xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates allocas by either converting them into vectors or
10 // by migrating them to local address space.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "GCNSubtarget.h"
16 #include "llvm/Analysis/CaptureTracking.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/CodeGen/TargetPassConfig.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/IntrinsicsAMDGPU.h"
21 #include "llvm/IR/IntrinsicsR600.h"
22 #include "llvm/Pass.h"
23 #include "llvm/Target/TargetMachine.h"
24 
25 #define DEBUG_TYPE "amdgpu-promote-alloca"
26 
27 using namespace llvm;
28 
29 namespace {
30 
31 static cl::opt<bool> DisablePromoteAllocaToVector(
32   "disable-promote-alloca-to-vector",
33   cl::desc("Disable promote alloca to vector"),
34   cl::init(false));
35 
36 static cl::opt<bool> DisablePromoteAllocaToLDS(
37   "disable-promote-alloca-to-lds",
38   cl::desc("Disable promote alloca to LDS"),
39   cl::init(false));
40 
41 static cl::opt<unsigned> PromoteAllocaToVectorLimit(
42   "amdgpu-promote-alloca-to-vector-limit",
43   cl::desc("Maximum byte size to consider promote alloca to vector"),
44   cl::init(0));
45 
46 // FIXME: This can create globals so should be a module pass.
47 class AMDGPUPromoteAlloca : public FunctionPass {
48 public:
49   static char ID;
50 
51   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
52 
53   bool runOnFunction(Function &F) override;
54 
55   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
56 
57   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
58 
59   void getAnalysisUsage(AnalysisUsage &AU) const override {
60     AU.setPreservesCFG();
61     FunctionPass::getAnalysisUsage(AU);
62   }
63 };
64 
65 class AMDGPUPromoteAllocaImpl {
66 private:
67   const TargetMachine &TM;
68   Module *Mod = nullptr;
69   const DataLayout *DL = nullptr;
70 
71   // FIXME: This should be per-kernel.
72   uint32_t LocalMemLimit = 0;
73   uint32_t CurrentLocalMemUsage = 0;
74   unsigned MaxVGPRs;
75 
76   bool IsAMDGCN = false;
77   bool IsAMDHSA = false;
78 
79   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
80   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
81 
82   /// BaseAlloca is the alloca root the search started from.
83   /// Val may be that alloca or a recursive user of it.
84   bool collectUsesWithPtrTypes(Value *BaseAlloca,
85                                Value *Val,
86                                std::vector<Value*> &WorkList) const;
87 
88   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
89   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
90   /// Returns true if both operands are derived from the same alloca. Val should
91   /// be the same value as one of the input operands of UseInst.
92   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
93                                        Instruction *UseInst,
94                                        int OpIdx0, int OpIdx1) const;
95 
96   /// Check whether we have enough local memory for promotion.
97   bool hasSufficientLocalMem(const Function &F);
98 
99   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
100 
101 public:
102   AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {}
103   bool run(Function &F);
104 };
105 
106 class AMDGPUPromoteAllocaToVector : public FunctionPass {
107 public:
108   static char ID;
109 
110   AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}
111 
112   bool runOnFunction(Function &F) override;
113 
114   StringRef getPassName() const override {
115     return "AMDGPU Promote Alloca to vector";
116   }
117 
118   void getAnalysisUsage(AnalysisUsage &AU) const override {
119     AU.setPreservesCFG();
120     FunctionPass::getAnalysisUsage(AU);
121   }
122 };
123 
124 } // end anonymous namespace
125 
126 char AMDGPUPromoteAlloca::ID = 0;
127 char AMDGPUPromoteAllocaToVector::ID = 0;
128 
129 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,
130                       "AMDGPU promote alloca to vector or LDS", false, false)
131 // Move LDS uses from functions to kernels before promote alloca for accurate
132 // estimation of LDS available
133 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)
134 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,
135                     "AMDGPU promote alloca to vector or LDS", false, false)
136 
137 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
138                 "AMDGPU promote alloca to vector", false, false)
139 
140 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
141 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;
142 
143 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
144   if (skipFunction(F))
145     return false;
146 
147   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
