1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/AttributeMask.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/InitializePasses.h" 27 #include <cmath> 28 29 #define DEBUG_TYPE "amdgpu-simplifylib" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 35 cl::desc("Enable pre-link mode optimizations"), 36 cl::init(false), 37 cl::Hidden); 38 39 static cl::list<std::string> UseNative("amdgpu-use-native", 40 cl::desc("Comma separated list of functions to replace with native, or all"), 41 cl::CommaSeparated, cl::ValueOptional, 42 cl::Hidden); 43 44 #define MATH_PI numbers::pi 45 #define MATH_E numbers::e 46 #define MATH_SQRT2 numbers::sqrt2 47 #define MATH_SQRT1_2 numbers::inv_sqrt2 48 49 namespace llvm { 50 51 class AMDGPULibCalls { 52 private: 53 const TargetLibraryInfo *TLInfo = nullptr; 54 AssumptionCache *AC = nullptr; 55 DominatorTree *DT = nullptr; 56 57 typedef llvm::AMDGPULibFunc FuncInfo; 58 59 bool UnsafeFPMath = false; 60 61 // -fuse-native. 62 bool AllNative = false; 63 64 bool useNativeFunc(const StringRef F) const; 65 66 // Return a pointer (pointer expr) to the function if function definition with 67 // "FuncName" exists. It may create a new function prototype in pre-link mode. 68 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 69 70 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); 71 72 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 73 74 /* Specialized optimizations */ 75 76 // pow/powr/pown 77 bool fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 78 79 // rootn 80 bool fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 81 82 // -fuse-native for sincos 83 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 84 85 // evaluate calls if calls' arguments are constants. 86 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1, 87 Constant *copr0, Constant *copr1); 88 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); 89 90 /// Insert a value to sincos function \p Fsincos. Returns (value of sin, value 91 /// of cos, sincos call). 92 std::tuple<Value *, Value *, Value *> insertSinCos(Value *Arg, 93 FastMathFlags FMF, 94 IRBuilder<> &B, 95 FunctionCallee Fsincos); 96 97 // sin/cos 98 bool fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); 99 100 // __read_pipe/__write_pipe 101 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 102 const FuncInfo &FInfo); 103 104 // Get a scalar native builtin single argument FP function 105 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 106 107 /// Substitute a call to a known libcall with an intrinsic call. If \p 108 /// AllowMinSize is true, allow the replacement in a minsize function. 109 bool shouldReplaceLibcallWithIntrinsic(const CallInst *CI, 110 bool AllowMinSizeF32 = false, 111 bool AllowF64 = false, 112 bool AllowStrictFP = false); 113 void replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, 114 Intrinsic::ID IntrID); 115 116 bool tryReplaceLibcallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, 117 Intrinsic::ID IntrID, 118 bool AllowMinSizeF32 = false, 119 bool AllowF64 = false, 120 bool AllowStrictFP = false); 121 122 protected: 123 bool isUnsafeMath(const FPMathOperator *FPOp) const; 124 bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const; 125 126 bool canIncreasePrecisionOfConstantFold(const FPMathOperator *FPOp) const; 127 128 static void replaceCall(Instruction *I, Value *With) { 129 I->replaceAllUsesWith(With); 130 I->eraseFromParent(); 131 } 132 133 static void replaceCall(FPMathOperator *I, Value *With) { 134 replaceCall(cast<Instruction>(I), With); 135 } 136 137 public: 138 AMDGPULibCalls() {} 139 140 bool fold(CallInst *CI); 141 142 void initFunction(Function &F, FunctionAnalysisManager &FAM); 143 void initNativeFuncs(); 144 145 // Replace a normal math function call with that native version 146 bool useNative(CallInst *CI); 147 }; 148 149 } // end llvm namespace 150 151 template <typename IRB> 152 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 153 const Twine &Name = "") { 154 CallInst *R = B.CreateCall(Callee, Arg, Name); 155 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 156 R->setCallingConv(F->getCallingConv()); 157 return R; 158 } 159 160 template <typename IRB> 161 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 162 Value *Arg2, const Twine &Name = "") { 163 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 164 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 165 R->setCallingConv(F->getCallingConv()); 166 return R; 167 } 168 169 static FunctionType *getPownType(FunctionType *FT) { 170 Type *PowNExpTy = Type::getInt32Ty(FT->getContext()); 171 if (VectorType *VecTy = dyn_cast<VectorType>(FT->getReturnType())) 172 PowNExpTy = VectorType::get(PowNExpTy, VecTy->getElementCount()); 173 174 return FunctionType::get(FT->getReturnType(), 175 {FT->getParamType(0), PowNExpTy}, false); 176 } 177 178 // Data structures for table-driven optimizations. 179 // FuncTbl works for both f32 and f64 functions with 1 input argument 180 181 struct TableEntry { 182 double result; 183 double input; 184 }; 185 186 /* a list of {result, input} */ 187 static const TableEntry tbl_acos[] = { 188 {MATH_PI / 2.0, 0.0}, 189 {MATH_PI / 2.0, -0.0}, 190 {0.0, 1.0}, 191 {MATH_PI, -1.0} 192 }; 193 static const TableEntry tbl_acosh[] = { 194 {0.0, 1.0} 195 }; 196 static const TableEntry tbl_acospi[] = { 197 {0.5, 0.0}, 198 {0.5, -0.0}, 199 {0.0, 1.0}, 200 {1.0, -1.0} 201 }; 202 static const TableEntry tbl_asin[] = { 203 {0.0, 0.0}, 204 {-0.0, -0.0}, 205 {MATH_PI / 2.0, 1.0}, 206 {-MATH_PI / 2.0, -1.0} 207 }; 208 static const TableEntry tbl_asinh[] = { 209 {0.0, 0.0}, 210 {-0.0, -0.0} 211 }; 212 static const TableEntry tbl_asinpi[] = { 213 {0.0, 0.0}, 214 {-0.0, -0.0}, 215 {0.5, 1.0}, 216 {-0.5, -1.0} 217 }; 218 static const TableEntry tbl_atan[] = { 219 {0.0, 0.0}, 220 {-0.0, -0.0}, 221 {MATH_PI / 4.0, 1.0}, 222 {-MATH_PI / 4.0, -1.0} 223 }; 224 static const TableEntry tbl_atanh[] = { 225 {0.0, 0.0}, 226 {-0.0, -0.0} 227 }; 228 static const TableEntry tbl_atanpi[] = { 229 {0.0, 0.0}, 230 {-0.0, -0.0}, 231 {0.25, 1.0}, 232 {-0.25, -1.0} 233 }; 234 static const TableEntry tbl_cbrt[] = { 235 {0.0, 0.0}, 236 {-0.0, -0.0}, 237 {1.0, 1.0}, 238 {-1.0, -1.0}, 239 }; 240 static const TableEntry tbl_cos[] = { 241 {1.0, 0.0}, 242 {1.0, -0.0} 243 }; 244 static const TableEntry tbl_cosh[] = { 245 {1.0, 0.0}, 246 {1.0, -0.0} 247 }; 248 static const TableEntry tbl_cospi[] = { 249 {1.0, 0.0}, 250 {1.0, -0.0} 251 }; 252 static const TableEntry tbl_erfc[] = { 253 {1.0, 0.0}, 254 {1.0, -0.0} 255 }; 256 static const TableEntry tbl_erf[] = { 257 {0.0, 0.0}, 258 {-0.0, -0.0} 259 }; 260 static const TableEntry