1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing BTF debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "BTFDebug.h" 14 #include "BPF.h" 15 #include "BPFCORE.h" 16 #include "MCTargetDesc/BPFMCTargetDesc.h" 17 #include "llvm/BinaryFormat/ELF.h" 18 #include "llvm/CodeGen/AsmPrinter.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/MC/MCContext.h" 21 #include "llvm/MC/MCObjectFileInfo.h" 22 #include "llvm/MC/MCSectionELF.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/LineIterator.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/Target/TargetLoweringObjectFile.h" 27 #include <optional> 28 29 using namespace llvm; 30 31 static const char *BTFKindStr[] = { 32 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, 33 #include "llvm/DebugInfo/BTF/BTF.def" 34 }; 35 36 /// Emit a BTF common type. 37 void BTFTypeBase::emitType(MCStreamer &OS) { 38 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + 39 ")"); 40 OS.emitInt32(BTFType.NameOff); 41 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); 42 OS.emitInt32(BTFType.Info); 43 OS.emitInt32(BTFType.Size); 44 } 45 46 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, 47 bool NeedsFixup) 48 : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) { 49 switch (Tag) { 50 case dwarf::DW_TAG_pointer_type: 51 Kind = BTF::BTF_KIND_PTR; 52 break; 53 case dwarf::DW_TAG_const_type: 54 Kind = BTF::BTF_KIND_CONST; 55 break; 56 case dwarf::DW_TAG_volatile_type: 57 Kind = BTF::BTF_KIND_VOLATILE; 58 break; 59 case dwarf::DW_TAG_typedef: 60 Kind = BTF::BTF_KIND_TYPEDEF; 61 break; 62 case dwarf::DW_TAG_restrict_type: 63 Kind = BTF::BTF_KIND_RESTRICT; 64 break; 65 default: 66 llvm_unreachable("Unknown DIDerivedType Tag"); 67 } 68 BTFType.Info = Kind << 24; 69 } 70 71 /// Used by DW_TAG_pointer_type only. 72 BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag, 73 StringRef Name) 74 : DTy(nullptr), NeedsFixup(false), Name(Name) { 75 Kind = BTF::BTF_KIND_PTR; 76 BTFType.Info = Kind << 24; 77 BTFType.Type = NextTypeId; 78 } 79 80 void BTFTypeDerived::completeType(BTFDebug &BDebug) { 81 if (IsCompleted) 82 return; 83 IsCompleted = true; 84 85 BTFType.NameOff = BDebug.addString(Name); 86 87 if (NeedsFixup || !DTy) 88 return; 89 90 // The base type for PTR/CONST/VOLATILE could be void. 91 const DIType *ResolvedType = DTy->getBaseType(); 92 if (!ResolvedType) { 93 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || 94 Kind == BTF::BTF_KIND_VOLATILE) && 95 "Invalid null basetype"); 96 BTFType.Type = 0; 97 } else { 98 BTFType.Type = BDebug.getTypeId(ResolvedType); 99 } 100 } 101 102 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 103 104 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { 105 BTFType.Type = PointeeType; 106 } 107 108 /// Represent a struct/union forward declaration. 109 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { 110 Kind = BTF::BTF_KIND_FWD; 111 BTFType.Info = IsUnion << 31 | Kind << 24; 112 BTFType.Type = 0; 113 } 114 115 void BTFTypeFwd::completeType(BTFDebug &BDebug) { 116 if (IsCompleted) 117 return; 118 IsCompleted = true; 119 120 BTFType.NameOff = BDebug.addString(Name); 121 } 122 123 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 124 125 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, 126 uint32_t OffsetInBits, StringRef TypeName) 127 : Name(TypeName) { 128 // Translate IR int encoding to BTF int encoding. 129 uint8_t BTFEncoding; 130 switch (Encoding) { 131 case dwarf::DW_ATE_boolean: 132 BTFEncoding = BTF::INT_BOOL; 133 break; 134 case dwarf::DW_ATE_signed: 135 case dwarf::DW_ATE_signed_char: 136 BTFEncoding = BTF::INT_SIGNED; 137 break; 138 case dwarf::DW_ATE_unsigned: 139 case dwarf::DW_ATE_unsigned_char: 140 BTFEncoding = 0; 141 break; 142 default: 143 llvm_unreachable("Unknown BTFTypeInt Encoding"); 144 } 145 146 Kind = BTF::BTF_KIND_INT; 147 BTFType.Info = Kind << 24; 148 BTFType.Size = roundupToBytes(SizeInBits); 149 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; 150 } 151 152 void BTFTypeInt::completeType(BTFDebug &BDebug) { 153 if (IsCompleted) 154 return; 155 IsCompleted = true; 156 157 BTFType.NameOff = BDebug.addString(Name); 158 } 159 160 void BTFTypeInt::emitType(MCStreamer &OS) { 161 BTFTypeBase::emitType(OS); 162 OS.AddComment("0x" + Twine::utohexstr(IntVal)); 163 OS.emitInt32(IntVal); 164 } 165 166 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen, 167 bool IsSigned) : ETy(ETy) { 168 Kind = BTF::BTF_KIND_ENUM; 169 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; 170 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 171 } 172 173 void BTFTypeEnum::completeType(BTFDebug &BDebug) { 174 if (IsCompleted) 175 return; 176 IsCompleted = true; 177 178 BTFType.NameOff = BDebug.addString(ETy->getName()); 179 180 DINodeArray Elements = ETy->getElements(); 181 for (const auto Element : Elements) { 182 const auto *Enum = cast<DIEnumerator>(Element); 183 184 struct BTF::BTFEnum BTFEnum; 185 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 186 // BTF enum value is 32bit, enforce it. 187 uint32_t Value; 188 if (Enum->isUnsigned()) 189 Value = static_cast<uint32_t>(Enum->getValue().getZExtValue()); 190 else 191 Value = static_cast<uint32_t>(Enum->getValue().getSExtValue()); 192 BTFEnum.Val = Value; 193 EnumValues.push_back(BTFEnum); 194 } 195 } 196 197 void BTFTypeEnum::emitType(MCStreamer &OS) { 198 BTFTypeBase::emitType(OS); 199 for (const auto &Enum : EnumValues) { 200 OS.emitInt32(Enum.NameOff); 201 OS.emitInt32(Enum.Val); 202 } 203 } 204 205 BTFTypeEnum64::BTFTypeEnum64(const DICompositeType *ETy, uint32_t VLen, 206 bool IsSigned) : ETy(ETy) { 207 Kind = BTF::BTF_KIND_ENUM64; 208 BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; 209 BTFType.Size = roundupToBytes(ETy->getSizeInBits()); 210 } 211 212 void BTFTypeEnum64::completeType(BTFDebug &BDebug) { 213 if (IsCompleted) 214 return; 215 IsCompleted = true; 216 217 BTFType.NameOff = BDebug.addString(ETy->getName()); 218 219 DINodeArray Elements = ETy->getElements(); 220 for (const auto Element : Elements) { 221 const auto *Enum = cast<DIEnumerator>(Element); 222 223 struct BTF::BTFEnum64 BTFEnum; 224 BTFEnum.NameOff = BDebug.addString(Enum->getName()); 225 uint64_t Value; 226 if (Enum->isUnsigned()) 227 Value = static_cast<uint64_t>(Enum->getValue().getZExtValue()); 228 else 229 Value = static_cast<uint64_t>(Enum->getValue().getSExtValue()); 230 BTFEnum.Val_Lo32 = Value; 231 BTFEnum.Val_Hi32 = Value >> 32; 232 EnumValues.push_back(BTFEnum); 233 } 234 } 235 236 void BTFTypeEnum64::emitType(MCStreamer &OS) { 237 BTFTypeBase::emitType(OS); 238 for (const auto &Enum : EnumValues) { 239 OS.emitInt32(Enum.NameOff); 240 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Lo32)); 241 OS.emitInt32(Enum.Val_Lo32); 242 OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Hi32)); 243 OS.emitInt32(Enum.Val_Hi32); 244 } 245 } 246 247 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { 248 Kind = BTF::BTF_KIND_ARRAY; 249 BTFType.NameOff = 0; 250 BTFType.Info = Kind << 24; 251 BTFType.Size = 0; 252 253 ArrayInfo.ElemType = ElemTypeId; 254 ArrayInfo.Nelems = NumElems; 255 } 256 257 /// Represent a BTF array. 