//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // /// \file //===----------------------------------------------------------------------===// // #include "AMDGPU.h" #include "GCNSubtarget.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIMachineFunctionInfo.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineOperand.h" #define DEBUG_TYPE "si-fold-operands" using namespace llvm; namespace { struct FoldCandidate { MachineInstr *UseMI; union { MachineOperand *OpToFold; uint64_t ImmToFold; int FrameIndexToFold; }; int ShrinkOpcode; unsigned UseOpNo; MachineOperand::MachineOperandType Kind; bool Commuted; FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, bool Commuted_ = false, int ShrinkOp = -1) : UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), Kind(FoldOp->getType()), Commuted(Commuted_) { if (FoldOp->isImm()) { ImmToFold = FoldOp->getImm(); } else if (FoldOp->isFI()) { FrameIndexToFold = FoldOp->getIndex(); } else { assert(FoldOp->isReg() || FoldOp->isGlobal()); OpToFold = FoldOp; } } bool isFI() const { return Kind == MachineOperand::MO_FrameIndex; } bool isImm() const { return Kind == MachineOperand::MO_Immediate; } bool isReg() const { return Kind == MachineOperand::MO_Register; } bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } bool needsShrink() const { return ShrinkOpcode != -1; } }; class SIFoldOperands : public MachineFunctionPass { public: static char ID; MachineRegisterInfo *MRI; const SIInstrInfo *TII; const SIRegisterInfo *TRI; const GCNSubtarget *ST; const SIMachineFunctionInfo *MFI; bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, const MachineOperand &OpToFold) const; bool updateOperand(FoldCandidate &Fold) const; bool canUseImmWithOpSel(FoldCandidate &Fold) const; bool tryFoldImmWithOpSel(FoldCandidate &Fold) const; bool tryAddToFoldList(SmallVectorImpl &FoldList, MachineInstr *MI, unsigned OpNo, MachineOperand *OpToFold) const; bool isUseSafeToFold(const MachineInstr &MI, const MachineOperand &UseMO) const; bool getRegSeqInit(SmallVectorImpl> &Defs, Register UseReg, uint8_t OpTy) const; bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, SmallVectorImpl &FoldList) const; void foldOperand(MachineOperand &OpToFold, MachineInstr *UseMI, int UseOpIdx, SmallVectorImpl &FoldList, SmallVectorImpl &CopiesToReplace) const; MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const; bool tryConstantFoldOp(MachineInstr *MI) const; bool tryFoldCndMask(MachineInstr &MI) const; bool tryFoldZeroHighBits(MachineInstr &MI) const; bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; bool tryFoldFoldableCopy(MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const; const MachineOperand *isClamp(const MachineInstr &MI) const; bool tryFoldClamp(MachineInstr &MI); std::pair isOMod(const MachineInstr &MI) const; bool tryFoldOMod(MachineInstr &MI); bool tryFoldRegSequence(MachineInstr &MI); bool tryFoldPhiAGPR(MachineInstr &MI); bool tryFoldLoad(MachineInstr &MI); bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); public: SIFoldOperands() : MachineFunctionPass(ID) { initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Fold Operands"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace. INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, "SI Fold Operands", false, false) char SIFoldOperands::ID = 0; char &llvm::SIFoldOperandsID = SIFoldOperands::ID; static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const MachineOperand &MO) { const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg()); if (const TargetRegisterClass *SubRC = TRI.getSubRegisterClass(RC, MO.getSubReg())) RC = SubRC; return RC; } // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. static unsigned macToMad(unsigned Opc) { switch (Opc) { case AMDGPU::V_MAC_F32_e64: return AMDGPU::V_MAD_F32_e64; case AMDGPU::V_MAC_F16_e64: return AMDGPU::V_MAD_F16_e64; case AMDGPU::V_FMAC_F32_e64: return AMDGPU::V_FMA_F32_e64; case AMDGPU::V_FMAC_F16_e64: return AMDGPU::V_FMA_F16_gfx9_e64; case AMDGPU::V_FMAC_F16_t16_e64: return AMDGPU::V_FMA_F16_gfx9_e64; case AMDGPU::V_FMAC_LEGACY_F32_e64: return AMDGPU::V_FMA_LEGACY_F32_e64; case AMDGPU::V_FMAC_F64_e64: return AMDGPU::V_FMA_F64_e64; } return AMDGPU::INSTRUCTION_LIST_END; } // TODO: Add heuristic that the frame index might not fit in the addressing mode // immediate offset to avoid materializing in loops. bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo, const MachineOperand &OpToFold) const { if (!OpToFold.isFI()) return false; const unsigned Opc = UseMI.getOpcode(); if (TII->isMUBUF(UseMI)) return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); if (!TII->isFLATScratch(UseMI)) return false; int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); if (OpNo == SIdx) return true; int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); return OpNo == VIdx && SIdx == -1; } FunctionPass *llvm::createSIFoldOperandsPass() { return new SIFoldOperands(); } bool SIFoldOperands::canUseImmWithOpSel(FoldCandidate &Fold) const { MachineInstr *MI = Fold.UseMI; MachineOperand &Old = MI->getOperand(Fold.UseOpNo); const uint64_t TSFlags = MI->getDesc().TSFlags; assert(Old.isReg() && Fold.isImm()); if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) || (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) return false; unsigned Opcode = MI->getOpcode(); int OpNo = MI->getOperandNo(&Old); uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; switch (OpType) { default: return false; case AMDGPU::OPERAND_REG_IMM_V2FP16: case AMDGPU::OPERAND_REG_IMM_V2INT16: case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: break; } return true; } bool SIFoldOperands::tryFoldImmWithOpSel(FoldCandidate &Fold) const { MachineInstr *MI = Fold.UseMI; MachineOperand &Old = MI->getOperand(Fold.UseOpNo); unsigned Opcode = MI->getOpcode(); int OpNo = MI->getOperandNo(&Old); uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; // If the literal can be inlined as-is, apply it and short-circuit the // tests below. The main motivation for this is to avoid unintuitive // uses of opsel. if (AMDGPU::isInlinableLiteralV216(Fold.ImmToFold, OpType)) { Old.ChangeToImmediate(Fold.ImmToFold); return true; } // Refer to op_sel/op_sel_hi and check if we can change the immediate and // op_sel in a way that allows an inline constant. int ModIdx = -1; unsigned SrcIdx = ~0; if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) { ModIdx = AMDGPU::OpName::src0_modifiers; SrcIdx = 0; } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) { ModIdx = AMDGPU::OpName::src1_modifiers; SrcIdx = 1; } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) { ModIdx = AMDGPU::OpName::src2_modifiers; SrcIdx = 2; } assert(ModIdx != -1); ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); MachineOperand &Mod = MI->getOperand(ModIdx); unsigned ModVal = Mod.getImm(); uint16_t ImmLo = static_cast( Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); uint16_t ImmHi = static_cast( Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); uint32_t Imm = (static_cast(ImmHi) << 16) | ImmLo; unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); // Helper function that attempts to inline the given value with a newly // chosen opsel pattern. auto tryFoldToInline = [&](uint32_t Imm) -> bool { if (AMDGPU::isInlinableLiteralV216(Imm, OpType)) { Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); Old.ChangeToImmediate(Imm); return true; } // Try to shuffle the halves