tbl_exp[] = { 261 {1.0, 0.0}, 262 {1.0, -0.0}, 263 {MATH_E, 1.0} 264 }; 265 static const TableEntry tbl_exp2[] = { 266 {1.0, 0.0}, 267 {1.0, -0.0}, 268 {2.0, 1.0} 269 }; 270 static const TableEntry tbl_exp10[] = { 271 {1.0, 0.0}, 272 {1.0, -0.0}, 273 {10.0, 1.0} 274 }; 275 static const TableEntry tbl_expm1[] = { 276 {0.0, 0.0}, 277 {-0.0, -0.0} 278 }; 279 static const TableEntry tbl_log[] = { 280 {0.0, 1.0}, 281 {1.0, MATH_E} 282 }; 283 static const TableEntry tbl_log2[] = { 284 {0.0, 1.0}, 285 {1.0, 2.0} 286 }; 287 static const TableEntry tbl_log10[] = { 288 {0.0, 1.0}, 289 {1.0, 10.0} 290 }; 291 static const TableEntry tbl_rsqrt[] = { 292 {1.0, 1.0}, 293 {MATH_SQRT1_2, 2.0} 294 }; 295 static const TableEntry tbl_sin[] = { 296 {0.0, 0.0}, 297 {-0.0, -0.0} 298 }; 299 static const TableEntry tbl_sinh[] = { 300 {0.0, 0.0}, 301 {-0.0, -0.0} 302 }; 303 static const TableEntry tbl_sinpi[] = { 304 {0.0, 0.0}, 305 {-0.0, -0.0} 306 }; 307 static const TableEntry tbl_sqrt[] = { 308 {0.0, 0.0}, 309 {1.0, 1.0}, 310 {MATH_SQRT2, 2.0} 311 }; 312 static const TableEntry tbl_tan[] = { 313 {0.0, 0.0}, 314 {-0.0, -0.0} 315 }; 316 static const TableEntry tbl_tanh[] = { 317 {0.0, 0.0}, 318 {-0.0, -0.0} 319 }; 320 static const TableEntry tbl_tanpi[] = { 321 {0.0, 0.0}, 322 {-0.0, -0.0} 323 }; 324 static const TableEntry tbl_tgamma[] = { 325 {1.0, 1.0}, 326 {1.0, 2.0}, 327 {2.0, 3.0}, 328 {6.0, 4.0} 329 }; 330 331 static bool HasNative(AMDGPULibFunc::EFuncId id) { 332 switch(id) { 333 case AMDGPULibFunc::EI_DIVIDE: 334 case AMDGPULibFunc::EI_COS: 335 case AMDGPULibFunc::EI_EXP: 336 case AMDGPULibFunc::EI_EXP2: 337 case AMDGPULibFunc::EI_EXP10: 338 case AMDGPULibFunc::EI_LOG: 339 case AMDGPULibFunc::EI_LOG2: 340 case AMDGPULibFunc::EI_LOG10: 341 case AMDGPULibFunc::EI_POWR: 342 case AMDGPULibFunc::EI_RECIP: 343 case AMDGPULibFunc::EI_RSQRT: 344 case AMDGPULibFunc::EI_SIN: 345 case AMDGPULibFunc::EI_SINCOS: 346 case AMDGPULibFunc::EI_SQRT: 347 case AMDGPULibFunc::EI_TAN: 348 return true; 349 default:; 350 } 351 return false; 352 } 353 354 using TableRef = ArrayRef<TableEntry>; 355 356 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 357 switch(id) { 358 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 359 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 360 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 361 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 362 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 363 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 364 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 365 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 366 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 367 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 368 case AMDGPULibFunc::EI_NCOS: 369 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 370 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 371 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 372 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 373 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 374 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 375 case AMDGPULibFunc::EI_NEXP2: 376 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 377 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 378 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 379 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 380 case AMDGPULibFunc::EI_NLOG2: 381 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 382 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 383 case AMDGPULibFunc::EI_NRSQRT: 384 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 385 case AMDGPULibFunc::EI_NSIN: 386 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 387 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 388 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 389 case AMDGPULibFunc::EI_NSQRT: 390 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 391 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 392 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 393 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 394 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 395 default:; 396 } 397 return TableRef(); 398 } 399 400 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 401 return FInfo.getLeads()[0].VectorSize; 402 } 403 404 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 405 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 406 } 407 408 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 409 // If we are doing PreLinkOpt, the function is external. So it is safe to 410 // use getOrInsertFunction() at this stage. 411 412 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 413 : AMDGPULibFunc::getFunction(M, fInfo); 414 } 415 416 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, 417 FuncInfo &FInfo) { 418 return AMDGPULibFunc::parse(FMangledName, FInfo); 419 } 420 421 bool AMDGPULibCalls::isUnsafeMath(const FPMathOperator *FPOp) const { 422 return UnsafeFPMath || FPOp->isFast(); 423 } 424 425 bool AMDGPULibCalls::isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const { 426 return UnsafeFPMath || 427 (FPOp->hasApproxFunc() && FPOp->hasNoNaNs() && FPOp->hasNoInfs()); 428 } 429 430 bool AMDGPULibCalls::canIncreasePrecisionOfConstantFold( 431 const FPMathOperator *FPOp) const { 432 // TODO: Refine to approxFunc or contract 433 return isUnsafeMath(FPOp); 434 } 435 436 void AMDGPULibCalls::initFunction(Function &F, FunctionAnalysisManager &FAM) { 437 UnsafeFPMath = F.getFnAttribute("unsafe-fp-math").getValueAsBool(); 438 AC = &FAM.getResult<AssumptionAnalysis>(F); 439 TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 440 DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 441 } 442 443 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 444 return AllNative || llvm::is_contained(UseNative, F); 445 } 446 447 void AMDGPULibCalls::initNativeFuncs() { 448 AllNative = useNativeFunc("all") || 449 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 450 UseNative.begin()->empty()); 451 } 452 453 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 454 bool native_sin = useNativeFunc("sin"); 455 bool native_cos = useNativeFunc("cos"); 456 457 if (native_sin && native_cos) { 458 Module *M = aCI->getModule(); 459 Value *opr0 = aCI->getArgOperand(0); 460 461 AMDGPULibFunc nf; 462 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 463 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 464 465 nf.setPrefix(AMDGPULibFunc::NATIVE); 466 nf.setId(AMDGPULibFunc::EI_SIN); 467 FunctionCallee sinExpr = getFunction(M, nf); 468 469 nf.setPrefix(AMDGPULibFunc::NATIVE); 470 nf.setId(AMDGPULibFunc::EI_COS); 471 FunctionCallee cosExpr = getFunction(M, nf); 472 if (sinExpr && cosExpr) { 473 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 474 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 475 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 476 477 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 478 << " with native version of sin/cos"); 479 480 replaceCall(aCI, sinval); 481 return true; 482 } 483 } 484 return false; 485 } 486 487 bool AMDGPULibCalls::useNative(CallInst *aCI) { 488 Function *Callee = aCI->getCalledFunction(); 489 if (!Callee || aCI->isNoBuiltin()) 490 return false; 491 492 FuncInfo FInfo; 493 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || 494 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 495 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 496 !