258 void BTFTypeArray::completeType(BTFDebug &BDebug) { 259 if (IsCompleted) 260 return; 261 IsCompleted = true; 262 263 // The IR does not really have a type for the index. 264 // A special type for array index should have been 265 // created during initial type traversal. Just 266 // retrieve that type id. 267 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); 268 } 269 270 void BTFTypeArray::emitType(MCStreamer &OS) { 271 BTFTypeBase::emitType(OS); 272 OS.emitInt32(ArrayInfo.ElemType); 273 OS.emitInt32(ArrayInfo.IndexType); 274 OS.emitInt32(ArrayInfo.Nelems); 275 } 276 277 /// Represent either a struct or a union. 278 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, 279 bool HasBitField, uint32_t Vlen) 280 : STy(STy), HasBitField(HasBitField) { 281 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; 282 BTFType.Size = roundupToBytes(STy->getSizeInBits()); 283 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; 284 } 285 286 void BTFTypeStruct::completeType(BTFDebug &BDebug) { 287 if (IsCompleted) 288 return; 289 IsCompleted = true; 290 291 BTFType.NameOff = BDebug.addString(STy->getName()); 292 293 // Add struct/union members. 294 const DINodeArray Elements = STy->getElements(); 295 for (const auto *Element : Elements) { 296 struct BTF::BTFMember BTFMember; 297 const auto *DDTy = cast<DIDerivedType>(Element); 298 299 BTFMember.NameOff = BDebug.addString(DDTy->getName()); 300 if (HasBitField) { 301 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; 302 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); 303 } else { 304 BTFMember.Offset = DDTy->getOffsetInBits(); 305 } 306 const auto *BaseTy = DDTy->getBaseType(); 307 BTFMember.Type = BDebug.getTypeId(BaseTy); 308 Members.push_back(BTFMember); 309 } 310 } 311 312 void BTFTypeStruct::emitType(MCStreamer &OS) { 313 BTFTypeBase::emitType(OS); 314 for (const auto &Member : Members) { 315 OS.emitInt32(Member.NameOff); 316 OS.emitInt32(Member.Type); 317 OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); 318 OS.emitInt32(Member.Offset); 319 } 320 } 321 322 std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } 323 324 /// The Func kind represents both subprogram and pointee of function 325 /// pointers. If the FuncName is empty, it represents a pointee of function 326 /// pointer. Otherwise, it represents a subprogram. The func arg names 327 /// are empty for pointee of function pointer case, and are valid names 328 /// for subprogram. 329 BTFTypeFuncProto::BTFTypeFuncProto( 330 const DISubroutineType *STy, uint32_t VLen, 331 const std::unordered_map<uint32_t, StringRef> &FuncArgNames) 332 : STy(STy), FuncArgNames(FuncArgNames) { 333 Kind = BTF::BTF_KIND_FUNC_PROTO; 334 BTFType.Info = (Kind << 24) | VLen; 335 } 336 337 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { 338 if (IsCompleted) 339 return; 340 IsCompleted = true; 341 342 DITypeRefArray Elements = STy->getTypeArray(); 343 auto RetType = Elements[0]; 344 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; 345 BTFType.NameOff = 0; 346 347 // For null parameter which is typically the last one 348 // to represent the vararg, encode the NameOff/Type to be 0. 349 for (unsigned I = 1, N = Elements.size(); I < N; ++I) { 350 struct BTF::BTFParam Param; 351 auto Element = Elements[I]; 352 if (Element) { 353 Param.NameOff = BDebug.addString(FuncArgNames[I]); 354 Param.Type = BDebug.getTypeId(Element); 355 } else { 356 Param.NameOff = 0; 357 Param.Type = 0; 358 } 359 Parameters.push_back(Param); 360 } 361 } 362 363 void BTFTypeFuncProto::emitType(MCStreamer &OS) { 364 BTFTypeBase::emitType(OS); 365 for (const auto &Param : Parameters) { 366 OS.emitInt32(Param.NameOff); 367 OS.emitInt32(Param.Type); 368 } 369 } 370 371 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, 372 uint32_t Scope) 373 : Name(FuncName) { 374 Kind = BTF::BTF_KIND_FUNC; 375 BTFType.Info = (Kind << 24) | Scope; 376 BTFType.Type = ProtoTypeId; 377 } 378 379 void BTFTypeFunc::completeType(BTFDebug &BDebug) { 380 if (IsCompleted) 381 return; 382 IsCompleted = true; 383 384 BTFType.NameOff = BDebug.addString(Name); 385 } 386 387 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } 388 389 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) 390 : Name(VarName) { 391 Kind = BTF::BTF_KIND_VAR; 392 BTFType.Info = Kind << 24; 393 BTFType.Type = TypeId; 394 Info = VarInfo; 395 } 396 397 void BTFKindVar::completeType(BTFDebug &BDebug) { 398 BTFType.NameOff = BDebug.addString(Name); 399 } 400 401 void BTFKindVar::emitType(MCStreamer &OS) { 402 BTFTypeBase::emitType(OS); 403 OS.emitInt32(Info); 404 } 405 406 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) 407 : Asm(AsmPrt), Name(SecName) { 408 Kind = BTF::BTF_KIND_DATASEC; 409 BTFType.Info = Kind << 24; 410 BTFType.Size = 0; 411 } 412 413 void BTFKindDataSec::completeType(BTFDebug &BDebug) { 414 BTFType.NameOff = BDebug.addString(Name); 415 BTFType.Info |= Vars.size(); 416 } 417 418 void BTFKindDataSec::emitType(MCStreamer &OS) { 419 BTFTypeBase::emitType(OS); 420 421 for (const auto &V : Vars) { 422 OS.emitInt32(std::get<0>(V)); 423 Asm->emitLabelReference(std::get<1>(V), 4); 424 OS.emitInt32(std::get<2>(V)); 425 } 426 } 427 428 BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) 429 : Name(TypeName) { 430 Kind = BTF::BTF_KIND_FLOAT; 431 BTFType.Info = Kind << 24; 432 BTFType.Size = roundupToBytes(SizeInBits); 433 } 434 435 void BTFTypeFloat::completeType(BTFDebug &BDebug) { 436 if (IsCompleted) 437 return; 438 IsCompleted = true; 439 440 BTFType.NameOff = BDebug.addString(Name); 441 } 442 443 BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, 444 StringRef Tag) 445 : Tag(Tag) { 446 Kind = BTF::BTF_KIND_DECL_TAG; 447 BTFType.Info = Kind << 24; 448 BTFType.Type = BaseTypeId; 449 Info = ComponentIdx; 450 } 451 452 void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { 453 if (IsCompleted) 454 return; 455 IsCompleted = true; 456 457 BTFType.NameOff = BDebug.addString(Tag); 458 } 459 460 void BTFTypeDeclTag::emitType(MCStreamer &OS) { 461 BTFTypeBase::emitType(OS); 462 OS.emitInt32(Info); 463 } 464 465 BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag) 466 : DTy(nullptr), Tag(Tag) { 467 Kind = BTF::BTF_KIND_TYPE_TAG; 468 BTFType.Info = Kind << 24; 469 BTFType.Type = NextTypeId; 470 } 471 472 BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag) 473 : DTy(DTy), Tag(Tag) { 474 Kind = BTF::BTF_KIND_TYPE_TAG; 475 BTFType.Info = Kind << 24; 476 } 477 478 void BTFTypeTypeTag::completeType(BTFDebug &BDebug) { 479 if (IsCompleted) 480 return; 481 IsCompleted = true; 482 BTFType.NameOff = BDebug.addString(Tag); 483 if (DTy) { 484 const DIType *ResolvedType = DTy->getBaseType(); 485 if (!ResolvedType) 486 BTFType.Type = 0; 487 else 488 BTFType.Type = BDebug.getTypeId(ResolvedType); 489 } 490 } 491 492 uint32_t BTFStringTable::addString(StringRef S) { 493 // Check whether the string already exists. 