//===- BTFDebug.cpp - BTF Generator ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains support for writing BTF debug info. // //===----------------------------------------------------------------------===// #include "BTFDebug.h" #include "BPF.h" #include "BPFCORE.h" #include "MCTargetDesc/BPFMCTargetDesc.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include using namespace llvm; static const char *BTFKindStr[] = { #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME, #include "llvm/DebugInfo/BTF/BTF.def" }; /// Emit a BTF common type. void BTFTypeBase::emitType(MCStreamer &OS) { OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) + ")"); OS.emitInt32(BTFType.NameOff); OS.AddComment("0x" + Twine::utohexstr(BTFType.Info)); OS.emitInt32(BTFType.Info); OS.emitInt32(BTFType.Size); } BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag, bool NeedsFixup) : DTy(DTy), NeedsFixup(NeedsFixup), Name(DTy->getName()) { switch (Tag) { case dwarf::DW_TAG_pointer_type: Kind = BTF::BTF_KIND_PTR; break; case dwarf::DW_TAG_const_type: Kind = BTF::BTF_KIND_CONST; break; case dwarf::DW_TAG_volatile_type: Kind = BTF::BTF_KIND_VOLATILE; break; case dwarf::DW_TAG_typedef: Kind = BTF::BTF_KIND_TYPEDEF; break; case dwarf::DW_TAG_restrict_type: Kind = BTF::BTF_KIND_RESTRICT; break; default: llvm_unreachable("Unknown DIDerivedType Tag"); } BTFType.Info = Kind << 24; } /// Used by DW_TAG_pointer_type only. BTFTypeDerived::BTFTypeDerived(unsigned NextTypeId, unsigned Tag, StringRef Name) : DTy(nullptr), NeedsFixup(false), Name(Name) { Kind = BTF::BTF_KIND_PTR; BTFType.Info = Kind << 24; BTFType.Type = NextTypeId; } void BTFTypeDerived::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(Name); if (NeedsFixup || !DTy) return; // The base type for PTR/CONST/VOLATILE could be void. const DIType *ResolvedType = DTy->getBaseType(); if (!ResolvedType) { assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST || Kind == BTF::BTF_KIND_VOLATILE) && "Invalid null basetype"); BTFType.Type = 0; } else { BTFType.Type = BDebug.getTypeId(ResolvedType); } } void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } void BTFTypeDerived::setPointeeType(uint32_t PointeeType) { BTFType.Type = PointeeType; } /// Represent a struct/union forward declaration. BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) { Kind = BTF::BTF_KIND_FWD; BTFType.Info = IsUnion << 31 | Kind << 24; BTFType.Type = 0; } void BTFTypeFwd::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(Name); } void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits, uint32_t OffsetInBits, StringRef TypeName) : Name(TypeName) { // Translate IR int encoding to BTF int encoding. uint8_t BTFEncoding; switch (Encoding) { case dwarf::DW_ATE_boolean: BTFEncoding = BTF::INT_BOOL; break; case dwarf::DW_ATE_signed: case dwarf::DW_ATE_signed_char: BTFEncoding = BTF::INT_SIGNED; break; case dwarf::DW_ATE_unsigned: case dwarf::DW_ATE_unsigned_char: BTFEncoding = 0; break; default: llvm_unreachable("Unknown BTFTypeInt Encoding"); } Kind = BTF::BTF_KIND_INT; BTFType.Info = Kind << 24; BTFType.Size = roundupToBytes(SizeInBits); IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits; } void BTFTypeInt::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(Name); } void BTFTypeInt::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); OS.AddComment("0x" + Twine::utohexstr(IntVal)); OS.emitInt32(IntVal); } BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen, bool IsSigned) : ETy(ETy) { Kind = BTF::BTF_KIND_ENUM; BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; BTFType.Size = roundupToBytes(ETy->getSizeInBits()); } void BTFTypeEnum::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(ETy->getName()); DINodeArray Elements = ETy->getElements(); for (const auto Element : Elements) { const auto *Enum = cast(Element); struct BTF::BTFEnum BTFEnum; BTFEnum.NameOff = BDebug.addString(Enum->getName()); // BTF enum value is 32bit, enforce it. uint32_t Value; if (Enum->isUnsigned()) Value = static_cast(Enum->getValue().getZExtValue()); else Value = static_cast(Enum->getValue().getSExtValue()); BTFEnum.Val = Value; EnumValues.push_back(BTFEnum); } } void BTFTypeEnum::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); for (const auto &Enum : EnumValues) { OS.emitInt32(Enum.NameOff); OS.emitInt32(Enum.Val); } } BTFTypeEnum64::BTFTypeEnum64(const DICompositeType *ETy, uint32_t VLen, bool IsSigned) : ETy(ETy) { Kind = BTF::BTF_KIND_ENUM64; BTFType.Info = IsSigned << 31 | Kind << 24 | VLen; BTFType.Size = roundupToBytes(ETy->getSizeInBits()); } void BTFTypeEnum64::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(ETy->getName()); DINodeArray Elements = ETy->getElements(); for (const auto Element : Elements) { const auto *Enum = cast(Element); struct BTF::BTFEnum64 BTFEnum; BTFEnum.NameOff = BDebug.addString(Enum->getName()); uint64_t Value; if (Enum->isUnsigned()) Value = static_cast(Enum->getValue().getZExtValue()); else Value = static_cast(Enum->getValue().getSExtValue()); BTFEnum.Val_Lo32 = Value; BTFEnum.Val_Hi32 = Value >> 32; EnumValues.push_back(BTFEnum); } } void BTFTypeEnum64::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); for (const auto &Enum : EnumValues) { OS.emitInt32(Enum.NameOff); OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Lo32)); OS.emitInt32(Enum.Val_Lo32); OS.AddComment("0x" + Twine::utohexstr(Enum.Val_Hi32)); OS.emitInt32(Enum.Val_Hi32); } } BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) { Kind = BTF::BTF_KIND_ARRAY; BTFType.NameOff = 0; BTFType.Info = Kind << 24; BTFType.Size = 0; ArrayInfo.ElemType = ElemTypeId; ArrayInfo.Nelems = NumElems; } /// Represent a BTF array. void BTFTypeArray::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; // The IR does not really have a type for the index. // A special type for array index should have been // created during initial type traversal. Just // retrieve that type id. ArrayInfo.IndexType = BDebug.getArrayIndexTypeId(); } void BTFTypeArray::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); OS.emitInt32(ArrayInfo.ElemType); OS.emitInt32(ArrayInfo.IndexType); OS.emitInt32(ArrayInfo.Nelems); } /// Represent either a struct or a union. BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct, bool HasBitField, uint32_t Vlen) : STy(STy), HasBitField(HasBitField) { Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION; BTFType.Size = roundupToBytes(STy->getSizeInBits()); BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen; } void BTFTypeStruct::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(STy->getName()); // Add struct/union members. const DINodeArray Elements = STy->getElements(); for (const auto *Element : Elements) { struct BTF::BTFMember BTFMember; const auto *DDTy = cast(Element); BTFMember.NameOff = BDebug.addString(DDTy->getName()); if (HasBitField) { uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0; BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits(); } else { BTFMember.Offset = DDTy->getOffsetInBits(); } const auto *BaseTy = DDTy->getBaseType(); BTFMember.Type = BDebug.getTypeId(BaseTy); Members.push_back(BTFMember); } } void BTFTypeStruct::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); for (const auto &Member : Members) { OS.emitInt32(Member.NameOff); OS.emitInt32(Member.Type); OS.AddComment("0x" + Twine::utohexstr(Member.Offset)); OS.emitInt32(Member.Offset); } } std::string BTFTypeStruct::getName() { return std::string(STy->getName()); } /// The Func kind represents both subprogram and pointee of function /// pointers. If the FuncName is empty, it represents a pointee of function /// pointer. Otherwise, it represents a subprogram. The func arg names /// are empty for pointee of function pointer case, and are valid names /// for subprogram. BTFTypeFuncProto::BTFTypeFuncProto( const DISubroutineType *STy, uint32_t VLen, const std::unordered_map &FuncArgNames) : STy(STy), FuncArgNames(FuncArgNames) { Kind = BTF::BTF_KIND_FUNC_PROTO; BTFType.Info = (Kind << 24) | VLen; } void BTFTypeFuncProto::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; DITypeRefArray Elements = STy->getTypeArray(); auto RetType = Elements[0]; BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0; BTFType.NameOff = 0; // For null parameter which is typically the last one // to represent the vararg, encode the NameOff/Type to be 0. for (unsigned I = 1, N = Elements.size(); I < N; ++I) { struct BTF::BTFParam Param; auto Element = Elements[I]; if (Element) { Param.NameOff = BDebug.addString(FuncArgNames[I]); Param.Type = BDebug.getTypeId(Element); } else { Param.NameOff = 0; Param.Type = 0; } Parameters.push_back(Param); } } void BTFTypeFuncProto::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); for (const auto &Param : Parameters) { OS.emitInt32(Param.NameOff); OS.emitInt32(Param.Type); } } BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId, uint32_t Scope) : Name(FuncName) { Kind = BTF::BTF_KIND_FUNC; BTFType.Info = (Kind << 24) | Scope; BTFType.Type = ProtoTypeId; } void BTFTypeFunc::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(Name); } void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); } BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo) : Name(VarName) { Kind = BTF::BTF_KIND_VAR; BTFType.Info = Kind << 24; BTFType.Type = TypeId; Info = VarInfo; } void BTFKindVar::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(Name); } void BTFKindVar::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); OS.emitInt32(Info); } BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName) : Asm(AsmPrt), Name(SecName) { Kind = BTF::BTF_KIND_DATASEC; BTFType.Info = Kind << 24; BTFType.Size = 0; } void BTFKindDataSec::completeType(BTFDebug &BDebug) { BTFType.NameOff = BDebug.addString(Name); BTFType.Info |= Vars.size(); } void BTFKindDataSec::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); for (const auto &V : Vars) { OS.emitInt32(std::get<0>(V)); Asm->emitLabelReference(std::get<1>(V), 4); OS.emitInt32(std::get<2>(V)); } } BTFTypeFloat::BTFTypeFloat(uint32_t SizeInBits, StringRef TypeName) : Name(TypeName) { Kind = BTF::BTF_KIND_FLOAT; BTFType.Info = Kind << 24; BTFType.Size = roundupToBytes(SizeInBits); } void BTFTypeFloat::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(Name); } BTFTypeDeclTag::BTFTypeDeclTag(uint32_t BaseTypeId, int ComponentIdx, StringRef Tag) : Tag(Tag) { Kind = BTF::BTF_KIND_DECL_TAG; BTFType.Info = Kind << 24; BTFType.Type = BaseTypeId; Info = ComponentIdx; } void BTFTypeDeclTag::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(Tag); } void BTFTypeDeclTag::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); OS.emitInt32(Info); } BTFTypeTypeTag::BTFTypeTypeTag(uint32_t NextTypeId, StringRef Tag) : DTy(nullptr), Tag(Tag) { Kind = BTF::BTF_KIND_TYPE_TAG; BTFType.Info = Kind << 24; BTFType.Type = NextTypeId; } BTFTypeTypeTag::BTFTypeTypeTag(const DIDerivedType *DTy, StringRef Tag) : DTy(DTy), Tag(Tag) { Kind = BTF::BTF_KIND_TYPE_TAG; BTFType.Info = Kind << 24; } void BTFTypeTypeTag::completeType(BTFDebug &BDebug) { if (IsCompleted) return; IsCompleted = true; BTFType.NameOff = BDebug.addString(Tag); if (DTy) { const DIType *ResolvedType = DTy->getBaseType(); if (!ResolvedType) BTFType.Type = 0; else BTFType.Type = BDebug.getTypeId(ResolvedType); } } uint32_t BTFStringTable::addString(StringRef S) { // Check whether the string already exists. for (auto &OffsetM : OffsetToIdMap) { if (Table[OffsetM.second] == S) return OffsetM.first; } // Not find, add to the string table. uint32_t Offset = Size; OffsetToIdMap[Offset] = Table.size(); Table.push_back(std::string(S)); Size += S.size() + 1; return Offset; } BTFDebug::BTFDebug(AsmPrinter *AP) : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false), LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0), MapDefNotCollected(true) { addString("\0"); } uint32_t BTFDebug::addType(std::unique_ptr TypeEntry, const DIType *Ty) { TypeEntry->setId(TypeEntries.size() + 1); uint32_t Id = TypeEntry->getId(); DIToIdMap[Ty] = Id; TypeEntries.push_back(std::move(TypeEntry)); return Id; } uint32_t BTFDebug::addType(std::unique_ptr TypeEntry) { TypeEntry->setId(TypeEntries.size() + 1); uint32_t Id = TypeEntry->getId(); TypeEntries.push_back(std::move(TypeEntry)); return Id; } void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) { // Only int and binary floating point types are supported in BTF. uint32_t Encoding = BTy->getEncoding(); std::unique_ptr TypeEntry; switch (Encoding) { case dwarf::DW_ATE_boolean: case dwarf::DW_ATE_signed: case dwarf::DW_ATE_signed_char: case dwarf::DW_ATE_unsigned: case dwarf::DW_ATE_unsigned_char: // Create a BTF type instance for this DIBasicType and put it into // DIToIdMap for cross-type reference check. TypeEntry = std::make_unique( Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName()); break; case dwarf::DW_ATE_float: TypeEntry = std::make_unique(BTy->getSizeInBits(), BTy->getName()); break; default: return; } TypeId = addType(std::move(TypeEntry), BTy); } /// Handle subprogram or subroutine types. void BTFDebug::visitSubroutineType( const DISubroutineType *STy, bool ForSubprog, const std::unordered_map &FuncArgNames, uint32_t &TypeId) { DITypeRefArray Elements = STy->getTypeArray(); uint32_t VLen = Elements.size() - 1; if (VLen > BTF::MAX_VLEN) return; // Subprogram has a valid non-zero-length name, and the pointee of // a function pointer has an empty name. The subprogram type will // not be added to DIToIdMap as it should not be referenced by // any other types. auto TypeEntry = std::make_unique(STy, VLen, FuncArgNames); if (ForSubprog) TypeId = addType(std::move(TypeEntry)); // For subprogram else TypeId = addType(std::move(TypeEntry), STy); // For func ptr // Visit return type and func arg types. for (const auto Element : Elements) { visitTypeEntry(Element); } } void BTFDebug::processDeclAnnotations(DINodeArray Annotations, uint32_t BaseTypeId, int ComponentIdx) { if (!Annotations) return; for (const Metadata *Annotation : Annotations->operands()) { const MDNode *MD = cast(Annotation); const MDString *Name = cast(MD->getOperand(0)); if (!Name->getString().equals("btf_decl_tag")) continue; const MDString *Value = cast(MD->getOperand(1)); auto TypeEntry = std::make_unique(BaseTypeId, ComponentIdx, Value->getString()); addType(std::move(TypeEntry)); } } uint32_t BTFDebug::processDISubprogram(const DISubprogram *SP, uint32_t ProtoTypeId, uint8_t Scope) { auto FuncTypeEntry = std::make_unique(SP->getName(), ProtoTypeId, Scope); uint32_t FuncId = addType(std::move(FuncTypeEntry)); // Process argument annotations. for (const DINode *DN : SP->getRetainedNodes()) { if (const auto *DV = dyn_cast(DN)) { uint32_t Arg = DV->getArg(); if (Arg) processDeclAnnotations(DV->getAnnotations(), FuncId, Arg - 1); } } processDeclAnnotations(SP->getAnnotations(), FuncId, -1); return FuncId; } /// Generate btf_type_tag chains. int BTFDebug::genBTFTypeTags(const DIDerivedType *DTy, int BaseTypeId) { SmallVector MDStrs; DINodeArray Annots = DTy->getAnnotations(); if (Annots) { // For type with "int __tag1 __tag2 *p", the MDStrs will have // content: [__tag1, __tag2]. for (const Metadata *Annotations : Annots->operands()) { const MDNode *MD = cast(Annotations); const MDString *Name = cast(MD->getOperand(0)); if (!Name->getString().equals("btf_type_tag")) continue; MDStrs.push_back(cast(MD->getOperand(1))); } } if (MDStrs.size() == 0) return -1; // With MDStrs [__tag1, __tag2], the output type chain looks like // PTR -> __tag2 -> __tag1 -> BaseType // In the below, we construct BTF types with the order of __tag1, __tag2 // and PTR. unsigned TmpTypeId; std::unique_ptr TypeEntry; if (BaseTypeId >= 0) TypeEntry = std::make_unique(BaseTypeId, MDStrs[0]->getString()); else TypeEntry = std::make_unique(DTy, MDStrs[0]->getString()); TmpTypeId = addType(std::move(TypeEntry)); for (unsigned I = 1; I < MDStrs.size(); I++) { const MDString *Value = MDStrs[I]; TypeEntry = std::make_unique(TmpTypeId, Value->getString()); TmpTypeId = addType(std::move(TypeEntry)); } return TmpTypeId; } /// Handle structure/union types. void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct, uint32_t &TypeId) { const DINodeArray Elements = CTy->getElements(); uint32_t VLen = Elements.size(); if (VLen > BTF::MAX_VLEN) return; // Check whether we have any bitfield members or not bool HasBitField = false; for (const auto *Element : Elements) { auto E = cast(Element); if (E->isBitField()) { HasBitField = true; break; } } auto TypeEntry = std::make_unique(CTy, IsStruct, HasBitField, VLen); StructTypes.push_back(TypeEntry.get()); TypeId = addType(std::move(TypeEntry), CTy); // Check struct/union annotations