148     return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F);
149   }
150   return false;
151 }
152 
153 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F,
154                                                FunctionAnalysisManager &AM) {
155   bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F);
156   if (Changed) {
157     PreservedAnalyses PA;
158     PA.preserveSet<CFGAnalyses>();
159     return PA;
160   }
161   return PreservedAnalyses::all();
162 }
163 
164 bool AMDGPUPromoteAllocaImpl::run(Function &F) {
165   Mod = F.getParent();
166   DL = &Mod->getDataLayout();
167 
168   const Triple &TT = TM.getTargetTriple();
169   IsAMDGCN = TT.getArch() == Triple::amdgcn;
170   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
171 
172   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
173   if (!ST.isPromoteAllocaEnabled())
174     return false;
175 
176   if (IsAMDGCN) {
177     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
178     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
179   } else {
180     MaxVGPRs = 128;
181   }
182 
183   bool SufficientLDS = hasSufficientLocalMem(F);
184   bool Changed = false;
185   BasicBlock &EntryBB = *F.begin();
186 
187   SmallVector<AllocaInst *, 16> Allocas;
188   for (Instruction &I : EntryBB) {
189     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
190       Allocas.push_back(AI);
191   }
192 
193   for (AllocaInst *AI : Allocas) {
194     if (handleAlloca(*AI, SufficientLDS))
195       Changed = true;
196   }
197 
198   return Changed;
199 }
200 
201 std::pair<Value *, Value *>
202 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) {
203   const Function &F = *Builder.GetInsertBlock()->getParent();
204   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
205 
206   if (!IsAMDHSA) {
207     Function *LocalSizeYFn
208       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
209     Function *LocalSizeZFn
210       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
211 
212     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
213     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
214 
215     ST.makeLIDRangeMetadata(LocalSizeY);
216     ST.makeLIDRangeMetadata(LocalSizeZ);
217 
218     return std::make_pair(LocalSizeY, LocalSizeZ);
219   }
220 
221   // We must read the size out of the dispatch pointer.
222   assert(IsAMDGCN);
223 
224   // We are indexing into this struct, and want to extract the workgroup_size_*
225   // fields.
226   //
227   //   typedef struct hsa_kernel_dispatch_packet_s {
228   //     uint16_t header;
229   //     uint16_t setup;
230   //     uint16_t workgroup_size_x ;
231   //     uint16_t workgroup_size_y;
232   //     uint16_t workgroup_size_z;
233   //     uint16_t reserved0;
234   //     uint32_t grid_size_x ;
235   //     uint32_t grid_size_y ;
236   //     uint32_t grid_size_z;
237   //
238   //     uint32_t private_segment_size;
239   //     uint32_t group_segment_size;
240   //     uint64_t kernel_object;
241   //
242   // #ifdef HSA_LARGE_MODEL
243   //     void *kernarg_address;
244   // #elif defined HSA_LITTLE_ENDIAN
245   //     void *kernarg_address;
246   //     uint32_t reserved1;
247   // #else
248   //     uint32_t reserved1;
249   //     void *kernarg_address;
250   // #endif
251   //     uint64_t reserved2;
252   //     hsa_signal_t completion_signal; // uint64_t wrapper
253   //   } hsa_kernel_dispatch_packet_t
254   //
255   Function *DispatchPtrFn
256     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
257 
258   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
259   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
260   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
261 
262   // Size of the dispatch packet struct.
263   DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
264 
265   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
266   Value *CastDispatchPtr = Builder.CreateBitCast(
267     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
268 
269   // We could do a single 64-bit load here, but it's likely that the basic
270   // 32-bit and extract sequence is already present, and it is probably easier
271   // to CSE this. The loads should be mergable later anyway.
272   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
273   LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));
274 
275   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
276   LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));
277 
278   MDNode *MD = MDNode::get(Mod->getContext(), None);
279   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
280   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
281   ST.makeLIDRangeMetadata(LoadZU);
282 
283   // Extract y component. Upper half of LoadZU should be zero already.