494 for (auto &OffsetM : OffsetToIdMap) { 495 if (Table[OffsetM.second] == S) 496 return OffsetM.first; 497 } 498 // Not find, add to the string table. 499 uint32_t Offset = Size; 500 OffsetToIdMap[Offset] = Table.size(); 501 Table.push_back(std::string(S)); 502 Size += S.size() + 1; 503 return Offset; 504 } 505 506 BTFDebug::BTFDebug(AsmPrinter *AP) 507 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), 508 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), 509 MapDefNotCollected(true) { 510 addString("\0"); 511 } 512 513 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry, 514 const DIType *Ty) { 515 TypeEntry->setId(TypeEntries.size() + 1); 516 uint32_t Id = TypeEntry->getId(); 517 DIToIdMap[Ty] = Id; 518 TypeEntries.push_back(std::move(TypeEntry)); 519 return Id; 520 } 521 522 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) { 523 TypeEntry->setId(TypeEntries.size() + 1); 524 uint32_t Id = TypeEntry->getId(); 525 TypeEntries.push_back(std::move(TypeEntry)); 526 return Id; 527 } 528 529 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { 530 // Only int and binary floating point types are supported in BTF. 531 uint32_t Encoding = BTy->getEncoding(); 532 std::unique_ptr<BTFTypeBase> TypeEntry; 533 switch (Encoding) { 534 case dwarf::DW_ATE_boolean: 535 case dwarf::DW_ATE_signed: 536 case dwarf::DW_ATE_signed_char: 537 case dwarf::DW_ATE_unsigned: 538 case dwarf::DW_ATE_unsigned_char: 539 // Create a BTF type instance for this DIBasicType and put it into 540 // DIToIdMap for cross-type reference check. 541 TypeEntry = std::make_unique<BTFTypeInt>( 542 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); 543 break; 544 case dwarf::DW_ATE_float: 545 TypeEntry = 546 std::make_unique<BTFTypeFloat>(BTy->getSizeInBits(), BTy->getName()); 547 break; 548 default: 549 return; 550 } 551 552 TypeId = addType(std::move(TypeEntry), BTy); 553 } 554 555 /// Handle subprogram or subroutine types. 556 void BTFDebug::visitSubroutineType( 557 const DISubroutineType *STy, bool ForSubprog, 558 const std::unordered_map<uint32_t, StringRef> &FuncArgNames, 559 uint32_t &TypeId) { 560 DITypeRefArray Elements = STy->getTypeArray(); 561 uint32_t VLen = Elements.size() - 1; 562 if (VLen > BTF::MAX_VLEN) 563 return; 564 565 // Subprogram has a valid non-zero-length name, and the pointee of 566 // a function pointer has an empty name. The subprogram type will 567 // not be added to DIToIdMap as it should not be referenced by 568 // any other types. 569 auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames); 570 if (ForSubprog) 571 TypeId = addType(std::move(TypeEntry)); // For subprogram 572 else 573 TypeId = addType(std::move(TypeEntry), STy); // For func ptr 574 575 // Visit return type and func arg types. 576 for (const auto Element : Elements) { 577 visitTypeEntry(Element); 578 } 579 } 580 581 void BTFDebug::processDeclAnnotations(DINodeArray Annotations, 582 uint32_t BaseTypeId, 583 int ComponentIdx) { 584 if (!Annotations) 585 return; 586 587 for (const Metadata *Annotation : Annotations->operands()) { 588 const MDNode *MD = cast<MDNode>(Annotation); 589 const MDString *Name = cast<MDString>(MD->getOperand(0)); 590 if (!Name->getString().equals("btf_decl_tag")) 591 continue; 592 593 const MDString *Value = cast<MDString>(MD->getOperand(1)); 594 auto TypeEntry = std::make_unique<BTFTypeDeclTag>(BaseTypeId, ComponentIdx, 595 Value->getString()); 596 addType(std::move(TypeEntry)); 597 } 598 } 599 600 uint32_t BTFDebug::processDISubprogram(const DISubprogram *SP, 601 uint32_t ProtoTypeId, uint8_t Scope) { 602 auto FuncTypeEntry = 603 std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope); 604 uint32_t FuncId = addType(std::move(FuncTypeEntry)); 605 606 // Process argument annotations. 607 for (const DINode *DN : SP->getRetainedNodes()) { 608 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 609 uint32_t Arg = DV->getArg(); 610 if (Arg) 611 processDeclAnnotations(DV->getAnnotations(), FuncId, Arg - 1); 612 } 613 } 614 processDeclAnnotations(SP->getAnnotations(), FuncId, -1); 615 616 return FuncId; 617 } 618 619 /// Generate btf_type_tag chains. 620 int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) { 621 SmallVector<const MDString *, 4> MDStrs; 622 DINodeArray Annots = DTy->getAnnotations(); 623 if (Annots) { 624 // For type with "int __tag1 __tag2 *p", the MDStrs will have 625 // content: [__tag1, __tag2]. 626 for (const Metadata *Annotations : Annots->operands()) { 627 const MDNode *MD = cast<MDNode>(Annotations); 628 const MDString *Name = cast<MDString>(MD->getOperand(0)); 629 if (!Name->getString().equals("btf_type_tag")) 630 continue; 631 MDStrs.push_back(cast<MDString>(MD->getOperand(1))); 632 } 633 } 634 635 if (MDStrs.size() == 0) 636 return -1; 637 638 // With MDStrs [__tag1, __tag2], the output type chain looks like 639 // PTR -> __tag2 -> __tag1 -> BaseType 640 // In the below, we construct BTF types with the order of __tag1, __tag2 641 // and PTR. 642 unsigned TmpTypeId; 643 std::unique_ptr<BTFTypeTypeTag> TypeEntry; 644 if (BaseTypeId >= 0) 645 TypeEntry = 646 std::make_unique<BTFTypeTypeTag>(BaseTypeId, MDStrs[0]->getString()); 647 else 648 TypeEntry = std::make_unique<BTFTypeTypeTag>(DTy, MDStrs[0]->getString()); 649 TmpTypeId = addType(std::move(TypeEntry)); 650 651 for (unsigned I = 1; I < MDStrs.size(); I++) { 652 const MDString *Value = MDStrs[I]; 653 TypeEntry = std::make_unique<BTFTypeTypeTag>(TmpTypeId, Value->getString()); 654 TmpTypeId = addType(std::move(TypeEntry)); 655 } 656 return TmpTypeId; 657 } 658 659 /// Handle structure/union types. 