around and leverage opsel to get an inline // constant. uint16_t Lo = static_cast(Imm); uint16_t Hi = static_cast(Imm >> 16); if (Lo == Hi) { if (AMDGPU::isInlinableLiteralV216(Lo, OpType)) { Mod.setImm(NewModVal); Old.ChangeToImmediate(Lo); return true; } if (static_cast(Lo) < 0) { int32_t SExt = static_cast(Lo); if (AMDGPU::isInlinableLiteralV216(SExt, OpType)) { Mod.setImm(NewModVal); Old.ChangeToImmediate(SExt); return true; } } // This check is only useful for integer instructions if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16 || OpType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16) { if (AMDGPU::isInlinableLiteralV216(Lo << 16, OpType)) { Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); Old.ChangeToImmediate(static_cast(Lo) << 16); return true; } } } else { uint32_t Swapped = (static_cast(Lo) << 16) | Hi; if (AMDGPU::isInlinableLiteralV216(Swapped, OpType)) { Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); Old.ChangeToImmediate(Swapped); return true; } } return false; }; if (tryFoldToInline(Imm)) return true; // Replace integer addition by subtraction and vice versa if it allows // folding the immediate to an inline constant. // // We should only ever get here for SrcIdx == 1 due to canonicalization // earlier in the pipeline, but we double-check here to be safe / fully // general. bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; if (SrcIdx == 1 && (IsUAdd || IsUSub)) { unsigned ClampIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp); bool Clamp = MI->getOperand(ClampIdx).getImm() != 0; if (!Clamp) { uint16_t NegLo = -static_cast(Imm); uint16_t NegHi = -static_cast(Imm >> 16); uint32_t NegImm = (static_cast(NegHi) << 16) | NegLo; if (tryFoldToInline(NegImm)) { unsigned NegOpcode = IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; MI->setDesc(TII->get(NegOpcode)); return true; } } } return false; } bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const { MachineInstr *MI = Fold.UseMI; MachineOperand &Old = MI->getOperand(Fold.UseOpNo); assert(Old.isReg()); if (Fold.isImm() && canUseImmWithOpSel(Fold)) { if (tryFoldImmWithOpSel(Fold)) return true; // We can't represent the candidate as an inline constant. Try as a literal // with the original opsel, checking constant bus limitations. MachineOperand New = MachineOperand::CreateImm(Fold.ImmToFold); int OpNo = MI->getOperandNo(&Old); if (!TII->isOperandLegal(*MI, OpNo, &New)) return false; Old.ChangeToImmediate(Fold.ImmToFold); return true; } if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { MachineBasicBlock *MBB = MI->getParent(); auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16); if (Liveness != MachineBasicBlock::LQR_Dead) { LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); return false; } int Op32 = Fold.ShrinkOpcode; MachineOperand &Dst0 = MI->getOperand(0); MachineOperand &Dst1 = MI->getOperand(1); assert(Dst0.isDef() && Dst1.isDef()); bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg()); const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg()); Register NewReg0 = MRI->createVirtualRegister(Dst0RC); MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32); if (HaveNonDbgCarryUse) { BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY), Dst1.getReg()) .addReg(AMDGPU::VCC, RegState::Kill); } // Keep the old instruction around to avoid breaking iterators, but // replace it with a dummy instruction to remove uses. // // FIXME: We should not invert how this pass looks at operands to avoid // this. Should track set of foldable movs instead of looking for uses // when looking at a use. Dst0.setReg(NewReg0); for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) MI->removeOperand(I); MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF)); if (Fold.Commuted) TII->commuteInstruction(*Inst32, false); return true; } assert(!Fold.needsShrink() && "not handled"); if (Fold.isImm()) { if (Old.isTied()) { int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode()); if (NewMFMAOpc == -1) return false; MI->setDesc(TII->get(NewMFMAOpc)); MI->untieRegOperand(0); } Old.ChangeToImmediate(Fold.ImmToFold); return true; } if (Fold.isGlobal()) { Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), Fold.OpToFold->getTargetFlags()); return true; } if (Fold.isFI()) { Old.ChangeToFrameIndex(Fold.FrameIndexToFold); return true; } MachineOperand *New = Fold.OpToFold; Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI); Old.setIsUndef(New->isUndef()); return true; } static bool isUseMIInFoldList(ArrayRef FoldList, const MachineInstr *MI) { return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; }); } static void appendFoldCandidate(SmallVectorImpl &FoldList, MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, bool Commuted = false, int ShrinkOp = -1) { // Skip additional folding on the same operand. for (FoldCandidate &Fold : FoldList) if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) return; LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") << " operand " << OpNo << "\n " << *MI); FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp); } bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl &FoldList, MachineInstr *MI, unsigned OpNo, MachineOperand *OpToFold) const { const unsigned Opc = MI->getOpcode(); auto tryToFoldAsFMAAKorMK = [&]() { if (!OpToFold->isImm()) return false; const bool TryAK = OpNo == 3; const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; MI->setDesc(TII->get(NewOpc)); // We have to fold into operand which would be Imm not into OpNo. bool FoldAsFMAAKorMK = tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold); if (FoldAsFMAAKorMK) { // Untie Src2 of fmac. MI->untieRegOperand(3); // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. if (OpNo == 1) { MachineOperand &Op1 = MI->getOperand(1); MachineOperand &Op2 = MI->getOperand(2); Register OldReg = Op1.getReg(); // Operand 2 might be an inlinable constant if (Op2.isImm()) { Op1.ChangeToImmediate(Op2.getImm()); Op2.ChangeToRegister(OldReg, false); } else { Op1.setReg(Op2.getReg()); Op2.setReg(OldReg); } } return true; } MI->setDesc(TII->get(Opc)); return false; }; bool IsLegal = TII->isOperandLegal(*MI, OpNo, OpToFold); if (!IsLegal && OpToFold->isImm()) { FoldCandidate Fold(MI, OpNo, OpToFold); IsLegal = canUseImmWithOpSel(Fold); } if (!IsLegal) { // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 unsigned NewOpc = macToMad(Opc); if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { // Check if changing this to a v_mad_{f16, f32} instruction will allow us // to fold the operand. MI->setDesc(TII->get(NewOpc)); bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) && AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel); if (AddOpSel) MI->addOperand(MachineOperand::CreateImm(0)); bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); if (FoldAsMAD) { MI->untieRegOperand(OpNo); return true; } if (AddOpSel) MI->removeOperand(MI->getNumExplicitOperands() - 1); MI->setDesc(TII->get(Opc)); } // Special case for s_fmac_f32 if we are trying to fold into Src2. // By transforming into fmaak we can untie Src2 and make folding legal. if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { if (tryToFoldAsFMAAKorMK()) return true; } // Special case for s_setreg_b32 if (OpToFold->isImm()) { unsigned ImmOpc = 0; if (Opc == AMDGPU::S_SETREG_B32) ImmOpc = AMDGPU::S_SETREG_IMM32_B32; else if (Opc == AMDGPU::S_SETREG_B32_mode) ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; if (ImmOpc) { MI->setDesc(TII->get(ImmOpc)); appendFoldCandidate(FoldList, MI, OpNo, OpToFold); return true; } } // If we are already folding into another operand of MI, then // we can't commute the instruction, otherwise we risk making the // other fold illegal. if (isUseMIInFoldList(FoldList, MI)) return false; // Operand is not legal, so try to commute the instruction to // see if this makes it possible to fold. unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo); if (!CanCommute) return false; // One of operands might be an Imm operand, and OpNo may refer to it after // the call of commuteInstruction() below. Such situations are avoided // here explicitly as OpNo must be a register operand to be a candidate // for memory folding. if (!MI->getOperand(OpNo).isReg() || !MI->getOperand(CommuteOpNo).isReg()) return false; if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo)) return false; int Op32 = -1; if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) { TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo); return false; } // Verify the other operand is a VGPR, otherwise we would violate the // constant bus restriction. MachineOperand &OtherOp = MI->getOperand(OpNo); if (!OtherOp.isReg() || !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg())) return false; assert(MI->getOperand(1).isDef()); // Make sure to get the 32-bit version of the commuted opcode. unsigned MaybeCommutedOpc = MI->getOpcode(); Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); } appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); return true; } // Inlineable constant might have been folded into Imm operand of fmaak or // fmamk and we are trying to fold a non-inlinable constant. if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) && !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) { unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2; MachineOperand &OpImm = MI->getOperand(ImmIdx); if (!OpImm.isReg() && TII->isInlineConstant(*MI, MI->getOperand(OpNo), OpImm)) return tryToFoldAsFMAAKorMK(); } // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. // By changing into fmamk we can untie Src2. // If folding for Src0 happens first and it is identical operand to Src1 we // should avoid transforming into fmamk which requires commuting as it would // cause folding into Src1 to fail later on due to wrong OpNo used. if (Opc == AMDGPU::S_FMAC_F32 && (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) { if (tryToFoldAsFMAAKorMK()) return true; } // Check the case where we might introduce a second constant operand to a // scalar instruction if (TII->isSALU(MI->getOpcode())) { const MCInstrDesc &InstDesc = MI->getDesc(); const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; // Fine if the operand can be encoded as an inline constant if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) { // Otherwise check for another constant for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { auto &Op = MI->getOperand(i); if (OpNo != i && !Op.isReg() && !TII->isInlineConstant(Op, InstDesc.operands()[i])) return false; } } } appendFoldCandidate(FoldList, MI, OpNo, OpToFold); return true; } bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI, const MachineOperand &UseMO) const { // Operands of SDWA instructions must be registers. return !TII->isSDWA(MI); } // Find a def of the UseReg, check if it is a reg_sequence and find initializers // for each subreg, tracking it to foldable inline immediate if possible. // Returns true on success. bool SIFoldOperands::getRegSeqInit( SmallVectorImpl> &Defs, Register UseReg, uint8_t OpTy) const { MachineInstr *Def = MRI->getVRegDef(UseReg); if (!Def || !Def->isRegSequence()) return false; for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { MachineOperand *Sub = &Def->getOperand(I); assert(Sub->isReg()); for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg()); SubDef && Sub->isReg() && Sub->getReg().isVirtual() && !Sub->getSubReg() && TII->isFoldableCopy(*SubDef); SubDef = MRI->getVRegDef(Sub->getReg())) { MachineOperand *Op = &SubDef->getOperand(1); if (Op->isImm()) { if (TII->isInlineConstant(*Op, OpTy)) Sub = Op; break; } if (!Op->isReg() || Op->getReg().isPhysical()) break; Sub = Op; } Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm()); } return true; } bool SIFoldOperands::tryToFoldACImm( const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, SmallVectorImpl &FoldList) const { const MCInstrDesc &Desc = UseMI->getDesc(); if (UseOpIdx >= Desc.getNumOperands()) return false; if (!AMDGPU::isSISrcInlinableOperand(Desc, UseOpIdx)) return false; uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); return true; } if (!OpToFold.isReg()) return false; Register UseReg = OpToFold.getReg(); if (!UseReg.isVirtual()) return false; if (isUseMIInFoldList(FoldList, UseMI)) return false; // Maybe it is just a COPY of an immediate itself. MachineInstr *Def = MRI->getVRegDef(UseReg); MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) { MachineOperand &DefOp = Def->getOperand(1); if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) && TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm()); return true; } } SmallVector, 32> Defs; if (!getRegSeqInit(Defs, UseReg, OpTy)) return false; int32_t Imm; for (unsigned I = 0, E = Defs.size(); I != E; ++I) { const MachineOperand *Op = Defs[I].first; if (!Op->isImm()) return false; auto SubImm = Op->getImm(); if (!I) { Imm = SubImm; if (!TII->isInlineConstant(*Op, OpTy) || !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) return false; continue; } if (Imm != SubImm) return false; // Can only fold splat constants } appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); return true; } void SIFoldOperands::foldOperand( MachineOperand &OpToFold, MachineInstr *UseMI, int UseOpIdx, SmallVectorImpl &FoldList, SmallVectorImpl &CopiesToReplace) const { const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); if (!isUseSafeToFold(*UseMI, UseOp)) return; // FIXME: Fold operands with subregs. if (UseOp.isReg() && OpToFold.isReg() && (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)) return; // Special case for REG_SEQUENCE: We can't fold literals into // REG_SEQUENCE instructions, so we have to fold them into the // uses of REG_SEQUENCE. if (UseMI->isRegSequence()) { Register RegSeqDstReg = UseMI->getOperand(0).getReg(); unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) { MachineInstr *RSUseMI = RSUse.getParent(); if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList)) continue; if (RSUse.getSubReg() != RegSeqDstSubReg) continue; foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList, CopiesToReplace); } return; } if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) return; if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) { // Verify that this is a stack access. // FIXME: Should probably use stack pseudos before frame lowering. if (TII->isMUBUF(*UseMI)) { if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != MFI->getScratchRSrcReg()) return; // Ensure this is either relative to the current frame or the current // wave. MachineOperand &SOff = *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); if (!SOff.isImm() || SOff.getImm() != 0) return; } // A frame index will resolve to a positive constant, so it should always be // safe to fold the addressing mode, even pre-GFX9. UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); const unsigned Opc = UseMI->getOpcode(); if (TII->isFLATScratch(*UseMI) && AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) && !