284   Value *Y = Builder.CreateLShr(LoadXY, 16);
285 
286   return std::make_pair(Y, LoadZU);
287 }
288 
289 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder,
290                                               unsigned N) {
291   const AMDGPUSubtarget &ST =
292       AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent());
293   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
294 
295   switch (N) {
296   case 0:
297     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
298                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
299     break;
300   case 1:
301     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
302                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
303     break;
304 
305   case 2:
306     IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
307                       : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
308     break;
309   default:
310     llvm_unreachable("invalid dimension");
311   }
312 
313   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
314   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
315   ST.makeLIDRangeMetadata(CI);
316 
317   return CI;
318 }
319 
320 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
321   return FixedVectorType::get(ArrayTy->getElementType(),
322                               ArrayTy->getNumElements());
323 }
324 
325 static Value *stripBitcasts(Value *V) {
326   while (Instruction *I = dyn_cast<Instruction>(V)) {
327     if (I->getOpcode() != Instruction::BitCast)
328       break;
329     V = I->getOperand(0);
330   }
331   return V;
332 }
333 
334 static Value *
335 calculateVectorIndex(Value *Ptr,
336                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
337   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
338   if (!GEP)
339     return nullptr;
340 
341   auto I = GEPIdx.find(GEP);
342   return I == GEPIdx.end() ? nullptr : I->second;
343 }
344 
345 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
346   // FIXME we only support simple cases
347   if (GEP->getNumOperands() != 3)
348     return nullptr;
349 
350   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
351   if (!I0 || !I0->isZero())
352     return nullptr;
353 
354   return GEP->getOperand(2);
355 }
356 
357 // Not an instruction handled below to turn into a vector.
358 //
359 // TODO: Check isTriviallyVectorizable for calls and handle other
360 // instructions.
361 static bool canVectorizeInst(Instruction *Inst, User *User,
362                              const DataLayout &DL) {
363   switch (Inst->getOpcode()) {
364   case Instruction::Load: {
365     // Currently only handle the case where the Pointer Operand is a GEP.
366     // Also we could not vectorize volatile or atomic loads.
367     LoadInst *LI = cast<LoadInst>(Inst);
368     if (isa<AllocaInst>(User) &&
369         LI->getPointerOperandType() == User->getType() &&
370         isa<VectorType>(LI->getType()))
371       return true;
372 
373     Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
374     if (!PtrInst)
375       return false;
376 
377     return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
378             PtrInst->getOpcode() == Instruction::BitCast) &&
379            LI->isSimple();
380   }
381   case Instruction::BitCast:
382     return true;
383   case Instruction::Store: {
384     // Must be the stored pointer operand, not a stored value, plus
385     // since it should be canonical form, the User should be a GEP.
386     // Also we could not vectorize volatile or atomic stores.
387     StoreInst *SI = cast<StoreInst>(Inst);
388     if (isa<AllocaInst>(User) &&
389         SI->getPointerOperandType() == User->getType() &&
390         isa<VectorType>(SI->getValueOperand()->getType()))
391       return true;
392 
393     Instruction *UserInst = dyn_cast<Instruction>(User);
394     if (!UserInst)
395       return false;
396 
397     return (SI->getPointerOperand() == User) &&
398            (UserInst->getOpcode() == Instruction::GetElementPtr ||
399             UserInst->getOpcode() == Instruction::BitCast) &&
400            SI->isSimple();
401   }
402   default:
403     return false;
404   }
405 }
406 
407 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
408                                      unsigned MaxVGPRs) {
409 
410   if (DisablePromoteAllocaToVector) {
411     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
412     return false;
413   }
414 
415   Type *AllocaTy = Alloca->getAllocatedType();
416   auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
417   if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
418     if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
419         ArrayTy->getNumElements() > 0)
420       VectorTy = arrayTypeToVecType(ArrayTy);
421   }
422 
423   // Use up to 1/4 of available register budget for vectorization.
424   unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
425                                               : (MaxVGPRs * 32);
426 
427   if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
428     LLVM_DEBUG(dbgs() << "  Alloca too big for vectorization with "
429                       << MaxVGPRs << " registers available\n");
430     return false;
431   }
432 
433   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
434 
435   // FIXME: There is no reason why we can't support larger arrays, we
436   // are just being conservative for now.
