//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass eliminates allocas by either converting them into vectors or // by migrating them to local address space. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsR600.h" #include "llvm/Pass.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "amdgpu-promote-alloca" using namespace llvm; namespace { static cl::opt DisablePromoteAllocaToVector( "disable-promote-alloca-to-vector", cl::desc("Disable promote alloca to vector"), cl::init(false)); static cl::opt DisablePromoteAllocaToLDS( "disable-promote-alloca-to-lds", cl::desc("Disable promote alloca to LDS"), cl::init(false)); static cl::opt PromoteAllocaToVectorLimit( "amdgpu-promote-alloca-to-vector-limit", cl::desc("Maximum byte size to consider promote alloca to vector"), cl::init(0)); // FIXME: This can create globals so should be a module pass. class AMDGPUPromoteAlloca : public FunctionPass { public: static char ID; AMDGPUPromoteAlloca() : FunctionPass(ID) {} bool runOnFunction(Function &F) override; StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } bool handleAlloca(AllocaInst &I, bool SufficientLDS); void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); FunctionPass::getAnalysisUsage(AU); } }; class AMDGPUPromoteAllocaImpl { private: const TargetMachine &TM; Module *Mod = nullptr; const DataLayout *DL = nullptr; // FIXME: This should be per-kernel. uint32_t LocalMemLimit = 0; uint32_t CurrentLocalMemUsage = 0; unsigned MaxVGPRs; bool IsAMDGCN = false; bool IsAMDHSA = false; std::pair getLocalSizeYZ(IRBuilder<> &Builder); Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); /// BaseAlloca is the alloca root the search started from. /// Val may be that alloca or a recursive user of it. bool collectUsesWithPtrTypes(Value *BaseAlloca, Value *Val, std::vector &WorkList) const; /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). /// Returns true if both operands are derived from the same alloca. Val should /// be the same value as one of the input operands of UseInst. bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, Instruction *UseInst, int OpIdx0, int OpIdx1) const; /// Check whether we have enough local memory for promotion. bool hasSufficientLocalMem(const Function &F); bool handleAlloca(AllocaInst &I, bool SufficientLDS); public: AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} bool run(Function &F); }; class AMDGPUPromoteAllocaToVector : public FunctionPass { public: static char ID; AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} bool runOnFunction(Function &F) override; StringRef getPassName() const override { return "AMDGPU Promote Alloca to vector"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); FunctionPass::getAnalysisUsage(AU); } }; } // end anonymous namespace char AMDGPUPromoteAlloca::ID = 0; char AMDGPUPromoteAllocaToVector::ID = 0; INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, "AMDGPU promote alloca to vector or LDS", false, false) // Move LDS uses from functions to kernels before promote alloca for accurate // estimation of LDS available INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS) INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, "AMDGPU promote alloca to vector or LDS", false, false) INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", "AMDGPU promote alloca to vector", false, false) char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { if (skipFunction(F)) return false; if (auto *TPC = getAnalysisIfAvailable()) { return AMDGPUPromoteAllocaImpl(TPC->getTM()).run(F); } return false; } PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, FunctionAnalysisManager &AM) { bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); if (Changed) { PreservedAnalyses PA; PA.preserveSet(); return PA; } return PreservedAnalyses::all(); } bool AMDGPUPromoteAllocaImpl::run(Function &F) { Mod = F.getParent(); DL = &Mod->getDataLayout(); const Triple &TT = TM.getTargetTriple(); IsAMDGCN = TT.getArch() == Triple::amdgcn; IsAMDHSA = TT.getOS() == Triple::AMDHSA; const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); if (!ST.isPromoteAllocaEnabled()) return false; if (IsAMDGCN) { const GCNSubtarget &ST = TM.getSubtarget(F); MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); } else { MaxVGPRs = 128; } bool SufficientLDS = hasSufficientLocalMem(F); bool Changed = false; BasicBlock &EntryBB = *F.begin(); SmallVector Allocas; for (Instruction &I : EntryBB) { if (AllocaInst *AI = dyn_cast(&I)) Allocas.push_back(AI); } for (AllocaInst *AI : Allocas) { if (handleAlloca(*AI, SufficientLDS)) Changed = true; } return Changed; } std::pair AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { const Function &F = *Builder.GetInsertBlock()->getParent(); const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); if (!IsAMDHSA) { Function *LocalSizeYFn = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); Function *LocalSizeZFn = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); ST.makeLIDRangeMetadata(LocalSizeY); ST.makeLIDRangeMetadata(LocalSizeZ); return std::make_pair(LocalSizeY, LocalSizeZ); } // We must read the size out of the dispatch pointer. assert(IsAMDGCN); // We are indexing into this struct, and want to extract the workgroup_size_* // fields. // // typedef struct hsa_kernel_dispatch_packet_s { // uint16_t header; // uint16_t setup; // uint16_t workgroup_size_x ; // uint16_t workgroup_size_y; // uint16_t workgroup_size_z; // uint16_t reserved0; // uint32_t grid_size_x ; // uint32_t grid_size_y ; // uint32_t grid_size_z; // // uint32_t private_segment_size; // uint32_t group_segment_size; // uint64_t kernel_object; // // #ifdef HSA_LARGE_MODEL // void *kernarg_address; // #elif defined HSA_LITTLE_ENDIAN // void *kernarg_address; // uint32_t reserved1; // #else // uint32_t reserved1; // void *kernarg_address; // #endif // uint64_t reserved2; // hsa_signal_t completion_signal; // uint64_t wrapper // } hsa_kernel_dispatch_packet_t // Function *DispatchPtrFn = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); // Size of the dispatch packet struct. DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); Type *I32Ty = Type::getInt32Ty(Mod->getContext()); Value *CastDispatchPtr = Builder.CreateBitCast( DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); // We could do a single 64-bit load here, but it's likely that the basic // 32-bit and extract sequence is already present, and it is probably easier // to CSE this. The loads should be mergable later anyway. Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); MDNode *MD = MDNode::get(Mod->getContext(), None); LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); ST.makeLIDRangeMetadata(LoadZU); // Extract y component. Upper half of LoadZU should be zero already. Value *Y = Builder.CreateLShr(LoadXY, 16); return std::make_pair(Y, LoadZU); } Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, unsigned N) { const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent()); Intrinsic::ID IntrID = Intrinsic::not_intrinsic; switch (N) { case 0: IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; break; case 1: IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; break; case 2: IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; break; default: llvm_unreachable("invalid dimension"); } Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); CallInst *CI = Builder.CreateCall(WorkitemIdFn); ST.makeLIDRangeMetadata(CI); return CI; } static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { return FixedVectorType::get(ArrayTy->getElementType(), ArrayTy->getNumElements()); } static Value *stripBitcasts(Value *V) { while (Instruction *I = dyn_cast(V)) { if (I->getOpcode() != Instruction::BitCast) break; V = I->getOperand(0); } return V; } static Value * calculateVectorIndex(Value *Ptr, const std::map &GEPIdx) { GetElementPtrInst *GEP = dyn_cast(stripBitcasts(Ptr)); if (!GEP) return nullptr; auto I = GEPIdx.find(GEP); return I == GEPIdx.end() ? nullptr : I->second; } static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { // FIXME we only support simple cases if (GEP->getNumOperands() != 3) return nullptr; ConstantInt *I0 = dyn_cast(GEP->getOperand(1)); if (!I0 || !I0->isZero()) return nullptr; return GEP->getOperand(2); } // Not an instruction handled below to turn into a vector. // // TODO: Check isTriviallyVectorizable for calls and handle other // instructions. static bool canVectorizeInst(Instruction *Inst, User *User, const DataLayout &DL) { switch (Inst->getOpcode()) { case Instruction::Load: { // Currently only handle the case where the Pointer Operand is a GEP. // Also we could not vectorize volatile or atomic loads. LoadInst *LI = cast(Inst); if (isa(User) && LI->getPointerOperandType() == User->getType() && isa(LI->getType())) return true; Instruction *PtrInst = dyn_cast(LI->getPointerOperand()); if (!PtrInst) return false; return (PtrInst->getOpcode() == Instruction::GetElementPtr || PtrInst->getOpcode() == Instruction::BitCast) && LI->isSimple(); } case Instruction::BitCast: return true; case Instruction::Store: { // Must be the stored pointer operand, not a stored value, plus // since it should be canonical form, the User should be a GEP. // Also we could not vectorize volatile or atomic stores. StoreInst *SI = cast(Inst); if (isa(User) && SI->getPointerOperandType() == User->getType() && isa(SI->getValueOperand()->getType())) return true; Instruction *UserInst = dyn_cast(User); if (!UserInst) return false; return (SI->getPointerOperand() == User) && (UserInst->getOpcode() == Instruction::GetElementPtr || UserInst->getOpcode() == Instruction::BitCast) && SI->isSimple(); } default: return false; } } static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, unsigned MaxVGPRs) { if (DisablePromoteAllocaToVector) { LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); return false; } Type *AllocaTy = Alloca->getAllocatedType(); auto *VectorTy = dyn_cast(AllocaTy); if (auto *ArrayTy = dyn_cast(AllocaTy)) { if (VectorType::isValidElementType(ArrayTy->getElementType()) && ArrayTy->getNumElements() > 0) VectorTy = arrayTypeToVecType(ArrayTy); } // Use up to 1/4 of available register budget for vectorization. unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 : (MaxVGPRs * 32); if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " << MaxVGPRs << " registers available\n"); return false; } LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); // FIXME: There is no reason why we can't support larger arrays, we // are just being conservative for now. // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these // could also be promoted but we don't currently handle this case if (!VectorTy || VectorTy->getNumElements() > 16 || VectorTy->getNumElements() < 2) { LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); return false; } std::map GEPVectorIdx; std::vector WorkList; SmallVector Users(Alloca->users()); SmallVector UseUsers(Users.size(), Alloca); Type *VecEltTy = VectorTy->getElementType(); while (!Users.empty()) { User *AllocaUser = Users.pop_back_val(); User *UseUser = UseUsers.pop_back_val(); Instruction *Inst = dyn_cast(AllocaUser); GetElementPtrInst *GEP = dyn_cast(AllocaUser); if (!GEP) { if (!canVectorizeInst(Inst, UseUser, DL)) return false; if (Inst->getOpcode() == Instruction::BitCast) { Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); Type *ToTy = Inst->getType()->getPointerElementType(); if (FromTy->isAggregateType() || ToTy->isAggregateType() || DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) continue; for (User *CastUser : Inst->users()) { if (isAssumeLikeIntrinsic(cast(CastUser))) continue; Users.push_back(CastUser); UseUsers.push_back(Inst); } continue; } WorkList.push_back(AllocaUser); continue; } Value *Index = GEPToVectorIndex(GEP); // If we can't compute a vector index from this GEP, then we can't // promote this alloca to vector. if (!Index) { LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); return false; } GEPVectorIdx[GEP] = Index; Users.append(GEP->user_begin(), GEP->user_end()); UseUsers.append(GEP->getNumUses(), GEP); } LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " << *VectorTy << '\n'); for (Value *V : WorkList) { Instruction *Inst = cast(V); IRBuilder<> Builder(Inst); switch (Inst->getOpcode()) { case Instruction::Load: { if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) break; Value *Ptr = cast(Inst)->getPointerOperand(); Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); if (!Index) break; Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); if (Inst->getType() != VecEltTy) ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); Inst->replaceAllUsesWith(ExtractElement); Inst->eraseFromParent(); break; } case Instruction::Store: { StoreInst *SI = cast(Inst); if (SI->getValueOperand()->getType() == AllocaTy || SI->getValueOperand()->getType()->isVectorTy()) break; Value *Ptr = SI->getPointerOperand(); Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); if (!Index) break; Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); Value *Elt = SI->getValueOperand(); if (Elt->getType() != VecEltTy) Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); Builder.CreateStore(NewVecValue, BitCast); Inst->eraseFromParent(); break; } default: llvm_unreachable("Inconsistency in instructions promotable to vector"); } } return true; } static bool isCallPromotable(CallInst *CI) { IntrinsicInst *II = dyn_cast(CI); if (!II) return false; switch (II->getIntrinsicID()) { case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: case Intrinsic::objectsize: return true; default: return false; } } bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, int OpIdx1) const { // Figure out which operand is the one we might not be promoting. Value *OtherOp = Inst->getOperand(OpIdx0); if (Val == OtherOp) OtherOp = Inst->getOperand(OpIdx1); if (isa(OtherOp)) return true; Value *OtherObj = getUnderlyingObject(OtherOp); if (!isa(OtherObj)) return false; // TODO: We should be able to replace undefs with the right pointer type. // TODO: If we know the other base object is another promotable // alloca, not necessarily this alloca, we can do