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) { unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc); UseMI->setDesc(TII->get(NewOpc)); } return; } bool FoldingImmLike = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); if (FoldingImmLike && UseMI->isCopy()) { Register DestReg = UseMI->getOperand(0).getReg(); Register SrcReg = UseMI->getOperand(1).getReg(); assert(SrcReg.isVirtual()); const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); // Don't fold into a copy to a physical register with the same class. Doing // so would interfere with the register coalescer's logic which would avoid // redundant initializations. if (DestReg.isPhysical() && SrcRC->contains(DestReg)) return; const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); if (!DestReg.isPhysical()) { if (DestRC == &AMDGPU::AGPR_32RegClass && TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); CopiesToReplace.push_back(UseMI); return; } } // In order to fold immediates into copies, we need to change the // copy to a MOV. unsigned MovOp = TII->getMovOpcode(DestRC); if (MovOp == AMDGPU::COPY) return; UseMI->setDesc(TII->get(MovOp)); MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); while (ImpOpI != ImpOpE) { MachineInstr::mop_iterator Tmp = ImpOpI; ImpOpI++; UseMI->removeOperand(UseMI->getOperandNo(Tmp)); } CopiesToReplace.push_back(UseMI); } else { if (UseMI->isCopy() && OpToFold.isReg() && UseMI->getOperand(0).getReg().isVirtual() && !UseMI->getOperand(1).getSubReg()) { LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI); unsigned Size = TII->getOpSize(*UseMI, 1); Register UseReg = OpToFold.getReg(); UseMI->getOperand(1).setReg(UseReg); UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); UseMI->getOperand(1).setIsKill(false); CopiesToReplace.push_back(UseMI); OpToFold.setIsKill(false); // Remove kill flags as kills may now be out of order with uses. MRI->clearKillFlags(OpToFold.getReg()); // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 // can only accept VGPR or inline immediate. Recreate a reg_sequence with // its initializers right here, so we will rematerialize immediates and // avoid copies via different reg classes. SmallVector, 32> Defs; if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { const DebugLoc &DL = UseMI->getDebugLoc(); MachineBasicBlock &MBB = *UseMI->getParent(); UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) UseMI->removeOperand(I); MachineInstrBuilder B(*MBB.getParent(), UseMI); DenseMap VGPRCopies; SmallSetVector SeenAGPRs; for (unsigned I = 0; I < Size / 4; ++I) { MachineOperand *Def = Defs[I].first; TargetInstrInfo::RegSubRegPair CopyToVGPR; if (Def->isImm() && TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { int64_t Imm = Def->getImm(); auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); B.addReg(Tmp); } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { auto Src = getRegSubRegPair(*Def); Def->setIsKill(false); if (!SeenAGPRs.insert(Src)) { // We cannot build a reg_sequence out of the same registers, they // must be copied. Better do it here before copyPhysReg() created // several reads to do the AGPR->VGPR->AGPR copy. CopyToVGPR = Src; } else { B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, Src.SubReg); } } else { assert(Def->isReg()); Def->setIsKill(false); auto Src = getRegSubRegPair(*Def); // Direct copy from SGPR to AGPR is not possible. To avoid creation // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, // create a copy here and track if we already have such a copy. if (TRI->isSGPRReg(*MRI, Src.Reg)) { CopyToVGPR = Src; } else { auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); B.addReg(Tmp); } } if (CopyToVGPR.Reg) { Register Vgpr; if (VGPRCopies.count(CopyToVGPR)) { Vgpr = VGPRCopies[CopyToVGPR]; } else { Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); VGPRCopies[CopyToVGPR] = Vgpr; } auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); B.addReg(Tmp); } B.addImm(Defs[I].second); } LLVM_DEBUG(dbgs() << "Folded " << *UseMI); return; } if (Size != 4) return; Register Reg0 = UseMI->getOperand(0).getReg(); Register Reg1 = UseMI->getOperand(1).getReg(); if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1)) UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1)) UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1)) UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32)); return; } unsigned UseOpc = UseMI->getOpcode(); if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || (UseOpc == AMDGPU::V_READLANE_B32 && (int)UseOpIdx == AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { // %vgpr = V_MOV_B32 imm // %sgpr = V_READFIRSTLANE_B32 %vgpr // => // %sgpr = S_MOV_B32 imm if (FoldingImmLike) { if (execMayBeModifiedBeforeUse(*MRI, UseMI->getOperand(UseOpIdx).getReg(), *OpToFold.getParent(), *UseMI)) return; UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); if (OpToFold.isImm()) UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); else UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) return; } if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { if (execMayBeModifiedBeforeUse(*MRI, UseMI->getOperand(UseOpIdx).getReg(), *OpToFold.getParent(), *UseMI)) return; // %vgpr = COPY %sgpr0 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr // => // %sgpr1 = COPY %sgpr0 UseMI->setDesc(TII->get(AMDGPU::COPY)); UseMI->getOperand(1).setReg(OpToFold.getReg()); UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); UseMI->getOperand(1).setIsKill(false); UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) return; } } const MCInstrDesc &UseDesc = UseMI->getDesc(); // Don't fold into target independent nodes. Target independent opcodes // don't have defined register classes. if (UseDesc.isVariadic() || UseOp.isImplicit() || UseDesc.operands()[UseOpIdx].RegClass == -1) return; } if (!FoldingImmLike) { if (OpToFold.isReg() && ST->needsAlignedVGPRs()) { // Don't fold if OpToFold doesn't hold an aligned register. const TargetRegisterClass *RC = TRI->getRegClassForReg(*MRI, OpToFold.getReg()); if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) { unsigned SubReg = OpToFold.getSubReg(); if (const TargetRegisterClass *SubRC = TRI->getSubRegisterClass(RC, SubReg)) RC = SubRC; } if (!RC || !TRI->isProperlyAlignedRC(*RC)) return; } tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); // FIXME: We could try to change the instruction from 64-bit to 32-bit // to enable more folding opportunities. The shrink operands pass // already does this. return; } const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); const TargetRegisterClass *FoldRC = TRI->getRegClass(FoldDesc.operands()[0].RegClass); // Split 64-bit constants into 32-bits for folding. if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) { Register UseReg = UseOp.getReg(); const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); if (AMDGPU::getRegBitWidth(*UseRC) != 64) return; APInt Imm(64, OpToFold.getImm()); if (UseOp.getSubReg() == AMDGPU::sub0) { Imm = Imm.getLoBits(32); } else { assert(UseOp.getSubReg() == AMDGPU::sub1); Imm = Imm.getHiBits(32); } MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp); return; } tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); } static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, uint32_t