437   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
438   // could also be promoted but we don't currently handle this case
439   if (!VectorTy || VectorTy->getNumElements() > 16 ||
440       VectorTy->getNumElements() < 2) {
441     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
442     return false;
443   }
444 
445   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
446   std::vector<Value *> WorkList;
447   SmallVector<User *, 8> Users(Alloca->users());
448   SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
449   Type *VecEltTy = VectorTy->getElementType();
450   while (!Users.empty()) {
451     User *AllocaUser = Users.pop_back_val();
452     User *UseUser = UseUsers.pop_back_val();
453     Instruction *Inst = dyn_cast<Instruction>(AllocaUser);
454 
455     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
456     if (!GEP) {
457       if (!canVectorizeInst(Inst, UseUser, DL))
458         return false;
459 
460       if (Inst->getOpcode() == Instruction::BitCast) {
461         Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
462         Type *ToTy = Inst->getType()->getPointerElementType();
463         if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
464             DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
465           continue;
466 
467         for (User *CastUser : Inst->users()) {
468           if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
469             continue;
470           Users.push_back(CastUser);
471           UseUsers.push_back(Inst);
472         }
473 
474         continue;
475       }
476 
477       WorkList.push_back(AllocaUser);
478       continue;
479     }
480 
481     Value *Index = GEPToVectorIndex(GEP);
482 
483     // If we can't compute a vector index from this GEP, then we can't
484     // promote this alloca to vector.
485     if (!Index) {
486       LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
487                         << '\n');
488       return false;
489     }
490 
491     GEPVectorIdx[GEP] = Index;
492     Users.append(GEP->user_begin(), GEP->user_end());
493     UseUsers.append(GEP->getNumUses(), GEP);
494   }
495 
496   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
497                     << *VectorTy << '\n');
498 
499   for (Value *V : WorkList) {
500     Instruction *Inst = cast<Instruction>(V);
501     IRBuilder<> Builder(Inst);
502     switch (Inst->getOpcode()) {
503     case Instruction::Load: {
504       if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
505         break;
506 
507       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
508       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
509       if (!Index)
510         break;
511 
512       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
513       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
514       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
515       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
516       if (Inst->getType() != VecEltTy)
517         ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
518       Inst->replaceAllUsesWith(ExtractElement);
519       Inst->eraseFromParent();
520       break;
521     }
522     case Instruction::Store: {
523       StoreInst *SI = cast<StoreInst>(Inst);
524       if (SI->getValueOperand()->getType() == AllocaTy ||
525           SI->getValueOperand()->getType()->isVectorTy())
526         break;
527 
528       Value *Ptr = SI->getPointerOperand();
529       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
530       if (!Index)
531         break;
532 
533       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
534       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
535       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
536       Value *Elt = SI->getValueOperand();
537       if (Elt->getType() != VecEltTy)
538         Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
539       Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
540       Builder.CreateStore(NewVecValue, BitCast);
541       Inst->eraseFromParent();
542       break;
543     }
544 
545     default:
546       llvm_unreachable("Inconsistency in instructions promotable to vector");
547     }
548   }
549   return true;
550 }
551 
552 static bool isCallPromotable(CallInst *CI) {
553   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
554   if (!II)
555     return false;
556 
557   switch (II->getIntrinsicID()) {
558   case Intrinsic::memcpy:
559   case Intrinsic::memmove:
560   case Intrinsic::memset:
561   case Intrinsic::lifetime_start:
562   case Intrinsic::lifetime_end:
563   case Intrinsic::invariant_start:
564   case Intrinsic::invariant_end:
565   case Intrinsic::launder_invariant_group:
566   case Intrinsic::strip_invariant_group:
567   case Intrinsic::objectsize:
568     return true;
569   default:
570     return false;
571   }
572 }
573 
574 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca(
575     Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0,
576     int OpIdx1) const {
577   // Figure out which operand is the one we might not be promoting.
578   Value *OtherOp = Inst->getOperand(OpIdx0);
579   if (Val == OtherOp)
580     OtherOp = Inst->getOperand(OpIdx1);
581 
582   if (isa<ConstantPointerNull>(OtherOp))
583     return true;
584 
585   Value *OtherObj = getUnderlyingObject(OtherOp);
586   if (!isa<AllocaInst>(OtherObj))
587     return false;
588 
589   // TODO: We should be able to replace undefs with the right pointer type.
