xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10 
11 #include "AMDGPU.h"
12 #include "GCNSubtarget.h"
13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 
19 #define DEBUG_TYPE "si-fold-operands"
20 using namespace llvm;
21 
22 namespace {
23 
24 struct FoldCandidate {
25   MachineInstr *UseMI;
26   union {
27     MachineOperand *OpToFold;
28     uint64_t ImmToFold;
29     int FrameIndexToFold;
30   };
31   int ShrinkOpcode;
32   unsigned UseOpNo;
33   MachineOperand::MachineOperandType Kind;
34   bool Commuted;
35 
36   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
37                 bool Commuted_ = false,
38                 int ShrinkOp = -1) :
39     UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
40     Kind(FoldOp->getType()),
41     Commuted(Commuted_) {
42     if (FoldOp->isImm()) {
43       ImmToFold = FoldOp->getImm();
44     } else if (FoldOp->isFI()) {
45       FrameIndexToFold = FoldOp->getIndex();
46     } else {
47       assert(FoldOp->isReg() || FoldOp->isGlobal());
48       OpToFold = FoldOp;
49     }
50   }
51 
52   bool isFI() const {
53     return Kind == MachineOperand::MO_FrameIndex;
54   }
55 
56   bool isImm() const {
57     return Kind == MachineOperand::MO_Immediate;
58   }
59 
60   bool isReg() const {
61     return Kind == MachineOperand::MO_Register;
62   }
63 
64   bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
65 
66   bool needsShrink() const { return ShrinkOpcode != -1; }
67 };
68 
69 class SIFoldOperands : public MachineFunctionPass {
70 public:
71   static char ID;
72   MachineRegisterInfo *MRI;
73   const SIInstrInfo *TII;
74   const SIRegisterInfo *TRI;
75   const GCNSubtarget *ST;
76   const SIMachineFunctionInfo *MFI;
77 
78   bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
79                          const MachineOperand &OpToFold) const;
80 
81   bool updateOperand(FoldCandidate &Fold) const;
82 
83   bool canUseImmWithOpSel(FoldCandidate &Fold) const;
84 
85   bool tryFoldImmWithOpSel(FoldCandidate &Fold) const;
86 
87   bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
88                         MachineInstr *MI, unsigned OpNo,
89                         MachineOperand *OpToFold) const;
90   bool isUseSafeToFold(const MachineInstr &MI,
91                        const MachineOperand &UseMO) const;
92   bool
93   getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
94                 Register UseReg, uint8_t OpTy) const;
95   bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI,
96                       unsigned UseOpIdx,
97                       SmallVectorImpl<FoldCandidate> &FoldList) const;
98   void foldOperand(MachineOperand &OpToFold,
99                    MachineInstr *UseMI,
100                    int UseOpIdx,
101                    SmallVectorImpl<FoldCandidate> &FoldList,
102                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
103 
104   MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const;
105   bool tryConstantFoldOp(MachineInstr *MI) const;
106   bool tryFoldCndMask(MachineInstr &MI) const;
107   bool tryFoldZeroHighBits(MachineInstr &MI) const;
108   bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
109   bool tryFoldFoldableCopy(MachineInstr &MI,
110                            MachineOperand *&CurrentKnownM0Val) const;
111 
112   const MachineOperand *isClamp(const MachineInstr &MI) const;
113   bool tryFoldClamp(MachineInstr &MI);
114 
115   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
116   bool tryFoldOMod(MachineInstr &MI);
117   bool tryFoldRegSequence(MachineInstr &MI);
118   bool tryFoldPhiAGPR(MachineInstr &MI);
119   bool tryFoldLoad(MachineInstr &MI);
120 
121   bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB);
122 
123 public:
124   SIFoldOperands() : MachineFunctionPass(ID) {
125     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
126   }
127 
128   bool runOnMachineFunction(MachineFunction &MF) override;
129 
130   StringRef getPassName() const override { return "SI Fold Operands"; }
131 
132   void getAnalysisUsage(AnalysisUsage &AU) const override {
133     AU.setPreservesCFG();
134     MachineFunctionPass::getAnalysisUsage(AU);
135   }
136 };
137 
138 } // End anonymous namespace.
139 
140 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
141                 "SI Fold Operands", false, false)
142 
143 char SIFoldOperands::ID = 0;
144 
145 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
146 
147 static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI,
148                                              const TargetRegisterInfo &TRI,
149                                              const MachineOperand &MO) {
150   const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg());
151   if (const TargetRegisterClass *SubRC =
152           TRI.getSubRegisterClass(RC, MO.getSubReg()))
153     RC = SubRC;
154   return RC;
155 }
156 
157 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
158 static unsigned macToMad(unsigned Opc) {
159   switch (Opc) {
160   case AMDGPU::V_MAC_F32_e64:
161     return AMDGPU::V_MAD_F32_e64;
162   case AMDGPU::V_MAC_F16_e64:
163     return AMDGPU::V_MAD_F16_e64;
164   case AMDGPU::V_FMAC_F32_e64:
165     return AMDGPU::V_FMA_F32_e64;
166   case AMDGPU::V_FMAC_F16_e64:
167     return AMDGPU::V_FMA_F16_gfx9_e64;
168   case AMDGPU::V_FMAC_F16_t16_e64:
169     return AMDGPU::V_FMA_F16_gfx9_e64;
170   case AMDGPU::V_FMAC_LEGACY_F32_e64:
171     return AMDGPU::V_FMA_LEGACY_F32_e64;
172   case AMDGPU::V_FMAC_F64_e64:
173     return AMDGPU::V_FMA_F64_e64;
174   }
175   return AMDGPU::INSTRUCTION_LIST_END;
176 }
177 
178 // TODO: Add heuristic that the frame index might not fit in the addressing mode
179 // immediate offset to avoid materializing in loops.
180 bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
181                                        const MachineOperand &OpToFold) const {
182   if (!OpToFold.isFI())
183     return false;
184 
185   const unsigned Opc = UseMI.getOpcode();
186   if (TII->isMUBUF(UseMI))
187     return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
188   if (!TII->isFLATScratch(UseMI))
189     return false;
190 
191   int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
192   if (OpNo == SIdx)
193     return true;
194 
195   int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
196   return OpNo == VIdx && SIdx == -1;
197 }
198 
199 FunctionPass *llvm::createSIFoldOperandsPass() {
200   return new SIFoldOperands();
201 }
202 
203 bool SIFoldOperands::canUseImmWithOpSel(FoldCandidate &Fold) const {
204   MachineInstr *MI = Fold.UseMI;
205   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
206   const uint64_t TSFlags = MI->getDesc().TSFlags;
207 
208   assert(Old.isReg() && Fold.isImm());
209 
210   if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) ||
211       (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) ||
212       (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT)))
213     return false;
214 
215   unsigned Opcode = MI->getOpcode();
216   int OpNo = MI->getOperandNo(&Old);
217   uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType;
218   switch (OpType) {
219   default:
220     return false;
221   case AMDGPU::OPERAND_REG_IMM_V2FP16:
222   case AMDGPU::OPERAND_REG_IMM_V2INT16:
223   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
224   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
225     break;
226   }
227 
228   return true;
229 }
230 
231 bool SIFoldOperands::tryFoldImmWithOpSel(FoldCandidate &Fold) const {
232   MachineInstr *MI = Fold.UseMI;
233   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
234   unsigned Opcode = MI->getOpcode();
235   int OpNo = MI->getOperandNo(&Old);
236   uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType;
237 
238   // If the literal can be inlined as-is, apply it and short-circuit the
239   // tests below. The main motivation for this is to avoid unintuitive
240   // uses of opsel.
241   if (AMDGPU::isInlinableLiteralV216(Fold.ImmToFold, OpType)) {
242     Old.ChangeToImmediate(Fold.ImmToFold);
243     return true;
244   }
245 
246   // Refer to op_sel/op_sel_hi and check if we can change the immediate and
247   // op_sel in a way that allows an inline constant.
248   int ModIdx = -1;
249   unsigned SrcIdx = ~0;
250   if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) {
251     ModIdx = AMDGPU::OpName::src0_modifiers;
252     SrcIdx = 0;
253   } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) {
254     ModIdx = AMDGPU::OpName::src1_modifiers;
255     SrcIdx = 1;
256   } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) {
257     ModIdx = AMDGPU::OpName::src2_modifiers;
258     SrcIdx = 2;
259   }
260   assert(ModIdx != -1);
261   ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
262   MachineOperand &Mod = MI->getOperand(ModIdx);
263   unsigned ModVal = Mod.getImm();
264 
265   uint16_t ImmLo = static_cast<uint16_t>(
266       Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0));
267   uint16_t ImmHi = static_cast<uint16_t>(
268       Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0));
269   uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo;
270   unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1);
271 
272   // Helper function that attempts to inline the given value with a newly
273   // chosen opsel pattern.
274   auto tryFoldToInline = [&](uint32_t Imm) -> bool {
275     if (AMDGPU::isInlinableLiteralV216(Imm, OpType)) {
276       Mod.setImm(NewModVal | SISrcMods::OP_SEL_1);
277       Old.ChangeToImmediate(Imm);
278       return true;
279     }
280 
281     // Try to shuffle the halves around and leverage opsel to get an inline
282     // constant.