processDeclAnnotations(CTy->getAnnotations(), TypeId, -1); // Visit all struct members. int FieldNo = 0; for (const auto *Element : Elements) { const auto Elem = cast(Element); visitTypeEntry(Elem); processDeclAnnotations(Elem->getAnnotations(), TypeId, FieldNo); FieldNo++; } } void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) { // Visit array element type. uint32_t ElemTypeId; const DIType *ElemType = CTy->getBaseType(); visitTypeEntry(ElemType, ElemTypeId, false, false); // Visit array dimensions. DINodeArray Elements = CTy->getElements(); for (int I = Elements.size() - 1; I >= 0; --I) { if (auto *Element = dyn_cast_or_null(Elements[I])) if (Element->getTag() == dwarf::DW_TAG_subrange_type) { const DISubrange *SR = cast(Element); auto *CI = SR->getCount().dyn_cast(); int64_t Count = CI->getSExtValue(); // For struct s { int b; char c[]; }, the c[] will be represented // as an array with Count = -1. auto TypeEntry = std::make_unique(ElemTypeId, Count >= 0 ? Count : 0); if (I == 0) ElemTypeId = addType(std::move(TypeEntry), CTy); else ElemTypeId = addType(std::move(TypeEntry)); } } // The array TypeId is the type id of the outermost dimension. TypeId = ElemTypeId; // The IR does not have a type for array index while BTF wants one. // So create an array index type if there is none. if (!ArrayIndexTypeId) { auto TypeEntry = std::make_unique(dwarf::DW_ATE_unsigned, 32, 0, "__ARRAY_SIZE_TYPE__"); ArrayIndexTypeId = addType(std::move(TypeEntry)); } } void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) { DINodeArray Elements = CTy->getElements(); uint32_t VLen = Elements.size(); if (VLen > BTF::MAX_VLEN) return; bool IsSigned = false; unsigned NumBits = 32; // No BaseType implies forward declaration in which case a // BTFTypeEnum with Vlen = 0 is emitted. if (CTy->getBaseType() != nullptr) { const auto *BTy = cast(CTy->getBaseType()); IsSigned = BTy->getEncoding() == dwarf::DW_ATE_signed || BTy->getEncoding() == dwarf::DW_ATE_signed_char; NumBits = BTy->getSizeInBits(); } if (NumBits <= 32) { auto TypeEntry = std::make_unique(CTy, VLen, IsSigned); TypeId = addType(std::move(TypeEntry), CTy); } else { assert(NumBits == 64); auto TypeEntry = std::make_unique(CTy, VLen, IsSigned); TypeId = addType(std::move(TypeEntry), CTy); } // No need to visit base type as BTF does not encode it. } /// Handle structure/union forward declarations. void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion, uint32_t &TypeId) { auto TypeEntry = std::make_unique(CTy->getName(), IsUnion); TypeId = addType(std::move(TypeEntry), CTy); } /// Handle structure, union, array and enumeration types. void BTFDebug::visitCompositeType(const DICompositeType *CTy, uint32_t &TypeId) { auto Tag = CTy->getTag(); if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) { // Handle forward declaration differently as it does not have members. if (CTy->isForwardDecl()) visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId); else visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId); } else if (Tag == dwarf::DW_TAG_array_type) visitArrayType(CTy, TypeId); else if (Tag == dwarf::DW_TAG_enumeration_type) visitEnumType(CTy, TypeId); } bool BTFDebug::IsForwardDeclCandidate(const DIType *Base) { if (const auto *CTy = dyn_cast(Base)) { auto CTag = CTy->getTag(); if ((CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) && !CTy->getName().empty() && !CTy->isForwardDecl()) return true; } return false; } /// Handle pointer, typedef, const, volatile, restrict and member types. void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId, bool CheckPointer, bool SeenPointer) { unsigned Tag = DTy->getTag(); /// Try to avoid chasing pointees, esp. structure pointees which may /// unnecessary bring in a lot of types. if (CheckPointer && !SeenPointer) { SeenPointer = Tag == dwarf::DW_TAG_pointer_type; } if (CheckPointer && SeenPointer) { const DIType *Base = DTy->getBaseType(); if (Base) { if (IsForwardDeclCandidate(Base)) { /// Find a candidate, generate a fixup. Later on the struct/union /// pointee type will be replaced with either a real type or /// a forward declaration. auto TypeEntry = std::make_unique(DTy, Tag, true); auto &Fixup = FixupDerivedTypes[cast(Base)]; Fixup.push_back(std::make_pair(DTy, TypeEntry.get())); TypeId = addType(std::move(TypeEntry), DTy); return; } } } if (Tag == dwarf::DW_TAG_pointer_type) { int TmpTypeId = genBTFTypeTags(DTy, -1); if (TmpTypeId >= 0) { auto TypeDEntry = std::make_unique(TmpTypeId, Tag, DTy->getName()); TypeId = addType(std::move(TypeDEntry), DTy); } else { auto TypeEntry = std::make_unique(DTy, Tag, false); TypeId = addType(std::move(TypeEntry), DTy); } } else if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type || Tag == dwarf::DW_TAG_restrict_type) { auto TypeEntry = std::make_unique(DTy, Tag, false); TypeId = addType(std::move(TypeEntry), DTy); if (Tag == dwarf::DW_TAG_typedef) processDeclAnnotations(DTy->getAnnotations(), TypeId, -1); } else if (Tag != dwarf::DW_TAG_member) { return; } // Visit base type of pointer, typedef, const, volatile, restrict or // struct/union member. uint32_t TempTypeId = 0; if (Tag == dwarf::DW_TAG_member) visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false); else visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer); } /// Visit a type entry. CheckPointer is true if the type has /// one of its predecessors as one struct/union member. SeenPointer /// is true if CheckPointer is true and one of its predecessors /// is a pointer. The goal of CheckPointer and SeenPointer is to /// do pruning for struct/union types so some of these types /// will not be emitted in BTF and rather forward declarations /// will be generated. void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId, bool CheckPointer, bool SeenPointer) { if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { TypeId = DIToIdMap[Ty]; // To handle the case like the following: // struct t; // typedef struct t _t; // struct s1 { _t *c; }; // int test1(struct s1 *arg) { ... } // // struct t { int a; int b; }; // struct s2 { _t c; } // int test2(struct s2 *arg) { ... } // // During traversing test1() argument, "_t" is recorded // in DIToIdMap and a forward declaration fixup is created // for "struct t" to avoid pointee type traversal. // // During traversing test2() argument, even if we see "_t" is // already defined, we should keep moving to eventually // bring in types for "struct t". Otherwise, the "struct s2" // definition won't be correct. // // In the above, we have following debuginfo: // {ptr, struct_member} -> typedef -> struct // and BTF type for 'typedef' is generated while 'struct' may // be in FixUp. But let us generalize the above to handle // {different types} -> [various derived types]+ -> another type. // For example, // {func_param, struct_member} -> const -> ptr -> volatile -> struct // We will traverse const/ptr/volatile which already have corresponding // BTF types and generate type for 'struct' which might be in Fixup // state. if (Ty && (!CheckPointer || !SeenPointer)) { if (const auto *DTy = dyn_cast(Ty)) { while (DTy) { const DIType *BaseTy = DTy->getBaseType(); if (!BaseTy) break; if (DIToIdMap.find(BaseTy) != DIToIdMap.end()) { DTy = dyn_cast(BaseTy); } else { if (CheckPointer && DTy->getTag() == dwarf::DW_TAG_pointer_type) { SeenPointer = true; if (IsForwardDeclCandidate(BaseTy)) break; } uint32_t TmpTypeId; visitTypeEntry(BaseTy, TmpTypeId, CheckPointer, SeenPointer); break; } } } } return; } if (const auto *BTy = dyn_cast(Ty)) visitBasicType(BTy, TypeId); else if (const auto *STy = dyn_cast(Ty)) visitSubroutineType(STy, false, std::unordered_map(), TypeId); else if (const auto *CTy = dyn_cast(Ty)) visitCompositeType(CTy, TypeId); else if (const auto *DTy = dyn_cast(Ty)) visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer); else llvm_unreachable("Unknown DIType"); } void BTFDebug::visitTypeEntry(const DIType *Ty) { uint32_t TypeId; visitTypeEntry(Ty, TypeId, false, false); } void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) { if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) { TypeId = DIToIdMap[Ty]; return; } // MapDef type may be a struct type or a non-pointer derived type const DIType *OrigTy = Ty; while (auto *DTy = dyn_cast(Ty)) { auto Tag = DTy->getTag(); if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && Tag != dwarf::DW_TAG_restrict_type) break; Ty = DTy->getBaseType(); } const auto *CTy = dyn_cast(Ty); if (!CTy) return; auto Tag = CTy->getTag(); if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl()) return; // Visit all struct members to ensure pointee type is visited const DINodeArray Elements = CTy->getElements(); for (const auto *Element : Elements) { const auto *MemberType = cast(Element); visitTypeEntry(MemberType->getBaseType()); } // Visit this type, struct or a const/typedef/volatile/restrict type visitTypeEntry(OrigTy, TypeId, false, false); } /// Read file contents from the actual file or from the source std::string BTFDebug::populateFileContent(const DISubprogram *SP) { auto File = SP->getFile(); std::string FileName; if (!File->getFilename().startswith("/") && File->getDirectory().size()) FileName = File->getDirectory().str() + "/" + File->getFilename().str(); else FileName = std::string(File->getFilename()); // No need to populate the contends if it has been populated! if (FileContent.contains(FileName)) return FileName; std::vector Content; std::string Line; Content.push_back(Line); // Line 0 for empty string std::unique_ptr Buf; auto Source = File->getSource(); if (Source) Buf = MemoryBuffer::getMemBufferCopy(*Source); else if (ErrorOr> BufOrErr = MemoryBuffer::getFile(FileName)) Buf = std::move(*BufOrErr); if (Buf) for (line_iterator I(*Buf, false), E; I != E; ++I) Content.push_back(std::string(*I)); FileContent[FileName] = Content; return FileName; } void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label, uint32_t Line, uint32_t Column) { std::string FileName = populateFileContent(SP); BTFLineInfo LineInfo; LineInfo.Label = Label; LineInfo.FileNameOff = addString(FileName); // If file content is not available, let LineOff = 0. if (Line < FileContent[FileName].size()) LineInfo.LineOff = addString(FileContent[FileName][Line]); else LineInfo.LineOff = 0; LineInfo.LineNum = Line; LineInfo.ColumnNum = Column; LineInfoTable[SecNameOff].push_back(LineInfo); } void BTFDebug::emitCommonHeader() { OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC)); OS.emitIntValue(BTF::MAGIC, 2); OS.emitInt8(BTF::VERSION); OS.emitInt8(0); } void BTFDebug::emitBTFSection() { // Do not emit section if no types and only "" string. if (!TypeEntries.size() && StringTable.getSize() == 1) return; MCContext &Ctx = OS.getContext(); MCSectionELF *Sec = Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0); Sec->setAlignment(Align(4)); OS.switchSection(Sec); // Emit header. emitCommonHeader(); OS.emitInt32(BTF::HeaderSize); uint32_t TypeLen = 0, StrLen; for (const auto &TypeEntry : TypeEntries) TypeLen += TypeEntry->getSize(); StrLen = StringTable.getSize(); OS.emitInt32(0); OS.emitInt32(TypeLen); OS.emitInt32(TypeLen); OS.emitInt32(StrLen); // Emit type table. for (const