xref: /freebsd/contrib/llvm-project/llvm/lib/Target/BPF/BPFISelLowering.cpp (revision cccdaf507eee8fb34494b4624eb85bb951e323c8)
1 //===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation  ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that BPF uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "BPFISelLowering.h"
15 #include "BPF.h"
16 #include "BPFSubtarget.h"
17 #include "BPFTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/DiagnosticInfo.h"
26 #include "llvm/IR/DiagnosticPrinter.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "bpf-lower"
33 
34 static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
35   cl::Hidden, cl::init(false),
36   cl::desc("Expand memcpy into load/store pairs in order"));
37 
38 static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
39   MachineFunction &MF = DAG.getMachineFunction();
40   DAG.getContext()->diagnose(
41       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
42 }
43 
44 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
45                  SDValue Val) {
46   MachineFunction &MF = DAG.getMachineFunction();
47   std::string Str;
48   raw_string_ostream OS(Str);
49   OS << Msg;
50   Val->print(OS);
51   OS.flush();
52   DAG.getContext()->diagnose(
53       DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
54 }
55 
56 BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
57                                      const BPFSubtarget &STI)
58     : TargetLowering(TM) {
59 
60   // Set up the register classes.
61   addRegisterClass(MVT::i64, &BPF::GPRRegClass);
62   if (STI.getHasAlu32())
63     addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
64 
65   // Compute derived properties from the register classes
66   computeRegisterProperties(STI.getRegisterInfo());
67 
68   setStackPointerRegisterToSaveRestore(BPF::R11);
69 
70   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
71   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
72   setOperationAction(ISD::BRIND, MVT::Other, Expand);
73   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
74 
75   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
76 
77   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
78   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
79   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
80 
81   // Set unsupported atomic operations as Custom so
82   // we can emit better error messages than fatal error
83   // from selectiondag.
84   for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
85     if (VT == MVT::i32) {
86       if (STI.getHasAlu32())
87         continue;
88     } else {
89       setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
90     }
91 
92     setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
93     setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
94     setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
95     setOperationAction(ISD::ATOMIC_SWAP, VT, Custom);
96     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
97   }
98 
99   for (auto VT : { MVT::i32, MVT::i64 }) {
100     if (VT == MVT::i32 && !STI.getHasAlu32())
101       continue;
102 
103     setOperationAction(ISD::SDIVREM, VT, Expand);
104     setOperationAction(ISD::UDIVREM, VT, Expand);
105     setOperationAction(ISD::SREM, VT, Expand);
106     setOperationAction(ISD::MULHU, VT, Expand);
107     setOperationAction(ISD::MULHS, VT, Expand);
108     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
109     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
110     setOperationAction(ISD::ROTR, VT, Expand);
111     setOperationAction(ISD::ROTL, VT, Expand);
112     setOperationAction(ISD::SHL_PARTS, VT, Expand);
113     setOperationAction(ISD::SRL_PARTS, VT, Expand);
114     setOperationAction(ISD::SRA_PARTS, VT, Expand);
115     setOperationAction(ISD::CTPOP, VT, Expand);
116 
117     setOperationAction(ISD::SETCC, VT, Expand);
118     setOperationAction(ISD::SELECT, VT, Expand);
119     setOperationAction(ISD::SELECT_CC, VT, Custom);
120   }
121 
122   if (STI.getHasAlu32()) {
123     setOperationAction(ISD::BSWAP, MVT::i32, Promote);
124     setOperationAction(ISD::BR_CC, MVT::i32,
125                        STI.getHasJmp32() ? Custom : Promote);
126   }
127 
128   setOperationAction(ISD::CTTZ, MVT::i64, Custom);
129   setOperationAction(ISD::CTLZ, MVT::i64, Custom);
130   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
131   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
132 
133   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
134   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
135   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
136   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
137 
138   // Extended load operations for i1 types must be promoted
139   for (MVT VT : MVT::integer_valuetypes()) {
140     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
141     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
142     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
143 
144     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
145     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
146     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
147   }
148 
149   setBooleanContents(ZeroOrOneBooleanContent);
150 
151   // Function alignments
152   setMinFunctionAlignment(Align(8));
153   setPrefFunctionAlignment(Align(8));
154 
155   if (BPFExpandMemcpyInOrder) {
156     // LLVM generic code will try to expand memcpy into load/store pairs at this
157     // stage which is before quite a few IR optimization passes, therefore the
158     // loads and stores could potentially be moved apart from each other which
159     // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
160     // compilers.