660 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, 661 uint32_t &TypeId) { 662 const DINodeArray Elements = CTy->getElements(); 663 uint32_t VLen = Elements.size(); 664 if (VLen > BTF::MAX_VLEN) 665 return; 666 667 // Check whether we have any bitfield members or not 668 bool HasBitField = false; 669 for (const auto *Element : Elements) { 670 auto E = cast<DIDerivedType>(Element); 671 if (E->isBitField()) { 672 HasBitField = true; 673 break; 674 } 675 } 676 677 auto TypeEntry = 678 std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen); 679 StructTypes.push_back(TypeEntry.get()); 680 TypeId = addType(std::move(TypeEntry), CTy); 681 682 // Check struct/union annotations 683 processDeclAnnotations(CTy->getAnnotations(), TypeId, -1); 684 685 // Visit all struct members. 686 int FieldNo = 0; 687 for (const auto *Element : Elements) { 688 const auto Elem = cast<DIDerivedType>(Element); 689 visitTypeEntry(Elem); 690 processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo); 691 FieldNo++; 692 } 693 } 694 695 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { 696 // Visit array element type. 697 uint32_t ElemTypeId; 698 const DIType *ElemType = CTy->getBaseType(); 699 visitTypeEntry(ElemType, ElemTypeId, false, false); 700 701 // Visit array dimensions. 702 DINodeArray Elements = CTy->getElements(); 703 for (int I = Elements.size() - 1; I >= 0; --I) { 704 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I])) 705 if (Element->getTag() == dwarf::DW_TAG_subrange_type) { 706 const DISubrange *SR = cast<DISubrange>(Element); 707 auto *CI = SR->getCount().dyn_cast<ConstantInt *>(); 708 int64_t Count = CI->getSExtValue(); 709 710 // For struct s { int b; char c[]; }, the c[] will be represented 711 // as an array with Count = -1. 712 auto TypeEntry = 713 std::make_unique<BTFTypeArray>(ElemTypeId, 714 Count >= 0 ? Count : 0); 715 if (I == 0) 716 ElemTypeId = addType(std::move(TypeEntry), CTy); 717 else 718 ElemTypeId = addType(std::move(TypeEntry)); 719 } 720 } 721 722 // The array TypeId is the type id of the outermost dimension. 723 TypeId = ElemTypeId; 724 725 // The IR does not have a type for array index while BTF wants one. 726 // So create an array index type if there is none. 727 if (!ArrayIndexTypeId) { 728 auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32, 729 0, "__ARRAY_SIZE_TYPE__"); 730 ArrayIndexTypeId = addType(std::move(TypeEntry)); 731 } 732 } 733 734 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { 735 DINodeArray Elements = CTy->getElements(); 736 uint32_t VLen = Elements.size(); 737 if (VLen > BTF::MAX_VLEN) 738 return; 739 740 bool IsSigned = false; 741 unsigned NumBits = 32; 742 // No BaseType implies forward declaration in which case a 743 // BTFTypeEnum with Vlen = 0 is emitted. 744 if (CTy->getBaseType() != nullptr) { 745 const auto *BTy = cast<DIBasicType>(CTy->getBaseType()); 746 IsSigned = BTy->getEncoding() == dwarf::DW_ATE_signed || 747 BTy->getEncoding() == dwarf::DW_ATE_signed_char; 748 NumBits = BTy->getSizeInBits(); 749 } 750 751 if (NumBits <= 32) { 752 auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen, IsSigned); 753 TypeId = addType(std::move(TypeEntry), CTy); 754 } else { 755 assert(NumBits == 64); 756 auto TypeEntry = std::make_unique<BTFTypeEnum64>(CTy, VLen, IsSigned); 757 TypeId = addType(std::move(TypeEntry), CTy); 758 } 759 // No need to visit base type as BTF does not encode it. 760 } 761 762 /// Handle structure/union forward declarations. 763 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, 764 uint32_t &TypeId) { 765 auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion); 766 TypeId = addType(std::move(TypeEntry), CTy); 767 } 768 769 /// Handle structure, union, array and enumeration types. 770 void BTFDebug::visitCompositeType(const DICompositeType *CTy, 771 uint32_t &TypeId) { 772 auto Tag = CTy->getTag(); 773 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { 774 // Handle forward declaration differently as it does not have members. 775 if (CTy->isForwardDecl()) 776 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); 777 else 778 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); 779 } else if (Tag == dwarf::DW_TAG_array_type) 780 visitArrayType(CTy, TypeId); 781 else if (Tag == dwarf::DW_TAG_enumeration_type) 782 visitEnumType(CTy, TypeId); 783 } 784 785 bool BTFDebug::IsForwardDeclCandidate(const DIType *Base) { 786 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) { 787 auto CTag = CTy->getTag(); 788 if ((CTag == dwarf::DW_TAG_structure_type || 789 CTag == dwarf::DW_TAG_union_type) && 790 !CTy->getName().empty() && !CTy->isForwardDecl()) 791 return true; 792 } 793 return false; 794 } 795 796 /// Handle pointer, typedef, const, volatile, restrict and member types. 797 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, 798 bool CheckPointer, bool SeenPointer) { 799 unsigned Tag = DTy->getTag(); 800 801 /// Try to avoid chasing pointees, esp. structure pointees which may 802 /// unnecessary bring in a lot of types. 803 if (CheckPointer && !SeenPointer) { 804 SeenPointer = Tag == dwarf::DW_TAG_pointer_type; 805 } 806 807 if (CheckPointer && SeenPointer) { 808 const DIType *Base = DTy->getBaseType(); 809 if (Base) { 810 if (IsForwardDeclCandidate(Base)) { 811 /// Find a candidate, generate a fixup. Later on the struct/union 812 /// pointee type will be replaced with either a real type or 813 /// a forward declaration. 814 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true); 815 auto &Fixup = FixupDerivedTypes[cast<DICompositeType>(Base)]; 816 Fixup.push_back(std::make_pair(DTy, TypeEntry.get())); 817 TypeId = addType(std::move(TypeEntry), DTy); 818 return; 819 } 820 } 821 } 822 823 if (Tag == dwarf::DW_TAG_pointer_type) { 824 int TmpTypeId = genBTFTypeTags(DTy, -1); 825 if (TmpTypeId >= 0) { 826 auto TypeDEntry = 827 std::make_unique<BTFTypeDerived>(TmpTypeId, Tag, DTy->getName()); 828 TypeId = addType(std::move(TypeDEntry), DTy); 829 } else { 830 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 831 TypeId = addType(std::move(TypeEntry), DTy); 832 } 833 } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || 834 Tag == dwarf::DW_TAG_volatile_type || 835 Tag == dwarf::DW_TAG_restrict_type) { 836 auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false); 837 TypeId = addType(std::move(TypeEntry), DTy); 838 if (Tag == dwarf::DW_TAG_typedef) 839 processDeclAnnotations(DTy->getAnnotations(), TypeId, -1); 840 } else if (Tag != dwarf::DW_TAG_member) { 841 return; 842 } 843 844 // Visit base type of pointer, typedef, const, volatile, restrict or 845 // struct/union member. 846 uint32_t TempTypeId = 0; 847 if (Tag == dwarf::DW_TAG_member) 848 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); 849 else 850 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); 851 } 852 853 /// Visit a type entry. CheckPointer is true if the type has 854 /// one of its predecessors as one struct/union member. SeenPointer 855 /// is true if CheckPointer is true and one of its predecessors 856 /// is a pointer. The goal of CheckPointer and SeenPointer is to 857 /// do pruning for struct/union types so some of these types 858 /// will not be emitted in BTF and rather forward declarations 859 /// will be generated. 