromB into block ToB. 757 // Leave the branches alone, they will be handled later. Btw, at this point 758 // FromB should have at most one branch, and it should be unconditional. 759 void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB, 760 MachineBasicBlock::iterator At, MachineBasicBlock *FromB, 761 unsigned PredR, bool IfTrue) { 762 LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n"); 763 MachineBasicBlock::iterator End = FromB->getFirstTerminator(); 764 MachineBasicBlock::iterator I, NextI; 765 766 for (I = FromB->begin(); I != End; I = NextI) { 767 assert(!I->isPHI()); 768 NextI = std::next(I); 769 if (isSafeToSpeculate(&*I)) 770 ToB->splice(At, FromB, I); 771 else 772 predicateInstr(ToB, At, &*I, PredR, IfTrue); 773 } 774 } 775 776 unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B, 777 MachineBasicBlock::iterator At, const TargetRegisterClass *DRC, 778 unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) { 779 unsigned Opc = 0; 780 switch (DRC->getID()) { 781 case Hexagon::IntRegsRegClassID: 782 case Hexagon::IntRegsLow8RegClassID: 783 Opc = Hexagon::C2_mux; 784 break; 785 case Hexagon::DoubleRegsRegClassID: 786 case Hexagon::GeneralDoubleLow8RegsRegClassID: 787 Opc = Hexagon::PS_pselect; 788 break; 789 case Hexagon::HvxVRRegClassID: 790 Opc = Hexagon::PS_vselect; 791 break; 792 case Hexagon::HvxWRRegClassID: 793 Opc = Hexagon::PS_wselect; 794 break; 795 default: 796 llvm_unreachable("unexpected register type"); 797 } 798 const MCInstrDesc &D = HII->get(Opc); 799 800 DebugLoc DL = B->findBranchDebugLoc(); 801 unsigned MuxR = MRI->createVirtualRegister(DRC); 802 BuildMI(*B, At, DL, D, MuxR) 803 .addReg(PredR) 804 .addReg(TR, 0, TSR) 805 .addReg(FR, 0, FSR); 806 return MuxR; 807 } 808 809 void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB, 810 const FlowPattern &FP) { 811 // Visit all PHI nodes in the WhereB block and generate MUX instructions 812 // in the split block. Update the PHI nodes with the values of the MUX. 813 auto NonPHI = WhereB->getFirstNonPHI(); 814 for (auto I = WhereB->begin(); I != NonPHI; ++I) { 815 MachineInstr *PN = &*I; 816 // Registers and subregisters corresponding to TrueB, FalseB and SplitB. 817 unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0; 818 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { 819 const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1); 820 if (BO.getMBB() == FP.SplitB) 821 SR = RO.getReg(), SSR = RO.getSubReg(); 822 else if (BO.getMBB() == FP.TrueB) 823 TR = RO.getReg(), TSR = RO.getSubReg(); 824 else if (BO.getMBB() == FP.FalseB) 825 FR = RO.getReg(), FSR = RO.getSubReg(); 826 else 827 continue; 828 PN->RemoveOperand(i+1); 829 PN->RemoveOperand(i); 830 } 831 if (TR == 0) 832 TR = SR, TSR = SSR; 833 else if (FR == 0) 834 FR = SR, FSR = SSR; 835 836 assert(TR || FR); 837 unsigned MuxR = 0, MuxSR = 0; 838 839 if (TR && FR) { 840 unsigned DR = PN->getOperand(0).getReg(); 841 const TargetRegisterClass *RC = MRI->getRegClass(DR); 842 MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC, 843 FP.PredR, TR, TSR, FR, FSR); 844 } else if (TR) { 845 MuxR = TR; 846 MuxSR = TSR; 847 } else { 848 MuxR = FR; 849 MuxSR = FSR; 850 } 851 852 PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false, 853 false, false, MuxSR)); 854 PN->addOperand(MachineOperand::CreateMBB(FP.SplitB)); 855 } 856 } 857 858 void HexagonEarlyIfConversion::convert(const FlowPattern &FP) { 859 MachineBasicBlock *TSB = nullptr, *FSB = nullptr; 860 MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator(); 861 assert(OldTI != FP.SplitB->end()); 862 DebugLoc DL = OldTI->getDebugLoc(); 863 864 if (FP.TrueB) { 865 TSB = *FP.TrueB->succ_begin(); 866 predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true); 867 } 868 if (FP.FalseB) { 869 FSB = *FP.FalseB->succ_begin(); 870 MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator(); 871 predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false); 872 } 873 874 // Regenerate new terminators in the split block and update the successors. 