590 
591   // TODO: If we know the other base object is another promotable
592   // alloca, not necessarily this alloca, we can do this. The
593   // important part is both must have the same address space at
594   // the end.
595   if (OtherObj != BaseAlloca) {
596     LLVM_DEBUG(
597         dbgs() << "Found a binary instruction with another alloca object\n");
598     return false;
599   }
600 
601   return true;
602 }
603 
604 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes(
605     Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const {
606 
607   for (User *User : Val->users()) {
608     if (is_contained(WorkList, User))
609       continue;
610 
611     if (CallInst *CI = dyn_cast<CallInst>(User)) {
612       if (!isCallPromotable(CI))
613         return false;
614 
615       WorkList.push_back(User);
616       continue;
617     }
618 
619     Instruction *UseInst = cast<Instruction>(User);
620     if (UseInst->getOpcode() == Instruction::PtrToInt)
621       return false;
622 
623     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
624       if (LI->isVolatile())
625         return false;
626 
627       continue;
628     }
629 
630     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
631       if (SI->isVolatile())
632         return false;
633 
634       // Reject if the stored value is not the pointer operand.
635       if (SI->getPointerOperand() != Val)
636         return false;
637     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
638       if (RMW->isVolatile())
639         return false;
640     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
641       if (CAS->isVolatile())
642         return false;
643     }
644 
645     // Only promote a select if we know that the other select operand
646     // is from another pointer that will also be promoted.
647     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
648       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
649         return false;
650 
651       // May need to rewrite constant operands.
652       WorkList.push_back(ICmp);
653     }
654 
655     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
656       // Give up if the pointer may be captured.
657       if (PointerMayBeCaptured(UseInst, true, true))
658         return false;
659       // Don't collect the users of this.
660       WorkList.push_back(User);
661       continue;
662     }
663 
664     // Do not promote vector/aggregate type instructions. It is hard to track
665     // their users.
666     if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User))
667       return false;
668 
669     if (!User->getType()->isPointerTy())
670       continue;
671 
672     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
673       // Be conservative if an address could be computed outside the bounds of
674       // the alloca.
675       if (!GEP->isInBounds())
676         return false;
677     }
678 
679     // Only promote a select if we know that the other select operand is from
680     // another pointer that will also be promoted.
681     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
682       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
683         return false;
684     }
685 
686     // Repeat for phis.
687     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
688       // TODO: Handle more complex cases. We should be able to replace loops
689       // over arrays.
690       switch (Phi->getNumIncomingValues()) {
691       case 1:
692         break;
693       case 2:
694         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
695           return false;
696         break;
697       default:
698         return false;
699       }
700     }
701 
702     WorkList.push_back(User);
703     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
704       return false;
705   }
706 
707   return true;
708 }
709 
710 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) {
711 
712   FunctionType *FTy = F.getFunctionType();
713   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
714 
715   // If the function has any arguments in the local address space, then it's
716   // possible these arguments require the entire local memory space, so
717   // we cannot use local memory in the pass.
718   for (Type *ParamTy : FTy->params()) {
719     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
720     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
721       LocalMemLimit = 0;
722       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
723                            "local memory disabled.\n");
724       return false;
725     }
726   }
727 
728   LocalMemLimit = ST.getLocalMemorySize();
729   if (LocalMemLimit == 0)
730     return false;
731 
732   SmallVector<const Constant *, 16> Stack;
733   SmallPtrSet<const Constant *, 8> VisitedConstants;
734   SmallPtrSet<const GlobalVariable *, 8> UsedLDS;
735 
736   auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool {
737     for (const User *U : Val->users()) {
738       if (const Instruction *Use = dyn_cast<Instruction>(U)) {
739         if (Use->getParent()->getParent() == &F)
740           return true;
741       } else {
742         const Constant *C = cast<Constant>(U);
743         if (VisitedConstants.insert(C).second)
744           Stack.push_back(C);
745       }
746     }
747 
748     return false;
749   };
750 
751   for (GlobalVariable &GV : Mod->globals()) {
752     if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
753       continue;
754 
755     if (visitUsers(&GV, &GV)) {
756       UsedLDS.insert(&GV);
757       Stack.clear();
758       continue;
759     }
760 
761     // For any ConstantExpr uses, we need to recursively search the users until
762     // we see a function.