auto &TypeEntry : TypeEntries) TypeEntry->emitType(OS); // Emit string table. uint32_t StringOffset = 0; for (const auto &S : StringTable.getTable()) { OS.AddComment("string offset=" + std::to_string(StringOffset)); OS.emitBytes(S); OS.emitBytes(StringRef("\0", 1)); StringOffset += S.size() + 1; } } void BTFDebug::emitBTFExtSection() { // Do not emit section if empty FuncInfoTable and LineInfoTable // and FieldRelocTable. if (!FuncInfoTable.size() && !LineInfoTable.size() && !FieldRelocTable.size()) return; MCContext &Ctx = OS.getContext(); MCSectionELF *Sec = Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0); Sec->setAlignment(Align(4)); OS.switchSection(Sec); // Emit header. emitCommonHeader(); OS.emitInt32(BTF::ExtHeaderSize); // Account for FuncInfo/LineInfo record size as well. uint32_t FuncLen = 4, LineLen = 4; // Do not account for optional FieldReloc. uint32_t FieldRelocLen = 0; for (const auto &FuncSec : FuncInfoTable) { FuncLen += BTF::SecFuncInfoSize; FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize; } for (const auto &LineSec : LineInfoTable) { LineLen += BTF::SecLineInfoSize; LineLen += LineSec.second.size() * BTF::BPFLineInfoSize; } for (const auto &FieldRelocSec : FieldRelocTable) { FieldRelocLen += BTF::SecFieldRelocSize; FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize; } if (FieldRelocLen) FieldRelocLen += 4; OS.emitInt32(0); OS.emitInt32(FuncLen); OS.emitInt32(FuncLen); OS.emitInt32(LineLen); OS.emitInt32(FuncLen + LineLen); OS.emitInt32(FieldRelocLen); // Emit func_info table. OS.AddComment("FuncInfo"); OS.emitInt32(BTF::BPFFuncInfoSize); for (const auto &FuncSec : FuncInfoTable) { OS.AddComment("FuncInfo section string offset=" + std::to_string(FuncSec.first)); OS.emitInt32(FuncSec.first); OS.emitInt32(FuncSec.second.size()); for (const auto &FuncInfo : FuncSec.second) { Asm->emitLabelReference(FuncInfo.Label, 4); OS.emitInt32(FuncInfo.TypeId); } } // Emit line_info table. OS.AddComment("LineInfo"); OS.emitInt32(BTF::BPFLineInfoSize); for (const auto &LineSec : LineInfoTable) { OS.AddComment("LineInfo section string offset=" + std::to_string(LineSec.first)); OS.emitInt32(LineSec.first); OS.emitInt32(LineSec.second.size()); for (const auto &LineInfo : LineSec.second) { Asm->emitLabelReference(LineInfo.Label, 4); OS.emitInt32(LineInfo.FileNameOff); OS.emitInt32(LineInfo.LineOff); OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " + std::to_string(LineInfo.ColumnNum)); OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum); } } // Emit field reloc table. if (FieldRelocLen) { OS.AddComment("FieldReloc"); OS.emitInt32(BTF::BPFFieldRelocSize); for (const auto &FieldRelocSec : FieldRelocTable) { OS.AddComment("Field reloc section string offset=" + std::to_string(FieldRelocSec.first)); OS.emitInt32(FieldRelocSec.first); OS.emitInt32(FieldRelocSec.second.size()); for (const auto &FieldRelocInfo : FieldRelocSec.second) { Asm->emitLabelReference(FieldRelocInfo.Label, 4); OS.emitInt32(FieldRelocInfo.TypeID); OS.emitInt32(FieldRelocInfo.OffsetNameOff); OS.emitInt32(FieldRelocInfo.RelocKind); } } } } void BTFDebug::beginFunctionImpl(const MachineFunction *MF) { auto *SP = MF->getFunction().getSubprogram(); auto *Unit = SP->getUnit(); if (Unit->getEmissionKind() == DICompileUnit::NoDebug) { SkipInstruction = true; return; } SkipInstruction = false; // Collect MapDef types. Map definition needs to collect // pointee types. Do it first. Otherwise, for the following // case: // struct m { ...}; // struct t { // struct m *key; // }; // foo(struct t *arg); // // struct mapdef { // ... // struct m *key; // ... // } __attribute__((section(".maps"))) hash_map; // // If subroutine foo is traversed first, a type chain // "ptr->struct m(fwd)" will be created and later on // when traversing mapdef, since "ptr->struct m" exists, // the traversal of "struct m" will be omitted. if (MapDefNotCollected) { processGlobals(true); MapDefNotCollected = false; } // Collect all types locally referenced in this function. // Use RetainedNodes so we can collect all argument names // even if the argument is not used. std::unordered_map FuncArgNames; for (const DINode *DN : SP->getRetainedNodes()) { if (const auto *DV = dyn_cast(DN)) { // Collect function arguments for subprogram func type. uint32_t Arg = DV->getArg(); if (Arg) { visitTypeEntry(DV->getType()); FuncArgNames[Arg] = DV->getName(); } } } // Construct subprogram func proto type. uint32_t ProtoTypeId; visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId); // Construct subprogram func type uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL; uint32_t FuncTypeId = processDISubprogram(SP, ProtoTypeId, Scope); for (const auto &TypeEntry : TypeEntries) TypeEntry->completeType(*this); // Construct funcinfo and the first lineinfo for the function. MCSymbol *FuncLabel = Asm->getFunctionBegin(); BTFFuncInfo FuncInfo; FuncInfo.Label = FuncLabel; FuncInfo.TypeId = FuncTypeId; if (FuncLabel->isInSection()) { MCSection &Section = FuncLabel->getSection(); const MCSectionELF *SectionELF = dyn_cast(&Section); assert(SectionELF && "Null section for Function Label"); SecNameOff = addString(SectionELF->getName()); } else { SecNameOff = addString(".text"); } FuncInfoTable[SecNameOff].push_back(FuncInfo); } void BTFDebug::endFunctionImpl(const MachineFunction *MF) { SkipInstruction = false; LineInfoGenerated = false; SecNameOff = 0; } /// On-demand populate types as requested from abstract member /// accessing or preserve debuginfo type. unsigned BTFDebug::populateType(const DIType *Ty) { unsigned