875 // First, remember any information that may be needed later and remove the 876 // existing terminators/successors from the split block. 877 MachineBasicBlock *SSB = nullptr; 878 FP.SplitB->erase(OldTI, FP.SplitB->end()); 879 while (FP.SplitB->succ_size() > 0) { 880 MachineBasicBlock *T = *FP.SplitB->succ_begin(); 881 // It's possible that the split block had a successor that is not a pre- 882 // dicated block. This could only happen if there was only one block to 883 // be predicated. Example: 884 // split_b: 885 // if (p) jump true_b 886 // jump unrelated2_b 887 // unrelated1_b: 888 // ... 889 // unrelated2_b: ; can have other predecessors, so it's not "false_b" 890 // jump other_b 891 // true_b: ; only reachable from split_b, can be predicated 892 // ... 893 // 894 // Find this successor (SSB) if it exists. 895 if (T != FP.TrueB && T != FP.FalseB) { 896 assert(!SSB); 897 SSB = T; 898 } 899 FP.SplitB->removeSuccessor(FP.SplitB->succ_begin()); 900 } 901 902 // Insert new branches and update the successors of the split block. This 903 // may create unconditional branches to the layout successor, etc., but 904 // that will be cleaned up later. For now, make sure that correct code is 905 // generated. 906 if (FP.JoinB) { 907 assert(!SSB || SSB == FP.JoinB); 908 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump)) 909 .addMBB(FP.JoinB); 910 FP.SplitB->addSuccessor(FP.JoinB); 911 } else { 912 bool HasBranch = false; 913 if (TSB) { 914 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt)) 915 .addReg(FP.PredR) 916 .addMBB(TSB); 917 FP.SplitB->addSuccessor(TSB); 918 HasBranch = true; 919 } 920 if (FSB) { 921 const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump) 922 : HII->get(Hexagon::J2_jumpf); 923 MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D); 924 if (!HasBranch) 925 MIB.addReg(FP.PredR); 926 MIB.addMBB(FSB); 927 FP.SplitB->addSuccessor(FSB); 928 } 929 if (SSB) { 930 // This cannot happen if both TSB and FSB are set. [TF]SB are the 931 // successor blocks of the TrueB and FalseB (or null of the TrueB 932 // or FalseB block is null). SSB is the potential successor block 933 // of the SplitB that is neither TrueB nor FalseB. 934 BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump)) 935 .addMBB(SSB); 936 FP.SplitB->addSuccessor(SSB); 937 } 938 } 939 940 // What is left to do is to update the PHI nodes that could have entries 941 // referring to predicated blocks. 942 if (FP.JoinB) { 943 updatePhiNodes(FP.JoinB, FP); 944 } else { 945 if (TSB) 946 updatePhiNodes(TSB, FP); 947 if (FSB) 948 updatePhiNodes(FSB, FP); 949 // Nothing to update in SSB, since SSB's predecessors haven't changed. 950 } 951 } 952 953 void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) { 954 LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n"); 955 956 // Transfer the immediate dominator information from B to its descendants. 