283     uint16_t Lo = static_cast<uint16_t>(Imm);
284     uint16_t Hi = static_cast<uint16_t>(Imm >> 16);
285     if (Lo == Hi) {
286       if (AMDGPU::isInlinableLiteralV216(Lo, OpType)) {
287         Mod.setImm(NewModVal);
288         Old.ChangeToImmediate(Lo);
289         return true;
290       }
291 
292       if (static_cast<int16_t>(Lo) < 0) {
293         int32_t SExt = static_cast<int16_t>(Lo);
294         if (AMDGPU::isInlinableLiteralV216(SExt, OpType)) {
295           Mod.setImm(NewModVal);
296           Old.ChangeToImmediate(SExt);
297           return true;
298         }
299       }
300 
301       // This check is only useful for integer instructions
302       if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16 ||
303           OpType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16) {
304         if (AMDGPU::isInlinableLiteralV216(Lo << 16, OpType)) {
305           Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1);
306           Old.ChangeToImmediate(static_cast<uint32_t>(Lo) << 16);
307           return true;
308         }
309       }
310     } else {
311       uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi;
312       if (AMDGPU::isInlinableLiteralV216(Swapped, OpType)) {
313         Mod.setImm(NewModVal | SISrcMods::OP_SEL_0);
314         Old.ChangeToImmediate(Swapped);
315         return true;
316       }
317     }
318 
319     return false;
320   };
321 
322   if (tryFoldToInline(Imm))
323     return true;
324 
325   // Replace integer addition by subtraction and vice versa if it allows
326   // folding the immediate to an inline constant.
327   //
328   // We should only ever get here for SrcIdx == 1 due to canonicalization
329   // earlier in the pipeline, but we double-check here to be safe / fully
330   // general.
331   bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16;
332   bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16;
333   if (SrcIdx == 1 && (IsUAdd || IsUSub)) {
334     unsigned ClampIdx =
335         AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp);
336     bool Clamp = MI->getOperand(ClampIdx).getImm() != 0;
337 
338     if (!Clamp) {
339       uint16_t NegLo = -static_cast<uint16_t>(Imm);
340       uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16);
341       uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo;
342 
343       if (tryFoldToInline(NegImm)) {
344         unsigned NegOpcode =
345             IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16;
346         MI->setDesc(TII->get(NegOpcode));
347         return true;
348       }
349     }
350   }
351 
352   return false;
353 }
354 
355 bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const {
356   MachineInstr *MI = Fold.UseMI;
357   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
358   assert(Old.isReg());
359 
360   if (Fold.isImm() && canUseImmWithOpSel(Fold)) {
361     if (tryFoldImmWithOpSel(Fold))
362       return true;
363 
364     // We can't represent the candidate as an inline constant. Try as a literal
365     // with the original opsel, checking constant bus limitations.
366     MachineOperand New = MachineOperand::CreateImm(Fold.ImmToFold);
367     int OpNo = MI->getOperandNo(&Old);
368     if (!TII->isOperandLegal(*MI, OpNo, &New))
369       return false;
370     Old.ChangeToImmediate(Fold.ImmToFold);
371     return true;
372   }
373 
374   if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
375     MachineBasicBlock *MBB = MI->getParent();
376     auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16);
377     if (Liveness != MachineBasicBlock::LQR_Dead) {
378       LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
379       return false;
380     }
381 
382     int Op32 = Fold.ShrinkOpcode;
383     MachineOperand &Dst0 = MI->getOperand(0);
384     MachineOperand &Dst1 = MI->getOperand(1);
385     assert(Dst0.isDef() && Dst1.isDef());
386 
387     bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg());
388 
389     const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg());
390     Register NewReg0 = MRI->createVirtualRegister(Dst0RC);
391 
392     MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32);
393 
394     if (HaveNonDbgCarryUse) {
395       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY),
396               Dst1.getReg())
397         .addReg(AMDGPU::VCC, RegState::Kill);
398     }
399 
400     // Keep the old instruction around to avoid breaking iterators, but
401     // replace it with a dummy instruction to remove uses.
402     //
403     // FIXME: We should not invert how this pass looks at operands to avoid
404     // this. Should track set of foldable movs instead of looking for uses
405     // when looking at a use.
406     Dst0.setReg(NewReg0);
407     for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
408       MI->removeOperand(I);
409     MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF));
410 
411     if (Fold.Commuted)
412       TII->commuteInstruction(*Inst32, false);
413     return true;
414   }
415 
416   assert(!Fold.needsShrink() && "not handled");
417 
418   if (Fold.isImm()) {
419     if (Old.isTied()) {
420       int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode());
421       if (NewMFMAOpc == -1)
422         return false;
423       MI->setDesc(TII->get(NewMFMAOpc));
424       MI->untieRegOperand(0);
425     }
426     Old.ChangeToImmediate(Fold.ImmToFold);
427     return true;
428   }
429 
430   if (Fold.isGlobal()) {
431     Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
432                    Fold.OpToFold->getTargetFlags());
433     return true;
434   }
435 
436   if (Fold.isFI()) {
437     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
438     return true;
439   }
440 
441   MachineOperand *New = Fold.OpToFold;
442   Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI);
443   Old.setIsUndef(New->isUndef());
444   return true;
445 }
446 
447 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
448                               const MachineInstr *MI) {
449   return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; });
450 }
451 
452 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
453                                 MachineInstr *MI, unsigned OpNo,
454                                 MachineOperand *FoldOp, bool Commuted = false,
455                                 int ShrinkOp = -1) {
456   // Skip additional folding on the same operand.
457   for (FoldCandidate &Fold : FoldList)
458     if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
459       return;
460   LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
461                     << " operand " << OpNo << "\n  " << *MI);
462   FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp);
463 }
464 
465 bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
466                                       MachineInstr *MI, unsigned OpNo,
467                                       MachineOperand *OpToFold) const {
468   const unsigned Opc = MI->getOpcode();
469 
470   auto tryToFoldAsFMAAKorMK = [&]() {
471     if (!OpToFold->isImm())
472       return false;
473 
474     const bool TryAK = OpNo == 3;
475     const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32;
476     MI->setDesc(TII->get(NewOpc));
477 
478     // We have to fold into operand which would be Imm not into OpNo.
479     bool FoldAsFMAAKorMK =
480         tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold);
481     if (FoldAsFMAAKorMK) {
482       // Untie Src2 of fmac.
483       MI->untieRegOperand(3);
484       // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1.
485       if (OpNo == 1) {
486         MachineOperand &Op1 = MI->getOperand(1);
487         MachineOperand &Op2 = MI->getOperand(2);
488         Register OldReg = Op1.getReg();
489         // Operand 2 might be an inlinable constant
490         if (Op2.isImm()) {
491           Op1.ChangeToImmediate(Op2.getImm());
492           Op2.ChangeToRegister(OldReg, false);
493         } else {
494           Op1.setReg(Op2.getReg());
495           Op2.setReg(OldReg);
496         }
497       }
498       return true;
499     }
500     MI->setDesc(TII->get(Opc));
501     return false;
502   };
503 
504   bool IsLegal = TII->isOperandLegal(*MI, OpNo, OpToFold);
505   if (!IsLegal && OpToFold->isImm()) {
506     FoldCandidate Fold(MI, OpNo, OpToFold);
507     IsLegal = canUseImmWithOpSel(Fold);
508   }
509 
510   if (!IsLegal) {
511     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
512     unsigned NewOpc = macToMad(Opc);
513     if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
514       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
515       // to fold the operand.
516       MI->setDesc(TII->get(NewOpc));
517       bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) &&
518                       AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel);
519       if (AddOpSel)
520         MI->addOperand(MachineOperand::CreateImm(0));
521       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold);
522       if (FoldAsMAD) {
523         MI->untieRegOperand(OpNo);
524         return true;
525       }
526       if (AddOpSel)
527         MI->removeOperand(MI->getNumExplicitOperands() - 1);
528       MI->setDesc(TII->get(Opc));
529     }
530 
531     // Special case for s_fmac_f32 if we are trying to fold into Src2.
532     // By transforming into fmaak we can untie Src2 and make folding legal.
533     if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) {
534       if (tryToFoldAsFMAAKorMK())
535         return true;
536     }
537 
538     // Special case for s_setreg_b32
539     if (OpToFold->isImm()) {
540       unsigned ImmOpc = 0;
541       if (Opc == AMDGPU::S_SETREG_B32)
542         ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
543       else if (Opc == AMDGPU::S_SETREG_B32_mode)
544         ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
545       if (ImmOpc) {
546         MI->setDesc(TII->get(ImmOpc));
547         appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
548         return true;
549       }
550     }
551 
552     // If we are already folding into another operand of MI, then
553     // we can't commute the instruction, otherwise we risk making the
554     // other fold illegal.
555     if (isUseMIInFoldList(FoldList, MI))
556       return false;
557 
558     // Operand is not legal, so try to commute the instruction to
559     // see if this makes it possible to fold.