763     while (!Stack.empty()) {
764       const Constant *C = Stack.pop_back_val();
765       if (visitUsers(&GV, C)) {
766         UsedLDS.insert(&GV);
767         Stack.clear();
768         break;
769       }
770     }
771   }
772 
773   const DataLayout &DL = Mod->getDataLayout();
774   SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes;
775   AllocatedSizes.reserve(UsedLDS.size());
776 
777   for (const GlobalVariable *GV : UsedLDS) {
778     Align Alignment =
779         DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
780     uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType());
781     AllocatedSizes.emplace_back(AllocSize, Alignment);
782   }
783 
784   // Sort to try to estimate the worst case alignment padding
785   //
786   // FIXME: We should really do something to fix the addresses to a more optimal
787   // value instead
788   llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS,
789                                 std::pair<uint64_t, Align> RHS) {
790     return LHS.second < RHS.second;
791   });
792 
793   // Check how much local memory is being used by global objects
794   CurrentLocalMemUsage = 0;
795 
796   // FIXME: Try to account for padding here. The real padding and address is
797   // currently determined from the inverse order of uses in the function when
798   // legalizing, which could also potentially change. We try to estimate the
799   // worst case here, but we probably should fix the addresses earlier.
800   for (auto Alloc : AllocatedSizes) {
801     CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second);
802     CurrentLocalMemUsage += Alloc.first;
803   }
804 
805   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
806                                                           F);
807 
808   // Restrict local memory usage so that we don't drastically reduce occupancy,
809   // unless it is already significantly reduced.
810 
811   // TODO: Have some sort of hint or other heuristics to guess occupancy based
812   // on other factors..
813   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
814   if (OccupancyHint == 0)
815     OccupancyHint = 7;
816 
817   // Clamp to max value.
818   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
819 
820   // Check the hint but ignore it if it's obviously wrong from the existing LDS
821   // usage.
822   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
823 
824 
825   // Round up to the next tier of usage.
826   unsigned MaxSizeWithWaveCount
827     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
828 
829   // Program is possibly broken by using more local mem than available.
830   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
831     return false;
832 
833   LocalMemLimit = MaxSizeWithWaveCount;
834 
835   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
836                     << " bytes of LDS\n"
837                     << "  Rounding size to " << MaxSizeWithWaveCount
838                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
839                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
840                     << " available for promotion\n");
841 
842   return true;
843 }
844 
845 // FIXME: Should try to pick the most likely to be profitable allocas first.
846 bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) {
847   // Array allocations are probably not worth handling, since an allocation of
848   // the array type is the canonical form.
849   if (!I.isStaticAlloca() || I.isArrayAllocation())
850     return false;
851 
852   const DataLayout &DL = Mod->getDataLayout();
853   IRBuilder<> Builder(&I);
854 
855   // First try to replace the alloca with a vector
856   Type *AllocaTy = I.getAllocatedType();
857 
858   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
859 
860   if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
861     return true; // Promoted to vector.
862 
863   if (DisablePromoteAllocaToLDS)
864     return false;
865 
866   const Function &ContainingFunction = *I.getParent()->getParent();
867   CallingConv::ID CC = ContainingFunction.getCallingConv();
868 
869   // Don't promote the alloca to LDS for shader calling conventions as the work
870   // item ID intrinsics are not supported for these calling conventions.
871   // Furthermore not all LDS is available for some of the stages.
872   switch (CC) {
873   case CallingConv::AMDGPU_KERNEL:
874   case CallingConv::SPIR_KERNEL:
875     break;
876   default:
877     LLVM_DEBUG(
878         dbgs()
879         << " promote alloca to LDS not supported with calling convention.\n");
880     return false;
881   }
882 
883   // Not likely to have sufficient local memory for promotion.
