//===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interfaces that BPF uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "BPFISelLowering.h" #include "BPF.h" #include "BPFSubtarget.h" #include "BPFTargetMachine.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "bpf-lower" static cl::opt BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order", cl::Hidden, cl::init(false), cl::desc("Expand memcpy into load/store pairs in order")); static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) { MachineFunction &MF = DAG.getMachineFunction(); DAG.getContext()->diagnose( DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); } static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg, SDValue Val) { MachineFunction &MF = DAG.getMachineFunction(); std::string Str; raw_string_ostream OS(Str); OS << Msg; Val->print(OS); OS.flush(); DAG.getContext()->diagnose( DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc())); } BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM, const BPFSubtarget &STI) : TargetLowering(TM) { // Set up the register classes. addRegisterClass(MVT::i64, &BPF::GPRRegClass); if (STI.getHasAlu32()) addRegisterClass(MVT::i32, &BPF::GPR32RegClass); // Compute derived properties from the register classes computeRegisterProperties(STI.getRegisterInfo()); setStackPointerRegisterToSaveRestore(BPF::R11); setOperationAction(ISD::BR_CC, MVT::i64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BRIND, MVT::Other, Expand); setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); // Set unsupported atomic operations as Custom so // we can emit better error messages than fatal error // from selectiondag. for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) { if (VT == MVT::i32) { if (STI.getHasAlu32()) continue; } else { setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom); } setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom); setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom); setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom); setOperationAction(ISD::ATOMIC_SWAP, VT, Custom); setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom); } for (auto VT : { MVT::i32, MVT::i64 }) { if (VT == MVT::i32 && !STI.getHasAlu32()) continue; setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::SHL_PARTS, VT, Expand); setOperationAction(ISD::SRL_PARTS, VT, Expand); setOperationAction(ISD::SRA_PARTS, VT, Expand); setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::SETCC, VT, Expand); setOperationAction(ISD::SELECT, VT, Expand); setOperationAction(ISD::SELECT_CC, VT, Custom); } if (STI.getHasAlu32()) { setOperationAction(ISD::BSWAP, MVT::i32, Promote); setOperationAction(ISD::BR_CC, MVT::i32, STI.getHasJmp32() ? Custom : Promote); } setOperationAction(ISD::CTTZ, MVT::i64, Custom); setOperationAction(ISD::CTLZ, MVT::i64, Custom); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand); // Extended load operations for i1 types must be promoted for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); } setBooleanContents(ZeroOrOneBooleanContent); // Function alignments setMinFunctionAlignment(Align(8)); setPrefFunctionAlignment(Align(8)); if (BPFExpandMemcpyInOrder) { // LLVM generic code will try to expand memcpy into load/store pairs at this // stage which is before quite a few IR optimization passes, therefore the // loads and stores could potentially be moved apart from each other which // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT // compilers. // // When -bpf-expand-memcpy-in-order specified, we want to defer the expand // of memcpy to later stage in IR optimization pipeline so those load/store // pairs won't be touched and could be kept in order. Hence, we set // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy. MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0; MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0; MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0; MaxLoadsPerMemcmp = 0; } else { // inline memcpy() for kernel to see explicit copy unsigned CommonMaxStores = STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc(); MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores; MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores; MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores; MaxLoadsPerMemcmp = MaxLoadsPerMemcmpOptSize = CommonMaxStores; } // CPU/Feature control HasAlu32 = STI.getHasAlu32(); HasJmp32 = STI.getHasJmp32(); HasJmpExt = STI.getHasJmpExt(); } bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { return false; } bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 > NumBits2; } bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 > NumBits2; } bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { if (!getHasAlu32() || !Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 == 32 && NumBits2 == 64; } bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const { if (!getHasAlu32() || !VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 == 32 && NumBits2 == 64; } BPFTargetLowering::ConstraintType BPFTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'w': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } std::pair BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) // GCC Constraint Letters switch (Constraint[0]) { case 'r': // GENERAL_REGS return std::make_pair(0U, &BPF::GPRRegClass); case 'w': if (HasAlu32) return std::make_pair(0U, &BPF::GPR32RegClass); break; default: break; } return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); } void BPFTargetLowering::ReplaceNodeResults( SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { const char *err_msg; uint32_t Opcode = N->getOpcode(); switch (Opcode) { default: report_fatal_error("Unhandled custom legalization"); case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_SWAP: case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: if (HasAlu32 || Opcode == ISD::ATOMIC_LOAD_ADD) err_msg = "Unsupported atomic operations, please use 32/64 bit version"; else err_msg = "Unsupported atomic operations, please use 64 bit version"; break; } SDLoc DL(N); fail(DL, DAG, err_msg); } SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::DYNAMIC_STACKALLOC: report_fatal_error("Unsupported dynamic stack allocation"); default: llvm_unreachable("unimplemented operand"); } } // Calling Convention Implementation #include "BPFGenCallingConv.inc" SDValue BPFTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { switch (CallConv) { default: report_fatal_error("Unsupported calling convention"); case CallingConv::C: case CallingConv::Fast: break; } MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64); for (auto &VA : ArgLocs) { if (VA.isRegLoc()) { // Arguments passed in registers EVT RegVT = VA.getLocVT(); MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy; switch (SimpleTy) { default: { errs() << "LowerFormalArguments Unhandled argument type: " << RegVT.getEVTString() << '\n'; llvm_unreachable(nullptr); } case MVT::i32: case MVT::i64: Register VReg = RegInfo.createVirtualRegister( SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT); // If this is an value that has been promoted to wider types, insert an // assert[sz]ext to capture this, then truncate to the right size. if (VA.getLocInfo() == CCValAssign::SExt) ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); else if (VA.getLocInfo() == CCValAssign::ZExt) ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue, DAG.getValueType(VA.getValVT())); if (VA.getLocInfo() != CCValAssign::Full) ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue); InVals.push_back(ArgValue); break; } } else { fail(DL, DAG, "defined with too many args"); InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT())); } } if (IsVarArg || MF.getFunction().hasStructRetAttr()) { fail(DL, DAG, "functions with VarArgs or StructRet are not supported"); } return Chain; } const unsigned BPFTargetLowering::MaxArgs = 5; SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; auto &Outs = CLI.Outs; auto &OutVals = CLI.OutVals; auto &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); // BPF target does not support tail call optimization. IsTailCall = false; switch (CallConv) { default: report_fatal_error("Unsupported calling convention"); case CallingConv::Fast: case CallingConv::C: break; } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64); unsigned NumBytes = CCInfo.getNextStackOffset(); if (Outs.size() > MaxArgs) fail(CLI.DL, DAG, "too many args to ", Callee); for (auto &Arg : Outs) { ISD::ArgFlagsTy Flags = Arg.Flags; if (!Flags.isByVal()) continue; fail(CLI.DL, DAG, "pass by value not supported ", Callee); } auto PtrVT = getPointerTy(MF.getDataLayout()); Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL); SmallVector, MaxArgs> RegsToPass; // Walk arg assignments for (unsigned i = 0, e = std::min(static_cast(ArgLocs.size()), MaxArgs); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg); break; } // Push arguments into RegsToPass vector if (VA.isRegLoc()) RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); else llvm_unreachable("call arg pass bug"); } SDValue InFlag; // Build a sequence of copy-to-reg nodes chained together with token chain and // flag operands which copy the outgoing args into registers. The InFlag in // necessary since all emitted instructions must be stuck together. for (auto &Reg : RegsToPass) { Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag); InFlag = Chain.getValue(1); } // If the callee is a GlobalAddress node (quite common, every direct call is) // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. // Likewise ExternalSymbol -> TargetExternalSymbol. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT, G->getOffset(), 0); } else if (ExternalSymbolSDNode *E = dyn_cast(Callee)) { Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0); fail(CLI.DL, DAG, Twine("A call to built-in function '" + StringRef(E->getSymbol()) + "' is not supported.")); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (auto &Reg : RegsToPass) Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType())); if (InFlag.getNode()) Ops.push_back(InFlag); Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, CLI.DL); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG, InVals); } SDValue BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &DL, SelectionDAG &DAG) const { unsigned Opc = BPFISD::RET_FLAG; // CCValAssign - represent the assignment of the return value to a location SmallVector RVLocs; MachineFunction &MF = DAG.getMachineFunction(); // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); if (MF.getFunction().getReturnType()->isAggregateType()) { fail(DL, DAG, "only integer returns supported"); return DAG.getNode(Opc, DL, MVT::Other, Chain); } // Analize return values. CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64); SDValue Flag; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag); // Guarantee that all emitted copies are stuck together, // avoiding something bad. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(Opc, DL, MVT::Other, RetOps); } SDValue BPFTargetLowering::LowerCallResult( SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); if (Ins.size() >= 2) { fail(DL, DAG, "only small returns supported"); for (unsigned i = 0, e = Ins.size(); i != e; ++i) InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT)); return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1); } CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64); // Copy all of the result registers out of their specified physreg. for (auto &Val : RVLocs) { Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(), Val.getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } return Chain; } static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) { switch (CC) { default: break; case ISD::SETULT: case ISD::SETULE: case ISD::SETLT: case ISD::SETLE: CC = ISD::getSetCCSwappedOperands(CC); std::swap(LHS, RHS); break; } } SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue Dest = Op.getOperand(4); SDLoc DL(Op); if (!getHasJmpExt()) NegateCC(LHS, RHS, CC); return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS, DAG.getConstant(CC, DL, LHS.getValueType()), Dest); } SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue TrueV = Op.getOperand(2); SDValue FalseV = Op.getOperand(3); ISD::CondCode CC = cast(Op.getOperand(4))->get(); SDLoc DL(Op); if (!getHasJmpExt()) NegateCC(LHS, RHS, CC); SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType()); SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops); } const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((BPFISD::NodeType)Opcode) { case BPFISD::FIRST_NUMBER: break; case BPFISD::RET_FLAG: return "BPFISD::RET_FLAG"; case BPFISD::CALL: return "BPFISD::CALL"; case BPFISD::SELECT_CC: return "BPFISD::SELECT_CC"; case BPFISD::BR_CC: return "BPFISD::BR_CC"; case BPFISD::Wrapper: return "BPFISD::Wrapper"; case BPFISD::MEMCPY: return "BPFISD::MEMCPY"; } return nullptr; } SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { auto N = cast(Op); assert(N->getOffset() == 0 && "Invalid offset for global address"); SDLoc DL(Op); const GlobalValue *GV = N->getGlobal(); SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64); return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA); } unsigned BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB, unsigned Reg, bool isSigned) const { const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); const TargetRegisterClass *RC = getRegClassFor(MVT::i64); int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri; MachineFunction *F = BB->getParent(); DebugLoc DL = MI.getDebugLoc(); MachineRegisterInfo &RegInfo = F->getRegInfo(); if (!isSigned) { Register PromotedReg0 = RegInfo.createVirtualRegister(RC); BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg); return PromotedReg0; } Register PromotedReg0 = RegInfo.createVirtualRegister(RC); Register PromotedReg1 = RegInfo.createVirtualRegister(RC); Register PromotedReg2 = RegInfo.createVirtualRegister(RC); BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg); BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1) .addReg(PromotedReg0).addImm(32); BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2) .addReg(PromotedReg1).addImm(32); return PromotedReg2; } MachineBasicBlock * BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI, MachineBasicBlock *BB) const { MachineFunction *MF = MI.getParent()->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); MachineInstrBuilder MIB(*MF, MI); unsigned ScratchReg; // This function does custom insertion during lowering BPFISD::MEMCPY which // only has two register operands from memcpy semantics, the copy source // address and the copy destination address. // // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need // a third scratch register to serve as the destination register of load and // source register of store. // // The scratch register here is with the Define | Dead | EarlyClobber flags. // The EarlyClobber flag has the semantic property that the operand it is // attached to is clobbered before the rest of the inputs are read. Hence it // must be unique among the operands to the instruction. The Define flag is // needed to coerce the machine verifier that an Undef value isn't a problem // as we anyway is loading memory into it. The Dead flag is needed as the // value in scratch isn't supposed to be used by any other instruction. ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass); MIB.addReg(ScratchReg, RegState::Define | RegState::Dead | RegState::EarlyClobber); return BB; } MachineBasicBlock * BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); unsigned Opc = MI.getOpcode(); bool isSelectRROp = (Opc == BPF::Select || Opc == BPF::Select_64_32 || Opc == BPF::Select_32 || Opc == BPF::Select_32_64); bool isMemcpyOp = Opc == BPF::MEMCPY; #ifndef NDEBUG bool isSelectRIOp = (Opc == BPF::Select_Ri || Opc == BPF::Select_Ri_64_32 || Opc == BPF::Select_Ri_32 || Opc == BPF::Select_Ri_32_64); assert((isSelectRROp || isSelectRIOp || isMemcpyOp) && "Unexpected instr type to insert"); #endif if (isMemcpyOp) return EmitInstrWithCustomInserterMemcpy(MI, BB); bool is32BitCmp = (Opc == BPF::Select_32 || Opc == BPF::Select_32_64 || Opc == BPF::Select_Ri_32 || Opc == BPF::Select_Ri_32_64); // To "insert" a SELECT instruction, we actually have to insert the diamond // control-flow pattern. The incoming instruction knows the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator I = ++BB->getIterator(); // ThisMBB: // ... // TrueVal = ... // jmp_XX r1, r2 goto Copy1MBB // fallthrough --> Copy0MBB MachineBasicBlock *ThisMBB = BB; MachineFunction *F = BB->getParent(); MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(I, Copy0MBB); F->insert(I, Copy1MBB); // Update machine-CFG edges by transferring all successors of the current // block to the new block which will contain the Phi node for the select. Copy1MBB->splice(Copy1MBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); Copy1MBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(Copy0MBB); BB->addSuccessor(Copy1MBB); // Insert Branch if Flag int CC = MI.getOperand(3).getImm(); int NewCC; switch (CC) { #define SET_NEWCC(X, Y) \ case ISD::X: \ if (is32BitCmp && HasJmp32) \ NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \ else \ NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \ break SET_NEWCC(SETGT, JSGT); SET_NEWCC(SETUGT, JUGT); SET_NEWCC(SETGE, JSGE); SET_NEWCC(SETUGE, JUGE); SET_NEWCC(SETEQ, JEQ); SET_NEWCC(SETNE, JNE); SET_NEWCC(SETLT, JSLT); SET_NEWCC(SETULT, JULT); SET_NEWCC(SETLE, JSLE); SET_NEWCC(SETULE, JULE); default: report_fatal_error("unimplemented select CondCode " + Twine(CC)); } Register LHS = MI.getOperand(1).getReg(); bool isSignedCmp = (CC == ISD::SETGT || CC == ISD::SETGE || CC == ISD::SETLT || CC == ISD::SETLE); // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need // to be promoted, however if the 32-bit comparison operands are destination // registers then they are implicitly zero-extended already, there is no // need of explicit zero-extend sequence for them. // // We simply do extension for all situations in this method, but we will // try to remove those unnecessary in BPFMIPeephole pass. if (is32BitCmp && !HasJmp32) LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp); if (isSelectRROp) { Register RHS = MI.getOperand(2).getReg(); if (is32BitCmp && !HasJmp32) RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp); BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB); } else { int64_t imm32 = MI.getOperand(2).getImm(); // Check before we build J*_ri instruction. assert (isInt<32>(imm32)); BuildMI(BB, DL, TII.get(NewCC)) .addReg(LHS).addImm(imm32).addMBB(Copy1MBB); } // Copy0MBB: // %FalseValue = ... // # fallthrough to Copy1MBB BB = Copy0MBB; // Update machine-CFG edges BB->addSuccessor(Copy1MBB); // Copy1MBB: // %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ] // ... BB = Copy1MBB; BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg()) .addReg(MI.getOperand(5).getReg()) .addMBB(Copy0MBB) .addReg(MI.getOperand(4).getReg()) .addMBB(ThisMBB); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, EVT VT) const { return getHasAlu32() ? MVT::i32 : MVT::i64; } MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL, EVT VT) const { return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64; } bool BPFTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // No global is ever allowed as a base. if (AM.BaseGV) return false; switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (!AM.HasBaseReg) // allow "r+i". break; return false; // disallow "r+r" or "r+r+i". default: return false; } return true; }