(AllNative || useNativeFunc(FInfo.getName()))) { 497 return false; 498 } 499 500 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 501 return sincosUseNative(aCI, FInfo); 502 503 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 504 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 505 if (!F) 506 return false; 507 508 aCI->setCalledFunction(F); 509 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 510 << " with native version"); 511 return true; 512 } 513 514 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 515 // builtin, with appended type size and alignment arguments, where 2 or 4 516 // indicates the original number of arguments. The library has optimized version 517 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 518 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 519 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 520 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 521 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 522 const FuncInfo &FInfo) { 523 auto *Callee = CI->getCalledFunction(); 524 if (!Callee->isDeclaration()) 525 return false; 526 527 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 528 auto *M = Callee->getParent(); 529 std::string Name = std::string(Callee->getName()); 530 auto NumArg = CI->arg_size(); 531 if (NumArg != 4 && NumArg != 6) 532 return false; 533 ConstantInt *PacketSize = 534 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 2)); 535 ConstantInt *PacketAlign = 536 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 1)); 537 if (!PacketSize || !PacketAlign) 538 return false; 539 540 unsigned Size = PacketSize->getZExtValue(); 541 Align Alignment = PacketAlign->getAlignValue(); 542 if (Alignment != Size) 543 return false; 544 545 unsigned PtrArgLoc = CI->arg_size() - 3; 546 Value *PtrArg = CI->getArgOperand(PtrArgLoc); 547 Type *PtrTy = PtrArg->getType(); 548 549 SmallVector<llvm::Type *, 6> ArgTys; 550 for (unsigned I = 0; I != PtrArgLoc; ++I) 551 ArgTys.push_back(CI->getArgOperand(I)->getType()); 552 ArgTys.push_back(PtrTy); 553 554 Name = Name + "_" + std::to_string(Size); 555 auto *FTy = FunctionType::get(Callee->getReturnType(), 556 ArrayRef<Type *>(ArgTys), false); 557 AMDGPULibFunc NewLibFunc(Name, FTy); 558 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 559 if (!F) 560 return false; 561 562 SmallVector<Value *, 6> Args; 563 for (unsigned I = 0; I != PtrArgLoc; ++I) 564 Args.push_back(CI->getArgOperand(I)); 565 Args.push_back(PtrArg); 566 567 auto *NCI = B.CreateCall(F, Args); 568 NCI->setAttributes(CI->getAttributes()); 569 CI->replaceAllUsesWith(NCI); 570 CI->dropAllReferences(); 571 CI->eraseFromParent(); 572 573 return true; 574 } 575 576 static bool isKnownIntegral(const Value *V, const DataLayout &DL, 577 FastMathFlags FMF) { 578 if (isa<UndefValue>(V)) 579 return true; 580 581 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) 582 return CF->getValueAPF().isInteger(); 583 584 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 585 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 586 Constant *ConstElt = CDV->getElementAsConstant(i); 587 if (isa<UndefValue>(ConstElt)) 588 continue; 589 const ConstantFP *CFP = dyn_cast<ConstantFP>(ConstElt); 590 if (!CFP || !CFP->getValue().isInteger()) 591 return false; 592 } 593 594 return true; 595 } 596 597 const Instruction *I = dyn_cast<Instruction>(V); 598 if (!I) 599 return false; 600 601 switch (I->getOpcode()) { 602 case Instruction::SIToFP: 603 case Instruction::UIToFP: 604 // TODO: Could check nofpclass(inf) on incoming argument 605 if (FMF.noInfs()) 606 return true; 607 608 // Need to check int size cannot produce infinity, which computeKnownFPClass 609 // knows how to do already. 610 return isKnownNeverInfinity(I, DL); 611 case Instruction::Call: { 612 const CallInst *CI = cast<CallInst>(I); 613 switch (CI->getIntrinsicID()) { 614 case Intrinsic::trunc: 615 case Intrinsic::floor: 616 case Intrinsic::ceil: 617 case Intrinsic::rint: 618 case Intrinsic::nearbyint: 619 case Intrinsic::round: 620 case Intrinsic::roundeven: 621 return (FMF.noInfs() && FMF.noNaNs()) || 622 isKnownNeverInfOrNaN(I, DL, nullptr); 623 default: 624 break; 625 } 626 627 break; 628 } 629 default: 630 break; 631 } 632 633 return false; 634 } 635 636 // This function returns false if no change; return true otherwise. 637 bool AMDGPULibCalls::fold(CallInst *CI) { 638 Function *Callee = CI->getCalledFunction(); 639 // Ignore indirect calls. 640 if (!Callee || Callee->isIntrinsic() || CI->isNoBuiltin()) 641 return false; 642 643 FuncInfo FInfo; 644 if (!parseFunctionName(Callee->getName(), FInfo)) 645 return false; 646 647 // Further check the number of arguments to see if they match. 648 // TODO: Check calling convention matches too 649 if (!FInfo.isCompatibleSignature(CI->getFunctionType())) 650 return false; 651 652 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << '\n'); 653 654 if (TDOFold(CI, FInfo)) 655 return true; 656 657 IRBuilder<> B(CI); 658 659 if (FPMathOperator *FPOp = dyn_cast<FPMathOperator>(CI)) { 660 // Under unsafe-math, evaluate calls if possible. 661 // According to Brian Sumner, we can do this for all f32 function calls 662 // using host's double function calls. 