957 MachineDomTreeNode *N = MDT->getNode(B); 958 MachineDomTreeNode *IDN = N->getIDom(); 959 if (IDN) { 960 MachineBasicBlock *IDB = IDN->getBlock(); 961 962 using GTN = GraphTraits<MachineDomTreeNode *>; 963 using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>; 964 965 DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); 966 for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { 967 MachineBasicBlock *SB = (*I)->getBlock(); 968 MDT->changeImmediateDominator(SB, IDB); 969 } 970 } 971 972 while (B->succ_size() > 0) 973 B->removeSuccessor(B->succ_begin()); 974 975 for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I) 976 (*I)->removeSuccessor(B, true); 977 978 Deleted.insert(B); 979 MDT->eraseNode(B); 980 MFN->erase(B->getIterator()); 981 } 982 983 void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) { 984 LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n"); 985 MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI(); 986 for (I = B->begin(); I != NonPHI; I = NextI) { 987 NextI = std::next(I); 988 MachineInstr *PN = &*I; 989 assert(PN->getNumOperands() == 3 && "Invalid phi node"); 990 MachineOperand &UO = PN->getOperand(1); 991 unsigned UseR = UO.getReg(), UseSR = UO.getSubReg(); 992 unsigned DefR = PN->getOperand(0).getReg(); 993 unsigned NewR = UseR; 994 if (UseSR) { 995 // MRI.replaceVregUsesWith does not allow to update the subregister, 996 // so instead of doing the use-iteration here, create a copy into a 997 // "non-subregistered" register. 998 const DebugLoc &DL = PN->getDebugLoc(); 999 const TargetRegisterClass *RC = MRI->getRegClass(DefR); 1000 NewR = MRI->createVirtualRegister(RC); 1001 NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR) 1002 .addReg(UseR, 0, UseSR); 1003 } 1004 MRI->replaceRegWith(DefR, NewR); 1005 B->erase(I); 1006 } 1007 } 1008 1009 void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB, 1010 MachineBasicBlock *SuccB) { 1011 LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and " 1012 << PrintMB(SuccB) << "\n"); 1013 bool TermOk = hasUncondBranch(SuccB); 1014 eliminatePhis(SuccB); 1015 HII->removeBranch(*PredB); 1016 PredB->removeSuccessor(SuccB); 1017 PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end()); 1018 PredB->transferSuccessorsAndUpdatePHIs(SuccB); 1019 removeBlock(SuccB); 1020 if (!TermOk) 1021 PredB->updateTerminator(); 1022 } 1023 1024 void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) { 1025 if (FP.TrueB) 1026 removeBlock(FP.TrueB); 1027 if (FP.FalseB) 1028 removeBlock(FP.FalseB); 1029 1030 FP.SplitB->updateTerminator(); 1031 if (FP.SplitB->succ_size() != 1) 1032 return; 1033 1034 MachineBasicBlock *SB = *FP.SplitB->succ_begin(); 1035 if (SB->pred_size() != 1) 1036 return; 1037 1038 // By now, the split block has only one successor (SB), and SB has only 1039 // one predecessor. We can try to merge them. We will need to update ter- 1040 // minators in FP.Split+SB, and that requires working analyzeBranch, which 1041 // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends 1042 // with an unconditional branch, we won't need to touch the terminators. 1043 if (!hasEHLabel(SB) || hasUncondBranch(SB)) 1044 mergeBlocks(FP.SplitB, SB); 1045 } 1046 1047 bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) { 1048 if (skipFunction(MF.getFunction())) 1049 return false; 1050 1051 auto &ST = MF.getSubtarget<HexagonSubtarget>(); 1052 HII = ST.getInstrInfo(); 1053 TRI = ST.getRegisterInfo(); 1054 MFN = &MF; 1055 MRI = &MF.getRegInfo(); 1056 MDT = &getAnalysis<MachineDominatorTree>(); 1057 MLI = &getAnalysis<MachineLoopInfo>(); 1058 MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() : 1059 nullptr; 1060 1061 Deleted.clear(); 1062 bool Changed = false; 1063 1064 for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) 1065 Changed |= visitLoop(*I); 1066 Changed |= visitLoop(nullptr); 1067 1068 return Changed; 1069 } 1070 1071 //===----------------------------------------------------------------------===// 1072 // Public Constructor Functions 1073 //===----------------------------------------------------------------------===// 1074 FunctionPass *llvm::createHexagonEarlyIfConversion() { 1075 return new HexagonEarlyIfConversion(); 1076 } 1077