860 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, 861 bool CheckPointer, bool SeenPointer) { 862 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 863 TypeId = DIToIdMap[Ty]; 864 865 // To handle the case like the following: 866 // struct t; 867 // typedef struct t _t; 868 // struct s1 { _t *c; }; 869 // int test1(struct s1 *arg) { ... } 870 // 871 // struct t { int a; int b; }; 872 // struct s2 { _t c; } 873 // int test2(struct s2 *arg) { ... } 874 // 875 // During traversing test1() argument, "_t" is recorded 876 // in DIToIdMap and a forward declaration fixup is created 877 // for "struct t" to avoid pointee type traversal. 878 // 879 // During traversing test2() argument, even if we see "_t" is 880 // already defined, we should keep moving to eventually 881 // bring in types for "struct t". Otherwise, the "struct s2" 882 // definition won't be correct. 883 // 884 // In the above, we have following debuginfo: 885 // {ptr, struct_member} -> typedef -> struct 886 // and BTF type for 'typedef' is generated while 'struct' may 887 // be in FixUp. But let us generalize the above to handle 888 // {different types} -> [various derived types]+ -> another type. 889 // For example, 890 // {func_param, struct_member} -> const -> ptr -> volatile -> struct 891 // We will traverse const/ptr/volatile which already have corresponding 892 // BTF types and generate type for 'struct' which might be in Fixup 893 // state. 894 if (Ty && (!CheckPointer || !SeenPointer)) { 895 if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 896 while (DTy) { 897 const DIType *BaseTy = DTy->getBaseType(); 898 if (!BaseTy) 899 break; 900 901 if (DIToIdMap.find(BaseTy) != DIToIdMap.end()) { 902 DTy = dyn_cast<DIDerivedType>(BaseTy); 903 } else { 904 if (CheckPointer && DTy->getTag() == dwarf::DW_TAG_pointer_type) { 905 SeenPointer = true; 906 if (IsForwardDeclCandidate(BaseTy)) 907 break; 908 } 909 uint32_t TmpTypeId; 910 visitTypeEntry(BaseTy, TmpTypeId, CheckPointer, SeenPointer); 911 break; 912 } 913 } 914 } 915 } 916 917 return; 918 } 919 920 if (const auto *BTy = dyn_cast<DIBasicType>(Ty)) 921 visitBasicType(BTy, TypeId); 922 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty)) 923 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(), 924 TypeId); 925 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) 926 visitCompositeType(CTy, TypeId); 927 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) 928 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); 929 else 930 llvm_unreachable("Unknown DIType"); 931 } 932 933 void BTFDebug::visitTypeEntry(const DIType *Ty) { 934 uint32_t TypeId; 935 visitTypeEntry(Ty, TypeId, false, false); 936 } 937 938 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { 939 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { 940 TypeId = DIToIdMap[Ty]; 941 return; 942 } 943 944 // MapDef type may be a struct type or a non-pointer derived type 945 const DIType *OrigTy = Ty; 946 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 947 auto Tag = DTy->getTag(); 948 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && 949 Tag != dwarf::DW_TAG_volatile_type && 950 Tag != dwarf::DW_TAG_restrict_type) 951 break; 952 Ty = DTy->getBaseType(); 953 } 954 955 const auto *CTy = dyn_cast<DICompositeType>(Ty); 956 if (!CTy) 957 return; 958 959 auto Tag = CTy->getTag(); 960 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) 961 return; 962 963 // Visit all struct members to ensure pointee type is visited 964 const DINodeArray Elements = CTy->getElements(); 965 for (const auto *Element : Elements) { 966 const auto *MemberType = cast<DIDerivedType>(Element); 967 visitTypeEntry(MemberType->getBaseType()); 968 } 969 970 // Visit this type, struct or a const/typedef/volatile/restrict type 971 visitTypeEntry(OrigTy, TypeId, false, false); 972 } 973 974 /// Read file contents from the actual file or from the source 975 std::string BTFDebug::populateFileContent(const DISubprogram *SP) { 976 auto File = SP->getFile(); 977 std::string FileName; 978 979 if (!File->getFilename().startswith("/") && File->getDirectory().size()) 980 FileName = File->getDirectory().str() + "/" + File->getFilename().str(); 981 else 982 FileName = std::string(File->getFilename()); 983 984 // No need to populate the contends if it has been populated! 985 if (FileContent.contains(FileName)) 986 return FileName; 987 988 std::vector<std::string> Content; 989 std::string Line; 990 Content.push_back(Line); // Line 0 for empty string 991 992 std::unique_ptr<MemoryBuffer> Buf; 993 auto Source = File->getSource(); 994 if (Source) 995 Buf = MemoryBuffer::getMemBufferCopy(*Source); 996 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr = 997 MemoryBuffer::getFile(FileName)) 998 Buf = std::move(*BufOrErr); 999 if (Buf) 1000 for (line_iterator I(*Buf, false), E; I != E; ++I) 1001 Content.push_back(std::string(*I)); 1002 1003 FileContent[FileName] = Content; 1004 return FileName; 1005 } 1006 1007 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, 1008 uint32_t Line, uint32_t Column) { 1009 std::string FileName = populateFileContent(SP); 1010 BTFLineInfo LineInfo; 1011 1012 LineInfo.Label = Label; 1013 LineInfo.FileNameOff = addString(FileName); 1014 // If file content is not available, let LineOff = 0. 1015 if (Line < FileContent[FileName].size()) 1016 LineInfo.LineOff = addString(FileContent[FileName][Line]); 1017 else 1018 LineInfo.LineOff = 0; 1019 LineInfo.LineNum = Line; 1020 LineInfo.ColumnNum = Column; 1021 LineInfoTable[SecNameOff].push_back(LineInfo); 1022 } 1023 1024 void BTFDebug::emitCommonHeader() { 1025 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); 1026 OS.emitIntValue(BTF::MAGIC, 2); 1027 OS.emitInt8(BTF::VERSION); 1028 OS.emitInt8(0); 1029 } 1030 1031 void BTFDebug::emitBTFSection() { 1032 // Do not emit section if no types and only "" string. 1033 if (!TypeEntries.size() && StringTable.getSize() == 1) 1034 return; 1035 1036 MCContext &Ctx = OS.getContext(); 1037 MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0); 1038 Sec->setAlignment(Align(4)); 1039 OS.switchSection(Sec); 1040 1041 // Emit header. 1042 emitCommonHeader(); 1043 OS.emitInt32(BTF::HeaderSize); 1044 1045 uint32_t TypeLen = 0, StrLen; 1046 for (const auto &TypeEntry : TypeEntries) 1047 TypeLen += TypeEntry->getSize(); 1048 StrLen = StringTable.getSize(); 1049 1050 OS.emitInt32(0); 1051 OS.emitInt32(TypeLen); 1052 OS.emitInt32(TypeLen); 1053 OS.emitInt32(StrLen); 1054 1055 // Emit type table. 