663 if (canIncreasePrecisionOfConstantFold(FPOp) && evaluateCall(CI, FInfo)) 664 return true; 665 666 // Copy fast flags from the original call. 667 FastMathFlags FMF = FPOp->getFastMathFlags(); 668 B.setFastMathFlags(FMF); 669 670 // Specialized optimizations for each function call. 671 // 672 // TODO: Handle native functions 673 switch (FInfo.getId()) { 674 case AMDGPULibFunc::EI_EXP: 675 if (FMF.none()) 676 return false; 677 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp, 678 FMF.approxFunc()); 679 case AMDGPULibFunc::EI_EXP2: 680 if (FMF.none()) 681 return false; 682 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp2, 683 FMF.approxFunc()); 684 case AMDGPULibFunc::EI_LOG: 685 if (FMF.none()) 686 return false; 687 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log, 688 FMF.approxFunc()); 689 case AMDGPULibFunc::EI_LOG2: 690 if (FMF.none()) 691 return false; 692 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log2, 693 FMF.approxFunc()); 694 case AMDGPULibFunc::EI_LOG10: 695 if (FMF.none()) 696 return false; 697 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log10, 698 FMF.approxFunc()); 699 case AMDGPULibFunc::EI_FMIN: 700 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::minnum, 701 true, true); 702 case AMDGPULibFunc::EI_FMAX: 703 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::maxnum, 704 true, true); 705 case AMDGPULibFunc::EI_FMA: 706 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fma, true, 707 true); 708 case AMDGPULibFunc::EI_MAD: 709 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fmuladd, 710 true, true); 711 case AMDGPULibFunc::EI_FABS: 712 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fabs, true, 713 true, true); 714 case AMDGPULibFunc::EI_COPYSIGN: 715 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::copysign, 716 true, true, true); 717 case AMDGPULibFunc::EI_FLOOR: 718 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::floor, true, 719 true); 720 case AMDGPULibFunc::EI_CEIL: 721 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::ceil, true, 722 true); 723 case AMDGPULibFunc::EI_TRUNC: 724 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::trunc, true, 725 true); 726 case AMDGPULibFunc::EI_RINT: 727 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::rint, true, 728 true); 729 case AMDGPULibFunc::EI_ROUND: 730 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::round, true, 731 true); 732 case AMDGPULibFunc::EI_LDEXP: { 733 if (!shouldReplaceLibcallWithIntrinsic(CI, true, true)) 734 return false; 735 736 Value *Arg1 = CI->getArgOperand(1); 737 if (VectorType *VecTy = dyn_cast<VectorType>(CI->getType()); 738 VecTy && !isa<VectorType>(Arg1->getType())) { 739 Value *SplatArg1 = B.CreateVectorSplat(VecTy->getElementCount(), Arg1); 740 CI->setArgOperand(1, SplatArg1); 741 } 742 743 CI->setCalledFunction(Intrinsic::getDeclaration( 744 CI->getModule(), Intrinsic::ldexp, 745 {CI->getType(), CI->getArgOperand(1)->getType()})); 746 return true; 747 } 748 case AMDGPULibFunc::EI_POW: { 749 Module *M = Callee->getParent(); 750 AMDGPULibFunc PowrInfo(AMDGPULibFunc::EI_POWR, FInfo); 751 FunctionCallee PowrFunc = getFunction(M, PowrInfo); 752 CallInst *Call = cast<CallInst>(FPOp); 753 754 // pow(x, y) -> powr(x, y) for x >= -0.0 755 // TODO: Account for flags on current call 756 if (PowrFunc && 757 cannotBeOrderedLessThanZero(FPOp->getOperand(0), M->getDataLayout(), 758 TLInfo, 0, AC, Call, DT)) { 759 Call->setCalledFunction(PowrFunc); 760 return fold_pow(FPOp, B, PowrInfo) || true; 761 } 762 763 // pow(x, y) -> pown(x, y) for known integral y 764 if (isKnownIntegral(FPOp->getOperand(1), M->getDataLayout(), 765 FPOp->getFastMathFlags())) { 766 FunctionType *PownType = getPownType(CI->getFunctionType()); 767 AMDGPULibFunc PownInfo(AMDGPULibFunc::EI_POWN, PownType, true); 768 FunctionCallee PownFunc = getFunction(M, PownInfo); 769 if (PownFunc) { 770 // TODO: If the incoming integral value is an sitofp/uitofp, it won't 771 // fold out without a known range. We can probably take the source 772 // value directly. 773 Value *CastedArg = 774 B.CreateFPToSI(FPOp->getOperand(1), PownType->getParamType(1)); 775 // Have to drop any nofpclass attributes on the original call site. 776 Call->removeParamAttrs( 777 1, AttributeFuncs::typeIncompatible(CastedArg->getType())); 778 Call->setCalledFunction(PownFunc); 779 Call->setArgOperand(1, CastedArg); 780 return fold_pow(FPOp, B, PownInfo) || true; 781 } 782 } 783 784 return fold_pow(FPOp, B, FInfo); 785 } 786 case AMDGPULibFunc::EI_POWR: 787 case AMDGPULibFunc::EI_POWN: 788 return fold_pow(FPOp, B, FInfo); 789 case AMDGPULibFunc::EI_ROOTN: 790 return fold_rootn(FPOp, B, FInfo); 791 case AMDGPULibFunc::EI_SQRT: 792 // TODO: Allow with strictfp + constrained intrinsic 793 return tryReplaceLibcallWithSimpleIntrinsic( 794 B, CI, Intrinsic::sqrt, true, true, /*AllowStrictFP=*/false); 795 case AMDGPULibFunc::EI_COS: 796 case AMDGPULibFunc::EI_SIN: 797 return fold_sincos(FPOp, B, FInfo); 798 default: 799 break; 800 } 801 } else { 802 // Specialized optimizations for each function call 803 switch (FInfo.getId()) { 804 case AMDGPULibFunc::EI_READ_PIPE_2: 805 case AMDGPULibFunc::EI_READ_PIPE_4: 806 case AMDGPULibFunc::EI_WRITE_PIPE_2: 807 case AMDGPULibFunc::EI_WRITE_PIPE_4: 808 return fold_read_write_pipe(CI, B, FInfo); 809 default: 810 break; 811 } 812 } 813 814 return false; 815 } 816 817 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 818 // Table-Driven optimization 819 const TableRef tr = getOptTable(FInfo.getId()); 820 if (tr.empty()) 821 return false; 822 823 int const sz = (int)tr.size(); 824 Value *opr0 = CI->getArgOperand(0); 825 826 if (getVecSize(FInfo) > 1) { 827 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 828 SmallVector<double, 0> DVal; 829 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 830 ConstantFP *eltval = dyn_cast<ConstantFP>( 831 CV->getElementAsConstant((unsigned)eltNo)); 832 assert(eltval && "Non-FP arguments in math function!"); 833 bool found = false; 834 for (int i=0; i < sz; ++i) { 835 if (eltval->isExactlyValue(tr[i].input)) { 836 DVal.push_back(tr[i].result); 837 found = true; 838 break; 839 } 840 } 841 if (!found) { 842 // This vector constants not handled yet. 843 return false; 844 } 845 } 846 LLVMContext &context = CI->getParent()->getParent()->getContext(); 847 Constant *nval; 848 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 849 SmallVector<float, 0> FVal; 850 for (unsigned i = 0; i < DVal.size(); ++i) { 851 FVal.push_back((float)DVal[i]); 852 } 853 ArrayRef<float> tmp(FVal); 854 nval = ConstantDataVector::get(context, tmp); 855 } else { // F64 856 ArrayRef<double> tmp(DVal); 857 nval = ConstantDataVector::get(context, tmp); 858 } 859 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 860 replaceCall(CI, nval); 861 return true; 862 } 863 } else { 864 // Scalar version 865 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 866 for (int i = 0; i < sz; ++i) { 867 if (CF->isExactlyValue(tr[i].input)) { 868 Value *nval = ConstantFP::get(CF->getType(), tr[i].result); 869 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 870 replaceCall(CI, nval); 871 return true; 872 } 873 } 874 } 875 } 876 877 return false; 878 } 879 