this. The // important part is both must have the same address space at // the end. if (OtherObj != BaseAlloca) { LLVM_DEBUG( dbgs() << "Found a binary instruction with another alloca object\n"); return false; } return true; } bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( Value *BaseAlloca, Value *Val, std::vector &WorkList) const { for (User *User : Val->users()) { if (is_contained(WorkList, User)) continue; if (CallInst *CI = dyn_cast(User)) { if (!isCallPromotable(CI)) return false; WorkList.push_back(User); continue; } Instruction *UseInst = cast(User); if (UseInst->getOpcode() == Instruction::PtrToInt) return false; if (LoadInst *LI = dyn_cast(UseInst)) { if (LI->isVolatile()) return false; continue; } if (StoreInst *SI = dyn_cast(UseInst)) { if (SI->isVolatile()) return false; // Reject if the stored value is not the pointer operand. if (SI->getPointerOperand() != Val) return false; } else if (AtomicRMWInst *RMW = dyn_cast(UseInst)) { if (RMW->isVolatile()) return false; } else if (AtomicCmpXchgInst *CAS = dyn_cast(UseInst)) { if (CAS->isVolatile()) return false; } // Only promote a select if we know that the other select operand // is from another pointer that will also be promoted. if (ICmpInst *ICmp = dyn_cast(UseInst)) { if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) return false; // May need to rewrite constant operands. WorkList.push_back(ICmp); } if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { // Give up if the pointer may be captured. if (PointerMayBeCaptured(UseInst, true, true)) return false; // Don't collect the users of this. WorkList.push_back(User); continue; } // Do not promote vector/aggregate type instructions. It is hard to track // their users. if (isa(User) || isa(User)) return false; if (!User->getType()->isPointerTy()) continue; if (GetElementPtrInst *GEP = dyn_cast(UseInst)) { // Be conservative if an address could be computed outside the bounds of // the alloca. if (!GEP->isInBounds()) return false; } // Only promote a select if we know that the other select operand is from // another pointer that will also be promoted. if (SelectInst *SI = dyn_cast(UseInst)) { if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) return false; } // Repeat for phis. if (PHINode *Phi = dyn_cast(UseInst)) { // TODO: Handle more complex cases. We should be able to replace loops // over arrays. switch (Phi->getNumIncomingValues()) { case 1: break; case 2: if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) return false; break; default: return false; } } WorkList.push_back(User); if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) return false; } return true; } bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { FunctionType *FTy = F.getFunctionType(); const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); // If the function has any arguments in the local address space, then it's // possible these arguments require the entire local memory space, so // we cannot use local memory in the pass. for (Type *ParamTy : FTy->params()) { PointerType *PtrTy = dyn_cast(ParamTy); if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { LocalMemLimit = 0; LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " "local memory disabled.\n"); return false; } } LocalMemLimit = ST.getLocalMemorySize(); if (LocalMemLimit == 0) return false; SmallVector Stack; SmallPtrSet VisitedConstants; SmallPtrSet UsedLDS; auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { for (const User *U : Val->users()) { if (const Instruction *Use = dyn_cast(U)) { if (Use->getParent()->getParent() == &F) return true; } else { const Constant *C = cast(U); if (VisitedConstants.insert(C).second) Stack.push_back(C); } } return false; }; for (GlobalVariable &GV : Mod->globals()) { if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) continue; if (visitUsers(&GV, &GV)) { UsedLDS.insert(&GV); Stack.clear(); continue; } // For any ConstantExpr uses, we need to recursively search the users until // we see a function. while (!Stack.empty()) { const Constant *C = Stack.pop_back_val(); if (visitUsers(&GV, C)) { UsedLDS.insert(&GV); Stack.clear(); break; } } } const DataLayout &DL = Mod->getDataLayout(); SmallVector, 16> AllocatedSizes; AllocatedSizes.reserve(UsedLDS.size()); for (const GlobalVariable *GV : UsedLDS) { Align Alignment = DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); AllocatedSizes.emplace_back(AllocSize, Alignment); } // Sort to try to estimate the worst case alignment padding // // FIXME: We should really do something to fix the addresses to a more optimal // value instead llvm::sort(AllocatedSizes, [](std::pair LHS, std::pair RHS) { return LHS.second < RHS.second; }); // Check how much local memory