161     //
162     // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
163     // of memcpy to later stage in IR optimization pipeline so those load/store
164     // pairs won't be touched and could be kept in order. Hence, we set
165     // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
166     // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
167     MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
168     MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
169     MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
170     MaxLoadsPerMemcmp = 0;
171   } else {
172     // inline memcpy() for kernel to see explicit copy
173     unsigned CommonMaxStores =
174       STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
175 
176     MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
177     MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
178     MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
179     MaxLoadsPerMemcmp = MaxLoadsPerMemcmpOptSize = CommonMaxStores;
180   }
181 
182   // CPU/Feature control
183   HasAlu32 = STI.getHasAlu32();
184   HasJmp32 = STI.getHasJmp32();
185   HasJmpExt = STI.getHasJmpExt();
186 }
187 
188 bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
189   return false;
190 }
191 
192 bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
193   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
194     return false;
195   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
196   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
197   return NumBits1 > NumBits2;
198 }
199 
200 bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
201   if (!VT1.isInteger() || !VT2.isInteger())
202     return false;
203   unsigned NumBits1 = VT1.getSizeInBits();
204   unsigned NumBits2 = VT2.getSizeInBits();
205   return NumBits1 > NumBits2;
206 }
207 
208 bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
209   if (!getHasAlu32() || !Ty1->isIntegerTy() || !Ty2->isIntegerTy())
210     return false;
211   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
212   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
213   return NumBits1 == 32 && NumBits2 == 64;
214 }
215 
216 bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
217   if (!getHasAlu32() || !VT1.isInteger() || !VT2.isInteger())
218     return false;
219   unsigned NumBits1 = VT1.getSizeInBits();
220   unsigned NumBits2 = VT2.getSizeInBits();
221   return NumBits1 == 32 && NumBits2 == 64;
222 }
223 
224 BPFTargetLowering::ConstraintType
225 BPFTargetLowering::getConstraintType(StringRef Constraint) const {
226   if (Constraint.size() == 1) {
227     switch (Constraint[0]) {
228     default:
229       break;
230     case 'w':
231       return C_RegisterClass;
232     }
233   }
234 
235   return TargetLowering::getConstraintType(Constraint);
236 }
237 
238 std::pair<unsigned, const TargetRegisterClass *>
239 BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
240                                                 StringRef Constraint,
241                                                 MVT VT) const {
242   if (Constraint.size() == 1)
243     // GCC Constraint Letters
244     switch (Constraint[0]) {
245     case 'r': // GENERAL_REGS
246       return std::make_pair(0U, &BPF::GPRRegClass);
247     case 'w':
248       if (HasAlu32)
249         return std::make_pair(0U, &BPF::GPR32RegClass);
250       break;
251     default:
252       break;
253     }
254 
255   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
256 }
257 
258 void BPFTargetLowering::ReplaceNodeResults(
259   SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
260   const char *err_msg;
261   uint32_t Opcode = N->getOpcode();
262   switch (Opcode) {
263   default:
264     report_fatal_error("Unhandled custom legalization");
265   case ISD::ATOMIC_LOAD_ADD:
266   case ISD::ATOMIC_LOAD_AND:
267   case ISD::ATOMIC_LOAD_OR:
268   case ISD::ATOMIC_LOAD_XOR:
269   case ISD::ATOMIC_SWAP:
270   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
271     if (HasAlu32 || Opcode == ISD::ATOMIC_LOAD_ADD)
272       err_msg = "Unsupported atomic operations, please use 32/64 bit version";
273     else
274       err_msg = "Unsupported atomic operations, please use 64 bit version";