LHS, uint32_t RHS) { switch (Opcode) { case AMDGPU::V_AND_B32_e64: case AMDGPU::V_AND_B32_e32: case AMDGPU::S_AND_B32: Result = LHS & RHS; return true; case AMDGPU::V_OR_B32_e64: case AMDGPU::V_OR_B32_e32: case AMDGPU::S_OR_B32: Result = LHS | RHS; return true; case AMDGPU::V_XOR_B32_e64: case AMDGPU::V_XOR_B32_e32: case AMDGPU::S_XOR_B32: Result = LHS ^ RHS; return true; case AMDGPU::S_XNOR_B32: Result = ~(LHS ^ RHS); return true; case AMDGPU::S_NAND_B32: Result = ~(LHS & RHS); return true; case AMDGPU::S_NOR_B32: Result = ~(LHS | RHS); return true; case AMDGPU::S_ANDN2_B32: Result = LHS & ~RHS; return true; case AMDGPU::S_ORN2_B32: Result = LHS | ~RHS; return true; case AMDGPU::V_LSHL_B32_e64: case AMDGPU::V_LSHL_B32_e32: case AMDGPU::S_LSHL_B32: // The instruction ignores the high bits for out of bounds shifts. Result = LHS << (RHS & 31); return true; case AMDGPU::V_LSHLREV_B32_e64: case AMDGPU::V_LSHLREV_B32_e32: Result = RHS << (LHS & 31); return true; case AMDGPU::V_LSHR_B32_e64: case AMDGPU::V_LSHR_B32_e32: case AMDGPU::S_LSHR_B32: Result = LHS >> (RHS & 31); return true; case AMDGPU::V_LSHRREV_B32_e64: case AMDGPU::V_LSHRREV_B32_e32: Result = RHS >> (LHS & 31); return true; case AMDGPU::V_ASHR_I32_e64: case AMDGPU::V_ASHR_I32_e32: case AMDGPU::S_ASHR_I32: Result = static_cast(LHS) >> (RHS & 31); return true; case AMDGPU::V_ASHRREV_I32_e64: case AMDGPU::V_ASHRREV_I32_e32: Result = static_cast(RHS) >> (LHS & 31); return true; default: return false; } } static unsigned getMovOpc(bool IsScalar) { return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; } static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { MI.setDesc(NewDesc); // Remove any leftover implicit operands from mutating the instruction. e.g. // if we replace an s_and_b32 with a copy, we don't need the implicit scc def // anymore. const MCInstrDesc &Desc = MI.getDesc(); unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() + Desc.implicit_defs().size(); for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) MI.removeOperand(I); } MachineOperand * SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const { // If this has a subregister, it obviously is a register source. if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) return &Op; MachineInstr *Def = MRI->getVRegDef(Op.getReg()); if (Def && Def->isMoveImmediate()) { MachineOperand &ImmSrc = Def->getOperand(1); if (ImmSrc.isImm()) return &ImmSrc; } return &Op; } // Try to simplify operations with a constant that may appear after instruction // selection. // TODO: See if a frame index with a fixed offset can fold. bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const { if (!MI->allImplicitDefsAreDead()) return false; unsigned Opc = MI->getOpcode(); int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); if (Src0Idx == -1) return false; MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx)); if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || Opc == AMDGPU::S_NOT_B32) && Src0->isImm()) { MI->getOperand(1).ChangeToImmediate(~Src0->getImm()); mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); return true; } int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); if (Src1Idx == -1) return false; MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx)); if (!Src0->isImm() && !Src1->isImm()) return false; // and k0, k1 -> v_mov_b32 (k0 & k1) // or k0, k1 -> v_mov_b32 (k0 | k1) // xor k0, k1 -> v_mov_b32 (k0 ^ k1) if (Src0->isImm() && Src1->isImm()) { int32_t NewImm; if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) return false; bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg()); // Be careful to change the right operand, src0 may belong to a different // instruction. MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); return true; } if (!MI->isCommutable()) return false; if (Src0->isImm() && !Src1->isImm()) { std::swap(Src0, Src1); std::swap(Src0Idx, Src1Idx); } int32_t Src1Val = static_cast(Src1->getImm()); if (Opc == AMDGPU::V_OR_B32_e64 || Opc == AMDGPU::V_OR_B32_e32 || Opc == AMDGPU::S_OR_B32) { if (Src1Val == 0) { // y = or x, 0 => y = copy x MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); } else if (Src1Val == -1) { // y = or x, -1 => y = v_mov_b32 -1 MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); } else return false; return true; } if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || Opc == AMDGPU::S_AND_B32) { if (Src1Val == 0) { // y = and x, 0 => y = v_mov_b32 0 MI->removeOperand(Src0Idx); mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); } else if (Src1Val == -1) { // y = and x, -1 => y = copy x MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); } else return false; return true; } if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || Opc == AMDGPU::S_XOR_B32) { if (Src1Val == 0) { // y = xor x, 0 => y = copy x MI->removeOperand(Src1Idx); mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); return true; } } return false; } // Try to fold an instruction into a simpler one bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const { unsigned Opc = MI.getOpcode(); if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) return false; MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (!Src1->isIdenticalTo(*Src0)) { auto *Src0Imm = getImmOrMaterializedImm(*Src0); auto *Src1Imm = getImmOrMaterializedImm(*Src1); if (!Src1Imm->isIdenticalTo(*Src0Imm)) return false; } int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) || (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0)) return false; LLVM_DEBUG(dbgs() << "Folded " << MI << " into "); auto &NewDesc = TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); if (Src2Idx != -1) MI.removeOperand(Src2Idx); MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); if (Src1ModIdx != -1) MI.removeOperand(Src1ModIdx); if (Src0ModIdx != -1) MI.removeOperand(Src0ModIdx); mutateCopyOp(MI, NewDesc); LLVM_DEBUG(dbgs() << MI); return true; } bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const { if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && MI.getOpcode() != AMDGPU::V_AND_B32_e32) return false; MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1)); if (!Src0->isImm() || Src0->getImm() != 0xffff) return false; Register Src1 = MI.getOperand(2).getReg(); MachineInstr *SrcDef = MRI->getVRegDef(Src1); if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) return false; Register Dst = MI.getOperand(0).getReg(); MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg()); MI.eraseFromParent(); return true; } bool SIFoldOperands::foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const { // We need mutate the operands of new mov instructions to add implicit // uses of EXEC, but adding them invalidates the use_iterator, so defer // this. SmallVector CopiesToReplace; SmallVector FoldList; MachineOperand &Dst = MI.getOperand(0); bool Changed = false; if (OpToFold.isImm()) { for (auto &UseMI : make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) { // Folding the immediate may reveal operations that can be constant // folded or replaced with a copy. This can happen for example after // frame indices are lowered to constants or from splitting 64-bit // constants. // // We may also encounter cases where one or both operands are // immediates materialized into a register, which would ordinarily not // be folded due to multiple uses or operand constraints. if (tryConstantFoldOp(&UseMI)) { LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); Changed = true; } } } SmallVector UsesToProcess; for (auto &Use : MRI->use_nodbg_operands(Dst.getReg())) UsesToProcess.push_back(&Use); for (auto *U : UsesToProcess) { MachineInstr *UseMI = U->getParent(); foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList, CopiesToReplace); } if (CopiesToReplace.empty() && FoldList.empty()) return Changed; MachineFunction *MF = MI.getParent()->getParent(); // Make sure we add EXEC uses to any new v_mov instructions created. for (MachineInstr *Copy : CopiesToReplace) Copy->addImplicitDefUseOperands(*MF); for (FoldCandidate &Fold : FoldList) { assert(!Fold.isReg() || Fold.OpToFold); if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { Register Reg = Fold.OpToFold->getReg(); MachineInstr *DefMI = Fold.OpToFold->getParent(); if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) continue; } if (updateOperand(Fold)) { // Clear kill flags. if (Fold.isReg()) { assert(Fold.OpToFold && Fold.OpToFold->isReg()); // FIXME: Probably shouldn't bother trying to fold if not an // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR // copies. MRI->clearKillFlags(Fold.OpToFold->getReg()); } LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " << static_cast(Fold.UseOpNo) << " of " << *Fold.UseMI); } else if (Fold.Commuted) { // Restoring instruction's original operand order if fold has failed. TII->commuteInstruction(*Fold.UseMI, false); } } return true; } bool SIFoldOperands::tryFoldFoldableCopy( MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { // Specially track simple redefs of m0 to the same value in a block, so we // can erase the later ones. if (MI.getOperand(0).getReg() == AMDGPU::M0) { MachineOperand &NewM0Val = MI.getOperand(1); if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { MI.eraseFromParent(); return true; } // We aren't tracking other physical registers CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? nullptr : &NewM0Val; return false; } MachineOperand &OpToFold = MI.getOperand(1); bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); // FIXME: We could also be folding things like TargetIndexes. if (!FoldingImm && !OpToFold.isReg()) return false; if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) return false; // Prevent folding operands backwards in the function. For example, // the COPY opcode must not be replaced by 1 in this example: // // %3 = COPY %vgpr0; VGPR_32:%3 // ... // %vgpr0 = V_MOV_B32_e32 1, implicit %exec if (!MI.getOperand(0).getReg().isVirtual()) return false; bool Changed = foldInstOperand(MI, OpToFold); // If we managed to fold all uses of this copy then we might as well // delete it now. // The only reason we need to follow chains of copies here is that // tryFoldRegSequence looks forward through copies before folding a // REG_SEQUENCE into its eventual users. auto *InstToErase = &MI; while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { auto &SrcOp = InstToErase->getOperand(1); auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); InstToErase->eraseFromParent(); Changed = true; InstToErase = nullptr; if (!SrcReg || SrcReg.isPhysical()) break; InstToErase = MRI->getVRegDef(SrcReg); if (!InstToErase || !TII->isFoldableCopy(*InstToErase)) break; } if (InstToErase && InstToErase->isRegSequence() && MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { InstToErase->eraseFromParent(); Changed = true; } return Changed; } // Clamp patterns are canonically selected to v_max_* instructions, so only // handle them. const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { unsigned Op = MI.getOpcode(); switch (Op) { case AMDGPU::V_MAX_F32_e64: case AMDGPU::V_MAX_F16_e64: case AMDGPU::V_MAX_F16_t16_e64: case AMDGPU::V_MAX_F16_fake16_e64: case AMDGPU::V_MAX_F64_e64: case AMDGPU::V_MAX_NUM_F64_e64: case AMDGPU::V_PK_MAX_F16: { if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) return nullptr; // Make sure sources are identical. const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (!Src0->isReg() || !Src1->isReg() || Src0->getReg() != Src1->getReg() || Src0->getSubReg() != Src1->getSubReg() || Src0->getSubReg() != AMDGPU::NoSubRegister) return nullptr; // Can't fold up if we have modifiers. if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) return nullptr; unsigned Src0Mods = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); unsigned Src1Mods = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); // Having a 0 op_sel_hi would require swizzling the output in the source // instruction, which we can't do. unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0u; if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) return nullptr; return Src0; } default: return nullptr; } } // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { const MachineOperand *ClampSrc = isClamp(MI); if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) return false; MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); // The type of clamp must be compatible. if (TII->getClampMask(*Def) != TII->getClampMask(MI)) return false; MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); if (!DefClamp) return false; LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); // Clamp is applied after omod, so it is OK if omod is set. DefClamp->setImm(1); MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); MI.eraseFromParent(); // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac // instruction, so we might as well convert it to the more flexible VOP3-only // mad/fma form. if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) Def->eraseFromParent(); return true; } static int getOModValue(unsigned Opc, int64_t Val) { switch (Opc) { case AMDGPU::V_MUL_F64_e64: case AMDGPU::V_MUL_F64_pseudo_e64: { switch (Val) { case 0x3fe0000000000000: // 0.5 return SIOutMods::DIV2; case 0x4000000000000000: // 2.0 return SIOutMods::MUL2; case 0x4010000000000000: // 4.0 return SIOutMods::MUL4; default: return SIOutMods::NONE; } } case AMDGPU::V_MUL_F32_e64: { switch (static_cast(Val)) { case 0x3f000000: // 0.5 return SIOutMods::DIV2; case 0x40000000: // 2.0 return SIOutMods::MUL2; case 0x40800000: // 4.0 return SIOutMods::MUL4; default: return SIOutMods::NONE; } } case AMDGPU::V_MUL_F16_e64: case AMDGPU::V_MUL_F16_t16_e64: case AMDGPU::V_MUL_F16_fake16_e64: { switch (static_cast(Val)) { case 0x3800: // 0.5 return SIOutMods::DIV2; case 0x4000: // 2.0 return SIOutMods::MUL2; case 0x4400: // 4.0 return SIOutMods::MUL4; default: return SIOutMods::NONE; } } default: llvm_unreachable("invalid mul opcode"); } } // FIXME: Does this really not support denormals with f16? // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not // handled, so will anything other than that break? std::pair SIFoldOperands::isOMod(const MachineInstr &MI) const { unsigned Op = MI.getOpcode(); switch (Op) { case AMDGPU::V_MUL_F64_e64: case AMDGPU::V_MUL_F64_pseudo_e64: case AMDGPU::V_MUL_F32_e64: case AMDGPU::V_MUL_F16_t16_e64: case AMDGPU::V_MUL_F16_fake16_e64: case AMDGPU::V_MUL_F16_e64: { // If output denormals are enabled, omod is ignored. if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 || Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 || Op == AMDGPU::V_MUL_F16_fake16_e64) && MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) return std::pair(nullptr, SIOutMods::NONE); const MachineOperand *RegOp = nullptr; const MachineOperand *ImmOp = nullptr; const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (Src0->isImm()) { ImmOp = Src0; RegOp = Src1; } else if (Src1->isImm()) { ImmOp = Src1; RegOp = Src0; } else return std::pair(nullptr, SIOutMods::NONE); int OMod = getOModValue(Op, ImmOp->getImm()); if (OMod == SIOutMods::NONE || TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) return std::pair(nullptr, SIOutMods::NONE); return std::pair(RegOp, OMod); } case AMDGPU::V_ADD_F64_e64: case AMDGPU::V_ADD_F64_pseudo_e64: case AMDGPU::V_ADD_F32_e64: case AMDGPU::V_ADD_F16_e64: case AMDGPU::V_ADD_F16_t16_e64: case AMDGPU::V_ADD_F16_fake16_e64: { // If output denormals are enabled, omod is ignored. if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 || Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 || Op == AMDGPU::V_ADD_F16_fake16_e64) && MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) return std::pair(nullptr, SIOutMods::NONE); // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && Src0->getSubReg() == Src1->getSubReg() && !