560     unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex;
561     bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo);
562     if (!CanCommute)
563       return false;
564 
565     // One of operands might be an Imm operand, and OpNo may refer to it after
566     // the call of commuteInstruction() below. Such situations are avoided
567     // here explicitly as OpNo must be a register operand to be a candidate
568     // for memory folding.
569     if (!MI->getOperand(OpNo).isReg() || !MI->getOperand(CommuteOpNo).isReg())
570       return false;
571 
572     if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo))
573       return false;
574 
575     int Op32 = -1;
576     if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
577       if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 &&
578            Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME
579           (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) {
580         TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo);
581         return false;
582       }
583 
584       // Verify the other operand is a VGPR, otherwise we would violate the
585       // constant bus restriction.
586       MachineOperand &OtherOp = MI->getOperand(OpNo);
587       if (!OtherOp.isReg() ||
588           !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg()))
589         return false;
590 
591       assert(MI->getOperand(1).isDef());
592 
593       // Make sure to get the 32-bit version of the commuted opcode.
594       unsigned MaybeCommutedOpc = MI->getOpcode();
595       Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
596     }
597 
598     appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
599     return true;
600   }
601 
602   // Inlineable constant might have been folded into Imm operand of fmaak or
603   // fmamk and we are trying to fold a non-inlinable constant.
604   if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) &&
605       !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) {
606     unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2;
607     MachineOperand &OpImm = MI->getOperand(ImmIdx);
608     if (!OpImm.isReg() &&
609         TII->isInlineConstant(*MI, MI->getOperand(OpNo), OpImm))
610       return tryToFoldAsFMAAKorMK();
611   }
612 
613   // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1.
614   // By changing into fmamk we can untie Src2.
615   // If folding for Src0 happens first and it is identical operand to Src1 we
616   // should avoid transforming into fmamk which requires commuting as it would
617   // cause folding into Src1 to fail later on due to wrong OpNo used.
618   if (Opc == AMDGPU::S_FMAC_F32 &&
619       (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) {
620     if (tryToFoldAsFMAAKorMK())
621       return true;
622   }
623 
624   // Check the case where we might introduce a second constant operand to a
625   // scalar instruction
626   if (TII->isSALU(MI->getOpcode())) {
627     const MCInstrDesc &InstDesc = MI->getDesc();
628     const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
629 
630     // Fine if the operand can be encoded as an inline constant
631     if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) {
632       // Otherwise check for another constant
633       for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
634         auto &Op = MI->getOperand(i);
635         if (OpNo != i && !Op.isReg() &&
636             !TII->isInlineConstant(Op, InstDesc.operands()[i]))
637           return false;
638       }
639     }
640   }
641 
642   appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
643   return true;
644 }
645 
646 bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI,
647                                      const MachineOperand &UseMO) const {
648   // Operands of SDWA instructions must be registers.
649   return !TII->isSDWA(MI);
650 }
651 
652 // Find a def of the UseReg, check if it is a reg_sequence and find initializers
653 // for each subreg, tracking it to foldable inline immediate if possible.
654 // Returns true on success.
655 bool SIFoldOperands::getRegSeqInit(
656     SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
657     Register UseReg, uint8_t OpTy) const {
658   MachineInstr *Def = MRI->getVRegDef(UseReg);
659   if (!Def || !Def->isRegSequence())
660     return false;
661 
662   for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
663     MachineOperand *Sub = &Def->getOperand(I);
664     assert(Sub->isReg());
665 
666     for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg());
667          SubDef && Sub->isReg() && Sub->getReg().isVirtual() &&
668          !Sub->getSubReg() && TII->isFoldableCopy(*SubDef);
669          SubDef = MRI->getVRegDef(Sub->getReg())) {
670       MachineOperand *Op = &SubDef->getOperand(1);
671       if (Op->isImm()) {
672         if (TII->isInlineConstant(*Op, OpTy))
673           Sub = Op;
674         break;
675       }
676       if (!Op->isReg() || Op->getReg().isPhysical())
677         break;
678       Sub = Op;
679     }
680 
681     Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm());
682   }
683 
684   return true;
685 }
686 
687 bool SIFoldOperands::tryToFoldACImm(
688     const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx,
689     SmallVectorImpl<FoldCandidate> &FoldList) const {
690   const MCInstrDesc &Desc = UseMI->getDesc();
691   if (UseOpIdx >= Desc.getNumOperands())
692     return false;
693 
694   if (!AMDGPU::isSISrcInlinableOperand(Desc, UseOpIdx))
695     return false;
696 
697   uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType;
698   if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
699       TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
700     UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
701     return true;
702   }
703 
704   if (!OpToFold.isReg())
705     return false;
706 
707   Register UseReg = OpToFold.getReg();
708   if (!UseReg.isVirtual())
709     return false;
710 
711   if (isUseMIInFoldList(FoldList, UseMI))
712     return false;
713 
714   // Maybe it is just a COPY of an immediate itself.
715   MachineInstr *Def = MRI->getVRegDef(UseReg);
716   MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
717   if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) {
718     MachineOperand &DefOp = Def->getOperand(1);
719     if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) &&
720         TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) {
721       UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm());
722       return true;
723     }
724   }
725 
726   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
727   if (!getRegSeqInit(Defs, UseReg, OpTy))
728     return false;
729 
730   int32_t Imm;
731   for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
732     const MachineOperand *Op = Defs[I].first;
733     if (!Op->isImm())
734       return false;
735 
736     auto SubImm = Op->getImm();
737     if (!I) {
738       Imm = SubImm;
739       if (!TII->isInlineConstant(*Op, OpTy) ||
740           !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
741         return false;
742 
743       continue;
744     }
745     if (Imm != SubImm)
746       return false; // Can only fold splat constants
747   }
748 
749   appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
750   return true;
751 }
752 
753 void SIFoldOperands::foldOperand(
754   MachineOperand &OpToFold,
755   MachineInstr *UseMI,
756   int UseOpIdx,
757   SmallVectorImpl<FoldCandidate> &FoldList,
758   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
759   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
760 
761   if (!isUseSafeToFold(*UseMI, UseOp))
762     return;
763 
764   // FIXME: Fold operands with subregs.
765   if (UseOp.isReg() && OpToFold.isReg() &&
766       (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister))
767     return;
768 
769   // Special case for REG_SEQUENCE: We can't fold literals into
770   // REG_SEQUENCE instructions, so we have to fold them into the
771   // uses of REG_SEQUENCE.
772   if (UseMI->isRegSequence()) {
773     Register RegSeqDstReg = UseMI->getOperand(0).getReg();
774     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
775 
776     for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) {
777       MachineInstr *RSUseMI = RSUse.getParent();
778 
779       if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI,
780                          RSUseMI->getOperandNo(&RSUse), FoldList))
781         continue;
782 
783       if (RSUse.getSubReg() != RegSeqDstSubReg)
784         continue;
785 
786       foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList,
787                   CopiesToReplace);
788     }
789 
790     return;
791   }
792 
793   if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList))
794     return;
795 
796   if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) {
797     // Verify that this is a stack access.
798     // FIXME: Should probably use stack pseudos before frame lowering.
799 
800     if (TII->isMUBUF(*UseMI)) {
801       if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
802           MFI->getScratchRSrcReg())
803         return;
804 
805       // Ensure this is either relative to the current frame or the current
806       // wave.
807       MachineOperand &SOff =
808           *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
809       if (!SOff.isImm() || SOff.getImm() != 0)
810         return;
811     }
812 
813     // A frame index will resolve to a positive constant, so it should always be
814     // safe to fold the addressing mode, even pre-GFX9.
815     UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
816 
817     const unsigned Opc = UseMI->getOpcode();
818     if (TII->isFLATScratch(*UseMI) &&
819         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) &&
820         !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) {
821       unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc);
822       UseMI->setDesc(TII->get(NewOpc));
823     }
824 
825     return;
826   }
827 
828   bool FoldingImmLike =
829       OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
830 
831   if (FoldingImmLike && UseMI->isCopy()) {
832     Register DestReg = UseMI->getOperand(0).getReg();
833     Register SrcReg = UseMI->getOperand(1).getReg();
834     assert(SrcReg.isVirtual());
835 
836     const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
837 
838     // Don't fold into a copy to a physical register with the same class. Doing
839     // so would interfere with the register coalescer's logic which would avoid
840     // redundant initializations.
841     if (DestReg.isPhysical() && SrcRC->contains(DestReg))
842       return;
843 
844     const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
845     if (!DestReg.isPhysical()) {
846       if (DestRC == &AMDGPU::AGPR_32RegClass &&
847           TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
848         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
849         UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
850         CopiesToReplace.push_back(UseMI);
851         return;
852       }
853     }
854 
855     // In order to fold immediates into copies, we need to change the
856     // copy to a MOV.
