//===- AMDGPULibCalls.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file does AMD library function optimizations. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPULibFunc.h" #include "GCNSubtarget.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/AttributeMask.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include #define DEBUG_TYPE "amdgpu-simplifylib" using namespace llvm; using namespace llvm::PatternMatch; static cl::opt EnablePreLink("amdgpu-prelink", cl::desc("Enable pre-link mode optimizations"), cl::init(false), cl::Hidden); static cl::list UseNative("amdgpu-use-native", cl::desc("Comma separated list of functions to replace with native, or all"), cl::CommaSeparated, cl::ValueOptional, cl::Hidden); #define MATH_PI numbers::pi #define MATH_E numbers::e #define MATH_SQRT2 numbers::sqrt2 #define MATH_SQRT1_2 numbers::inv_sqrt2 namespace llvm { class AMDGPULibCalls { private: const TargetLibraryInfo *TLInfo = nullptr; AssumptionCache *AC = nullptr; DominatorTree *DT = nullptr; typedef llvm::AMDGPULibFunc FuncInfo; bool UnsafeFPMath = false; // -fuse-native. bool AllNative = false; bool useNativeFunc(const StringRef F) const; // Return a pointer (pointer expr) to the function if function definition with // "FuncName" exists. It may create a new function prototype in pre-link mode. FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); bool TDOFold(CallInst *CI, const FuncInfo &FInfo); /* Specialized optimizations */ // pow/powr/pown bool fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); // rootn bool fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); // -fuse-native for sincos bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); // evaluate calls if calls' arguments are constants. bool evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1, Constant *copr0, Constant *copr1); bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); /// Insert a value to sincos function \p Fsincos. Returns (value of sin, value /// of cos, sincos call). std::tuple insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B, FunctionCallee Fsincos); // sin/cos bool fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo); // __read_pipe/__write_pipe bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); // Get a scalar native builtin single argument FP function FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); /// Substitute a call to a known libcall with an intrinsic call. If \p /// AllowMinSize is true, allow the replacement in a minsize function. bool shouldReplaceLibcallWithIntrinsic(const CallInst *CI, bool AllowMinSizeF32 = false, bool AllowF64 = false, bool AllowStrictFP = false); void replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID); bool tryReplaceLibcallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32 = false, bool AllowF64 = false, bool AllowStrictFP = false); protected: bool isUnsafeMath(const FPMathOperator *FPOp) const; bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const; bool canIncreasePrecisionOfConstantFold(const FPMathOperator *FPOp) const; static void replaceCall(Instruction *I, Value *With) { I->replaceAllUsesWith(With); I->eraseFromParent(); } static void replaceCall(FPMathOperator *I, Value *With) { replaceCall(cast(I), With); } public: AMDGPULibCalls() {} bool fold(CallInst *CI); void initFunction(Function &F, FunctionAnalysisManager &FAM); void initNativeFuncs(); // Replace a normal math function call with that native version bool useNative(CallInst *CI); }; } // end llvm namespace template static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, const Twine &Name = "") { CallInst *R = B.CreateCall(Callee, Arg, Name); if (Function *F = dyn_cast(Callee.getCallee())) R->setCallingConv(F->getCallingConv()); return R; } template static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, Value *Arg2, const Twine &Name = "") { CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); if (Function *F = dyn_cast(Callee.getCallee())) R->setCallingConv(F->getCallingConv()); return R; } static FunctionType *getPownType(FunctionType *FT) { Type *PowNExpTy = Type::getInt32Ty(FT->getContext()); if (VectorType *VecTy = dyn_cast(FT->getReturnType())) PowNExpTy = VectorType::get(PowNExpTy, VecTy->getElementCount()); return FunctionType::get(FT->getReturnType(), {FT->getParamType(0), PowNExpTy}, false); } // Data structures for table-driven optimizations. // FuncTbl works for both f32 and f64 functions with 1 input argument struct TableEntry { double result; double input; }; /* a list of {result, input} */ static const TableEntry tbl_acos[] = { {MATH_PI / 2.0, 0.0}, {MATH_PI / 2.0, -0.0}, {0.0, 1.0}, {MATH_PI, -1.0} }; static const TableEntry tbl_acosh[] = { {0.0, 1.0} }; static const TableEntry tbl_acospi[] = { {0.5, 0.0}, {0.5, -0.0}, {0.0, 1.0}, {1.0, -1.0} }; static const TableEntry tbl_asin[] = { {0.0, 0.0}, {-0.0, -0.0}, {MATH_PI / 2.0, 1.0}, {-MATH_PI / 2.0, -1.0} }; static const TableEntry tbl_asinh[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_asinpi[] = { {0.0, 0.0}, {-0.0, -0.0}, {0.5, 1.0}, {-0.5, -1.0} }; static const TableEntry tbl_atan[] = { {0.0, 0.0}, {-0.0, -0.0}, {MATH_PI / 4.0, 1.0}, {-MATH_PI / 4.0, -1.0} }; static const TableEntry tbl_atanh[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_atanpi[] = { {0.0, 0.0}, {-0.0, -0.0}, {0.25, 