880 namespace llvm { 881 static double log2(double V) { 882 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 883 return ::log2(V); 884 #else 885 return log(V) / numbers::ln2; 886 #endif 887 } 888 } 889 890 bool AMDGPULibCalls::fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, 891 const FuncInfo &FInfo) { 892 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 893 FInfo.getId() == AMDGPULibFunc::EI_POWR || 894 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 895 "fold_pow: encounter a wrong function call"); 896 897 Module *M = B.GetInsertBlock()->getModule(); 898 Type *eltType = FPOp->getType()->getScalarType(); 899 Value *opr0 = FPOp->getOperand(0); 900 Value *opr1 = FPOp->getOperand(1); 901 902 const APFloat *CF = nullptr; 903 const APInt *CINT = nullptr; 904 if (!match(opr1, m_APFloatAllowUndef(CF))) 905 match(opr1, m_APIntAllowUndef(CINT)); 906 907 // 0x1111111 means that we don't do anything for this call. 908 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 909 910 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0)) { 911 // pow/powr/pown(x, 0) == 1 912 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1\n"); 913 Constant *cnval = ConstantFP::get(eltType, 1.0); 914 if (getVecSize(FInfo) > 1) { 915 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 916 } 917 replaceCall(FPOp, cnval); 918 return true; 919 } 920 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 921 // pow/powr/pown(x, 1.0) = x 922 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n"); 923 replaceCall(FPOp, opr0); 924 return true; 925 } 926 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 927 // pow/powr/pown(x, 2.0) = x*x 928 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << " * " 929 << *opr0 << "\n"); 930 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 931 replaceCall(FPOp, nval); 932 return true; 933 } 934 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 935 // pow/powr/pown(x, -1.0) = 1.0/x 936 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1 / " << *opr0 << "\n"); 937 Constant *cnval = ConstantFP::get(eltType, 1.0); 938 if (getVecSize(FInfo) > 1) { 939 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 940 } 941 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 942 replaceCall(FPOp, nval); 943 return true; 944 } 945 946 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 947 // pow[r](x, [-]0.5) = sqrt(x) 948 bool issqrt = CF->isExactlyValue(0.5); 949 if (FunctionCallee FPExpr = 950 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 951 : AMDGPULibFunc::EI_RSQRT, 952 FInfo))) { 953 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << FInfo.getName() 954 << '(' << *opr0 << ")\n"); 955 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 956 : "__pow2rsqrt"); 957 replaceCall(FPOp, nval); 958 return true; 959 } 960 } 961 962 if (!isUnsafeFiniteOnlyMath(FPOp)) 963 return false; 964 965 // Unsafe Math optimization 966 967 // Remember that ci_opr1 is set if opr1 is integral 968 if (CF) { 969 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 970 ? (double)CF->convertToFloat() 971 : CF->convertToDouble(); 972 int ival = (int)dval; 973 if ((double)ival == dval) { 974 ci_opr1 = ival; 975 } else 976 ci_opr1 = 0x11111111; 977 } 978 979 // pow/powr/pown(x, c) = [1/](x*x*..x); where 980 // trunc(c) == c && the number of x == c && |c| <= 12 981 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 982 if (abs_opr1 <= 12) { 983 Constant *cnval; 984 Value *nval; 985 if (abs_opr1 == 0) { 986 cnval = ConstantFP::get(eltType, 1.0); 987 if (getVecSize(FInfo) > 1) { 988 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 989 } 990 nval = cnval; 991 } else { 992 Value *valx2 = nullptr; 993 nval = nullptr; 994 while (abs_opr1 > 0) { 995 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 996 if (abs_opr1 & 1) { 997 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 998 } 999 abs_opr1 >>= 1; 1000 } 1001 } 1002 1003 if (ci_opr1 < 0) { 1004 cnval = ConstantFP::get(eltType, 1.0); 1005 if (getVecSize(FInfo) > 1) { 1006 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 1007 } 1008 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 1009 } 1010 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " 1011 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 1012 << ")\n"); 1013 replaceCall(FPOp, nval); 1014 return true; 1015 } 1016 1017 // If we should use the generic intrinsic instead of emitting a libcall 1018 const bool ShouldUseIntrinsic = eltType->isFloatTy() || eltType->isHalfTy(); 1019 1020 // powr ---> exp2(y * log2(x)) 1021 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 1022 FunctionCallee ExpExpr; 1023 if (ShouldUseIntrinsic) 1024 ExpExpr = Intrinsic::getDeclaration(M, Intrinsic::exp2, {FPOp->getType()}); 1025 else { 1026 ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 1027 if (!ExpExpr) 1028 return false; 1029 } 1030 1031 bool needlog = false; 1032 bool needabs = false; 1033 bool needcopysign = false; 1034 Constant *cnval = nullptr; 1035 if (getVecSize(FInfo) == 1) { 1036 CF = nullptr; 1037 match(opr0, m_APFloatAllowUndef(CF)); 1038 1039 if (CF) { 1040 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1041 ? (double)CF->convertToFloat() 1042 : CF->convertToDouble(); 1043 1044 V = log2(std::abs(V)); 1045 cnval = ConstantFP::get(eltType, V); 1046 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 1047 CF->isNegative(); 1048 } else { 1049 needlog = true; 1050 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1051 } 1052 } else { 1053 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1054 1055 if (!CDV) { 1056 needlog = true; 1057 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1058 } else { 1059 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1060 "Wrong vector size detected"); 1061 1062 SmallVector<double, 0> DVal; 1063 for (int i=0; i < getVecSize(FInfo); ++i) { 1064 double V = CDV->getElementAsAPFloat(i).convertToDouble(); 1065 if (V < 0.0) needcopysign = true; 1066 V = log2(std::abs(V)); 1067 DVal.push_back(V); 1068 } 1069 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1070 SmallVector<float, 0> FVal; 1071 for (unsigned i=0; i < DVal.size(); ++i) { 1072 FVal.push_back((float)DVal[i]); 1073 } 1074 ArrayRef<float> tmp(FVal); 1075 cnval = ConstantDataVector::get(M->getContext(), tmp); 1076 } else { 1077 ArrayRef<double> tmp(DVal); 1078 cnval = ConstantDataVector::get(M->getContext(), tmp); 1079 } 1080 } 1081 } 1082 1083 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1084 // We cannot handle corner cases for a general pow() function, give up 1085 // unless y is a constant integral value. Then proceed as if it were pown. 1086 