275     break;
276   }
277 
278   SDLoc DL(N);
279   fail(DL, DAG, err_msg);
280 }
281 
282 SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
283   switch (Op.getOpcode()) {
284   case ISD::BR_CC:
285     return LowerBR_CC(Op, DAG);
286   case ISD::GlobalAddress:
287     return LowerGlobalAddress(Op, DAG);
288   case ISD::SELECT_CC:
289     return LowerSELECT_CC(Op, DAG);
290   case ISD::DYNAMIC_STACKALLOC:
291     report_fatal_error("Unsupported dynamic stack allocation");
292   default:
293     llvm_unreachable("unimplemented operand");
294   }
295 }
296 
297 // Calling Convention Implementation
298 #include "BPFGenCallingConv.inc"
299 
300 SDValue BPFTargetLowering::LowerFormalArguments(
301     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
302     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
303     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
304   switch (CallConv) {
305   default:
306     report_fatal_error("Unsupported calling convention");
307   case CallingConv::C:
308   case CallingConv::Fast:
309     break;
310   }
311 
312   MachineFunction &MF = DAG.getMachineFunction();
313   MachineRegisterInfo &RegInfo = MF.getRegInfo();
314 
315   // Assign locations to all of the incoming arguments.
316   SmallVector<CCValAssign, 16> ArgLocs;
317   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
318   CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
319 
320   for (auto &VA : ArgLocs) {
321     if (VA.isRegLoc()) {
322       // Arguments passed in registers
323       EVT RegVT = VA.getLocVT();
324       MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
325       switch (SimpleTy) {
326       default: {
327         errs() << "LowerFormalArguments Unhandled argument type: "
328                << RegVT.getEVTString() << '\n';
329         llvm_unreachable(nullptr);
330       }
331       case MVT::i32:
332       case MVT::i64:
333         Register VReg = RegInfo.createVirtualRegister(
334             SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
335         RegInfo.addLiveIn(VA.getLocReg(), VReg);
336         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
337 
338         // If this is an value that has been promoted to wider types, insert an
339         // assert[sz]ext to capture this, then truncate to the right size.
340         if (VA.getLocInfo() == CCValAssign::SExt)
341           ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
342                                  DAG.getValueType(VA.getValVT()));
343         else if (VA.getLocInfo() == CCValAssign::ZExt)
344           ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
345                                  DAG.getValueType(VA.getValVT()));
346 
347         if (VA.getLocInfo() != CCValAssign::Full)
348           ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
349 
350         InVals.push_back(ArgValue);
351 
352 	break;
353       }
354     } else {
355       fail(DL, DAG, "defined with too many args");
356       InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
357     }
358   }
359 
360   if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
361     fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
362   }
363 
364   return Chain;
365 }
366 
367 const unsigned BPFTargetLowering::MaxArgs = 5;
368 
369 SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
370                                      SmallVectorImpl<SDValue> &InVals) const {
371   SelectionDAG &DAG = CLI.DAG;
372   auto &Outs = CLI.Outs;
373   auto &OutVals = CLI.OutVals;
374   auto &Ins = CLI.Ins;
375   SDValue Chain = CLI.Chain;
376   SDValue Callee = CLI.Callee;
377   bool &IsTailCall = CLI.IsTailCall;
378   CallingConv::ID CallConv = CLI.CallConv;
379   bool IsVarArg = CLI.IsVarArg;
380   MachineFunction &MF = DAG.getMachineFunction();
381 
382   // BPF target does not support tail call optimization.
383   IsTailCall = false;
384 
385   switch (CallConv) {
386   default:
387     report_fatal_error("Unsupported calling convention");
388   case CallingConv::Fast:
389   case CallingConv::C:
390     break;
391   }
392 
393   // Analyze operands of the call, assigning locations to each operand.