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) return std::pair(Src0, SIOutMods::MUL2); return std::pair(nullptr, SIOutMods::NONE); } default: return std::pair(nullptr, SIOutMods::NONE); } } // FIXME: Does this need to check IEEE bit on function? bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { const MachineOperand *RegOp; int OMod; std::tie(RegOp, OMod) = isOMod(MI); if (OMod == SIOutMods::NONE || !RegOp->isReg() || RegOp->getSubReg() != AMDGPU::NoSubRegister || !MRI->hasOneNonDBGUser(RegOp->getReg())) return false; MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) return false; // Clamp is applied after omod. If the source already has clamp set, don't // fold it. if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) return false; LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); DefOMod->setImm(OMod); MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); MI.eraseFromParent(); // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac // instruction, so we might as well convert it to the more flexible VOP3-only // mad/fma form. if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) Def->eraseFromParent(); return true; } // Try to fold a reg_sequence with vgpr output and agpr inputs into an // instruction which can take an agpr. So far that means a store. bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) { assert(MI.isRegSequence()); auto Reg = MI.getOperand(0).getReg(); if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) return false; SmallVector, 32> Defs; if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER)) return false; for (auto &Def : Defs) { const auto *Op = Def.first; if (!Op->isReg()) return false; if (TRI->isAGPR(*MRI, Op->getReg())) continue; // Maybe this is a COPY from AREG const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) return false; if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) return false; } MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); MachineInstr *UseMI = Op->getParent(); while (UseMI->isCopy() && !Op->getSubReg()) { Reg = UseMI->getOperand(0).getReg(); if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) return false; Op = &*MRI->use_nodbg_begin(Reg); UseMI = Op->getParent(); } if (Op->getSubReg()) return false; unsigned OpIdx = Op - &UseMI->getOperand(0); const MCInstrDesc &InstDesc = UseMI->getDesc(); const TargetRegisterClass *OpRC = TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF()); if (!OpRC || !TRI->isVectorSuperClass(OpRC)) return false; const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); auto Dst = MRI->createVirtualRegister(NewDstRC); auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), Dst); for (unsigned I = 0; I < Defs.size(); ++I) { MachineOperand *Def = Defs[I].first; Def->setIsKill(false); if (TRI->isAGPR(*MRI, Def->getReg())) { RS.add(*Def); } else { // This is a copy MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); SubDef->getOperand(1).setIsKill(false); RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); } RS.addImm(Defs[I].second); } Op->setReg(Dst); if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { Op->setReg(Reg); RS->eraseFromParent(); return false; } LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, // in which case we can erase them all later in runOnMachineFunction. if (MRI->use_nodbg_empty(MI.getOperand(0).getReg())) MI.eraseFromParent(); return true; } /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg static bool isAGPRCopy(const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI, const MachineInstr &Copy, Register &OutReg, unsigned &OutSubReg) { assert(Copy.isCopy()); const MachineOperand &CopySrc = Copy.getOperand(1); Register CopySrcReg = CopySrc.getReg(); if (!CopySrcReg.isVirtual()) return false; // Common case: copy from AGPR directly, e.g. // %1:vgpr_32 = COPY %0:agpr_32 if (TRI.isAGPR(MRI, CopySrcReg)) { OutReg = CopySrcReg; OutSubReg = CopySrc.getSubReg(); return true; } // Sometimes it can also involve two copies, e.g. // %1:vgpr_256 = COPY %0:agpr_256 // %2:vgpr_32 = COPY %1:vgpr_256.sub0 const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg); if (!CopySrcDef || !CopySrcDef->isCopy()) return false; const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1); Register OtherCopySrcReg = OtherCopySrc.getReg(); if (!OtherCopySrcReg.isVirtual() || CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister || OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || !TRI.isAGPR(MRI, OtherCopySrcReg)) return false; OutReg = OtherCopySrcReg; OutSubReg = CopySrc.getSubReg(); return true; } // Try to hoist an AGPR to VGPR copy across a PHI. // This should allow folding of an AGPR into a consumer which may support it. // // Example 1: LCSSA PHI // loop: // %1:vreg = COPY %0:areg // exit: // %2:vreg = PHI %1:vreg, %loop // => // loop: // exit: // %1:areg = PHI %0:areg, %loop // %2:vreg = COPY %1:areg // // Example 2: PHI with multiple incoming values: // entry: // %1:vreg = GLOBAL_LOAD(..) // loop: // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop // %3:areg = COPY %2:vreg // %4:areg = (instr using %3:areg) // %5:vreg = COPY %4:areg // => // entry: // %1:vreg = GLOBAL_LOAD(..) // %2:areg = COPY %1:vreg // loop: // %3:areg = PHI %2:areg, %entry, %X:areg, // %4:areg = (instr using %3:areg) bool SIFoldOperands::tryFoldPhiAGPR(MachineInstr &PHI) { assert(PHI.isPHI()); Register PhiOut = PHI.getOperand(0).getReg(); if (!TRI->isVGPR(*MRI, PhiOut)) return false; // Iterate once over all incoming values of the PHI to check if this PHI is // eligible, and determine the exact AGPR RC we'll target. const TargetRegisterClass *ARC = nullptr; for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { MachineOperand &MO = PHI.getOperand(K); MachineInstr *Copy = MRI->getVRegDef(MO.getReg()); if (!Copy || !Copy->isCopy()) continue; Register AGPRSrc; unsigned AGPRRegMask = AMDGPU::NoSubRegister; if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask)) continue; const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc); if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) CopyInRC = SubRC; if (ARC && !ARC->hasSubClassEq(CopyInRC)) return false; ARC = CopyInRC; } if (!ARC) return false; bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); // Rewrite the PHI's incoming values to ARC. LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { MachineOperand &MO = PHI.getOperand(K); Register Reg = MO.getReg(); MachineBasicBlock::iterator