857 
858     unsigned MovOp = TII->getMovOpcode(DestRC);
859     if (MovOp == AMDGPU::COPY)
860       return;
861 
862     UseMI->setDesc(TII->get(MovOp));
863     MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
864     MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
865     while (ImpOpI != ImpOpE) {
866       MachineInstr::mop_iterator Tmp = ImpOpI;
867       ImpOpI++;
868       UseMI->removeOperand(UseMI->getOperandNo(Tmp));
869     }
870     CopiesToReplace.push_back(UseMI);
871   } else {
872     if (UseMI->isCopy() && OpToFold.isReg() &&
873         UseMI->getOperand(0).getReg().isVirtual() &&
874         !UseMI->getOperand(1).getSubReg()) {
875       LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI);
876       unsigned Size = TII->getOpSize(*UseMI, 1);
877       Register UseReg = OpToFold.getReg();
878       UseMI->getOperand(1).setReg(UseReg);
879       UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
880       UseMI->getOperand(1).setIsKill(false);
881       CopiesToReplace.push_back(UseMI);
882       OpToFold.setIsKill(false);
883 
884       // Remove kill flags as kills may now be out of order with uses.
885       MRI->clearKillFlags(OpToFold.getReg());
886 
887       // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
888       // can only accept VGPR or inline immediate. Recreate a reg_sequence with
889       // its initializers right here, so we will rematerialize immediates and
890       // avoid copies via different reg classes.
891       SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
892       if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
893           getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
894         const DebugLoc &DL = UseMI->getDebugLoc();
895         MachineBasicBlock &MBB = *UseMI->getParent();
896 
897         UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
898         for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
899           UseMI->removeOperand(I);
900 
901         MachineInstrBuilder B(*MBB.getParent(), UseMI);
902         DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
903         SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
904         for (unsigned I = 0; I < Size / 4; ++I) {
905           MachineOperand *Def = Defs[I].first;
906           TargetInstrInfo::RegSubRegPair CopyToVGPR;
907           if (Def->isImm() &&
908               TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
909             int64_t Imm = Def->getImm();
910 
911             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
912             BuildMI(MBB, UseMI, DL,
913                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
914             B.addReg(Tmp);
915           } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
916             auto Src = getRegSubRegPair(*Def);
917             Def->setIsKill(false);
918             if (!SeenAGPRs.insert(Src)) {
919               // We cannot build a reg_sequence out of the same registers, they
920               // must be copied. Better do it here before copyPhysReg() created
921               // several reads to do the AGPR->VGPR->AGPR copy.
922               CopyToVGPR = Src;
923             } else {
924               B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
925                        Src.SubReg);
926             }
927           } else {
928             assert(Def->isReg());
929             Def->setIsKill(false);
930             auto Src = getRegSubRegPair(*Def);
931 
932             // Direct copy from SGPR to AGPR is not possible. To avoid creation
933             // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
934             // create a copy here and track if we already have such a copy.
935             if (TRI->isSGPRReg(*MRI, Src.Reg)) {
936               CopyToVGPR = Src;
937             } else {
938               auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
939               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
940               B.addReg(Tmp);
941             }
942           }
943 
944           if (CopyToVGPR.Reg) {
945             Register Vgpr;
946             if (VGPRCopies.count(CopyToVGPR)) {
947               Vgpr = VGPRCopies[CopyToVGPR];
948             } else {
949               Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
950               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
951               VGPRCopies[CopyToVGPR] = Vgpr;
952             }
953             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
954             BuildMI(MBB, UseMI, DL,
955                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
956             B.addReg(Tmp);
957           }
958 
959           B.addImm(Defs[I].second);
960         }
961         LLVM_DEBUG(dbgs() << "Folded " << *UseMI);
962         return;
963       }
964 
965       if (Size != 4)
966         return;
967 
968       Register Reg0 = UseMI->getOperand(0).getReg();
969       Register Reg1 = UseMI->getOperand(1).getReg();
970       if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1))
971         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
972       else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1))
973         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
974       else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) &&
975                TRI->isAGPR(*MRI, Reg1))
976         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32));
977       return;
978     }
979 
980     unsigned UseOpc = UseMI->getOpcode();
981     if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
982         (UseOpc == AMDGPU::V_READLANE_B32 &&
983          (int)UseOpIdx ==
984          AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
985       // %vgpr = V_MOV_B32 imm
986       // %sgpr = V_READFIRSTLANE_B32 %vgpr
987       // =>
988       // %sgpr = S_MOV_B32 imm
989       if (FoldingImmLike) {
990         if (execMayBeModifiedBeforeUse(*MRI,
991                                        UseMI->getOperand(UseOpIdx).getReg(),
992                                        *OpToFold.getParent(),
993                                        *UseMI))
994           return;
995 
996         UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
997 
998         if (OpToFold.isImm())
999           UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
1000         else
1001           UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
1002         UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
1003         return;
1004       }
1005 
1006       if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
1007         if (execMayBeModifiedBeforeUse(*MRI,
1008                                        UseMI->getOperand(UseOpIdx).getReg(),
1009                                        *OpToFold.getParent(),
1010                                        *UseMI))
1011           return;
1012 
1013         // %vgpr = COPY %sgpr0
1014         // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
1015         // =>
1016         // %sgpr1 = COPY %sgpr0
1017         UseMI->setDesc(TII->get(AMDGPU::COPY));
1018         UseMI->getOperand(1).setReg(OpToFold.getReg());
1019         UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
1020         UseMI->getOperand(1).setIsKill(false);
1021         UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
1022         return;
1023       }
1024     }
1025 
1026     const MCInstrDesc &UseDesc = UseMI->getDesc();
1027 
1028     // Don't fold into target independent nodes.  Target independent opcodes
1029     // don't have defined register classes.
1030     if (UseDesc.isVariadic() || UseOp.isImplicit() ||
1031         UseDesc.operands()[UseOpIdx].RegClass == -1)
1032       return;
1033   }
1034 
1035   if (!FoldingImmLike) {
1036     if (OpToFold.isReg() && ST->needsAlignedVGPRs()) {
1037       // Don't fold if OpToFold doesn't hold an aligned register.
1038       const TargetRegisterClass *RC =
1039           TRI->getRegClassForReg(*MRI, OpToFold.getReg());
1040       if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) {
1041         unsigned SubReg = OpToFold.getSubReg();
1042         if (const TargetRegisterClass *SubRC =
1043                 TRI->getSubRegisterClass(RC, SubReg))
1044           RC = SubRC;
1045       }
1046 
1047       if (!RC || !TRI->isProperlyAlignedRC(*RC))
1048         return;
1049     }
1050 
1051     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold);
1052 
1053     // FIXME: We could try to change the instruction from 64-bit to 32-bit
1054     // to enable more folding opportunities.  The shrink operands pass
1055     // already does this.
1056     return;
1057   }
1058 
1059 
1060   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
1061   const TargetRegisterClass *FoldRC =
1062       TRI->getRegClass(FoldDesc.operands()[0].RegClass);
1063 
1064   // Split 64-bit constants into 32-bits for folding.
1065   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) {
1066     Register UseReg = UseOp.getReg();
1067     const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
1068     if (AMDGPU::getRegBitWidth(*UseRC) != 64)
1069       return;
1070 
1071     APInt Imm(64, OpToFold.getImm());
1072     if (UseOp.getSubReg() == AMDGPU::sub0) {
1073       Imm = Imm.getLoBits(32);
1074     } else {
1075       assert(UseOp.getSubReg() == AMDGPU::sub1);
1076       Imm = Imm.getHiBits(32);
1077     }
1078 
1079     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
1080     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp);
1081     return;
1082   }
1083 
1084   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold);
1085 }
1086 
1087 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
1088                                   uint32_t LHS, uint32_t RHS) {
1089   switch (Opcode) {
1090   case AMDGPU::V_AND_B32_e64:
1091   case AMDGPU::V_AND_B32_e32:
1092   case AMDGPU::S_AND_B32:
1093     Result = LHS & RHS;
1094     return true;
1095   case AMDGPU::V_OR_B32_e64:
1096   case AMDGPU::V_OR_B32_e32:
1097   case AMDGPU::S_OR_B32:
1098     Result = LHS | RHS;
1099     return true;
1100   case AMDGPU::V_XOR_B32_e64:
1101   case AMDGPU::V_XOR_B32_e32:
1102   case AMDGPU::S_XOR_B32:
1103     Result = LHS ^ RHS;
1104     return true;
1105   case AMDGPU::S_XNOR_B32:
1106     Result = ~(LHS ^ RHS);
1107     return true;
1108   case AMDGPU::S_NAND_B32:
1109     Result = ~(LHS & RHS);
1110     return true;
1111   case AMDGPU::S_NOR_B32:
1112     Result = ~(LHS | RHS);
1113     return true;
1114   case AMDGPU::S_ANDN2_B32:
1115     Result = LHS & ~RHS;
1116     return true;
1117   case AMDGPU::S_ORN2_B32:
1118     Result = LHS | ~RHS;
1119     return true;
1120   case AMDGPU::V_LSHL_B32_e64:
1121   case AMDGPU::V_LSHL_B32_e32:
1122   case AMDGPU::S_LSHL_B32:
1123     // The instruction ignores the high bits for out of bounds shifts.