394   SmallVector<CCValAssign, 16> ArgLocs;
395   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
396 
397   CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
398 
399   unsigned NumBytes = CCInfo.getNextStackOffset();
400 
401   if (Outs.size() > MaxArgs)
402     fail(CLI.DL, DAG, "too many args to ", Callee);
403 
404   for (auto &Arg : Outs) {
405     ISD::ArgFlagsTy Flags = Arg.Flags;
406     if (!Flags.isByVal())
407       continue;
408 
409     fail(CLI.DL, DAG, "pass by value not supported ", Callee);
410   }
411 
412   auto PtrVT = getPointerTy(MF.getDataLayout());
413   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
414 
415   SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
416 
417   // Walk arg assignments
418   for (unsigned i = 0,
419                 e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
420        i != e; ++i) {
421     CCValAssign &VA = ArgLocs[i];
422     SDValue Arg = OutVals[i];
423 
424     // Promote the value if needed.
425     switch (VA.getLocInfo()) {
426     default:
427       llvm_unreachable("Unknown loc info");
428     case CCValAssign::Full:
429       break;
430     case CCValAssign::SExt:
431       Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
432       break;
433     case CCValAssign::ZExt:
434       Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
435       break;
436     case CCValAssign::AExt:
437       Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
438       break;
439     }
440 
441     // Push arguments into RegsToPass vector
442     if (VA.isRegLoc())
443       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
444     else
445       llvm_unreachable("call arg pass bug");
446   }
447 
448   SDValue InFlag;
449 
450   // Build a sequence of copy-to-reg nodes chained together with token chain and
451   // flag operands which copy the outgoing args into registers.  The InFlag in
452   // necessary since all emitted instructions must be stuck together.
453   for (auto &Reg : RegsToPass) {
454     Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
455     InFlag = Chain.getValue(1);
456   }
457 
458   // If the callee is a GlobalAddress node (quite common, every direct call is)
459   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
460   // Likewise ExternalSymbol -> TargetExternalSymbol.
461   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
462     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
463                                         G->getOffset(), 0);
464   } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
465     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
466     fail(CLI.DL, DAG, Twine("A call to built-in function '"
467                             + StringRef(E->getSymbol())
468                             + "' is not supported."));
469   }
470 
471   // Returns a chain & a flag for retval copy to use.
472   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
473   SmallVector<SDValue, 8> Ops;
474   Ops.push_back(Chain);
475   Ops.push_back(Callee);
476 
477   // Add argument registers to the end of the list so that they are
478   // known live into the call.
479   for (auto &Reg : RegsToPass)
480     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
481 
482   if (InFlag.getNode())
483     Ops.push_back(InFlag);
484 
485   Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
486   InFlag = Chain.getValue(1);
487 
488   // Create the CALLSEQ_END node.
489   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, CLI.DL);
490   InFlag = Chain.getValue(1);
491 
492   // Handle result values, copying them out of physregs into vregs that we
493   // return.
494   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
495                          InVals);
496 }
497 
498 SDValue
499 BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
500                                bool IsVarArg,
501                                const SmallVectorImpl<ISD::OutputArg> &Outs,
502                                const SmallVectorImpl<SDValue> &OutVals,
503                                const SDLoc &DL, SelectionDAG &DAG) const {
504   unsigned Opc = BPFISD::RET_FLAG;
505 
506   // CCValAssign - represent the assignment of the return value to a location
507   SmallVector<CCValAssign, 16> RVLocs;
508   MachineFunction &MF = DAG.getMachineFunction();
509 
510   // CCState - Info about the registers and stack slot.
511   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
512 
513   if (MF.getFunction().getReturnType()->isAggregateType()) {
514     fail(DL, DAG, "only integer returns supported");
515     return DAG.getNode(Opc, DL, MVT::Other, Chain);
516   }
517 
518   // Analize return values.