Id; visitTypeEntry(Ty, Id, false, false); for (const auto &TypeEntry : TypeEntries) TypeEntry->completeType(*this); return Id; } /// Generate a struct member field relocation. void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId, const GlobalVariable *GVar, bool IsAma) { BTFFieldReloc FieldReloc; FieldReloc.Label = ORSym; FieldReloc.TypeID = RootId; StringRef AccessPattern = GVar->getName(); size_t FirstDollar = AccessPattern.find_first_of('$'); if (IsAma) { size_t FirstColon = AccessPattern.find_first_of(':'); size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1); StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1); StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1, SecondColon - FirstColon); StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1, FirstDollar - SecondColon); FieldReloc.OffsetNameOff = addString(IndexPattern); FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr)); PatchImms[GVar] = std::make_pair(std::stoll(std::string(PatchImmStr)), FieldReloc.RelocKind); } else { StringRef RelocStr = AccessPattern.substr(FirstDollar + 1); FieldReloc.OffsetNameOff = addString("0"); FieldReloc.RelocKind = std::stoull(std::string(RelocStr)); PatchImms[GVar] = std::make_pair(RootId, FieldReloc.RelocKind); } FieldRelocTable[SecNameOff].push_back(FieldReloc); } void BTFDebug::processGlobalValue(const MachineOperand &MO) { // check whether this is a candidate or not if (MO.isGlobal()) { const GlobalValue *GVal = MO.getGlobal(); auto *GVar = dyn_cast(GVal); if (!GVar) { // Not a global variable. Maybe an extern function reference. processFuncPrototypes(dyn_cast(GVal)); return; } if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) && !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) return; MCSymbol *ORSym = OS.getContext().createTempSymbol(); OS.emitLabel(ORSym); MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index); uint32_t RootId = populateType(dyn_cast(MDN)); generatePatchImmReloc(ORSym, RootId, GVar, GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)); } } void BTFDebug::beginInstruction(const MachineInstr *MI) { DebugHandlerBase::beginInstruction(MI); if (SkipInstruction || MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) return; if (MI->isInlineAsm()) { // Count the number of register definitions to find the asm string. unsigned NumDefs = 0; for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef(); ++NumDefs) ; // Skip this inline asm instruction if the asmstr is empty. const char *AsmStr = MI->getOperand(NumDefs).getSymbolName(); if (AsmStr[0] == 0) return; } if (MI->getOpcode() == BPF::LD_imm64) { // If the insn is "r2 = LD_imm64 @", // add this insn into the .BTF.ext FieldReloc subsection. // Relocation looks like: // . SecName: // . InstOffset // . TypeID // . OffSetNameOff // . RelocType // Later, the insn is replaced with "r2 = " // where "" equals to the offset based on current // type definitions. // // If the insn is "r2 = LD_imm64 @", // The LD_imm64 result will be replaced with a btf type id. processGlobalValue(MI->getOperand(1)); } else if (MI->getOpcode() == BPF::CORE_MEM || MI->getOpcode() == BPF::CORE_ALU32_MEM || MI->getOpcode() == BPF::CORE_SHIFT) { // relocation insn is a load, store or shift insn. processGlobalValue(MI->getOperand(3)); } else if (MI->getOpcode() == BPF::JAL) { // check extern function references const MachineOperand &MO = MI->getOperand(0); if (MO.isGlobal()) { processFuncPrototypes(dyn_cast(MO.getGlobal())); } } if (!CurMI) // no debug info return; // Skip this instruction if no DebugLoc or the DebugLoc // is the same as the previous instruction. const DebugLoc &DL = MI->getDebugLoc(); if (!DL || PrevInstLoc == DL) { // This instruction will be skipped, no LineInfo has // been generated, construct one based on function signature. if (LineInfoGenerated == false) { auto *S = MI->getMF()->getFunction().getSubprogram(); if (!S) return; MCSymbol *FuncLabel = Asm->getFunctionBegin(); constructLineInfo(S, FuncLabel, S->getLine(), 0); LineInfoGenerated = true; } return; } // Create a temporary label to remember the insn for lineinfo. MCSymbol *LineSym = OS.getContext().createTempSymbol(); OS.emitLabel(LineSym); // Construct the lineinfo. auto SP = DL->getScope()->getSubprogram(); constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol()); LineInfoGenerated = true; PrevInstLoc = DL; } void BTFDebug::processGlobals(bool ProcessingMapDef) { // Collect all types referenced by globals. const Module *M = MMI->getModule(); for (const GlobalVariable &Global : M->globals()) { // Decide the section name. StringRef SecName; std::optional GVKind; if (!Global.isDeclarationForLinker()) GVKind = TargetLoweringObjectFile::getKindForGlobal(&Global, Asm->TM); if (Global.isDeclarationForLinker()) SecName = Global.hasSection() ? Global.getSection() : ""; else if (GVKind->isCommon()) SecName = ".bss"; else { TargetLoweringObjectFile *TLOF = Asm->TM.getObjFileLowering(); MCSection *Sec = TLOF->SectionForGlobal(&Global, Asm->TM); SecName = Sec->getName(); } if (ProcessingMapDef != SecName.startswith(".maps")) continue; // Create a .rodata datasec if the global variable is an initialized // constant with private linkage and if it won't be in .rodata.str<#> // and .rodata.cst<#> sections. if (SecName == ".rodata" && Global.hasPrivateLinkage() && DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { // skip .rodata.str<#> and .rodata.cst<#> sections if (!GVKind->isMergeableCString() && !GVKind->isMergeableConst()) { DataSecEntries[std::string(SecName)] = std::make_unique(Asm, std::string(SecName)); } } SmallVector