884   if (!SufficientLDS)
885     return false;
886 
887   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction);
888   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
889 
890   Align Alignment =
891       DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());
892 
893   // FIXME: This computed padding is likely wrong since it depends on inverse
894   // usage order.
895   //
896   // FIXME: It is also possible that if we're allowed to use all of the memory
897   // could could end up using more than the maximum due to alignment padding.
898 
899   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
900   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
901   NewSize += AllocSize;
902 
903   if (NewSize > LocalMemLimit) {
904     LLVM_DEBUG(dbgs() << "  " << AllocSize
905                       << " bytes of local memory not available to promote\n");
906     return false;
907   }
908 
909   CurrentLocalMemUsage = NewSize;
910 
911   std::vector<Value*> WorkList;
912 
913   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
914     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
915     return false;
916   }
917 
918   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
919 
920   Function *F = I.getParent()->getParent();
921 
922   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
923   GlobalVariable *GV = new GlobalVariable(
924       *Mod, GVTy, false, GlobalValue::InternalLinkage,
925       UndefValue::get(GVTy),
926       Twine(F->getName()) + Twine('.') + I.getName(),
927       nullptr,
928       GlobalVariable::NotThreadLocal,
929       AMDGPUAS::LOCAL_ADDRESS);
930   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
931   GV->setAlignment(MaybeAlign(I.getAlignment()));
932 
933   Value *TCntY, *TCntZ;
934 
935   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
936   Value *TIdX = getWorkitemID(Builder, 0);
937   Value *TIdY = getWorkitemID(Builder, 1);
938   Value *TIdZ = getWorkitemID(Builder, 2);
939 
940   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
941   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
942   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
943   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
944   TID = Builder.CreateAdd(TID, TIdZ);
945 
946   Value *Indices[] = {
947     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
948     TID
949   };
950 
951   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
952   I.mutateType(Offset->getType());
953   I.replaceAllUsesWith(Offset);
954   I.eraseFromParent();
955 
956   SmallVector<IntrinsicInst *> DeferredIntrs;
957 
958   for (Value *V : WorkList) {
959     CallInst *Call = dyn_cast<CallInst>(V);
960     if (!Call) {
961       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
962         Value *Src0 = CI->getOperand(0);
963         PointerType *NewTy = PointerType::getWithSamePointeeType(
964             cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS);
965 
966         if (isa<ConstantPointerNull>(CI->getOperand(0)))
967           CI->setOperand(0, ConstantPointerNull::get(NewTy));
968 
969         if (isa<ConstantPointerNull>(CI->getOperand(1)))
970           CI->setOperand(1, ConstantPointerNull::get(NewTy));
971 
972         continue;
973       }
974 
975       // The operand's value should be corrected on its own and we don't want to
976       // touch the users.
977       if (isa<AddrSpaceCastInst>(V))
978         continue;
979 
980       PointerType *NewTy = PointerType::getWithSamePointeeType(
981           cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS);
982 
983       // FIXME: It doesn't really make sense to try to do this for all
984       // instructions.
985       V->mutateType(NewTy);
986 
987       // Adjust the types of any constant operands.
988       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
989         if (isa<ConstantPointerNull>(SI->getOperand(1)))
990           SI->setOperand(1, ConstantPointerNull::get(NewTy));
991 
992         if (isa<ConstantPointerNull>(SI->getOperand(2)))
993           SI->setOperand(2, ConstantPointerNull::get(NewTy));
994       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
995         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
996           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
997             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
998         }
999       }
1000 
1001       continue;
1002     }
1003 
1004     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
1005     Builder.SetInsertPoint(Intr);
1006     switch (Intr->getIntrinsicID()) {
1007     case Intrinsic::lifetime_start:
1008     case Intrinsic::lifetime_end:
1009       // These intrinsics are for address space 0 only
1010       Intr->eraseFromParent();
1011       continue;
1012     case Intrinsic::memcpy:
1013     case Intrinsic::memmove:
1014       // These have 2 pointer operands. In case if second pointer also needs
1015       // to be replaced we defer processing of these intrinsics until all
1016       // other values are processed.