1124     Result = LHS << (RHS & 31);
1125     return true;
1126   case AMDGPU::V_LSHLREV_B32_e64:
1127   case AMDGPU::V_LSHLREV_B32_e32:
1128     Result = RHS << (LHS & 31);
1129     return true;
1130   case AMDGPU::V_LSHR_B32_e64:
1131   case AMDGPU::V_LSHR_B32_e32:
1132   case AMDGPU::S_LSHR_B32:
1133     Result = LHS >> (RHS & 31);
1134     return true;
1135   case AMDGPU::V_LSHRREV_B32_e64:
1136   case AMDGPU::V_LSHRREV_B32_e32:
1137     Result = RHS >> (LHS & 31);
1138     return true;
1139   case AMDGPU::V_ASHR_I32_e64:
1140   case AMDGPU::V_ASHR_I32_e32:
1141   case AMDGPU::S_ASHR_I32:
1142     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
1143     return true;
1144   case AMDGPU::V_ASHRREV_I32_e64:
1145   case AMDGPU::V_ASHRREV_I32_e32:
1146     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
1147     return true;
1148   default:
1149     return false;
1150   }
1151 }
1152 
1153 static unsigned getMovOpc(bool IsScalar) {
1154   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
1155 }
1156 
1157 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
1158   MI.setDesc(NewDesc);
1159 
1160   // Remove any leftover implicit operands from mutating the instruction. e.g.
1161   // if we replace an s_and_b32 with a copy, we don't need the implicit scc def
1162   // anymore.
1163   const MCInstrDesc &Desc = MI.getDesc();
1164   unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() +
1165                     Desc.implicit_defs().size();
1166 
1167   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
1168     MI.removeOperand(I);
1169 }
1170 
1171 MachineOperand *
1172 SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const {
1173   // If this has a subregister, it obviously is a register source.
1174   if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister ||
1175       !Op.getReg().isVirtual())
1176     return &Op;
1177 
1178   MachineInstr *Def = MRI->getVRegDef(Op.getReg());
1179   if (Def && Def->isMoveImmediate()) {
1180     MachineOperand &ImmSrc = Def->getOperand(1);
1181     if (ImmSrc.isImm())
1182       return &ImmSrc;
1183   }
1184 
1185   return &Op;
1186 }
1187 
1188 // Try to simplify operations with a constant that may appear after instruction
1189 // selection.
1190 // TODO: See if a frame index with a fixed offset can fold.
1191 bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const {
1192   if (!MI->allImplicitDefsAreDead())
1193     return false;
1194 
1195   unsigned Opc = MI->getOpcode();
1196 
1197   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1198   if (Src0Idx == -1)
1199     return false;
1200   MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx));
1201 
1202   if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1203        Opc == AMDGPU::S_NOT_B32) &&
1204       Src0->isImm()) {
1205     MI->getOperand(1).ChangeToImmediate(~Src0->getImm());
1206     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1207     return true;
1208   }
1209 
1210   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1211   if (Src1Idx == -1)
1212     return false;
1213   MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx));
1214 
1215   if (!Src0->isImm() && !Src1->isImm())
1216     return false;
1217 
1218   // and k0, k1 -> v_mov_b32 (k0 & k1)
1219   // or k0, k1 -> v_mov_b32 (k0 | k1)
1220   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1221   if (Src0->isImm() && Src1->isImm()) {
1222     int32_t NewImm;
1223     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1224       return false;
1225 
1226     bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg());
1227 
1228     // Be careful to change the right operand, src0 may belong to a different
1229     // instruction.
1230     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1231     MI->removeOperand(Src1Idx);
1232     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1233     return true;
1234   }
1235 
1236   if (!MI->isCommutable())
1237     return false;
1238 
1239   if (Src0->isImm() && !Src1->isImm()) {
1240     std::swap(Src0, Src1);
1241     std::swap(Src0Idx, Src1Idx);
1242   }
1243 
1244   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1245   if (Opc == AMDGPU::V_OR_B32_e64 ||
1246       Opc == AMDGPU::V_OR_B32_e32 ||
1247       Opc == AMDGPU::S_OR_B32) {
1248     if (Src1Val == 0) {
1249       // y = or x, 0 => y = copy x
1250       MI->removeOperand(Src1Idx);
1251       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1252     } else if (Src1Val == -1) {
1253       // y = or x, -1 => y = v_mov_b32 -1
1254       MI->removeOperand(Src1Idx);
1255       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1256     } else
1257       return false;
1258 
1259     return true;
1260   }
1261 
1262   if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 ||
1263       Opc == AMDGPU::S_AND_B32) {
1264     if (Src1Val == 0) {
1265       // y = and x, 0 => y = v_mov_b32 0
1266       MI->removeOperand(Src0Idx);
1267       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1268     } else if (Src1Val == -1) {
1269       // y = and x, -1 => y = copy x
1270       MI->removeOperand(Src1Idx);
1271       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1272     } else
1273       return false;
1274 
1275     return true;
1276   }
1277 
1278   if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 ||
1279       Opc == AMDGPU::S_XOR_B32) {
1280     if (Src1Val == 0) {
1281       // y = xor x, 0 => y = copy x
1282       MI->removeOperand(Src1Idx);
1283       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1284       return true;
1285     }
1286   }
1287 
1288   return false;
1289 }
1290 
1291 // Try to fold an instruction into a simpler one
1292 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const {
1293   unsigned Opc = MI.getOpcode();
1294   if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 &&
1295       Opc != AMDGPU::V_CNDMASK_B64_PSEUDO)
1296     return false;
1297 
1298   MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1299   MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1300   if (!Src1->isIdenticalTo(*Src0)) {
1301     auto *Src0Imm = getImmOrMaterializedImm(*Src0);
1302     auto *Src1Imm = getImmOrMaterializedImm(*Src1);
1303     if (!Src1Imm->isIdenticalTo(*Src0Imm))
1304       return false;
1305   }
1306 
1307   int Src1ModIdx =
1308       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1309   int Src0ModIdx =
1310       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1311   if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) ||
1312       (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0))
1313     return false;
1314 
1315   LLVM_DEBUG(dbgs() << "Folded " << MI << " into ");
1316   auto &NewDesc =
1317       TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1318   int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1319   if (Src2Idx != -1)
1320     MI.removeOperand(Src2Idx);
1321   MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1322   if (Src1ModIdx != -1)
1323     MI.removeOperand(Src1ModIdx);
1324   if (Src0ModIdx != -1)
1325     MI.removeOperand(Src0ModIdx);
1326   mutateCopyOp(MI, NewDesc);
1327   LLVM_DEBUG(dbgs() << MI);
1328   return true;
1329 }
1330 
1331 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const {
1332   if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 &&
1333       MI.getOpcode() != AMDGPU::V_AND_B32_e32)
1334     return false;
1335 
1336   MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1));
1337   if (!Src0->isImm() || Src0->getImm() != 0xffff)
1338     return false;
1339 
1340   Register Src1 = MI.getOperand(2).getReg();
1341   MachineInstr *SrcDef = MRI->getVRegDef(Src1);
1342   if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode()))
1343     return false;
1344 
1345   Register Dst = MI.getOperand(0).getReg();
1346   MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg());
1347   MI.eraseFromParent();
1348   return true;
1349 }
1350 
1351 bool SIFoldOperands::foldInstOperand(MachineInstr &MI,
1352                                      MachineOperand &OpToFold) const {
1353   // We need mutate the operands of new mov instructions to add implicit
1354   // uses of EXEC, but adding them invalidates the use_iterator, so defer
1355   // this.
1356   SmallVector<MachineInstr *, 4> CopiesToReplace;
1357   SmallVector<FoldCandidate, 4> FoldList;
1358   MachineOperand &Dst = MI.getOperand(0);
1359   bool Changed = false;
1360 
1361   if (OpToFold.isImm()) {
1362     for (auto &UseMI :
1363          make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) {
1364       // Folding the immediate may reveal operations that can be constant
1365       // folded or replaced with a copy. This can happen for example after
1366       // frame indices are lowered to constants or from splitting 64-bit
1367       // constants.
1368       //
1369       // We may also encounter cases where one or both operands are
1370       // immediates materialized into a register, which would ordinarily not
1371       // be folded due to multiple uses or operand constraints.
1372       if (tryConstantFoldOp(&UseMI)) {
1373         LLVM_DEBUG(dbgs() << "Constant folded " << UseMI);
1374         Changed = true;
1375       }
1376     }
1377   }
1378 
1379   SmallVector<MachineOperand *, 4> UsesToProcess;
1380   for (auto &Use : MRI->use_nodbg_operands(Dst.getReg()))
1381     UsesToProcess.push_back(&Use);
1382   for (auto *U : UsesToProcess) {
1383     MachineInstr *UseMI = U->getParent();
1384     foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList,
1385                 CopiesToReplace);
1386   }
1387 
1388   if (CopiesToReplace.empty() && FoldList.empty())
1389     return Changed;
1390 
1391   MachineFunction *MF = MI.getParent()->getParent();
1392   // Make sure we add EXEC uses to any new v_mov instructions created.
1393   for (MachineInstr *Copy : CopiesToReplace)
1394     Copy->addImplicitDefUseOperands(*MF);
1395 
1396   for (FoldCandidate &Fold : FoldList) {
1397     assert(!Fold.isReg() || Fold.OpToFold);
1398     if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1399       Register Reg = Fold.OpToFold->getReg();
1400       MachineInstr *DefMI = Fold.OpToFold->getParent();
1401       if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1402           execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1403         continue;
1404     }
1405     if (updateOperand(Fold)) {
1406       // Clear kill flags.