519   CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
520 
521   SDValue Flag;
522   SmallVector<SDValue, 4> RetOps(1, Chain);
523 
524   // Copy the result values into the output registers.
525   for (unsigned i = 0; i != RVLocs.size(); ++i) {
526     CCValAssign &VA = RVLocs[i];
527     assert(VA.isRegLoc() && "Can only return in registers!");
528 
529     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
530 
531     // Guarantee that all emitted copies are stuck together,
532     // avoiding something bad.
533     Flag = Chain.getValue(1);
534     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
535   }
536 
537   RetOps[0] = Chain; // Update chain.
538 
539   // Add the flag if we have it.
540   if (Flag.getNode())
541     RetOps.push_back(Flag);
542 
543   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
544 }
545 
546 SDValue BPFTargetLowering::LowerCallResult(
547     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
548     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
549     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
550 
551   MachineFunction &MF = DAG.getMachineFunction();
552   // Assign locations to each value returned by this call.
553   SmallVector<CCValAssign, 16> RVLocs;
554   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
555 
556   if (Ins.size() >= 2) {
557     fail(DL, DAG, "only small returns supported");
558     for (unsigned i = 0, e = Ins.size(); i != e; ++i)
559       InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
560     return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
561   }
562 
563   CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
564 
565   // Copy all of the result registers out of their specified physreg.
566   for (auto &Val : RVLocs) {
567     Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
568                                Val.getValVT(), InFlag).getValue(1);
569     InFlag = Chain.getValue(2);
570     InVals.push_back(Chain.getValue(0));
571   }
572 
573   return Chain;
574 }
575 
576 static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
577   switch (CC) {
578   default:
579     break;
580   case ISD::SETULT:
581   case ISD::SETULE:
582   case ISD::SETLT:
583   case ISD::SETLE:
584     CC = ISD::getSetCCSwappedOperands(CC);
585     std::swap(LHS, RHS);
586     break;
587   }
588 }
589 
590 SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
591   SDValue Chain = Op.getOperand(0);
592   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
593   SDValue LHS = Op.getOperand(2);
594   SDValue RHS = Op.getOperand(3);
595   SDValue Dest = Op.getOperand(4);
596   SDLoc DL(Op);
597 
598   if (!getHasJmpExt())
599     NegateCC(LHS, RHS, CC);
600 
601   return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
602                      DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
603 }
604 
605 SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
606   SDValue LHS = Op.getOperand(0);
607   SDValue RHS = Op.getOperand(1);
608   SDValue TrueV = Op.getOperand(2);
609   SDValue FalseV = Op.getOperand(3);
610   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
611   SDLoc DL(Op);
612 
613   if (!getHasJmpExt())
614     NegateCC(LHS, RHS, CC);
615 
616   SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
617   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
618   SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
619 
620   return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
621 }
622 
623 const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
624   switch ((BPFISD::NodeType)Opcode) {
625   case BPFISD::FIRST_NUMBER:
626     break;
627   case BPFISD::RET_FLAG:
628     return "BPFISD::RET_FLAG";
629   case BPFISD::CALL:
630     return "BPFISD::CALL";
631   case BPFISD::SELECT_CC:
632     return "BPFISD::SELECT_CC";
633   case BPFISD::BR_CC:
634     return "BPFISD::BR_CC";
635   case BPFISD::Wrapper:
636     return "BPFISD::Wrapper";
637   case BPFISD::MEMCPY:
638     return "BPFISD::MEMCPY";
639   }
640   return nullptr;
641 }
642 
643 SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
644                                               SelectionDAG &DAG) const {
645   auto N = cast<GlobalAddressSDNode>(Op);
646   assert(N->getOffset() == 0 && "Invalid offset for global address");
647 
648   SDLoc DL(Op);
649   const GlobalValue *GV = N->getGlobal();
650   SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);
651 
652   return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
653 }
654 
655 unsigned
656 BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
657                                  unsigned Reg, bool isSigned) const {
658   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
659   const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
660   int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
661   MachineFunction *F = BB->getParent();
662   DebugLoc DL = MI.getDebugLoc();
663 
664   MachineRegisterInfo &RegInfo = F->getRegInfo();
665 
666   if (!isSigned) {
667     Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
668     BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
669     return PromotedReg0;
670   }
671   Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
672   Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
673   Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
674   BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
675   BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
676     .addReg(PromotedReg0).addImm(32);
677   BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
678     .addReg(PromotedReg1).addImm(32);
679 
680   return PromotedReg2;
681 }
682 
683 MachineBasicBlock *
684 BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
685                                                      MachineBasicBlock *BB)
686                                                      const {
687   MachineFunction *MF = MI.getParent()->getParent();
688   MachineRegisterInfo &MRI = MF->getRegInfo();
689   MachineInstrBuilder MIB(*MF, MI);
690   unsigned ScratchReg;
691 
692   // This function does custom insertion during lowering BPFISD::MEMCPY which
693   // only has two register operands from memcpy semantics, the copy source
694   // address and the copy destination address.