1017       DeferredIntrs.push_back(Intr);
1018       continue;
1019     case Intrinsic::memset: {
1020       MemSetInst *MemSet = cast<MemSetInst>(Intr);
1021       Builder.CreateMemSet(
1022           MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
1023           MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
1024       Intr->eraseFromParent();
1025       continue;
1026     }
1027     case Intrinsic::invariant_start:
1028     case Intrinsic::invariant_end:
1029     case Intrinsic::launder_invariant_group:
1030     case Intrinsic::strip_invariant_group:
1031       Intr->eraseFromParent();
1032       // FIXME: I think the invariant marker should still theoretically apply,
1033       // but the intrinsics need to be changed to accept pointers with any
1034       // address space.
1035       continue;
1036     case Intrinsic::objectsize: {
1037       Value *Src = Intr->getOperand(0);
1038       Function *ObjectSize = Intrinsic::getDeclaration(
1039           Mod, Intrinsic::objectsize,
1040           {Intr->getType(),
1041            PointerType::getWithSamePointeeType(
1042                cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)});
1043 
1044       CallInst *NewCall = Builder.CreateCall(
1045           ObjectSize,
1046           {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
1047       Intr->replaceAllUsesWith(NewCall);
1048       Intr->eraseFromParent();
1049       continue;
1050     }
1051     default:
1052       Intr->print(errs());
1053       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
1054     }
1055   }
1056 
1057   for (IntrinsicInst *Intr : DeferredIntrs) {
1058     Builder.SetInsertPoint(Intr);
1059     Intrinsic::ID ID = Intr->getIntrinsicID();
1060     assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove);
1061 
1062     MemTransferInst *MI = cast<MemTransferInst>(Intr);
1063     auto *B =
1064       Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(),
1065                                     MI->getRawSource(), MI->getSourceAlign(),
1066                                     MI->getLength(), MI->isVolatile());
1067 
1068     for (unsigned I = 1; I != 3; ++I) {
1069       if (uint64_t Bytes = Intr->getDereferenceableBytes(I)) {
1070         B->addDereferenceableAttr(I, Bytes);
1071       }
1072     }
1073 
1074     Intr->eraseFromParent();
1075   }
1076 
1077   return true;
1078 }
1079 
1080 bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) {
1081   // Array allocations are probably not worth handling, since an allocation of
1082   // the array type is the canonical form.
1083   if (!I.isStaticAlloca() || I.isArrayAllocation())
1084     return false;
1085 
1086   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
1087 
1088   Module *Mod = I.getParent()->getParent()->getParent();
1089   return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
1090 }
1091 
1092 bool promoteAllocasToVector(Function &F, TargetMachine &TM) {
1093   if (DisablePromoteAllocaToVector)
1094     return false;
1095 
1096   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F);
1097   if (!ST.isPromoteAllocaEnabled())
1098     return false;
1099 
1100   unsigned MaxVGPRs;
1101   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1102     const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
1103     MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
1104   } else {
1105     MaxVGPRs = 128;
1106   }
1107 
1108   bool Changed = false;
1109   BasicBlock &EntryBB = *F.begin();
1110 
1111   SmallVector<AllocaInst *, 16> Allocas;
1112   for (Instruction &I : EntryBB) {
1113     if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
1114       Allocas.push_back(AI);
1115   }
1116 
1117   for (AllocaInst *AI : Allocas) {
1118     if (handlePromoteAllocaToVector(*AI, MaxVGPRs))
1119       Changed = true;
1120   }
1121 
1122   return Changed;
1123 }
1124 
1125 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
1126   if (skipFunction(F))
1127     return false;
1128   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
1129     return promoteAllocasToVector(F, TPC->getTM<TargetMachine>());
1130   }
1131   return false;
1132 }
1133 
1134 PreservedAnalyses
1135 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) {
1136   bool Changed = promoteAllocasToVector(F, TM);
1137   if (Changed) {
1138     PreservedAnalyses PA;
1139     PA.preserveSet<CFGAnalyses>();
1140     return PA;
1141   }
1142   return PreservedAnalyses::all();
1143 }
1144 
1145 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
1146   return new AMDGPUPromoteAlloca();
1147 }
1148 
1149 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
1150   return new AMDGPUPromoteAllocaToVector();
1151 }
1152