1.0}, {-0.25, -1.0} }; static const TableEntry tbl_cbrt[] = { {0.0, 0.0}, {-0.0, -0.0}, {1.0, 1.0}, {-1.0, -1.0}, }; static const TableEntry tbl_cos[] = { {1.0, 0.0}, {1.0, -0.0} }; static const TableEntry tbl_cosh[] = { {1.0, 0.0}, {1.0, -0.0} }; static const TableEntry tbl_cospi[] = { {1.0, 0.0}, {1.0, -0.0} }; static const TableEntry tbl_erfc[] = { {1.0, 0.0}, {1.0, -0.0} }; static const TableEntry tbl_erf[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_exp[] = { {1.0, 0.0}, {1.0, -0.0}, {MATH_E, 1.0} }; static const TableEntry tbl_exp2[] = { {1.0, 0.0}, {1.0, -0.0}, {2.0, 1.0} }; static const TableEntry tbl_exp10[] = { {1.0, 0.0}, {1.0, -0.0}, {10.0, 1.0} }; static const TableEntry tbl_expm1[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_log[] = { {0.0, 1.0}, {1.0, MATH_E} }; static const TableEntry tbl_log2[] = { {0.0, 1.0}, {1.0, 2.0} }; static const TableEntry tbl_log10[] = { {0.0, 1.0}, {1.0, 10.0} }; static const TableEntry tbl_rsqrt[] = { {1.0, 1.0}, {MATH_SQRT1_2, 2.0} }; static const TableEntry tbl_sin[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_sinh[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_sinpi[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_sqrt[] = { {0.0, 0.0}, {1.0, 1.0}, {MATH_SQRT2, 2.0} }; static const TableEntry tbl_tan[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_tanh[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_tanpi[] = { {0.0, 0.0}, {-0.0, -0.0} }; static const TableEntry tbl_tgamma[] = { {1.0, 1.0}, {1.0, 2.0}, {2.0, 3.0}, {6.0, 4.0} }; static bool HasNative(AMDGPULibFunc::EFuncId id) { switch(id) { case AMDGPULibFunc::EI_DIVIDE: case AMDGPULibFunc::EI_COS: case AMDGPULibFunc::EI_EXP: case AMDGPULibFunc::EI_EXP2: case AMDGPULibFunc::EI_EXP10: case AMDGPULibFunc::EI_LOG: case AMDGPULibFunc::EI_LOG2: case AMDGPULibFunc::EI_LOG10: case AMDGPULibFunc::EI_POWR: case AMDGPULibFunc::EI_RECIP: case AMDGPULibFunc::EI_RSQRT: case AMDGPULibFunc::EI_SIN: case AMDGPULibFunc::EI_SINCOS: case AMDGPULibFunc::EI_SQRT: case AMDGPULibFunc::EI_TAN: return true; default:; } return false; } using TableRef = ArrayRef; static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { switch(id) { case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); case AMDGPULibFunc::EI_NCOS: case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); case AMDGPULibFunc::EI_NEXP2: case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); case AMDGPULibFunc::EI_NLOG2: case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); case AMDGPULibFunc::EI_NRSQRT: case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); case AMDGPULibFunc::EI_NSIN: case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); case AMDGPULibFunc::EI_NSQRT: case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); default:; } return TableRef(); } static inline int getVecSize(const AMDGPULibFunc& FInfo) { return FInfo.getLeads()[0].VectorSize; } static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; } FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { // If we are doing PreLinkOpt, the function is external. So it is safe to // use getOrInsertFunction() at this stage. return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) : AMDGPULibFunc::getFunction(M, fInfo); } bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo) { return AMDGPULibFunc::parse(FMangledName, FInfo); } bool AMDGPULibCalls::isUnsafeMath(const FPMathOperator *FPOp) const { return UnsafeFPMath || FPOp->isFast(); } bool AMDGPULibCalls::isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const { return UnsafeFPMath || (FPOp->hasApproxFunc() && FPOp->hasNoNaNs() && FPOp->hasNoInfs()); } bool AMDGPULibCalls::canIncreasePrecisionOfConstantFold( const FPMathOperator *FPOp) const { // TODO: Refine to approxFunc or contract return isUnsafeMath(FPOp); } void AMDGPULibCalls::initFunction(Function &F, FunctionAnalysisManager &FAM) { UnsafeFPMath = F.getFnAttribute("unsafe-fp-math").getValueAsBool(); AC = &FAM.getResult(F); TLInfo = &FAM.getResult(F); DT = FAM.getCachedResult(F); } bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { return AllNative || llvm::is_contained(UseNative, F); } void AMDGPULibCalls::initNativeFuncs() { AllNative = useNativeFunc("all") || (UseNative.getNumOccurrences() && UseNative.size() == 1 && UseNative.begin()->empty()); } bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { bool native_sin = useNativeFunc("sin"); bool native_cos = useNativeFunc("cos"); if (native_sin && native_cos) { Module *M = aCI->getModule(); Value *opr0 = aCI->getArgOperand(0); AMDGPULibFunc nf; nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; nf.setPrefix(AMDGPULibFunc::NATIVE); nf.setId(AMDGPULibFunc::EI_SIN); FunctionCallee sinExpr = getFunction(M, nf); nf.setPrefix(AMDGPULibFunc::NATIVE); nf.setId(AMDGPULibFunc::EI_COS); FunctionCallee cosExpr = getFunction(M, nf); if (sinExpr && cosExpr) { Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); new StoreInst(cosval, aCI->getArgOperand(1), aCI); DEBUG_WITH_TYPE("usenative", dbgs() << " replace " << *aCI << " with native version of sin/cos"); replaceCall(aCI, sinval); return true; } } return false; } bool AMDGPULibCalls::useNative(CallInst *aCI) { Function *Callee = aCI->getCalledFunction(); if (!Callee || aCI->isNoBuiltin()) return false; FuncInfo FInfo; if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || FInfo.getPrefix() != AMDGPULibFunc::NOPFX || getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || !(AllNative || useNativeFunc(FInfo.getName()))) { return false; } if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) return sincosUseNative(aCI, FInfo); FInfo.setPrefix(AMDGPULibFunc::NATIVE); FunctionCallee F = getFunction(aCI->getModule(), FInfo); if (!F) return false; aCI->setCalledFunction(F); DEBUG_WITH_TYPE("usenative", dbgs() << " replace " << *aCI << " with native version"); return true; } // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe // builtin, with appended type size and alignment arguments, where 2 or 4 // indicates the original number of arguments. The library has optimized version // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo) { auto *Callee = CI->getCalledFunction(); if (!Callee->isDeclaration()) return false; assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); auto *M = Callee->getParent(); std::string Name = std::string(Callee->getName()); auto NumArg = CI->arg_size(); if (NumArg != 4 && NumArg != 6) return false; ConstantInt *PacketSize = dyn_cast(CI->getArgOperand(NumArg - 2)); ConstantInt *PacketAlign = dyn_cast(CI->getArgOperand(NumArg - 1)); if (!PacketSize || !PacketAlign) return false; unsigned Size = PacketSize->getZExtValue(); Align Alignment = PacketAlign->getAlignValue(); if (Alignment != Size) return false; unsigned PtrArgLoc = CI->arg_size() - 3; Value *PtrArg = CI->getArgOperand(PtrArgLoc); Type *PtrTy = PtrArg->getType(); SmallVector ArgTys; for (unsigned I = 0; I != PtrArgLoc; ++I) ArgTys.push_back(CI->getArgOperand(I)->getType()); ArgTys.push_back(PtrTy); Name = Name + "_" + std::to_string(Size); auto *FTy = FunctionType::get(Callee->getReturnType(), ArrayRef(ArgTys), false); AMDGPULibFunc NewLibFunc(Name, FTy); FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); if (!F) return false; SmallVector Args; for (unsigned I = 0; I != PtrArgLoc; ++I) Args.push_back(CI->getArgOperand(I)); Args.push_back(PtrArg); auto *NCI = B.CreateCall(F, Args); NCI->setAttributes(CI->getAttributes()); CI->replaceAllUsesWith(NCI); CI->dropAllReferences(); CI->eraseFromParent(); return true; } static bool isKnownIntegral(const Value *V, const DataLayout &DL, FastMathFlags FMF) { if (isa(V)) return true; if (const ConstantFP *CF = dyn_cast(V)) return CF->getValueAPF().isInteger(); if (const ConstantDataVector *CDV = dyn_cast(V)) { for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { Constant *ConstElt = CDV->getElementAsConstant(i); if (isa(ConstElt)) continue; const ConstantFP *CFP = dyn_cast(ConstElt); if (!CFP || !CFP->getValue().isInteger()) return false; } return true; } const Instruction *I = dyn_cast(V); if (!I) return false; switch (I->getOpcode()) { case Instruction::SIToFP: case Instruction::UIToFP: // TODO: Could check nofpclass(inf) on incoming argument if (FMF.noInfs()) return true; // Need to check int size cannot produce infinity, which computeKnownFPClass // knows how to do already. return isKnownNeverInfinity(I, DL); case Instruction::Call: { const CallInst *CI = cast(I); switch (CI->getIntrinsicID()) { case Intrinsic::trunc: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: case Intrinsic::roundeven: return (FMF.noInfs() && FMF.noNaNs()) || isKnownNeverInfOrNaN(I, DL, nullptr); default: break; } break; } default: break; } return false; } // This function returns false if no change; return true otherwise. bool AMDGPULibCalls::fold(CallInst *CI) { Function *Callee = CI->getCalledFunction(); // Ignore indirect calls. if (!Callee || Callee->isIntrinsic() || CI->isNoBuiltin()) return false; FuncInfo FInfo; if (!parseFunctionName(Callee->getName(), FInfo)) return false; // Further check the number of arguments to see if they match. // TODO: Check calling convention matches too if (!FInfo.isCompatibleSignature(CI->getFunctionType())) return false; LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << '\n'); if (TDOFold(CI, FInfo)) return true; IRBuilder<> B(CI); if (FPMathOperator *FPOp = dyn_cast(CI)) { // Under unsafe-math, evaluate calls if possible. // According to Brian Sumner, we can do this for all f32 function calls // using host's double function calls. if (canIncreasePrecisionOfConstantFold(FPOp) && evaluateCall(CI, FInfo)) return true; // Copy fast flags from the original call. FastMathFlags FMF = FPOp->getFastMathFlags(); B.setFastMathFlags(FMF); // Specialized optimizations for each function call. // // TODO: Handle native functions switch (FInfo.getId()) { case AMDGPULibFunc::EI_EXP: if (FMF.none()) return false; return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp, FMF.approxFunc()); case AMDGPULibFunc::EI_EXP2: if (FMF.none()) return false; return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp2, FMF.approxFunc()); case AMDGPULibFunc::EI_LOG: if (FMF.none()) return false; return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log, FMF.approxFunc()); case AMDGPULibFunc::EI_LOG2: if (FMF.none()) return false; return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log2, FMF.approxFunc()); case AMDGPULibFunc::EI_LOG10: if (FMF.none()) return false; return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log10, FMF.approxFunc()); case AMDGPULibFunc::EI_FMIN: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::minnum, true, true); case