695   //
696   // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
697   // a third scratch register to serve as the destination register of load and
698   // source register of store.
699   //
700   // The scratch register here is with the Define | Dead | EarlyClobber flags.
701   // The EarlyClobber flag has the semantic property that the operand it is
702   // attached to is clobbered before the rest of the inputs are read. Hence it
703   // must be unique among the operands to the instruction. The Define flag is
704   // needed to coerce the machine verifier that an Undef value isn't a problem
705   // as we anyway is loading memory into it. The Dead flag is needed as the
706   // value in scratch isn't supposed to be used by any other instruction.
707   ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
708   MIB.addReg(ScratchReg,
709              RegState::Define | RegState::Dead | RegState::EarlyClobber);
710 
711   return BB;
712 }
713 
714 MachineBasicBlock *
715 BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
716                                                MachineBasicBlock *BB) const {
717   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
718   DebugLoc DL = MI.getDebugLoc();
719   unsigned Opc = MI.getOpcode();
720   bool isSelectRROp = (Opc == BPF::Select ||
721                        Opc == BPF::Select_64_32 ||
722                        Opc == BPF::Select_32 ||
723                        Opc == BPF::Select_32_64);
724 
725   bool isMemcpyOp = Opc == BPF::MEMCPY;
726 
727 #ifndef NDEBUG
728   bool isSelectRIOp = (Opc == BPF::Select_Ri ||
729                        Opc == BPF::Select_Ri_64_32 ||
730                        Opc == BPF::Select_Ri_32 ||
731                        Opc == BPF::Select_Ri_32_64);
732 
733 
734   assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
735          "Unexpected instr type to insert");
736 #endif
737 
738   if (isMemcpyOp)
739     return EmitInstrWithCustomInserterMemcpy(MI, BB);
740 
741   bool is32BitCmp = (Opc == BPF::Select_32 ||
742                      Opc == BPF::Select_32_64 ||
743                      Opc == BPF::Select_Ri_32 ||
744                      Opc == BPF::Select_Ri_32_64);
745 
746   // To "insert" a SELECT instruction, we actually have to insert the diamond
747   // control-flow pattern.  The incoming instruction knows the destination vreg
748   // to set, the condition code register to branch on, the true/false values to
749   // select between, and a branch opcode to use.
750   const BasicBlock *LLVM_BB = BB->getBasicBlock();
751   MachineFunction::iterator I = ++BB->getIterator();
752 
753   // ThisMBB:
754   // ...
755   //  TrueVal = ...
756   //  jmp_XX r1, r2 goto Copy1MBB
757   //  fallthrough --> Copy0MBB
758   MachineBasicBlock *ThisMBB = BB;
759   MachineFunction *F = BB->getParent();
760   MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
761   MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
762 
763   F->insert(I, Copy0MBB);
764   F->insert(I, Copy1MBB);
765   // Update machine-CFG edges by transferring all successors of the current
766   // block to the new block which will contain the Phi node for the select.