if (!isKnownIntegral(opr1, M->getDataLayout(), FPOp->getFastMathFlags())) 1087 return false; 1088 } 1089 1090 Value *nval; 1091 if (needabs) { 1092 nval = B.CreateUnaryIntrinsic(Intrinsic::fabs, opr0, nullptr, "__fabs"); 1093 } else { 1094 nval = cnval ? cnval : opr0; 1095 } 1096 if (needlog) { 1097 FunctionCallee LogExpr; 1098 if (ShouldUseIntrinsic) { 1099 LogExpr = 1100 Intrinsic::getDeclaration(M, Intrinsic::log2, {FPOp->getType()}); 1101 } else { 1102 LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1103 if (!LogExpr) 1104 return false; 1105 } 1106 1107 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1108 } 1109 1110 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1111 // convert int(32) to fp(f32 or f64) 1112 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1113 } 1114 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1115 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1116 1117 if (needcopysign) { 1118 Value *opr_n; 1119 Type* rTy = opr0->getType(); 1120 Type* nTyS = B.getIntNTy(eltType->getPrimitiveSizeInBits()); 1121 Type *nTy = nTyS; 1122 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1123 nTy = FixedVectorType::get(nTyS, vTy); 1124 unsigned size = nTy->getScalarSizeInBits(); 1125 opr_n = FPOp->getOperand(1); 1126 if (opr_n->getType()->isIntegerTy()) 1127 opr_n = B.CreateZExtOrTrunc(opr_n, nTy, "__ytou"); 1128 else 1129 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1130 1131 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1132 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1133 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1134 nval = B.CreateBitCast(nval, opr0->getType()); 1135 } 1136 1137 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " 1138 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1139 replaceCall(FPOp, nval); 1140 1141 return true; 1142 } 1143 1144 bool AMDGPULibCalls::fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, 1145 const FuncInfo &FInfo) { 1146 // skip vector function 1147 if (getVecSize(FInfo) != 1) 1148 return false; 1149 1150 Value *opr0 = FPOp->getOperand(0); 1151 Value *opr1 = FPOp->getOperand(1); 1152 1153 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1154 if (!CINT) { 1155 return false; 1156 } 1157 int ci_opr1 = (int)CINT->getSExtValue(); 1158 if (ci_opr1 == 1) { // rootn(x, 1) = x 1159 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n"); 1160 replaceCall(FPOp, opr0); 1161 return true; 1162 } 1163 1164 Module *M = B.GetInsertBlock()->getModule(); 1165 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1166 if (FunctionCallee FPExpr = 1167 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1168 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> sqrt(" << *opr0 1169 << ")\n"); 1170 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1171 replaceCall(FPOp, nval); 1172 return true; 1173 } 1174 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1175 if (FunctionCallee FPExpr = 1176 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1177 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> cbrt(" << *opr0 1178 << ")\n"); 1179 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1180 replaceCall(FPOp, nval); 1181 return true; 1182 } 1183 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1184 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1.0 / " << *opr0 << "\n"); 1185 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1186 opr0, 1187 "__rootn2div"); 1188 replaceCall(FPOp, nval); 1189 return true; 1190 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1191 if (FunctionCallee FPExpr = 1192 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1193 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> rsqrt(" << *opr0 1194 << ")\n"); 1195 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1196 replaceCall(FPOp, nval); 1197 return true; 1198 } 1199 } 1200 return false; 1201 } 1202 1203 // Get a scalar native builtin single argument FP function 1204 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1205 const FuncInfo &FInfo) { 1206 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1207 return nullptr; 1208 FuncInfo nf = FInfo; 1209 nf.setPrefix(AMDGPULibFunc::NATIVE); 1210 return getFunction(M, nf); 1211 } 1212 1213 // Some library calls are just wrappers around llvm intrinsics, but compiled 1214 // conservatively. Preserve the flags from the original call site by 1215 // substituting them with direct calls with all the flags. 1216 bool AMDGPULibCalls::shouldReplaceLibcallWithIntrinsic(const CallInst *CI, 1217 bool AllowMinSizeF32, 1218 bool AllowF64, 1219 bool AllowStrictFP) { 1220 Type *FltTy = CI->getType()->getScalarType(); 1221 const bool IsF32 = FltTy->isFloatTy(); 1222 1223 // f64 intrinsics aren't implemented for most operations. 1224 if (!IsF32 && !FltTy->isHalfTy() && (!AllowF64 || !FltTy->isDoubleTy())) 1225 return false; 1226 1227 // We're implicitly inlining by replacing the libcall with the intrinsic, so 1228 // don't do it for noinline call sites. 1229 if (CI->isNoInline()) 1230 return false; 1231 1232 const Function *ParentF = CI->getFunction(); 1233 // TODO: Handle strictfp 1234 if (!AllowStrictFP && ParentF->hasFnAttribute(Attribute::StrictFP)) 1235 return false; 1236 1237 if (IsF32 && !AllowMinSizeF32 && ParentF->hasMinSize()) 1238 return false; 1239 return true; 1240 } 1241 1242 void AMDGPULibCalls::replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, 1243 CallInst *CI, 1244 Intrinsic::ID IntrID) { 1245 if (CI->arg_size() == 2) { 1246 Value *Arg0 = CI->getArgOperand(0); 1247 Value *Arg1 = CI->getArgOperand(1); 1248 VectorType *Arg0VecTy = dyn_cast<VectorType>(Arg0->getType()); 1249 VectorType *Arg1VecTy = dyn_cast<VectorType>(Arg1->getType()); 1250 if (Arg0VecTy && !Arg1VecTy) { 1251 Value *SplatRHS = B.CreateVectorSplat(Arg0VecTy->getElementCount(), Arg1); 1252 CI->setArgOperand(1, SplatRHS); 1253 } else if (!Arg0VecTy && Arg1VecTy) { 1254 Value *SplatLHS = B.CreateVectorSplat(Arg1VecTy->getElementCount(), Arg0); 1255 CI->setArgOperand(0, SplatLHS); 1256 } 1257 } 1258 1259 CI->setCalledFunction( 1260 Intrinsic::getDeclaration(CI->getModule(), IntrID, {CI->getType()})); 1261 } 1262 1263 bool AMDGPULibCalls::tryReplaceLibcallWithSimpleIntrinsic( 1264 IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32, 1265 bool AllowF64, bool AllowStrictFP) { 1266 if (!shouldReplaceLibcallWithIntrinsic(CI, AllowMinSizeF32, AllowF64, 1267 AllowStrictFP)) 1268 return false; 1269 replaceLibCallWithSimpleIntrinsic(B, CI, IntrID); 1270 return true; 1271 } 1272 1273 std::tuple<Value *, Value *, Value *> 1274 AMDGPULibCalls::insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B, 1275 FunctionCallee Fsincos) { 1276 DebugLoc DL = B.getCurrentDebugLocation(); 1277 Function *F = B.GetInsertBlock()->getParent(); 1278 B.SetInsertPointPastAllocas(F); 1279 1280 AllocaInst *Alloc = B.CreateAlloca(Arg->getType(), nullptr, "__sincos_"); 1281 1282 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1283 // If the argument is an instruction, it must dominate all uses so put our 1284 // sincos call there. Otherwise, right after the allocas works well enough 1285 // if it's an argument or constant. 