1056 for (const auto &TypeEntry : TypeEntries) 1057 TypeEntry->emitType(OS); 1058 1059 // Emit string table. 1060 uint32_t StringOffset = 0; 1061 for (const auto &S : StringTable.getTable()) { 1062 OS.AddComment("string offset=" + std::to_string(StringOffset)); 1063 OS.emitBytes(S); 1064 OS.emitBytes(StringRef("\0", 1)); 1065 StringOffset += S.size() + 1; 1066 } 1067 } 1068 1069 void BTFDebug::emitBTFExtSection() { 1070 // Do not emit section if empty FuncInfoTable and LineInfoTable 1071 // and FieldRelocTable. 1072 if (!FuncInfoTable.size() && !LineInfoTable.size() && 1073 !FieldRelocTable.size()) 1074 return; 1075 1076 MCContext &Ctx = OS.getContext(); 1077 MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0); 1078 Sec->setAlignment(Align(4)); 1079 OS.switchSection(Sec); 1080 1081 // Emit header. 1082 emitCommonHeader(); 1083 OS.emitInt32(BTF::ExtHeaderSize); 1084 1085 // Account for FuncInfo/LineInfo record size as well. 1086 uint32_t FuncLen = 4, LineLen = 4; 1087 // Do not account for optional FieldReloc. 1088 uint32_t FieldRelocLen = 0; 1089 for (const auto &FuncSec : FuncInfoTable) { 1090 FuncLen += BTF::SecFuncInfoSize; 1091 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; 1092 } 1093 for (const auto &LineSec : LineInfoTable) { 1094 LineLen += BTF::SecLineInfoSize; 1095 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; 1096 } 1097 for (const auto &FieldRelocSec : FieldRelocTable) { 1098 FieldRelocLen += BTF::SecFieldRelocSize; 1099 FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; 1100 } 1101 1102 if (FieldRelocLen) 1103 FieldRelocLen += 4; 1104 1105 OS.emitInt32(0); 1106 OS.emitInt32(FuncLen); 1107 OS.emitInt32(FuncLen); 1108 OS.emitInt32(LineLen); 1109 OS.emitInt32(FuncLen + LineLen); 1110 OS.emitInt32(FieldRelocLen); 1111 1112 // Emit func_info table. 1113 OS.AddComment("FuncInfo"); 1114 OS.emitInt32(BTF::BPFFuncInfoSize); 1115 for (const auto &FuncSec : FuncInfoTable) { 1116 OS.AddComment("FuncInfo section string offset=" + 1117 std::to_string(FuncSec.first)); 1118 OS.emitInt32(FuncSec.first); 1119 OS.emitInt32(FuncSec.second.size()); 1120 for (const auto &FuncInfo : FuncSec.second) { 1121 Asm->emitLabelReference(FuncInfo.Label, 4); 1122 OS.emitInt32(FuncInfo.TypeId); 1123 } 1124 } 1125 1126 // Emit line_info table. 1127 OS.AddComment("LineInfo"); 1128 OS.emitInt32(BTF::BPFLineInfoSize); 1129 for (const auto &LineSec : LineInfoTable) { 1130 OS.AddComment("LineInfo section string offset=" + 1131 std::to_string(LineSec.first)); 1132 OS.emitInt32(LineSec.first); 1133 OS.emitInt32(LineSec.second.size()); 1134 for (const auto &LineInfo : LineSec.second) { 1135 Asm->emitLabelReference(LineInfo.Label, 4); 1136 OS.emitInt32(LineInfo.FileNameOff); 1137 OS.emitInt32(LineInfo.LineOff); 1138 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + 1139 std::to_string(LineInfo.ColumnNum)); 1140 OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); 1141 } 1142 } 1143 1144 // Emit field reloc table. 1145 if (FieldRelocLen) { 1146 OS.AddComment("FieldReloc"); 1147 OS.emitInt32(BTF::BPFFieldRelocSize); 1148 for (const auto &FieldRelocSec : FieldRelocTable) { 1149 OS.AddComment("Field reloc section string offset=" + 1150 std::to_string(FieldRelocSec.first)); 1151 OS.emitInt32(FieldRelocSec.first); 1152 OS.emitInt32(FieldRelocSec.second.size()); 1153 for (const auto &FieldRelocInfo : FieldRelocSec.second) { 1154 Asm->emitLabelReference(FieldRelocInfo.Label, 4); 1155 OS.emitInt32(FieldRelocInfo.TypeID); 1156 OS.emitInt32(FieldRelocInfo.OffsetNameOff); 1157 OS.emitInt32(FieldRelocInfo.RelocKind); 1158 } 1159 } 1160 } 1161 } 1162 1163 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { 1164 auto *SP = MF->getFunction().getSubprogram(); 1165 auto *Unit = SP->getUnit(); 1166 1167 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { 1168 SkipInstruction = true; 1169 return; 1170 } 1171 SkipInstruction = false; 1172 1173 // Collect MapDef types. Map definition needs to collect 1174 // pointee types. Do it first. Otherwise, for the following 1175 // case: 1176 // struct m { ...}; 1177 // struct t { 1178 // struct m *key; 1179 // }; 1180 // foo(struct t *arg); 1181 // 1182 // struct mapdef { 1183 // ... 1184 // struct m *key; 1185 // ... 1186 // } __attribute__((section(".maps"))) hash_map; 1187 // 1188 // If subroutine foo is traversed first, a type chain 1189 // "ptr->struct m(fwd)" will be created and later on 1190 // when traversing mapdef, since "ptr->struct m" exists, 1191 // the traversal of "struct m" will be omitted. 1192 if (MapDefNotCollected) { 1193 processGlobals(true); 1194 MapDefNotCollected = false; 1195 } 1196 1197 // Collect all types locally referenced in this function. 1198 // Use RetainedNodes so we can collect all argument names 1199 // even if the argument is not used. 1200 std::unordered_map<uint32_t, StringRef> FuncArgNames; 1201 for (const DINode *DN : SP->getRetainedNodes()) { 1202 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) { 1203 // Collect function arguments for subprogram func type. 1204 uint32_t Arg = DV->getArg(); 1205 if (Arg) { 1206 visitTypeEntry(DV->getType()); 1207 FuncArgNames[Arg] = DV->getName(); 1208 } 1209 } 1210 } 1211 1212 // Construct subprogram func proto type. 1213 uint32_t ProtoTypeId; 1214 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); 1215 1216 // Construct subprogram func type 1217 uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; 1218 uint32_t FuncTypeId = processDISubprogram(SP, ProtoTypeId, Scope); 1219 1220 for (const auto &TypeEntry : TypeEntries) 1221 TypeEntry->completeType(*this); 1222 1223 // Construct funcinfo and the first lineinfo for the function. 1224 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1225 BTFFuncInfo FuncInfo; 1226 FuncInfo.Label = FuncLabel; 1227 FuncInfo.TypeId = FuncTypeId; 1228 if (FuncLabel->isInSection()) { 1229 MCSection &Section = FuncLabel->getSection(); 1230 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section); 1231 assert(SectionELF && "Null section for Function Label"); 1232 SecNameOff = addString(SectionELF->getName()); 1233 } else { 1234 SecNameOff = addString(".text"); 1235 } 1236 FuncInfoTable[SecNameOff].push_back(FuncInfo); 1237 } 1238 1239 void BTFDebug::endFunctionImpl(const MachineFunction *MF) { 1240 SkipInstruction = false; 1241 LineInfoGenerated = false; 1242 SecNameOff = 0; 1243 } 1244 1245 /// On-demand populate types as requested from abstract member 1246 /// accessing or preserve debuginfo type. 1247 unsigned BTFDebug::populateType(const DIType *Ty) { 1248 unsigned Id; 1249 visitTypeEntry(Ty, Id, false, false); 1250 for (const auto &TypeEntry : TypeEntries) 1251 TypeEntry->completeType(*this); 1252 return Id; 1253 } 1254 1255 /// Generate a struct member field relocation. 