AMDGPULibFunc::EI_FMAX: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::maxnum, true, true); case AMDGPULibFunc::EI_FMA: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fma, true, true); case AMDGPULibFunc::EI_MAD: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fmuladd, true, true); case AMDGPULibFunc::EI_FABS: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fabs, true, true, true); case AMDGPULibFunc::EI_COPYSIGN: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::copysign, true, true, true); case AMDGPULibFunc::EI_FLOOR: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::floor, true, true); case AMDGPULibFunc::EI_CEIL: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::ceil, true, true); case AMDGPULibFunc::EI_TRUNC: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::trunc, true, true); case AMDGPULibFunc::EI_RINT: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::rint, true, true); case AMDGPULibFunc::EI_ROUND: return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::round, true, true); case AMDGPULibFunc::EI_LDEXP: { if (!shouldReplaceLibcallWithIntrinsic(CI, true, true)) return false; Value *Arg1 = CI->getArgOperand(1); if (VectorType *VecTy = dyn_cast(CI->getType()); VecTy && !isa(Arg1->getType())) { Value *SplatArg1 = B.CreateVectorSplat(VecTy->getElementCount(), Arg1); CI->setArgOperand(1, SplatArg1); } CI->setCalledFunction(Intrinsic::getDeclaration( CI->getModule(), Intrinsic::ldexp, {CI->getType(), CI->getArgOperand(1)->getType()})); return true; } case AMDGPULibFunc::EI_POW: { Module *M = Callee->getParent(); AMDGPULibFunc PowrInfo(AMDGPULibFunc::EI_POWR, FInfo); FunctionCallee PowrFunc = getFunction(M, PowrInfo); CallInst *Call = cast(FPOp); // pow(x, y) -> powr(x, y) for x >= -0.0 // TODO: Account for flags on current call if (PowrFunc && cannotBeOrderedLessThanZero(FPOp->getOperand(0), M->getDataLayout(), TLInfo, 0, AC, Call, DT)) { Call->setCalledFunction(PowrFunc); return fold_pow(FPOp, B, PowrInfo) || true; } // pow(x, y) -> pown(x, y) for known integral y if (isKnownIntegral(FPOp->getOperand(1), M->getDataLayout(), FPOp->getFastMathFlags())) { FunctionType *PownType = getPownType(CI->getFunctionType()); AMDGPULibFunc PownInfo(AMDGPULibFunc::EI_POWN, PownType, true); FunctionCallee PownFunc = getFunction(M, PownInfo); if (PownFunc) { // TODO: If the incoming integral value is an sitofp/uitofp, it won't // fold out without a known range. We can probably take the source // value directly. Value *CastedArg = B.CreateFPToSI(FPOp->getOperand(1), PownType->getParamType(1)); // Have to drop any nofpclass attributes on the original call site. Call->removeParamAttrs( 1, AttributeFuncs::typeIncompatible(CastedArg->getType())); Call->setCalledFunction(PownFunc); Call->setArgOperand(1, CastedArg); return fold_pow(FPOp, B, PownInfo) || true; } } return fold_pow(FPOp, B, FInfo); } case AMDGPULibFunc::EI_POWR: case AMDGPULibFunc::EI_POWN: return fold_pow(FPOp, B, FInfo); case AMDGPULibFunc::EI_ROOTN: return fold_rootn(FPOp, B, FInfo); case AMDGPULibFunc::EI_SQRT: // TODO: Allow with strictfp + constrained intrinsic return tryReplaceLibcallWithSimpleIntrinsic( B, CI, Intrinsic::sqrt, true, true, /*AllowStrictFP=*/false); case AMDGPULibFunc::EI_COS: case AMDGPULibFunc::EI_SIN: return fold_sincos(FPOp, B, FInfo); default: break; } } else { // Specialized optimizations for each function call switch (FInfo.getId()) { case AMDGPULibFunc::EI_READ_PIPE_2: case AMDGPULibFunc::EI_READ_PIPE_4: case AMDGPULibFunc::EI_WRITE_PIPE_2: case AMDGPULibFunc::EI_WRITE_PIPE_4: return fold_read_write_pipe(CI, B, FInfo); default: break; } } return false; } bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { // Table-Driven optimization const TableRef tr = getOptTable(FInfo.getId()); if (tr.empty()) return false; int const sz = (int)tr.size(); Value *opr0 = CI->getArgOperand(0); if (getVecSize(FInfo) > 1) { if (ConstantDataVector *CV = dyn_cast(opr0)) { SmallVector DVal; for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { ConstantFP *eltval = dyn_cast( CV->getElementAsConstant((unsigned)eltNo)); assert(eltval && "Non-FP arguments in math function!"); bool found = false; for (int i=0; i < sz; ++i) { if (eltval->isExactlyValue(tr[i].input)) { DVal.push_back(tr[i].result); found = true; break; } } if (!found) { // This vector constants not handled yet. return false; } } LLVMContext &context = CI->getParent()->getParent()->getContext(); Constant *nval; if (getArgType(FInfo) == AMDGPULibFunc::F32) { SmallVector FVal; for (unsigned i = 0; i < DVal.size(); ++i) { FVal.push_back((float)DVal[i]); } ArrayRef tmp(FVal); nval = ConstantDataVector::get(context, tmp); } else { // F64 ArrayRef tmp(DVal); nval = ConstantDataVector::get(context, tmp); } LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); replaceCall(CI, nval); return true; } } else { // Scalar version if (ConstantFP *CF = dyn_cast(opr0)) { for (int i = 0; i < sz; ++i) { if (CF->isExactlyValue(tr[i].input)) { Value *nval = ConstantFP::get(CF->getType(), tr[i].result); LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); replaceCall(CI, nval); return true; } } } } return false; } namespace llvm { static double log2(double V) { #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L return ::log2(V); #else return log(V) / numbers::ln2; #endif } } bool AMDGPULibCalls::fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo) { assert((FInfo.getId() == AMDGPULibFunc::EI_POW || FInfo.getId() == AMDGPULibFunc::EI_POWR || FInfo.getId() == AMDGPULibFunc::EI_POWN) && "fold_pow: encounter a wrong function call"); Module *M = B.GetInsertBlock()->getModule(); Type *eltType = FPOp->getType()->getScalarType(); Value *opr0 = FPOp->getOperand(0); Value *opr1 = FPOp->getOperand(1); const APFloat *CF = nullptr; const APInt *CINT = nullptr; if (!match(opr1, m_APFloatAllowUndef(CF))) match(opr1, m_APIntAllowUndef(CINT)); // 0x1111111 means that we don't do anything for this call. int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0)) { // pow/powr/pown(x, 0) == 1 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1\n"); Constant *cnval = ConstantFP::get(eltType, 1.0); if (getVecSize(FInfo) > 1) { cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); } replaceCall(FPOp, cnval); return true; } if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { // pow/powr/pown(x, 1.0) = x LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n"); replaceCall(FPOp, opr0); return true; } if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { // pow/powr/pown(x, 2.0) = x*x LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << " * " << *opr0 << "\n"); Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); replaceCall(FPOp, nval); return true; } if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { // pow/powr/pown(x, -1.0) = 1.0/x LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1 / " << *opr0 << "\n"); Constant *cnval = ConstantFP::get(eltType, 1.0); if (getVecSize(FInfo) > 1) { cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); } Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); replaceCall(FPOp, nval); return true; } if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { // pow[r](x, [-]0.5) = sqrt(x) bool issqrt = CF->isExactlyValue(0.5); if (FunctionCallee FPExpr = getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT : AMDGPULibFunc::EI_RSQRT, FInfo))) { LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << FInfo.getName() << '(' << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" : "__pow2rsqrt"); replaceCall(FPOp, nval); return true; } } if (!isUnsafeFiniteOnlyMath(FPOp)) return false; // Unsafe Math optimization // Remember that ci_opr1 is set if opr1 is integral if (CF) { double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) ? (double)CF->convertToFloat() : CF->convertToDouble(); int ival = (int)dval; if ((double)ival == dval) { ci_opr1 = ival; } else ci_opr1 = 0x11111111; } // pow/powr/pown(x, c) = [1/](x*x*..x); where // trunc(c) == c && the number of x == c && |c| <= 12 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; if (abs_opr1 <= 12) { Constant *cnval; Value *nval; if (abs_opr1 == 0) { cnval = ConstantFP::get(eltType, 1.0); if (getVecSize(FInfo) > 1) { cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); } nval = cnval; } else { Value *valx2 = nullptr; nval = nullptr; while (abs_opr1 > 0) { valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; if (abs_opr1 & 1) { nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; } abs_opr1 >>= 1; } } if (ci_opr1 < 0) { cnval = ConstantFP::get(eltType, 1.0); if (getVecSize(FInfo) > 1) { cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); } nval = B.CreateFDiv(cnval, nval, "__1powprod"); } LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 << ")\n"); replaceCall(FPOp, nval); return true; } // If we should use the generic intrinsic instead of emitting a libcall const bool ShouldUseIntrinsic = eltType->isFloatTy() || eltType->isHalfTy(); // powr ---> exp2(y * log2(x)) // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) FunctionCallee ExpExpr; if (ShouldUseIntrinsic) ExpExpr = Intrinsic::getDeclaration(M, Intrinsic::exp2, {FPOp->getType()}); else { ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); if (!ExpExpr) return false; } bool needlog = false; bool needabs = false; bool needcopysign = false; Constant *cnval = nullptr; if (getVecSize(FInfo) == 1) { CF = nullptr; match(opr0, m_APFloatAllowUndef(CF)); if (CF) { double V = (getArgType(FInfo) == AMDGPULibFunc::F32) ? (double)CF->convertToFloat() : CF->convertToDouble(); V = log2(std::abs(V)); cnval = ConstantFP::get(eltType, V); needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && CF->isNegative(); } else { needlog = true; needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; } } else { ConstantDataVector *CDV = dyn_cast(opr0); if (!CDV) { needlog = true; needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; } else { assert ((int)CDV->getNumElements() == getVecSize(FInfo) && "Wrong vector size detected"); SmallVector DVal; for (int i=0; i < getVecSize(FInfo); ++i) { double V = CDV->getElementAsAPFloat(i).convertToDouble(); if (V < 0.0) needcopysign = true; V = log2(std::abs(V)); DVal.push_back(V); } if (getArgType(FInfo) == AMDGPULibFunc::F32) { SmallVector FVal; for (unsigned i=0; i < DVal.size(); ++i) { FVal.push_back((float)DVal[i]); } ArrayRef tmp(FVal); cnval = ConstantDataVector::get(M->getContext(), tmp); } else { ArrayRef tmp(DVal); cnval = ConstantDataVector::get(M->getContext(), tmp); } } } if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { // We cannot handle corner cases for a general pow() function, give