1286 1287 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1288 1289 // SetInsertPoint unwelcomely always tries to set the debug loc. 1290 B.SetCurrentDebugLocation(DL); 1291 } 1292 1293 Type *CosPtrTy = Fsincos.getFunctionType()->getParamType(1); 1294 1295 // The allocaInst allocates the memory in private address space. This need 1296 // to be addrspacecasted to point to the address space of cos pointer type. 1297 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1298 Value *CastAlloc = B.CreateAddrSpaceCast(Alloc, CosPtrTy); 1299 1300 CallInst *SinCos = CreateCallEx2(B, Fsincos, Arg, CastAlloc); 1301 1302 // TODO: Is it worth trying to preserve the location for the cos calls for the 1303 // load? 1304 1305 LoadInst *LoadCos = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1306 return {SinCos, LoadCos, SinCos}; 1307 } 1308 1309 // fold sin, cos -> sincos. 1310 bool AMDGPULibCalls::fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, 1311 const FuncInfo &fInfo) { 1312 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1313 fInfo.getId() == AMDGPULibFunc::EI_COS); 1314 1315 if ((getArgType(fInfo) != AMDGPULibFunc::F32 && 1316 getArgType(fInfo) != AMDGPULibFunc::F64) || 1317 fInfo.getPrefix() != AMDGPULibFunc::NOPFX) 1318 return false; 1319 1320 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1321 1322 Value *CArgVal = FPOp->getOperand(0); 1323 CallInst *CI = cast<CallInst>(FPOp); 1324 1325 Function *F = B.GetInsertBlock()->getParent(); 1326 Module *M = F->getParent(); 1327 1328 // Merge the sin and cos. For OpenCL 2.0, there may only be a generic pointer 1329 // implementation. Prefer the private form if available. 1330 AMDGPULibFunc SinCosLibFuncPrivate(AMDGPULibFunc::EI_SINCOS, fInfo); 1331 SinCosLibFuncPrivate.getLeads()[0].PtrKind = 1332 AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::PRIVATE_ADDRESS); 1333 1334 AMDGPULibFunc SinCosLibFuncGeneric(AMDGPULibFunc::EI_SINCOS, fInfo); 1335 SinCosLibFuncGeneric.getLeads()[0].PtrKind = 1336 AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1337 1338 FunctionCallee FSinCosPrivate = getFunction(M, SinCosLibFuncPrivate); 1339 FunctionCallee FSinCosGeneric = getFunction(M, SinCosLibFuncGeneric); 1340 FunctionCallee FSinCos = FSinCosPrivate ? FSinCosPrivate : FSinCosGeneric; 1341 if (!FSinCos) 1342 return false; 1343 1344 SmallVector<CallInst *> SinCalls; 1345 SmallVector<CallInst *> CosCalls; 1346 SmallVector<CallInst *> SinCosCalls; 1347 FuncInfo PartnerInfo(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN, 1348 fInfo); 1349 const std::string PairName = PartnerInfo.mangle(); 1350 1351 StringRef SinName = isSin ? CI->getCalledFunction()->getName() : PairName; 1352 StringRef CosName = isSin ? PairName : CI->getCalledFunction()->getName(); 1353 const std::string SinCosPrivateName = SinCosLibFuncPrivate.mangle(); 1354 const std::string SinCosGenericName = SinCosLibFuncGeneric.mangle(); 1355 1356 // Intersect the two sets of flags. 1357 FastMathFlags FMF = FPOp->getFastMathFlags(); 1358 MDNode *FPMath = CI->getMetadata(LLVMContext::MD_fpmath); 1359 1360 SmallVector<DILocation *> MergeDbgLocs = {CI->getDebugLoc()}; 1361 1362 for (User* U : CArgVal->users()) { 1363 CallInst *XI = dyn_cast<CallInst>(U); 1364 if (!XI || XI->getFunction() != F || XI->isNoBuiltin()) 1365 continue; 1366 1367 Function *UCallee = XI->getCalledFunction(); 1368 if (!UCallee) 1369 continue; 1370 1371 bool Handled = true; 1372 1373 if (UCallee->getName() == SinName) 1374 SinCalls.push_back(XI); 1375 else if (UCallee->getName() == CosName) 1376 CosCalls.push_back(XI); 1377 else if (UCallee->getName() == SinCosPrivateName || 1378 UCallee->getName() == SinCosGenericName) 1379 SinCosCalls.push_back(XI); 1380 else 1381 Handled = false; 1382 1383 if (Handled) { 1384 MergeDbgLocs.push_back(XI->getDebugLoc()); 1385 auto *OtherOp = cast<FPMathOperator>(XI); 1386 FMF &= OtherOp->getFastMathFlags(); 1387 FPMath = MDNode::getMostGenericFPMath( 1388 FPMath, XI->getMetadata(LLVMContext::MD_fpmath)); 1389 } 1390 } 1391 1392 if (SinCalls.empty() || CosCalls.empty()) 1393 return false; 1394 1395 B.setFastMathFlags(FMF); 1396 B.setDefaultFPMathTag(FPMath); 1397 DILocation *DbgLoc = DILocation::getMergedLocations(MergeDbgLocs); 1398 B.SetCurrentDebugLocation(DbgLoc); 1399 1400 auto [Sin, Cos, SinCos] = insertSinCos(CArgVal, FMF, B, FSinCos); 1401 1402 auto replaceTrigInsts = [](ArrayRef<CallInst *> Calls, Value *Res) { 1403 for (CallInst *C : Calls) 1404 C->replaceAllUsesWith(Res); 1405 1406 // Leave the other dead instructions to avoid clobbering iterators. 1407 }; 1408 1409 replaceTrigInsts(SinCalls, Sin); 1410 replaceTrigInsts(CosCalls, Cos); 1411 replaceTrigInsts(SinCosCalls, SinCos); 1412 1413 // It's safe to delete the original now. 1414 CI->eraseFromParent(); 1415 return true; 1416 } 1417 1418 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, 1419 double &Res1, Constant *copr0, 1420 Constant *copr1) { 1421 // By default, opr0/opr1/opr3 holds values of float/double type. 1422 // If they are not float/double, each function has to its 1423 // operand separately. 1424 double opr0 = 0.0, opr1 = 0.0; 1425 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1426 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1427 if (fpopr0) { 1428 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1429 ? fpopr0->getValueAPF().convertToDouble() 1430 : (double)fpopr0->getValueAPF().convertToFloat(); 1431 } 1432 1433 if (fpopr1) { 1434 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1435 ? fpopr1->getValueAPF().convertToDouble() 1436 : (double)fpopr1->getValueAPF().convertToFloat(); 1437 } 1438 1439 switch (FInfo.getId()) { 1440 default : return false; 1441 1442 case AMDGPULibFunc::EI_ACOS: 1443 Res0 = acos(opr0); 1444 return true; 1445 1446 case AMDGPULibFunc::EI_ACOSH: 1447 // acosh(x) == log(x + sqrt(x*x - 1)) 1448 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1449 return true; 1450 1451 case AMDGPULibFunc::EI_ACOSPI: 1452 Res0 = acos(opr0) / MATH_PI; 1453 return true; 1454 1455 case AMDGPULibFunc::EI_ASIN: 1456 Res0 = asin(opr0); 1457 return true; 1458 1459 case