1256 void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, 1257 const GlobalVariable *GVar, bool IsAma) { 1258 BTFFieldReloc FieldReloc; 1259 FieldReloc.Label = ORSym; 1260 FieldReloc.TypeID = RootId; 1261 1262 StringRef AccessPattern = GVar->getName(); 1263 size_t FirstDollar = AccessPattern.find_first_of('$'); 1264 if (IsAma) { 1265 size_t FirstColon = AccessPattern.find_first_of(':'); 1266 size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); 1267 StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); 1268 StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, 1269 SecondColon - FirstColon); 1270 StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, 1271 FirstDollar - SecondColon); 1272 1273 FieldReloc.OffsetNameOff = addString(IndexPattern); 1274 FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); 1275 PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), 1276 FieldReloc.RelocKind); 1277 } else { 1278 StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); 1279 FieldReloc.OffsetNameOff = addString("0"); 1280 FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); 1281 PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); 1282 } 1283 FieldRelocTable[SecNameOff].push_back(FieldReloc); 1284 } 1285 1286 void BTFDebug::processGlobalValue(const MachineOperand &MO) { 1287 // check whether this is a candidate or not 1288 if (MO.isGlobal()) { 1289 const GlobalValue *GVal = MO.getGlobal(); 1290 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1291 if (!GVar) { 1292 // Not a global variable. Maybe an extern function reference. 1293 processFuncPrototypes(dyn_cast<Function>(GVal)); 1294 return; 1295 } 1296 1297 if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && 1298 !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) 1299 return; 1300 1301 MCSymbol *ORSym = OS.getContext().createTempSymbol(); 1302 OS.emitLabel(ORSym); 1303 1304 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); 1305 uint32_t RootId = populateType(dyn_cast<DIType>(MDN)); 1306 generatePatchImmReloc(ORSym, RootId, GVar, 1307 GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); 1308 } 1309 } 1310 1311 void BTFDebug::beginInstruction(const MachineInstr *MI) { 1312 DebugHandlerBase::beginInstruction(MI); 1313 1314 if (SkipInstruction || MI->isMetaInstruction() || 1315 MI->getFlag(MachineInstr::FrameSetup)) 1316 return; 1317 1318 if (MI->isInlineAsm()) { 1319 // Count the number of register definitions to find the asm string. 1320 unsigned NumDefs = 0; 1321 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); 1322 ++NumDefs) 1323 ; 1324 1325 // Skip this inline asm instruction if the asmstr is empty. 1326 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); 1327 if (AsmStr[0] == 0) 1328 return; 1329 } 1330 1331 if (MI->getOpcode() == BPF::LD_imm64) { 1332 // If the insn is "r2 = LD_imm64 @<an AmaAttr global>", 1333 // add this insn into the .BTF.ext FieldReloc subsection. 1334 // Relocation looks like: 1335 // . SecName: 1336 // . InstOffset 1337 // . TypeID 1338 // . OffSetNameOff 1339 // . RelocType 1340 // Later, the insn is replaced with "r2 = <offset>" 1341 // where "<offset>" equals to the offset based on current 1342 // type definitions. 1343 // 1344 // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>", 1345 // The LD_imm64 result will be replaced with a btf type id. 1346 processGlobalValue(MI->getOperand(1)); 1347 } else if (MI->getOpcode() == BPF::CORE_MEM || 1348 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1349 MI->getOpcode() == BPF::CORE_SHIFT) { 1350 // relocation insn is a load, store or shift insn. 1351 processGlobalValue(MI->getOperand(3)); 1352 } else if (MI->getOpcode() == BPF::JAL) { 1353 // check extern function references 1354 const MachineOperand &MO = MI->getOperand(0); 1355 if (MO.isGlobal()) { 1356 processFuncPrototypes(dyn_cast<Function>(MO.getGlobal())); 1357 } 1358 } 1359 1360 if (!CurMI) // no debug info 1361 return; 1362 1363 // Skip this instruction if no DebugLoc or the DebugLoc 1364 // is the same as the previous instruction. 1365 const DebugLoc &DL = MI->getDebugLoc(); 1366 if (!DL || PrevInstLoc == DL) { 1367 // This instruction will be skipped, no LineInfo has 1368 // been generated, construct one based on function signature. 1369 if (LineInfoGenerated == false) { 1370 auto *S = MI->getMF()->getFunction().getSubprogram(); 1371 if (!S) 1372 return; 1373 MCSymbol *FuncLabel = Asm->getFunctionBegin(); 1374 constructLineInfo(S, FuncLabel, S->getLine(), 0); 1375 LineInfoGenerated = true; 1376 } 1377 1378 return; 1379 } 1380 1381 // Create a temporary label to remember the insn for lineinfo. 1382 MCSymbol *LineSym = OS.getContext().createTempSymbol(); 1383 OS.emitLabel(LineSym); 1384 1385 // Construct the lineinfo. 1386 auto SP = DL->getScope()->getSubprogram(); 1387 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); 1388 1389 LineInfoGenerated = true; 1390 PrevInstLoc = DL; 1391 } 1392 1393 void BTFDebug::processGlobals(bool ProcessingMapDef) { 1394 // Collect all types referenced by globals. 1395 const Module *M = MMI->getModule(); 1396 for (const GlobalVariable &Global : M->globals()) { 1397 // Decide the section name. 1398 StringRef SecName; 1399 std::optional<SectionKind> GVKind; 1400 1401 if (!Global.isDeclarationForLinker()) 1402 GVKind = TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); 1403 1404 if (Global.isDeclarationForLinker()) 1405 SecName = Global.hasSection() ? Global.getSection() : ""; 1406 else if (GVKind->isCommon()) 1407 SecName = ".bss"; 1408 else { 1409 TargetLoweringObjectFile *TLOF = Asm->TM.getObjFileLowering(); 1410 MCSection *Sec = TLOF->SectionForGlobal(&Global, Asm->TM); 1411 SecName = Sec->getName(); 1412 } 1413 1414 if (ProcessingMapDef != SecName.startswith(".maps")) 1415 continue; 1416 1417 // Create a .rodata datasec if the global variable is an initialized 1418 // constant with private linkage and if it won't be in .rodata.str<#> 1419 // and .rodata.cst<#> sections. 