is being used by global objects CurrentLocalMemUsage = 0; // FIXME: Try to account for padding here. The real padding and address is // currently determined from the inverse order of uses in the function when // legalizing, which could also potentially change. We try to estimate the // worst case here, but we probably should fix the addresses earlier. for (auto Alloc : AllocatedSizes) { CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); CurrentLocalMemUsage += Alloc.first; } unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, F); // Restrict local memory usage so that we don't drastically reduce occupancy, // unless it is already significantly reduced. // TODO: Have some sort of hint or other heuristics to guess occupancy based // on other factors.. unsigned OccupancyHint = ST.getWavesPerEU(F).second; if (OccupancyHint == 0) OccupancyHint = 7; // Clamp to max value. OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); // Check the hint but ignore it if it's obviously wrong from the existing LDS // usage. MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); // Round up to the next tier of usage. unsigned MaxSizeWithWaveCount = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); // Program is possibly broken by using more local mem than available. if (CurrentLocalMemUsage > MaxSizeWithWaveCount) return false; LocalMemLimit = MaxSizeWithWaveCount; LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage) << " available for promotion\n"); return true; } // FIXME: Should try to pick the most likely to be profitable allocas first. bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { // Array allocations are probably not worth handling, since an allocation of // the array type is the canonical form. if (!I.isStaticAlloca() || I.isArrayAllocation()) return false; const DataLayout &DL = Mod->getDataLayout(); IRBuilder<> Builder(&I); // First try to replace the alloca with a vector Type *AllocaTy = I.getAllocatedType(); LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) return true; // Promoted to vector. if (DisablePromoteAllocaToLDS) return false; const Function &ContainingFunction = *I.getParent()->getParent(); CallingConv::ID CC = ContainingFunction.getCallingConv(); // Don't promote the alloca to LDS for shader calling conventions as the work // item ID intrinsics are not supported for these calling conventions. // Furthermore not all LDS is available for some of the stages. switch (CC) { case CallingConv::AMDGPU_KERNEL: case CallingConv::SPIR_KERNEL: break; default: LLVM_DEBUG( dbgs() << " promote alloca to LDS not supported with calling convention.\n"); return false; } // Not likely to have sufficient local memory for promotion. if (!SufficientLDS) return false; const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); // FIXME: This computed padding is likely wrong since it depends on inverse // usage order. // // FIXME: It is also possible that if we're allowed to use all of the memory // could could end up using more than the maximum due to alignment padding. uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); NewSize += AllocSize; if (NewSize > LocalMemLimit) { LLVM_DEBUG(dbgs() << " " << AllocSize << " bytes of local memory not available to promote\n"); return false; } CurrentLocalMemUsage = NewSize; std::vector WorkList; if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); return false; } LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); Function *F = I.getParent()->getParent(); Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); GlobalVariable *GV = new GlobalVariable( *Mod, GVTy, false, GlobalValue::InternalLinkage, UndefValue::get(GVTy), Twine(F->getName()) + Twine('.') + I.getName(), nullptr, GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); GV->setAlignment(MaybeAlign(I.getAlignment())); Value *TCntY, *TCntZ; std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); Value *TIdX = getWorkitemID(Builder, 0); Value *TIdY = getWorkitemID(Builder, 1); Value *TIdZ = getWorkitemID(Builder, 2); Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); Tmp0 = Builder.CreateMul(Tmp0, TIdX); Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); Value *TID = Builder.CreateAdd(Tmp0, Tmp1); TID = Builder.CreateAdd(TID, TIdZ); Value *Indices[] = { Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), TID }; Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); I.mutateType(Offset->getType()); I.replaceAllUsesWith(Offset); I.eraseFromParent(); SmallVector DeferredIntrs; for (Value *V : WorkList) { CallInst *Call = dyn_cast(V); if (!Call) { if (ICmpInst *CI = dyn_cast(V)) { Value *Src0 = CI->getOperand(0); PointerType *NewTy = PointerType::getWithSamePointeeType( cast(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); if (isa(CI->getOperand(0))) CI->setOperand(0, ConstantPointerNull::get(NewTy)); if (isa(CI->getOperand(1))) CI->setOperand(1, ConstantPointerNull::get(NewTy)); continue; } // The operand's value should be corrected on its own and we don't want to // touch the users. if (isa(V)) continue; PointerType *NewTy = PointerType::getWithSamePointeeType( cast(V->getType()), AMDGPUAS::LOCAL_ADDRESS); // FIXME: It doesn't really make sense to try to do this for all // instructions. V->mutateType(NewTy); // Adjust the types of any constant operands. if (SelectInst *SI = dyn_cast(V)) { if (isa(SI->getOperand(1))) SI->setOperand(1, ConstantPointerNull::get(NewTy)); if (isa(SI->getOperand(2))) SI->setOperand(2, ConstantPointerNull::get(NewTy)); } else if (PHINode *Phi = dyn_cast(V)) { for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { if (isa(Phi->getIncomingValue(I))) Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); } } continue; } IntrinsicInst *Intr = cast(Call); Builder.SetInsertPoint(Intr); switch (Intr->getIntrinsicID()) { case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: // These intrinsics are for address space 0 only Intr->eraseFromParent(); continue; case Intrinsic::memcpy: case Intrinsic::memmove: // These have 2 pointer operands. In case if second pointer also needs // to be replaced we defer processing of these intrinsics until all // other values are processed. DeferredIntrs.push_back(Intr); continue; case Intrinsic::memset: { MemSetInst *MemSet = cast(Intr); Builder.CreateMemSet( MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); Intr->eraseFromParent(); continue; } case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: Intr->eraseFromParent(); // FIXME: I think the invariant marker should still theoretically apply, // but the intrinsics need to be changed to accept pointers with any // address space. continue; case Intrinsic::objectsize: { Value *Src = Intr->getOperand(0); Function *ObjectSize = Intrinsic::getDeclaration( Mod, Intrinsic::objectsize, {Intr->getType(), PointerType::getWithSamePointeeType( cast(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); CallInst *NewCall = Builder.CreateCall( ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); Intr->replaceAllUsesWith(NewCall); Intr->eraseFromParent(); continue; } default: Intr->print(errs()); llvm_unreachable("Don't know how to promote alloca intrinsic use."); } } for (IntrinsicInst *Intr : DeferredIntrs) { Builder.SetInsertPoint(Intr); Intrinsic::ID ID = Intr->getIntrinsicID(); assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); MemTransferInst *MI = cast(Intr); auto *B = Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), MI->getRawSource(), MI->getSourceAlign(), MI->getLength(), MI->isVolatile()); for (unsigned I = 1; I != 3; ++I) { if (uint64_t Bytes = Intr->getDereferenceableBytes(I)) { B->addDereferenceableAttr(I, Bytes); } } Intr->eraseFromParent(); } return true; } bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { // Array allocations are probably not worth handling, since an allocation of // the array type is the canonical form. if (!I.isStaticAlloca() || I.isArrayAllocation()) return false; LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); Module *Mod = I.getParent()->getParent()->getParent(); return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); } bool promoteAllocasToVector(Function &F, TargetMachine &TM) { if (DisablePromoteAllocaToVector) return false; const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); if (!ST.isPromoteAllocaEnabled()) return false; unsigned MaxVGPRs; if (TM.getTargetTriple().getArch() == Triple::amdgcn) { const GCNSubtarget &ST = TM.getSubtarget(F); MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); } else { MaxVGPRs = 128; } bool Changed = false; BasicBlock &EntryBB = *F.begin(); SmallVector Allocas; for (Instruction &I : EntryBB) { if (AllocaInst *AI = dyn_cast(&I)) Allocas.push_back(AI); } for (AllocaInst *AI : Allocas) { if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) Changed = true; } return Changed; } bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { if (skipFunction(F)) return false; if (auto *TPC = getAnalysisIfAvailable()) { return promoteAllocasToVector(F, TPC->getTM()); } return false; } PreservedAnalyses AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { bool Changed = promoteAllocasToVector(F, TM); if (Changed) { PreservedAnalyses PA; PA.preserveSet(); return PA; } return PreservedAnalyses::all(); } FunctionPass *llvm::createAMDGPUPromoteAlloca() { return new AMDGPUPromoteAlloca(); } FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { return new AMDGPUPromoteAllocaToVector(); }