up // unless y is a constant integral value. Then proceed as if it were pown. if (!isKnownIntegral(opr1, M->getDataLayout(), FPOp->getFastMathFlags())) return false; } Value *nval; if (needabs) { nval = B.CreateUnaryIntrinsic(Intrinsic::fabs, opr0, nullptr, "__fabs"); } else { nval = cnval ? cnval : opr0; } if (needlog) { FunctionCallee LogExpr; if (ShouldUseIntrinsic) { LogExpr = Intrinsic::getDeclaration(M, Intrinsic::log2, {FPOp->getType()}); } else { LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); if (!LogExpr) return false; } nval = CreateCallEx(B,LogExpr, nval, "__log2"); } if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { // convert int(32) to fp(f32 or f64) opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); } nval = B.CreateFMul(opr1, nval, "__ylogx"); nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); if (needcopysign) { Value *opr_n; Type* rTy = opr0->getType(); Type* nTyS = B.getIntNTy(eltType->getPrimitiveSizeInBits()); Type *nTy = nTyS; if (const auto *vTy = dyn_cast(rTy)) nTy = FixedVectorType::get(nTyS, vTy); unsigned size = nTy->getScalarSizeInBits(); opr_n = FPOp->getOperand(1); if (opr_n->getType()->isIntegerTy()) opr_n = B.CreateZExtOrTrunc(opr_n, nTy, "__ytou"); else opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); nval = B.CreateBitCast(nval, opr0->getType()); } LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); replaceCall(FPOp, nval); return true; } bool AMDGPULibCalls::fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo) { // skip vector function if (getVecSize(FInfo) != 1) return false; Value *opr0 = FPOp->getOperand(0); Value *opr1 = FPOp->getOperand(1); ConstantInt *CINT = dyn_cast(opr1); if (!CINT) { return false; } int ci_opr1 = (int)CINT->getSExtValue(); if (ci_opr1 == 1) { // rootn(x, 1) = x LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n"); replaceCall(FPOp, opr0); return true; } Module *M = B.GetInsertBlock()->getModule(); if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) if (FunctionCallee FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> sqrt(" << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); replaceCall(FPOp, nval); return true; } } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) if (FunctionCallee FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> cbrt(" << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); replaceCall(FPOp, nval); return true; } } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1.0 / " << *opr0 << "\n"); Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), opr0, "__rootn2div"); replaceCall(FPOp, nval); return true; } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) if (FunctionCallee FPExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> rsqrt(" << *opr0 << ")\n"); Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); replaceCall(FPOp, nval); return true; } } return false; } // Get a scalar native builtin single argument FP function FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, const FuncInfo &FInfo) { if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) return nullptr; FuncInfo nf = FInfo; nf.setPrefix(AMDGPULibFunc::NATIVE); return getFunction(M, nf); } // Some library calls are just wrappers around llvm intrinsics, but compiled // conservatively. Preserve the flags from the original call site by // substituting them with direct calls with all the flags. bool AMDGPULibCalls::shouldReplaceLibcallWithIntrinsic(const CallInst *CI, bool AllowMinSizeF32, bool AllowF64, bool AllowStrictFP) { Type *FltTy = CI->getType()->getScalarType(); const bool IsF32 = FltTy->isFloatTy(); // f64 intrinsics aren't implemented for most operations. if (!IsF32 && !FltTy->isHalfTy() && (!AllowF64 || !FltTy->isDoubleTy())) return false; // We're implicitly inlining by replacing the libcall with the intrinsic, so // don't do it for noinline call sites. if (CI->isNoInline()) return false; const Function *ParentF = CI->getFunction(); // TODO: Handle strictfp if (!AllowStrictFP && ParentF->hasFnAttribute(Attribute::StrictFP)) return false; if (IsF32 && !AllowMinSizeF32 && ParentF->hasMinSize()) return false; return true; } void AMDGPULibCalls::replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID) { if (CI->arg_size() == 2) { Value *Arg0 = CI->getArgOperand(0); Value *Arg1 = CI->getArgOperand(1); VectorType *Arg0VecTy = dyn_cast(Arg0->getType()); VectorType *Arg1VecTy = dyn_cast(Arg1->getType()); if (Arg0VecTy && !Arg1VecTy) { Value *SplatRHS = B.CreateVectorSplat(Arg0VecTy->getElementCount(), Arg1); CI->setArgOperand(1, SplatRHS); } else if (!Arg0VecTy && Arg1VecTy) { Value *SplatLHS = B.CreateVectorSplat(Arg1VecTy->getElementCount(), Arg0); CI->setArgOperand(0, SplatLHS); } } CI->setCalledFunction( Intrinsic::getDeclaration(CI->getModule(), IntrID, {CI->getType()})); } bool AMDGPULibCalls::tryReplaceLibcallWithSimpleIntrinsic( IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32, bool AllowF64, bool AllowStrictFP) { if (!shouldReplaceLibcallWithIntrinsic(CI, AllowMinSizeF32, AllowF64, AllowStrictFP)) return false; replaceLibCallWithSimpleIntrinsic(B, CI, IntrID); return true; } std::tuple AMDGPULibCalls::insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B, FunctionCallee Fsincos) { DebugLoc DL = B.getCurrentDebugLocation(); Function *F = B.GetInsertBlock()->getParent(); B.SetInsertPointPastAllocas(F); AllocaInst *Alloc = B.CreateAlloca(Arg->getType(), nullptr, "__sincos_"); if (Instruction *ArgInst = dyn_cast(Arg)) { // If the argument is an instruction, it must dominate all uses so put our // sincos call there. Otherwise, right after the allocas works well enough // if it's an argument or constant. B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); // SetInsertPoint unwelcomely always tries to set the debug loc. B.SetCurrentDebugLocation(DL); } Type *CosPtrTy = Fsincos.getFunctionType()->getParamType(1); // The allocaInst allocates the memory in private address space. This need // to be addrspacecasted to point to the address space of cos pointer type. // In OpenCL 2.0 this is generic, while in 1.2 that is private. Value *CastAlloc = B.CreateAddrSpaceCast(Alloc, CosPtrTy); CallInst *SinCos = CreateCallEx2(B, Fsincos, Arg, CastAlloc); // TODO: Is it worth trying to preserve the location for the cos calls for the // load? LoadInst *LoadCos = B.CreateLoad(Alloc->getAllocatedType(), Alloc); return {SinCos, LoadCos, SinCos}; } // fold sin, cos -> sincos. bool AMDGPULibCalls::fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &fInfo) { assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || fInfo.getId() == AMDGPULibFunc::EI_COS); if ((getArgType(fInfo) != AMDGPULibFunc::F32 && getArgType(fInfo) != AMDGPULibFunc::F64) || fInfo.getPrefix() != AMDGPULibFunc::NOPFX) return false; bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; Value *CArgVal = FPOp->getOperand(0); CallInst *CI = cast(FPOp); Function *F = B.GetInsertBlock()->getParent(); Module *M = F->getParent(); // Merge the sin and cos. For OpenCL 2.0, there may only be a generic pointer // implementation. Prefer the private form if available. AMDGPULibFunc SinCosLibFuncPrivate(AMDGPULibFunc::EI_SINCOS, fInfo); SinCosLibFuncPrivate.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::PRIVATE_ADDRESS); AMDGPULibFunc SinCosLibFuncGeneric(AMDGPULibFunc::EI_SINCOS, fInfo); SinCosLibFuncGeneric.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); FunctionCallee FSinCosPrivate = getFunction(M, SinCosLibFuncPrivate); FunctionCallee FSinCosGeneric = getFunction(M, SinCosLibFuncGeneric); FunctionCallee FSinCos = FSinCosPrivate ? FSinCosPrivate : FSinCosGeneric; if (!FSinCos) return false; SmallVector SinCalls; SmallVector CosCalls; SmallVector SinCosCalls; FuncInfo PartnerInfo(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN, fInfo); const std::string PairName = PartnerInfo.mangle(); StringRef SinName = isSin ? CI->getCalledFunction()->getName() : PairName; StringRef CosName = isSin ? PairName : CI->getCalledFunction()->getName(); const std::string SinCosPrivateName = SinCosLibFuncPrivate.mangle(); const std::string SinCosGenericName = SinCosLibFuncGeneric.mangle(); // Intersect the two sets of flags. FastMathFlags FMF = FPOp->getFastMathFlags(); MDNode *FPMath = CI->getMetadata(LLVMContext::MD_fpmath); SmallVector MergeDbgLocs = {CI->getDebugLoc()}; for (User* U : CArgVal->users()) { CallInst *XI = dyn_cast(U); if (!XI || XI->getFunction() != F || XI->isNoBuiltin()) continue; Function *UCallee = XI->getCalledFunction(); if (!UCallee) continue; bool Handled = true; if (UCallee->getName() == SinName) SinCalls.push_back(XI); else if (UCallee->getName() == CosName) CosCalls.push_back(XI); else if (UCallee->getName() == SinCosPrivateName || UCallee->getName() == SinCosGenericName) SinCosCalls.push_back(XI); else Handled = false; if (Handled) { MergeDbgLocs.push_back(XI->getDebugLoc()); auto *OtherOp = cast(XI); FMF &= OtherOp->getFastMathFlags(); FPMath = MDNode::getMostGenericFPMath( FPMath, XI->getMetadata(LLVMContext::MD_fpmath)); } } if (SinCalls.empty() || CosCalls.empty()) return false; B.setFastMathFlags(FMF); B.setDefaultFPMathTag(FPMath); DILocation *DbgLoc = DILocation::getMergedLocations(MergeDbgLocs); B.SetCurrentDebugLocation(DbgLoc); auto [Sin, Cos, SinCos] = insertSinCos(CArgVal, FMF, B, FSinCos); auto replaceTrigInsts = [](ArrayRef Calls, Value *Res) { for (CallInst *C : Calls) C->replaceAllUsesWith(Res); // Leave the other dead instructions to avoid clobbering iterators. }; replaceTrigInsts(SinCalls, Sin); replaceTrigInsts(CosCalls, Cos); replaceTrigInsts(SinCosCalls, SinCos); // It's safe to delete the original now. CI->eraseFromParent(); return true; } bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1, Constant *copr0, Constant *copr1) { // By default, opr0/opr1/opr3 holds values of float/double type. // If they are not float/double, each function has to its // operand separately. double opr0 = 0.0, opr1 = 0.0; ConstantFP *fpopr0 = dyn_cast_or_null(copr0); ConstantFP *fpopr1 = dyn_cast_or_null(copr1); if (fpopr0) { opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) ? fpopr0->getValueAPF().convertToDouble() : (double)fpopr0->getValueAPF().convertToFloat(); } if (fpopr1) { opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) ? fpopr1->getValueAPF().convertToDouble() : (double)fpopr1->getValueAPF().convertToFloat(); } switch (FInfo.getId()) { default : return false; case AMDGPULibFunc::EI_ACOS: Res0 = acos(opr0); return true; case AMDGPULibFunc::EI_ACOSH: // acosh(x) == log(x + sqrt(x*x - 1)) Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); return true; case AMDGPULibFunc::EI_ACOSPI: Res0 = acos(opr0) / MATH_PI; return