767   Copy1MBB->splice(Copy1MBB->begin(), BB,
768                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
769   Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
770   // Next, add the true and fallthrough blocks as its successors.
771   BB->addSuccessor(Copy0MBB);
772   BB->addSuccessor(Copy1MBB);
773 
774   // Insert Branch if Flag
775   int CC = MI.getOperand(3).getImm();
776   int NewCC;
777   switch (CC) {
778 #define SET_NEWCC(X, Y) \
779   case ISD::X: \
780     if (is32BitCmp && HasJmp32) \
781       NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
782     else \
783       NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
784     break
785   SET_NEWCC(SETGT, JSGT);
786   SET_NEWCC(SETUGT, JUGT);
787   SET_NEWCC(SETGE, JSGE);
788   SET_NEWCC(SETUGE, JUGE);
789   SET_NEWCC(SETEQ, JEQ);
790   SET_NEWCC(SETNE, JNE);
791   SET_NEWCC(SETLT, JSLT);
792   SET_NEWCC(SETULT, JULT);
793   SET_NEWCC(SETLE, JSLE);
794   SET_NEWCC(SETULE, JULE);
795   default:
796     report_fatal_error("unimplemented select CondCode " + Twine(CC));
797   }
798 
799   Register LHS = MI.getOperand(1).getReg();
800   bool isSignedCmp = (CC == ISD::SETGT ||
801                       CC == ISD::SETGE ||
802                       CC == ISD::SETLT ||
803                       CC == ISD::SETLE);
804 
805   // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
806   // to be promoted, however if the 32-bit comparison operands are destination
807   // registers then they are implicitly zero-extended already, there is no
808   // need of explicit zero-extend sequence for them.
809   //
810   // We simply do extension for all situations in this method, but we will
811   // try to remove those unnecessary in BPFMIPeephole pass.
812   if (is32BitCmp && !HasJmp32)
813     LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
814 
815   if (isSelectRROp) {
816     Register RHS = MI.getOperand(2).getReg();
817 
818     if (is32BitCmp && !HasJmp32)
819       RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
820 
821     BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
822   } else {
823     int64_t imm32 = MI.getOperand(2).getImm();
824     // Check before we build J*_ri instruction.
825     assert (isInt<32>(imm32));
826     BuildMI(BB, DL, TII.get(NewCC))
827         .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
828   }
829 
830   // Copy0MBB:
831   //  %FalseValue = ...
832   //  # fallthrough to Copy1MBB
833   BB = Copy0MBB;
834 
835   // Update machine-CFG edges
836   BB->addSuccessor(Copy1MBB);
837 
838   // Copy1MBB:
839   //  %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
840   // ...
841   BB = Copy1MBB;
842   BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
843       .addReg(MI.getOperand(5).getReg())
844       .addMBB(Copy0MBB)
845       .addReg(MI.getOperand(4).getReg())
846       .addMBB(ThisMBB);
847 
848   MI.eraseFromParent(); // The pseudo instruction is gone now.
849   return BB;
850 }
851 
852 EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
853                                           EVT VT) const {
854   return getHasAlu32() ? MVT::i32 : MVT::i64;
855 }
856 
857 MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
858                                               EVT VT) const {
859   return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
860 }
861 
862 bool BPFTargetLowering::isLegalAddressingMode(const DataLayout &DL,
863                                               const AddrMode &AM, Type *Ty,
864                                               unsigned AS,
865                                               Instruction *I) const {
866   // No global is ever allowed as a base.
867   if (AM.BaseGV)
868     return false;
869 
870   switch (AM.Scale) {
871   case 0: // "r+i" or just "i", depending on HasBaseReg.
872     break;
873   case 1:
874     if (!AM.HasBaseReg) // allow "r+i".
875       break;
876     return false; // disallow "r+r" or "r+r+i".
877   default:
878     return false;
879   }
880 
881   return true;
882 }
883