1407       if (Fold.isReg()) {
1408         assert(Fold.OpToFold && Fold.OpToFold->isReg());
1409         // FIXME: Probably shouldn't bother trying to fold if not an
1410         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1411         // copies.
1412         MRI->clearKillFlags(Fold.OpToFold->getReg());
1413       }
1414       LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1415                         << static_cast<int>(Fold.UseOpNo) << " of "
1416                         << *Fold.UseMI);
1417     } else if (Fold.Commuted) {
1418       // Restoring instruction's original operand order if fold has failed.
1419       TII->commuteInstruction(*Fold.UseMI, false);
1420     }
1421   }
1422   return true;
1423 }
1424 
1425 bool SIFoldOperands::tryFoldFoldableCopy(
1426     MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const {
1427   // Specially track simple redefs of m0 to the same value in a block, so we
1428   // can erase the later ones.
1429   if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1430     MachineOperand &NewM0Val = MI.getOperand(1);
1431     if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1432       MI.eraseFromParent();
1433       return true;
1434     }
1435 
1436     // We aren't tracking other physical registers
1437     CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical())
1438                             ? nullptr
1439                             : &NewM0Val;
1440     return false;
1441   }
1442 
1443   MachineOperand &OpToFold = MI.getOperand(1);
1444   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1445 
1446   // FIXME: We could also be folding things like TargetIndexes.
1447   if (!FoldingImm && !OpToFold.isReg())
1448     return false;
1449 
1450   if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1451     return false;
1452 
1453   // Prevent folding operands backwards in the function. For example,
1454   // the COPY opcode must not be replaced by 1 in this example:
1455   //
1456   //    %3 = COPY %vgpr0; VGPR_32:%3
1457   //    ...
1458   //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1459   if (!MI.getOperand(0).getReg().isVirtual())
1460     return false;
1461 
1462   bool Changed = foldInstOperand(MI, OpToFold);
1463 
1464   // If we managed to fold all uses of this copy then we might as well
1465   // delete it now.
1466   // The only reason we need to follow chains of copies here is that
1467   // tryFoldRegSequence looks forward through copies before folding a
1468   // REG_SEQUENCE into its eventual users.
1469   auto *InstToErase = &MI;
1470   while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1471     auto &SrcOp = InstToErase->getOperand(1);
1472     auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register();
1473     InstToErase->eraseFromParent();
1474     Changed = true;
1475     InstToErase = nullptr;
1476     if (!SrcReg || SrcReg.isPhysical())
1477       break;
1478     InstToErase = MRI->getVRegDef(SrcReg);
1479     if (!InstToErase || !TII->isFoldableCopy(*InstToErase))
1480       break;
1481   }
1482 
1483   if (InstToErase && InstToErase->isRegSequence() &&
1484       MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1485     InstToErase->eraseFromParent();
1486     Changed = true;
1487   }
1488 
1489   return Changed;
1490 }
1491 
1492 // Clamp patterns are canonically selected to v_max_* instructions, so only
1493 // handle them.
1494 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1495   unsigned Op = MI.getOpcode();
1496   switch (Op) {
1497   case AMDGPU::V_MAX_F32_e64:
1498   case AMDGPU::V_MAX_F16_e64:
1499   case AMDGPU::V_MAX_F16_t16_e64:
1500   case AMDGPU::V_MAX_F16_fake16_e64:
1501   case AMDGPU::V_MAX_F64_e64:
1502   case AMDGPU::V_MAX_NUM_F64_e64:
1503   case AMDGPU::V_PK_MAX_F16: {
1504     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1505       return nullptr;
1506 
1507     // Make sure sources are identical.
1508     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1509     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1510     if (!Src0->isReg() || !Src1->isReg() ||
1511         Src0->getReg() != Src1->getReg() ||
1512         Src0->getSubReg() != Src1->getSubReg() ||
1513         Src0->getSubReg() != AMDGPU::NoSubRegister)
1514       return nullptr;
1515 
1516     // Can't fold up if we have modifiers.
1517     if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1518       return nullptr;
1519 
1520     unsigned Src0Mods
1521       = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1522     unsigned Src1Mods
1523       = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1524 
1525     // Having a 0 op_sel_hi would require swizzling the output in the source
1526     // instruction, which we can't do.
1527     unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1528                                                       : 0u;
1529     if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1530       return nullptr;
1531     return Src0;
1532   }
1533   default:
1534     return nullptr;
1535   }
1536 }
1537 
1538 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1539 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1540   const MachineOperand *ClampSrc = isClamp(MI);
1541   if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg()))
1542     return false;
1543 
1544   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1545 
1546   // The type of clamp must be compatible.
1547   if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1548     return false;
1549 
1550   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1551   if (!DefClamp)
1552     return false;
1553 
1554   LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def);
1555 
1556   // Clamp is applied after omod, so it is OK if omod is set.
1557   DefClamp->setImm(1);
1558   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1559   MI.eraseFromParent();
1560 
1561   // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1562   // instruction, so we might as well convert it to the more flexible VOP3-only
1563   // mad/fma form.
1564   if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1565     Def->eraseFromParent();
1566 
1567   return true;
1568 }
1569 
1570 static int getOModValue(unsigned Opc, int64_t Val) {
1571   switch (Opc) {
1572   case AMDGPU::V_MUL_F64_e64:
1573   case AMDGPU::V_MUL_F64_pseudo_e64: {
1574     switch (Val) {
1575     case 0x3fe0000000000000: // 0.5
1576       return SIOutMods::DIV2;
1577     case 0x4000000000000000: // 2.0
1578       return SIOutMods::MUL2;
1579     case 0x4010000000000000: // 4.0
1580       return SIOutMods::MUL4;
1581     default:
1582       return SIOutMods::NONE;
1583     }
1584   }
1585   case AMDGPU::V_MUL_F32_e64: {
1586     switch (static_cast<uint32_t>(Val)) {
1587     case 0x3f000000: // 0.5
1588       return SIOutMods::DIV2;
1589     case 0x40000000: // 2.0
1590       return SIOutMods::MUL2;
1591     case 0x40800000: // 4.0
1592       return SIOutMods::MUL4;
1593     default:
1594       return SIOutMods::NONE;
1595     }
1596   }
1597   case AMDGPU::V_MUL_F16_e64:
1598   case AMDGPU::V_MUL_F16_t16_e64:
1599   case AMDGPU::V_MUL_F16_fake16_e64: {
1600     switch (static_cast<uint16_t>(Val)) {
1601     case 0x3800: // 0.5
1602       return SIOutMods::DIV2;
1603     case 0x4000: // 2.0
1604       return SIOutMods::MUL2;
1605     case 0x4400: // 4.0
1606       return SIOutMods::MUL4;
1607     default:
1608       return SIOutMods::NONE;
1609     }
1610   }
1611   default:
1612     llvm_unreachable("invalid mul opcode");
1613   }
1614 }
1615 
1616 // FIXME: Does this really not support denormals with f16?
1617 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1618 // handled, so will anything other than that break?
1619 std::pair<const MachineOperand *, int>
1620 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1621   unsigned Op = MI.getOpcode();
1622   switch (Op) {
1623   case AMDGPU::V_MUL_F64_e64:
1624   case AMDGPU::V_MUL_F64_pseudo_e64:
1625   case AMDGPU::V_MUL_F32_e64:
1626   case AMDGPU::V_MUL_F16_t16_e64:
1627   case AMDGPU::V_MUL_F16_fake16_e64:
1628   case AMDGPU::V_MUL_F16_e64: {
1629     // If output denormals are enabled, omod is ignored.
1630     if ((Op == AMDGPU::V_MUL_F32_e64 &&
1631          MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
1632         ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 ||
1633           Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 ||
1634           Op == AMDGPU::V_MUL_F16_fake16_e64) &&
1635          MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
1636       return std::pair(nullptr, SIOutMods::NONE);
1637 
1638     const MachineOperand *RegOp = nullptr;
1639     const MachineOperand *ImmOp = nullptr;
1640     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1641     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1642     if (Src0->isImm()) {
1643       ImmOp = Src0;
1644       RegOp = Src1;
1645     } else if (Src1->isImm()) {
1646       ImmOp = Src1;
1647       RegOp = Src0;
1648     } else
1649       return std::pair(nullptr, SIOutMods::NONE);
1650 
1651     int OMod = getOModValue(Op, ImmOp->getImm());
1652     if (OMod == SIOutMods::NONE ||
1653         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1654         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1655         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1656         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1657       return std::pair(nullptr, SIOutMods::NONE);
1658 
1659     return std::pair(RegOp, OMod);
1660   }
1661   case AMDGPU::V_ADD_F64_e64:
1662   case AMDGPU::V_ADD_F64_pseudo_e64:
1663   case AMDGPU::V_ADD_F32_e64:
1664   case AMDGPU::V_ADD_F16_e64:
1665   case AMDGPU::V_ADD_F16_t16_e64:
1666   case AMDGPU::V_ADD_F16_fake16_e64: {
1667     // If output denormals are enabled, omod is ignored.