GVs; Global.getDebugInfo(GVs); // No type information, mostly internal, skip it. if (GVs.size() == 0) continue; uint32_t GVTypeId = 0; DIGlobalVariable *DIGlobal = nullptr; for (auto *GVE : GVs) { DIGlobal = GVE->getVariable(); if (SecName.startswith(".maps")) visitMapDefType(DIGlobal->getType(), GVTypeId); else visitTypeEntry(DIGlobal->getType(), GVTypeId, false, false); break; } // Only support the following globals: // . static variables // . non-static weak or non-weak global variables // . weak or non-weak extern global variables // Whether DataSec is readonly or not can be found from corresponding ELF // section flags. Whether a BTF_KIND_VAR is a weak symbol or not // can be found from the corresponding ELF symbol table. auto Linkage = Global.getLinkage(); if (Linkage != GlobalValue::InternalLinkage && Linkage != GlobalValue::ExternalLinkage && Linkage != GlobalValue::WeakAnyLinkage && Linkage != GlobalValue::WeakODRLinkage && Linkage != GlobalValue::ExternalWeakLinkage) continue; uint32_t GVarInfo; if (Linkage == GlobalValue::InternalLinkage) { GVarInfo = BTF::VAR_STATIC; } else if (Global.hasInitializer()) { GVarInfo = BTF::VAR_GLOBAL_ALLOCATED; } else { GVarInfo = BTF::VAR_GLOBAL_EXTERNAL; } auto VarEntry = std::make_unique(Global.getName(), GVTypeId, GVarInfo); uint32_t VarId = addType(std::move(VarEntry)); processDeclAnnotations(DIGlobal->getAnnotations(), VarId, -1); // An empty SecName means an extern variable without section attribute. if (SecName.empty()) continue; // Find or create a DataSec if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { DataSecEntries[std::string(SecName)] = std::make_unique(Asm, std::string(SecName)); } // Calculate symbol size const DataLayout &DL = Global.getParent()->getDataLayout(); uint32_t Size = DL.getTypeAllocSize(Global.getValueType()); DataSecEntries[std::string(SecName)]->addDataSecEntry(VarId, Asm->getSymbol(&Global), Size); } } /// Emit proper patchable instructions. bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) { if (MI->getOpcode() == BPF::LD_imm64) { const MachineOperand &MO = MI->getOperand(1); if (MO.isGlobal()) { const GlobalValue *GVal = MO.getGlobal(); auto *GVar = dyn_cast(GVal); if (GVar) { // Emit "mov ri, " int64_t Imm; uint32_t Reloc; if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) || GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr)) { Imm = PatchImms[GVar].first; Reloc = PatchImms[GVar].second; } else { return false; } if (Reloc == BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE || Reloc == BPFCoreSharedInfo::ENUM_VALUE || Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_LOCAL || Reloc == BPFCoreSharedInfo::BTF_TYPE_ID_REMOTE) OutMI.setOpcode(BPF::LD_imm64); else OutMI.setOpcode(BPF::MOV_ri); OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); OutMI.addOperand(MCOperand::createImm(Imm)); return true; } } } else if (MI->getOpcode() == BPF::CORE_MEM || MI->getOpcode() == BPF::CORE_ALU32_MEM || MI->getOpcode() == BPF::CORE_SHIFT) { const MachineOperand &MO = MI->getOperand(3); if (MO.isGlobal()) { const GlobalValue *GVal = MO.getGlobal(); auto *GVar = dyn_cast(GVal); if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) { uint32_t Imm = PatchImms[GVar].first; OutMI.setOpcode(MI->getOperand(1).getImm()); if (MI->getOperand(0).isImm()) OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm())); else OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg())); OutMI.addOperand(MCOperand::createImm(Imm)); return true; } } } return false; } void BTFDebug::processFuncPrototypes(const Function *F) { if (!F) return; const DISubprogram *SP = F->getSubprogram(); if (!SP || SP->isDefinition()) return; // Do not emit again if already emitted. if (!ProtoFunctions.insert(F).second) return; uint32_t ProtoTypeId; const std::unordered_map FuncArgNames; visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId); uint32_t FuncId = processDISubprogram(SP, ProtoTypeId, BTF::FUNC_EXTERN); if (F->hasSection()) { StringRef SecName = F->getSection(); if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) { DataSecEntries[std::string(SecName)] = std::make_unique(Asm, std::string(SecName)); } // We really don't know func size, set it to 0. DataSecEntries[std::string(SecName)]->addDataSecEntry(FuncId, Asm->getSymbol(F), 0); } } void BTFDebug::endModule() { // Collect MapDef globals if not collected yet. if (MapDefNotCollected) { processGlobals(true); MapDefNotCollected = false; } // Collect global types/variables except MapDef globals. processGlobals(false); for (auto &DataSec : DataSecEntries) addType(std::move(DataSec.second)); // Fixups for (auto &Fixup : FixupDerivedTypes) { const DICompositeType *CTy = Fixup.first; StringRef TypeName = CTy->getName(); bool IsUnion = CTy->getTag() == dwarf::DW_TAG_union_type; // Search through struct types uint32_t StructTypeId = 0; for (const auto &StructType : StructTypes) { if (StructType->getName() == TypeName) { StructTypeId = StructType->getId(); break; } } if (StructTypeId == 0) { auto FwdTypeEntry = std::make_unique(TypeName, IsUnion); StructTypeId = addType(std::move(FwdTypeEntry)); } for (auto &TypeInfo : Fixup.second) { const DIDerivedType *DTy = TypeInfo.first; BTFTypeDerived *BDType = TypeInfo.second; int TmpTypeId = genBTFTypeTags(DTy, StructTypeId); if (TmpTypeId >= 0) BDType->setPointeeType(TmpTypeId); else BDType->setPointeeType(StructTypeId); } } // Complete BTF type cross refereences. for (const auto &TypeEntry : TypeEntries) TypeEntry->completeType(*this); // Emit BTF sections. emitBTFSection(); emitBTFExtSection(); }