InsertPt; MachineBasicBlock *InsertMBB = nullptr; // Look at the def of Reg, ignoring all copies. unsigned CopyOpc = AMDGPU::COPY; if (MachineInstr *Def = MRI->getVRegDef(Reg)) { // Look at pre-existing COPY instructions from ARC: Steal the operand. If // the copy was single-use, it will be removed by DCE later. if (Def->isCopy()) { Register AGPRSrc; unsigned AGPRSubReg = AMDGPU::NoSubRegister; if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) { MO.setReg(AGPRSrc); MO.setSubReg(AGPRSubReg); continue; } // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which // is unlikely to be profitable. // // Note that V_ACCVGPR_WRITE is only used for AGPR_32. MachineOperand &CopyIn = Def->getOperand(1); if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) && TRI->isSGPRReg(*MRI, CopyIn.getReg())) CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; } InsertMBB = Def->getParent(); InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator()); } else { InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB(); InsertPt = InsertMBB->getFirstTerminator(); } Register NewReg = MRI->createVirtualRegister(ARC); MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(), TII->get(CopyOpc), NewReg) .addReg(Reg); MO.setReg(NewReg); (void)MI; LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); } // Replace the PHI's result with a new register. Register NewReg = MRI->createVirtualRegister(ARC); PHI.getOperand(0).setReg(NewReg); // COPY that new register back to the original PhiOut register. This COPY will // usually be folded out later. MachineBasicBlock *MBB = PHI.getParent(); BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(), TII->get(AMDGPU::COPY), PhiOut) .addReg(NewReg); LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); return true; } // Attempt to convert VGPR load to an AGPR load. bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) { assert(MI.mayLoad()); if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) return false; MachineOperand &Def = MI.getOperand(0); if (!Def.isDef()) return false; Register DefReg = Def.getReg(); if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) return false; SmallVector Users; SmallVector MoveRegs; for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) Users.push_back(&I); if (Users.empty()) return false; // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. while (!Users.empty()) { const MachineInstr *I = Users.pop_back_val(); if (!I->isCopy() && !I->isRegSequence()) return false; Register DstReg = I->getOperand(0).getReg(); // Physical registers may have more than one instruction definitions if (DstReg.isPhysical()) return false; if (TRI->isAGPR(*MRI, DstReg)) continue; MoveRegs.push_back(DstReg); for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) Users.push_back(&U); } const TargetRegisterClass *RC = MRI->getRegClass(DefReg); MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); if (!TII->isOperandLegal(MI, 0, &Def)) { MRI->setRegClass(DefReg, RC); return false; } while (!MoveRegs.empty()) { Register Reg = MoveRegs.pop_back_val(); MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); } LLVM_DEBUG(dbgs() << "Folded " << MI); return true; } // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. // For GFX90A and later, this is pretty much always a good thing, but for GFX908 // there's cases where it can create a lot more AGPR-AGPR copies, which are // expensive on this architecture due to the lack of V_ACCVGPR_MOV. // // This function looks at all AGPR PHIs in a basic block and collects their // operands. Then, it checks for register that are used more than once across // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from // having to create one VGPR temporary per use, which can get very messy if // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector // element). // // Example // a: // %in:agpr_256 = COPY %foo:vgpr_256 // c: // %x:agpr_32 = .. // b: // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c // => // a: // %in:agpr_256 = COPY %foo:vgpr_256 // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 // %tmp_agpr:agpr_32 = COPY %tmp // c: // %x:agpr_32 = .. // b: // %0:areg = PHI %tmp_agpr, %a, %x, %c // %1:areg = PHI %tmp_agpr, %a, %y, %c // %2:areg = PHI %tmp_agpr, %a, %z, %c bool SIFoldOperands::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { // This is only really needed on GFX908 where AGPR-AGPR copies are // unreasonably difficult. if (ST->hasGFX90AInsts()) return false; // Look at all AGPR Phis and collect the register + subregister used. DenseMap, std::vector> RegToMO; for (auto &MI : MBB) { if (!MI.isPHI()) break; if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg())) continue; for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { MachineOperand &PhiMO = MI.getOperand(K); RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO); } } // For all (Reg, SubReg) pair that are used more than once, cache the value in // a VGPR. bool Changed = false; for (const auto &[Entry, MOs] : RegToMO) { if (MOs.size() == 1) continue; const auto [Reg, SubReg] = Entry; MachineInstr *Def = MRI->getVRegDef(Reg); MachineBasicBlock *DefMBB = Def->getParent(); // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded // out. const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front()); Register TempVGPR = MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC)); MachineInstr *VGPRCopy = BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(), TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR) .addReg(Reg, /* flags */ 0, SubReg); // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. Register TempAGPR = MRI->createVirtualRegister(ARC); BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(), TII->get(AMDGPU::COPY), TempAGPR) .addReg(TempVGPR); LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); for (MachineOperand *MO : MOs) { MO->setReg(TempAGPR); MO->setSubReg(AMDGPU::NoSubRegister); LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n"); } Changed = true; } return Changed; } bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; MRI = &MF.getRegInfo(); ST = &MF.getSubtarget(); TII = ST->getInstrInfo(); TRI = &TII->getRegisterInfo(); MFI = MF.getInfo(); // omod is ignored by hardware if IEEE bit is enabled. omod also does not // correctly handle signed zeros. // // FIXME: Also need to check strictfp bool IsIEEEMode = MFI->getMode().IEEE; bool HasNSZ = MFI->hasNoSignedZerosFPMath(); bool Changed = false; for (MachineBasicBlock *MBB : depth_first(&MF)) { MachineOperand *CurrentKnownM0Val = nullptr; for (auto &MI : make_early_inc_range(*MBB)) { Changed |= tryFoldCndMask(MI); if (tryFoldZeroHighBits(MI)) { Changed = true; continue; } if (MI.isRegSequence() && tryFoldRegSequence(MI)) { Changed = true; continue; } if (MI.isPHI() && tryFoldPhiAGPR(MI)) { Changed = true; continue; } if (MI.mayLoad() && tryFoldLoad(MI)) { Changed = true; continue; } if (TII->isFoldableCopy(MI)) { Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); continue; } // Saw an unknown clobber of m0, so we no longer know what it is. if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) CurrentKnownM0Val = nullptr; // TODO: Omod might be OK if there is NSZ only on the source // instruction, and not the omod multiply. if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || !tryFoldOMod(MI)) Changed |= tryFoldClamp(MI); } Changed |= tryOptimizeAGPRPhis(*MBB); } return Changed; }