true; case AMDGPULibFunc::EI_ASIN: Res0 = asin(opr0); return true; case AMDGPULibFunc::EI_ASINH: // asinh(x) == log(x + sqrt(x*x + 1)) Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); return true; case AMDGPULibFunc::EI_ASINPI: Res0 = asin(opr0) / MATH_PI; return true; case AMDGPULibFunc::EI_ATAN: Res0 = atan(opr0); return true; case AMDGPULibFunc::EI_ATANH: // atanh(x) == (log(x+1) - log(x-1))/2; Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; return true; case AMDGPULibFunc::EI_ATANPI: Res0 = atan(opr0) / MATH_PI; return true; case AMDGPULibFunc::EI_CBRT: Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); return true; case AMDGPULibFunc::EI_COS: Res0 = cos(opr0); return true; case AMDGPULibFunc::EI_COSH: Res0 = cosh(opr0); return true; case AMDGPULibFunc::EI_COSPI: Res0 = cos(MATH_PI * opr0); return true; case AMDGPULibFunc::EI_EXP: Res0 = exp(opr0); return true; case AMDGPULibFunc::EI_EXP2: Res0 = pow(2.0, opr0); return true; case AMDGPULibFunc::EI_EXP10: Res0 = pow(10.0, opr0); return true; case AMDGPULibFunc::EI_LOG: Res0 = log(opr0); return true; case AMDGPULibFunc::EI_LOG2: Res0 = log(opr0) / log(2.0); return true; case AMDGPULibFunc::EI_LOG10: Res0 = log(opr0) / log(10.0); return true; case AMDGPULibFunc::EI_RSQRT: Res0 = 1.0 / sqrt(opr0); return true; case AMDGPULibFunc::EI_SIN: Res0 = sin(opr0); return true; case AMDGPULibFunc::EI_SINH: Res0 = sinh(opr0); return true; case AMDGPULibFunc::EI_SINPI: Res0 = sin(MATH_PI * opr0); return true; case AMDGPULibFunc::EI_TAN: Res0 = tan(opr0); return true; case AMDGPULibFunc::EI_TANH: Res0 = tanh(opr0); return true; case AMDGPULibFunc::EI_TANPI: Res0 = tan(MATH_PI * opr0); return true; // two-arg functions case AMDGPULibFunc::EI_POW: case AMDGPULibFunc::EI_POWR: Res0 = pow(opr0, opr1); return true; case AMDGPULibFunc::EI_POWN: { if (ConstantInt *iopr1 = dyn_cast_or_null(copr1)) { double val = (double)iopr1->getSExtValue(); Res0 = pow(opr0, val); return true; } return false; } case AMDGPULibFunc::EI_ROOTN: { if (ConstantInt *iopr1 = dyn_cast_or_null(copr1)) { double val = (double)iopr1->getSExtValue(); Res0 = pow(opr0, 1.0 / val); return true; } return false; } // with ptr arg case AMDGPULibFunc::EI_SINCOS: Res0 = sin(opr0); Res1 = cos(opr0); return true; } return false; } bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { int numArgs = (int)aCI->arg_size(); if (numArgs > 3) return false; Constant *copr0 = nullptr; Constant *copr1 = nullptr; if (numArgs > 0) { if ((copr0 = dyn_cast(aCI->getArgOperand(0))) == nullptr) return false; } if (numArgs > 1) { if ((copr1 = dyn_cast(aCI->getArgOperand(1))) == nullptr) { if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) return false; } } // At this point, all arguments to aCI are constants. // max vector size is 16, and sincos will generate two results. double DVal0[16], DVal1[16]; int FuncVecSize = getVecSize(FInfo); bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); if (FuncVecSize == 1) { if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1)) { return false; } } else { ConstantDataVector *CDV0 = dyn_cast_or_null(copr0); ConstantDataVector *CDV1 = dyn_cast_or_null(copr1); for (int i = 0; i < FuncVecSize; ++i) { Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1)) { return false; } } } LLVMContext &context = aCI->getContext(); Constant *nval0, *nval1; if (FuncVecSize == 1) { nval0 = ConstantFP::get(aCI->getType(), DVal0[0]); if (hasTwoResults) nval1 = ConstantFP::get(aCI->getType(), DVal1[0]); } else { if (getArgType(FInfo) == AMDGPULibFunc::F32) { SmallVector FVal0, FVal1; for (int i = 0; i < FuncVecSize; ++i) FVal0.push_back((float)DVal0[i]); ArrayRef tmp0(FVal0); nval0 = ConstantDataVector::get(context, tmp0); if (hasTwoResults) { for (int i = 0; i < FuncVecSize; ++i) FVal1.push_back((float)DVal1[i]); ArrayRef tmp1(FVal1); nval1 = ConstantDataVector::get(context, tmp1); } } else { ArrayRef tmp0(DVal0); nval0 = ConstantDataVector::get(context, tmp0); if (hasTwoResults) { ArrayRef tmp1(DVal1); nval1 = ConstantDataVector::get(context, tmp1); } } } if (hasTwoResults) { // sincos assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && "math function with ptr arg not supported yet"); new StoreInst(nval1, aCI->getArgOperand(1), aCI); } replaceCall(aCI, nval0); return true; } PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, FunctionAnalysisManager &AM) { AMDGPULibCalls Simplifier; Simplifier.initNativeFuncs(); Simplifier.initFunction(F, AM); bool Changed = false; LLVM_DEBUG(dbgs() << "AMDIC: process function "; F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); for (auto &BB : F) { for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { // Ignore non-calls. CallInst *CI = dyn_cast(I); ++I; if (CI) { if (Simplifier.fold(CI)) Changed = true; } } } return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); } PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, FunctionAnalysisManager &AM) { if (UseNative.empty()) return PreservedAnalyses::all(); AMDGPULibCalls Simplifier; Simplifier.initNativeFuncs(); Simplifier.initFunction(F, AM); bool Changed = false; for (auto &BB : F) { for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { // Ignore non-calls. CallInst *CI = dyn_cast(I); ++I; if (CI && Simplifier.useNative(CI)) Changed = true; } } return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); }