1420 if (SecName == ".rodata" && Global.hasPrivateLinkage() && 1421 DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1422 // skip .rodata.str<#> and .rodata.cst<#> sections 1423 if (!GVKind->isMergeableCString() && !GVKind->isMergeableConst()) { 1424 DataSecEntries[std::string(SecName)] = 1425 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1426 } 1427 } 1428 1429 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1430 Global.getDebugInfo(GVs); 1431 1432 // No type information, mostly internal, skip it. 1433 if (GVs.size() == 0) 1434 continue; 1435 1436 uint32_t GVTypeId = 0; 1437 DIGlobalVariable *DIGlobal = nullptr; 1438 for (auto *GVE : GVs) { 1439 DIGlobal = GVE->getVariable(); 1440 if (SecName.startswith(".maps")) 1441 visitMapDefType(DIGlobal->getType(), GVTypeId); 1442 else 1443 visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); 1444 break; 1445 } 1446 1447 // Only support the following globals: 1448 // . static variables 1449 // . non-static weak or non-weak global variables 1450 // . weak or non-weak extern global variables 1451 // Whether DataSec is readonly or not can be found from corresponding ELF 1452 // section flags. Whether a BTF_KIND_VAR is a weak symbol or not 1453 // can be found from the corresponding ELF symbol table. 1454 auto Linkage = Global.getLinkage(); 1455 if (Linkage != GlobalValue::InternalLinkage && 1456 Linkage != GlobalValue::ExternalLinkage && 1457 Linkage != GlobalValue::WeakAnyLinkage && 1458 Linkage != GlobalValue::WeakODRLinkage && 1459 Linkage != GlobalValue::ExternalWeakLinkage) 1460 continue; 1461 1462 uint32_t GVarInfo; 1463 if (Linkage == GlobalValue::InternalLinkage) { 1464 GVarInfo = BTF::VAR_STATIC; 1465 } else if (Global.hasInitializer()) { 1466 GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; 1467 } else { 1468 GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; 1469 } 1470 1471 auto VarEntry = 1472 std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo); 1473 uint32_t VarId = addType(std::move(VarEntry)); 1474 1475 processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1); 1476 1477 // An empty SecName means an extern variable without section attribute. 1478 if (SecName.empty()) 1479 continue; 1480 1481 // Find or create a DataSec 1482 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1483 DataSecEntries[std::string(SecName)] = 1484 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1485 } 1486 1487 // Calculate symbol size 1488 const DataLayout &DL = Global.getParent()->getDataLayout(); 1489 uint32_t Size = DL.getTypeAllocSize(Global.getValueType()); 1490 1491 DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, 1492 Asm->getSymbol(&Global), Size); 1493 } 1494 } 1495 1496 /// Emit proper patchable instructions. 1497 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { 1498 if (MI->getOpcode() == BPF::LD_imm64) { 1499 const MachineOperand &MO = MI->getOperand(1); 1500 if (MO.isGlobal()) { 1501 const GlobalValue *GVal = MO.getGlobal(); 1502 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1503 if (GVar) { 1504 // Emit "mov ri, <imm>" 1505 int64_t Imm; 1506 uint32_t Reloc; 1507 if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || 1508 GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { 1509 Imm = PatchImms[GVar].first; 1510 Reloc = PatchImms[GVar].second; 1511 } else { 1512 return false; 1513 } 1514 1515 if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || 1516 Reloc == BPFCoreSharedInfo::ENUM_VALUE || 1517 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || 1518 Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) 1519 OutMI.setOpcode(BPF::LD_imm64); 1520 else 1521 OutMI.setOpcode(BPF::MOV_ri); 1522 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1523 OutMI.addOperand(MCOperand::createImm(Imm)); 1524 return true; 1525 } 1526 } 1527 } else if (MI->getOpcode() == BPF::CORE_MEM || 1528 MI->getOpcode() == BPF::CORE_ALU32_MEM || 1529 MI->getOpcode() == BPF::CORE_SHIFT) { 1530 const MachineOperand &MO = MI->getOperand(3); 1531 if (MO.isGlobal()) { 1532 const GlobalValue *GVal = MO.getGlobal(); 1533 auto *GVar = dyn_cast<GlobalVariable>(GVal); 1534 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { 1535 uint32_t Imm = PatchImms[GVar].first; 1536 OutMI.setOpcode(MI->getOperand(1).getImm()); 1537 if (MI->getOperand(0).isImm()) 1538 OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); 1539 else 1540 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1541 OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); 1542 OutMI.addOperand(MCOperand::createImm(Imm)); 1543 return true; 1544 } 1545 } 1546 } 1547 return false; 1548 } 1549 1550 void BTFDebug::processFuncPrototypes(const Function *F) { 1551 if (!F) 1552 return; 1553 1554 const DISubprogram *SP = F->getSubprogram(); 1555 if (!SP || SP->isDefinition()) 1556 return; 1557 1558 // Do not emit again if already emitted. 1559 if (!ProtoFunctions.insert(F).second) 1560 return; 1561 1562 uint32_t ProtoTypeId; 1563 const std::unordered_map<uint32_t, StringRef> FuncArgNames; 1564 visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); 1565 uint32_t FuncId = processDISubprogram(SP, ProtoTypeId, BTF::FUNC_EXTERN); 1566 1567 if (F->hasSection()) { 1568 StringRef SecName = F->getSection(); 1569 1570 if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { 1571 DataSecEntries[std::string(SecName)] = 1572 std::make_unique<BTFKindDataSec>(Asm, std::string(SecName)); 1573 } 1574 1575 // We really don't know func size, set it to 0. 1576 DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, 1577 Asm->getSymbol(F), 0); 1578 } 1579 } 1580 1581 void BTFDebug::endModule() { 1582 // Collect MapDef globals if not collected yet. 1583 if (MapDefNotCollected) { 1584 processGlobals(true); 1585 MapDefNotCollected = false; 1586 } 1587 1588 // Collect global types/variables except MapDef globals. 1589 processGlobals(false); 1590 1591 for (auto &DataSec : DataSecEntries) 1592 addType(std::move(DataSec.second)); 1593 1594 // Fixups 1595 for (auto &Fixup : FixupDerivedTypes) { 1596 const DICompositeType *CTy = Fixup.first; 1597 StringRef TypeName = CTy->getName(); 1598 bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type; 1599 1600 // Search through struct types 1601 uint32_t StructTypeId = 0; 1602 for (const auto &StructType : StructTypes) { 1603 if (StructType->getName() == TypeName) { 1604 StructTypeId = StructType->getId(); 1605 break; 1606 } 1607 } 1608 1609 if (StructTypeId == 0) { 1610 auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion); 1611 StructTypeId = addType(std::move(FwdTypeEntry)); 1612 } 1613 1614 for (auto &TypeInfo : Fixup.second) { 1615 const DIDerivedType *DTy = TypeInfo.first; 1616 BTFTypeDerived *BDType = TypeInfo.second; 1617 1618 int TmpTypeId = genBTFTypeTags(DTy, StructTypeId); 1619 if (TmpTypeId >= 0) 1620 BDType->setPointeeType(TmpTypeId); 1621 else 1622 BDType->setPointeeType(StructTypeId); 1623 } 1624 } 1625 1626 // Complete BTF type cross refereences. 1627 for (const auto &TypeEntry : TypeEntries) 1628 TypeEntry->completeType(*this); 1629 1630 // Emit BTF sections. 1631 emitBTFSection(); 1632 emitBTFExtSection(); 1633 } 1634