1668     if ((Op == AMDGPU::V_ADD_F32_e64 &&
1669          MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
1670         ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 ||
1671           Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 ||
1672           Op == AMDGPU::V_ADD_F16_fake16_e64) &&
1673          MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
1674       return std::pair(nullptr, SIOutMods::NONE);
1675 
1676     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1677     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1678     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1679 
1680     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1681         Src0->getSubReg() == Src1->getSubReg() &&
1682         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1683         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1684         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1685         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1686       return std::pair(Src0, SIOutMods::MUL2);
1687 
1688     return std::pair(nullptr, SIOutMods::NONE);
1689   }
1690   default:
1691     return std::pair(nullptr, SIOutMods::NONE);
1692   }
1693 }
1694 
1695 // FIXME: Does this need to check IEEE bit on function?
1696 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1697   const MachineOperand *RegOp;
1698   int OMod;
1699   std::tie(RegOp, OMod) = isOMod(MI);
1700   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1701       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1702       !MRI->hasOneNonDBGUser(RegOp->getReg()))
1703     return false;
1704 
1705   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1706   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1707   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1708     return false;
1709 
1710   // Clamp is applied after omod. If the source already has clamp set, don't
1711   // fold it.
1712   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1713     return false;
1714 
1715   LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def);
1716 
1717   DefOMod->setImm(OMod);
1718   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1719   MI.eraseFromParent();
1720 
1721   // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1722   // instruction, so we might as well convert it to the more flexible VOP3-only
1723   // mad/fma form.
1724   if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1725     Def->eraseFromParent();
1726 
1727   return true;
1728 }
1729 
1730 // Try to fold a reg_sequence with vgpr output and agpr inputs into an
1731 // instruction which can take an agpr. So far that means a store.
1732 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) {
1733   assert(MI.isRegSequence());
1734   auto Reg = MI.getOperand(0).getReg();
1735 
1736   if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) ||
1737       !MRI->hasOneNonDBGUse(Reg))
1738     return false;
1739 
1740   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
1741   if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER))
1742     return false;
1743 
1744   for (auto &Def : Defs) {
1745     const auto *Op = Def.first;
1746     if (!Op->isReg())
1747       return false;
1748     if (TRI->isAGPR(*MRI, Op->getReg()))
1749       continue;
1750     // Maybe this is a COPY from AREG
1751     const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg());
1752     if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg())
1753       return false;
1754     if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg()))
1755       return false;
1756   }
1757 
1758   MachineOperand *Op = &*MRI->use_nodbg_begin(Reg);
1759   MachineInstr *UseMI = Op->getParent();
1760   while (UseMI->isCopy() && !Op->getSubReg()) {
1761     Reg = UseMI->getOperand(0).getReg();
1762     if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg))
1763       return false;
1764     Op = &*MRI->use_nodbg_begin(Reg);
1765     UseMI = Op->getParent();
1766   }
1767 
1768   if (Op->getSubReg())
1769     return false;
1770 
1771   unsigned OpIdx = Op - &UseMI->getOperand(0);
1772   const MCInstrDesc &InstDesc = UseMI->getDesc();
1773   const TargetRegisterClass *OpRC =
1774       TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF());
1775   if (!OpRC || !TRI->isVectorSuperClass(OpRC))
1776     return false;
1777 
1778   const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg));
1779   auto Dst = MRI->createVirtualRegister(NewDstRC);
1780   auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1781                     TII->get(AMDGPU::REG_SEQUENCE), Dst);
1782 
1783   for (unsigned I = 0; I < Defs.size(); ++I) {
1784     MachineOperand *Def = Defs[I].first;
1785     Def->setIsKill(false);
1786     if (TRI->isAGPR(*MRI, Def->getReg())) {
1787       RS.add(*Def);
1788     } else { // This is a copy
1789       MachineInstr *SubDef = MRI->getVRegDef(Def->getReg());
1790       SubDef->getOperand(1).setIsKill(false);
1791       RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg());
1792     }
1793     RS.addImm(Defs[I].second);
1794   }
1795 
1796   Op->setReg(Dst);
1797   if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) {
1798     Op->setReg(Reg);
1799     RS->eraseFromParent();
1800     return false;
1801   }
1802 
1803   LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI);
1804 
1805   // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users,
1806   // in which case we can erase them all later in runOnMachineFunction.
1807   if (MRI->use_nodbg_empty(MI.getOperand(0).getReg()))
1808     MI.eraseFromParent();
1809   return true;
1810 }
1811 
1812 /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and
1813 /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg
1814 static bool isAGPRCopy(const SIRegisterInfo &TRI,
1815                        const MachineRegisterInfo &MRI, const MachineInstr &Copy,
1816                        Register &OutReg, unsigned &OutSubReg) {
1817   assert(Copy.isCopy());
1818 
1819   const MachineOperand &CopySrc = Copy.getOperand(1);
1820   Register CopySrcReg = CopySrc.getReg();
1821   if (!CopySrcReg.isVirtual())
1822     return false;
1823 
1824   // Common case: copy from AGPR directly, e.g.
1825   //  %1:vgpr_32 = COPY %0:agpr_32
1826   if (TRI.isAGPR(MRI, CopySrcReg)) {
1827     OutReg = CopySrcReg;
1828     OutSubReg = CopySrc.getSubReg();
1829     return true;
1830   }
1831 
1832   // Sometimes it can also involve two copies, e.g.
1833   //  %1:vgpr_256 = COPY %0:agpr_256
1834   //  %2:vgpr_32 = COPY %1:vgpr_256.sub0
1835   const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg);
1836   if (!CopySrcDef || !CopySrcDef->isCopy())
1837     return false;
1838 
1839   const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1);
1840   Register OtherCopySrcReg = OtherCopySrc.getReg();
1841   if (!OtherCopySrcReg.isVirtual() ||
1842       CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister ||
1843       OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister ||
1844       !TRI.isAGPR(MRI, OtherCopySrcReg))
1845     return false;
1846 
1847   OutReg = OtherCopySrcReg;
1848   OutSubReg = CopySrc.getSubReg();
1849   return true;
1850 }
1851 
1852 // Try to hoist an AGPR to VGPR copy across a PHI.
1853 // This should allow folding of an AGPR into a consumer which may support it.
1854 //
1855 // Example 1: LCSSA PHI
1856 //      loop:
1857 //        %1:vreg = COPY %0:areg
1858 //      exit:
1859 //        %2:vreg = PHI %1:vreg, %loop
1860 //  =>
1861 //      loop:
1862 //      exit:
1863 //        %1:areg = PHI %0:areg, %loop
1864 //        %2:vreg = COPY %1:areg
1865 //
1866 // Example 2: PHI with multiple incoming values:
1867 //      entry:
1868 //        %1:vreg = GLOBAL_LOAD(..)
1869 //      loop:
1870 //        %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop
1871 //        %3:areg = COPY %2:vreg
1872 //        %4:areg = (instr using %3:areg)
1873 //        %5:vreg = COPY %4:areg
1874 //  =>
1875 //      entry:
1876 //        %1:vreg = GLOBAL_LOAD(..)
1877 //        %2:areg = COPY %1:vreg
1878 //      loop:
1879 //        %3:areg = PHI %2:areg, %entry, %X:areg,
1880 //        %4:areg = (instr using %3:areg)
1881 bool SIFoldOperands::tryFoldPhiAGPR(MachineInstr &PHI) {
1882   assert(PHI.isPHI());
1883 
1884   Register PhiOut = PHI.getOperand(0).getReg();
1885   if (!TRI->isVGPR(*MRI, PhiOut))
1886     return false;
1887 
1888   // Iterate once over all incoming values of the PHI to check if this PHI is
1889   // eligible, and determine the exact AGPR RC we'll target.
1890   const TargetRegisterClass *ARC = nullptr;
1891   for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) {
1892     MachineOperand &MO = PHI.getOperand(K);
1893     MachineInstr *Copy = MRI->getVRegDef(MO.getReg());
1894     if (!Copy || !Copy->isCopy())
1895       continue;
1896 
1897     Register AGPRSrc;
1898     unsigned AGPRRegMask = AMDGPU::NoSubRegister;
1899     if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask))
1900       continue;
1901 
1902     const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc);
1903     if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask))
1904       CopyInRC = SubRC;
1905 
1906     if (ARC && !ARC->hasSubClassEq(CopyInRC))
1907       return false;
1908     ARC = CopyInRC;
1909   }
1910 
1911   if (!ARC)
1912     return false;
1913 
1914   bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass);
1915 
1916   // Rewrite the PHI's incoming values to ARC.
1917   LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI);
1918   for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) {
1919     MachineOperand &MO = PHI.getOperand(K);
1920     Register Reg = MO.getReg();
1921 
1922     MachineBasicBlock::iterator InsertPt;
1923     MachineBasicBlock *InsertMBB = nullptr;
1924 
1925     // Look at the def of Reg, ignoring all copies.
1926     unsigned CopyOpc = AMDGPU::COPY;
1927     if (MachineInstr *Def = MRI->getVRegDef(Reg)) {
1928 
1929       // Look at pre-existing COPY instructions from ARC: Steal the operand. If
1930       // the copy was single-use, it will be removed by DCE later.