AMDGPULibFunc::EI_ASINH: 1460 // asinh(x) == log(x + sqrt(x*x + 1)) 1461 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1462 return true; 1463 1464 case AMDGPULibFunc::EI_ASINPI: 1465 Res0 = asin(opr0) / MATH_PI; 1466 return true; 1467 1468 case AMDGPULibFunc::EI_ATAN: 1469 Res0 = atan(opr0); 1470 return true; 1471 1472 case AMDGPULibFunc::EI_ATANH: 1473 // atanh(x) == (log(x+1) - log(x-1))/2; 1474 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1475 return true; 1476 1477 case AMDGPULibFunc::EI_ATANPI: 1478 Res0 = atan(opr0) / MATH_PI; 1479 return true; 1480 1481 case AMDGPULibFunc::EI_CBRT: 1482 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1483 return true; 1484 1485 case AMDGPULibFunc::EI_COS: 1486 Res0 = cos(opr0); 1487 return true; 1488 1489 case AMDGPULibFunc::EI_COSH: 1490 Res0 = cosh(opr0); 1491 return true; 1492 1493 case AMDGPULibFunc::EI_COSPI: 1494 Res0 = cos(MATH_PI * opr0); 1495 return true; 1496 1497 case AMDGPULibFunc::EI_EXP: 1498 Res0 = exp(opr0); 1499 return true; 1500 1501 case AMDGPULibFunc::EI_EXP2: 1502 Res0 = pow(2.0, opr0); 1503 return true; 1504 1505 case AMDGPULibFunc::EI_EXP10: 1506 Res0 = pow(10.0, opr0); 1507 return true; 1508 1509 case AMDGPULibFunc::EI_LOG: 1510 Res0 = log(opr0); 1511 return true; 1512 1513 case AMDGPULibFunc::EI_LOG2: 1514 Res0 = log(opr0) / log(2.0); 1515 return true; 1516 1517 case AMDGPULibFunc::EI_LOG10: 1518 Res0 = log(opr0) / log(10.0); 1519 return true; 1520 1521 case AMDGPULibFunc::EI_RSQRT: 1522 Res0 = 1.0 / sqrt(opr0); 1523 return true; 1524 1525 case AMDGPULibFunc::EI_SIN: 1526 Res0 = sin(opr0); 1527 return true; 1528 1529 case AMDGPULibFunc::EI_SINH: 1530 Res0 = sinh(opr0); 1531 return true; 1532 1533 case AMDGPULibFunc::EI_SINPI: 1534 Res0 = sin(MATH_PI * opr0); 1535 return true; 1536 1537 case AMDGPULibFunc::EI_TAN: 1538 Res0 = tan(opr0); 1539 return true; 1540 1541 case AMDGPULibFunc::EI_TANH: 1542 Res0 = tanh(opr0); 1543 return true; 1544 1545 case AMDGPULibFunc::EI_TANPI: 1546 Res0 = tan(MATH_PI * opr0); 1547 return true; 1548 1549 // two-arg functions 1550 case AMDGPULibFunc::EI_POW: 1551 case AMDGPULibFunc::EI_POWR: 1552 Res0 = pow(opr0, opr1); 1553 return true; 1554 1555 case AMDGPULibFunc::EI_POWN: { 1556 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1557 double val = (double)iopr1->getSExtValue(); 1558 Res0 = pow(opr0, val); 1559 return true; 1560 } 1561 return false; 1562 } 1563 1564 case AMDGPULibFunc::EI_ROOTN: { 1565 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1566 double val = (double)iopr1->getSExtValue(); 1567 Res0 = pow(opr0, 1.0 / val); 1568 return true; 1569 } 1570 return false; 1571 } 1572 1573 // with ptr arg 1574 case AMDGPULibFunc::EI_SINCOS: 1575 Res0 = sin(opr0); 1576 Res1 = cos(opr0); 1577 return true; 1578 } 1579 1580 return false; 1581 } 1582 1583 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { 1584 int numArgs = (int)aCI->arg_size(); 1585 if (numArgs > 3) 1586 return false; 1587 1588 Constant *copr0 = nullptr; 1589 Constant *copr1 = nullptr; 1590 if (numArgs > 0) { 1591 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1592 return false; 1593 } 1594 1595 if (numArgs > 1) { 1596 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1597 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1598 return false; 1599 } 1600 } 1601 1602 // At this point, all arguments to aCI are constants. 1603 1604 // max vector size is 16, and sincos will generate two results. 1605 double DVal0[16], DVal1[16]; 1606 int FuncVecSize = getVecSize(FInfo); 1607 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1608 if (FuncVecSize == 1) { 1609 if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1)) { 1610 return false; 1611 } 1612 } else { 1613 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1614 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1615 for (int i = 0; i < FuncVecSize; ++i) { 1616 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1617 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1618 if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1)) { 1619 return false; 1620 } 1621 } 1622 } 1623 1624 LLVMContext &context = aCI->getContext(); 1625 Constant *nval0, *nval1; 1626 if (FuncVecSize == 1) { 1627 nval0 = ConstantFP::get(aCI->getType(), DVal0[0]); 1628 if (hasTwoResults) 1629 nval1 = ConstantFP::get(aCI->getType(), DVal1[0]); 1630 } else { 1631 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1632 SmallVector <float, 0> FVal0, FVal1; 1633 for (int i = 0; i < FuncVecSize; ++i) 1634 FVal0.push_back((float)DVal0[i]); 1635 ArrayRef<float> tmp0(FVal0); 1636 nval0 = ConstantDataVector::get(context, tmp0); 1637 if (hasTwoResults) { 1638 for (int i = 0; i < FuncVecSize; ++i) 1639 FVal1.push_back((float)DVal1[i]); 1640 ArrayRef<float> tmp1(FVal1); 1641 nval1 = ConstantDataVector::get(context, tmp1); 1642 } 1643 } else { 1644 ArrayRef<double> tmp0(DVal0); 1645 nval0 = ConstantDataVector::get(context, tmp0); 1646 if (hasTwoResults) { 1647 ArrayRef<double> tmp1(DVal1); 1648 nval1 = ConstantDataVector::get(context, tmp1); 1649 } 1650 } 1651 } 1652 1653 if (hasTwoResults) { 1654 // sincos 1655 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1656 "math function with ptr arg not supported yet"); 1657 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1658 } 1659 1660 replaceCall(aCI, nval0); 1661 return true; 1662 } 1663 1664 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1665 FunctionAnalysisManager &AM) { 1666 AMDGPULibCalls Simplifier; 1667 Simplifier.initNativeFuncs(); 1668 Simplifier.initFunction(F, AM); 1669 1670 bool Changed = false; 1671 1672 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1673 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1674 1675 for (auto &BB : F) { 1676 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1677 // Ignore non-calls. 1678 CallInst *CI = dyn_cast<CallInst>(I); 1679 ++I; 1680 1681 if (CI) { 1682 if (Simplifier.fold(CI)) 1683 Changed = true; 1684 } 1685 } 1686 } 1687 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1688 } 1689 1690 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1691 FunctionAnalysisManager &AM) { 1692 if (UseNative.empty()) 1693 return PreservedAnalyses::all(); 1694 1695 AMDGPULibCalls Simplifier; 1696 Simplifier.initNativeFuncs(); 1697 Simplifier.initFunction(F, AM); 1698 1699 bool Changed = false; 1700 for (auto &BB : F) { 1701 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1702 // Ignore non-calls. 1703 CallInst *CI = dyn_cast<CallInst>(I); 1704 ++I; 1705 if (CI && Simplifier.useNative(CI)) 1706 Changed = true; 1707 } 1708 } 1709 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1710 } 1711