1931       if (Def->isCopy()) {
1932         Register AGPRSrc;
1933         unsigned AGPRSubReg = AMDGPU::NoSubRegister;
1934         if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) {
1935           MO.setReg(AGPRSrc);
1936           MO.setSubReg(AGPRSubReg);
1937           continue;
1938         }
1939 
1940         // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on
1941         // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try
1942         // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which
1943         // is unlikely to be profitable.
1944         //
1945         // Note that V_ACCVGPR_WRITE is only used for AGPR_32.
1946         MachineOperand &CopyIn = Def->getOperand(1);
1947         if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) &&
1948             TRI->isSGPRReg(*MRI, CopyIn.getReg()))
1949           CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
1950       }
1951 
1952       InsertMBB = Def->getParent();
1953       InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator());
1954     } else {
1955       InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB();
1956       InsertPt = InsertMBB->getFirstTerminator();
1957     }
1958 
1959     Register NewReg = MRI->createVirtualRegister(ARC);
1960     MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(),
1961                                TII->get(CopyOpc), NewReg)
1962                            .addReg(Reg);
1963     MO.setReg(NewReg);
1964 
1965     (void)MI;
1966     LLVM_DEBUG(dbgs() << "  Created COPY: " << *MI);
1967   }
1968 
1969   // Replace the PHI's result with a new register.
1970   Register NewReg = MRI->createVirtualRegister(ARC);
1971   PHI.getOperand(0).setReg(NewReg);
1972 
1973   // COPY that new register back to the original PhiOut register. This COPY will
1974   // usually be folded out later.
1975   MachineBasicBlock *MBB = PHI.getParent();
1976   BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(),
1977           TII->get(AMDGPU::COPY), PhiOut)
1978       .addReg(NewReg);
1979 
1980   LLVM_DEBUG(dbgs() << "  Done: Folded " << PHI);
1981   return true;
1982 }
1983 
1984 // Attempt to convert VGPR load to an AGPR load.
1985 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) {
1986   assert(MI.mayLoad());
1987   if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1)
1988     return false;
1989 
1990   MachineOperand &Def = MI.getOperand(0);
1991   if (!Def.isDef())
1992     return false;
1993 
1994   Register DefReg = Def.getReg();
1995 
1996   if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg))
1997     return false;
1998 
1999   SmallVector<const MachineInstr*, 8> Users;
2000   SmallVector<Register, 8> MoveRegs;
2001   for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg))
2002     Users.push_back(&I);
2003 
2004   if (Users.empty())
2005     return false;
2006 
2007   // Check that all uses a copy to an agpr or a reg_sequence producing an agpr.
2008   while (!Users.empty()) {
2009     const MachineInstr *I = Users.pop_back_val();
2010     if (!I->isCopy() && !I->isRegSequence())
2011       return false;
2012     Register DstReg = I->getOperand(0).getReg();
2013     // Physical registers may have more than one instruction definitions
2014     if (DstReg.isPhysical())
2015       return false;
2016     if (TRI->isAGPR(*MRI, DstReg))
2017       continue;
2018     MoveRegs.push_back(DstReg);
2019     for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg))
2020       Users.push_back(&U);
2021   }
2022 
2023   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
2024   MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC));
2025   if (!TII->isOperandLegal(MI, 0, &Def)) {
2026     MRI->setRegClass(DefReg, RC);
2027     return false;
2028   }
2029 
2030   while (!MoveRegs.empty()) {
2031     Register Reg = MoveRegs.pop_back_val();
2032     MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)));
2033   }
2034 
2035   LLVM_DEBUG(dbgs() << "Folded " << MI);
2036 
2037   return true;
2038 }
2039 
2040 // tryFoldPhiAGPR will aggressively try to create AGPR PHIs.
2041 // For GFX90A and later, this is pretty much always a good thing, but for GFX908
2042 // there's cases where it can create a lot more AGPR-AGPR copies, which are
2043 // expensive on this architecture due to the lack of V_ACCVGPR_MOV.
2044 //
2045 // This function looks at all AGPR PHIs in a basic block and collects their
2046 // operands. Then, it checks for register that are used more than once across
2047 // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from
2048 // having to create one VGPR temporary per use, which can get very messy if
2049 // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector
2050 // element).
2051 //
2052 // Example
2053 //      a:
2054 //        %in:agpr_256 = COPY %foo:vgpr_256
2055 //      c:
2056 //        %x:agpr_32 = ..
2057 //      b:
2058 //        %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c
2059 //        %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c
2060 //        %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c
2061 //  =>
2062 //      a:
2063 //        %in:agpr_256 = COPY %foo:vgpr_256
2064 //        %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32
2065 //        %tmp_agpr:agpr_32 = COPY %tmp
2066 //      c:
2067 //        %x:agpr_32 = ..
2068 //      b:
2069 //        %0:areg = PHI %tmp_agpr, %a, %x, %c
2070 //        %1:areg = PHI %tmp_agpr, %a, %y, %c
2071 //        %2:areg = PHI %tmp_agpr, %a, %z, %c
2072 bool SIFoldOperands::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) {
2073   // This is only really needed on GFX908 where AGPR-AGPR copies are
2074   // unreasonably difficult.
2075   if (ST->hasGFX90AInsts())
2076     return false;
2077 
2078   // Look at all AGPR Phis and collect the register + subregister used.
2079   DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>>
2080       RegToMO;
2081 
2082   for (auto &MI : MBB) {
2083     if (!MI.isPHI())
2084       break;
2085 
2086     if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg()))
2087       continue;
2088 
2089     for (unsigned K = 1; K < MI.getNumOperands(); K += 2) {
2090       MachineOperand &PhiMO = MI.getOperand(K);
2091       RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO);
2092     }
2093   }
2094 
2095   // For all (Reg, SubReg) pair that are used more than once, cache the value in
2096   // a VGPR.
2097   bool Changed = false;
2098   for (const auto &[Entry, MOs] : RegToMO) {
2099     if (MOs.size() == 1)
2100       continue;
2101 
2102     const auto [Reg, SubReg] = Entry;
2103     MachineInstr *Def = MRI->getVRegDef(Reg);
2104     MachineBasicBlock *DefMBB = Def->getParent();
2105 
2106     // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded
2107     // out.
2108     const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front());
2109     Register TempVGPR =
2110         MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC));
2111     MachineInstr *VGPRCopy =
2112         BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(),
2113                 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR)
2114             .addReg(Reg, /* flags */ 0, SubReg);
2115 
2116     // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs.
2117     Register TempAGPR = MRI->createVirtualRegister(ARC);
2118     BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(),
2119             TII->get(AMDGPU::COPY), TempAGPR)
2120         .addReg(TempVGPR);
2121 
2122     LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy);
2123     for (MachineOperand *MO : MOs) {
2124       MO->setReg(TempAGPR);
2125       MO->setSubReg(AMDGPU::NoSubRegister);
2126       LLVM_DEBUG(dbgs() << "  Changed PHI Operand: " << *MO << "\n");
2127     }
2128 
2129     Changed = true;
2130   }
2131 
2132   return Changed;
2133 }
2134 
2135 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
2136   if (skipFunction(MF.getFunction()))
2137     return false;
2138 
2139   MRI = &MF.getRegInfo();
2140   ST = &MF.getSubtarget<GCNSubtarget>();
2141   TII = ST->getInstrInfo();
2142   TRI = &TII->getRegisterInfo();
2143   MFI = MF.getInfo<SIMachineFunctionInfo>();
2144 
2145   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
2146   // correctly handle signed zeros.
2147   //
2148   // FIXME: Also need to check strictfp
2149   bool IsIEEEMode = MFI->getMode().IEEE;
2150   bool HasNSZ = MFI->hasNoSignedZerosFPMath();
2151 
2152   bool Changed = false;
2153   for (MachineBasicBlock *MBB : depth_first(&MF)) {
2154     MachineOperand *CurrentKnownM0Val = nullptr;
2155     for (auto &MI : make_early_inc_range(*MBB)) {
2156       Changed |= tryFoldCndMask(MI);
2157 
2158       if (tryFoldZeroHighBits(MI)) {
2159         Changed = true;
2160         continue;
2161       }
2162 
2163       if (MI.isRegSequence() && tryFoldRegSequence(MI)) {
2164         Changed = true;
2165         continue;
2166       }
2167 
2168       if (MI.isPHI() && tryFoldPhiAGPR(MI)) {
2169         Changed = true;
2170         continue;
2171       }
2172 
2173       if (MI.mayLoad() && tryFoldLoad(MI)) {
2174         Changed = true;
2175         continue;
2176       }
2177 
2178       if (TII->isFoldableCopy(MI)) {
2179         Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val);
2180         continue;
2181       }
2182 
2183       // Saw an unknown clobber of m0, so we no longer know what it is.
2184       if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
2185         CurrentKnownM0Val = nullptr;
2186 
2187       // TODO: Omod might be OK if there is NSZ only on the source
2188       // instruction, and not the omod multiply.
2189       if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
2190           !tryFoldOMod(MI))
2191         Changed |= tryFoldClamp(MI);
2192     }
2193 
2194     Changed |= tryOptimizeAGPRPhis(*MBB);
2195   }
2196 
2197   return Changed;
2198 }
2199