xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64SchedCyclone.td (revision f126d349810fdb512c0b01e101342d430b947488)
1//=- AArch64SchedCyclone.td - Cyclone Scheduling Definitions -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the machine model for AArch64 Cyclone to support
10// instruction scheduling and other instruction cost heuristics.
11//
12//===----------------------------------------------------------------------===//
13
14def CycloneModel : SchedMachineModel {
15  let IssueWidth = 6; // 6 micro-ops are dispatched per cycle.
16  let MicroOpBufferSize = 192; // Based on the reorder buffer.
17  let LoadLatency = 4; // Optimistic load latency.
18  let MispredictPenalty = 16; // 14-19 cycles are typical.
19  let CompleteModel = 1;
20
21  list<Predicate> UnsupportedFeatures = !listconcat(SVEUnsupported.F,
22                                                    PAUnsupported.F,
23                                                    SMEUnsupported.F);
24}
25
26//===----------------------------------------------------------------------===//
27// Define each kind of processor resource and number available on Cyclone.
28
29// 4 integer pipes
30def CyUnitI : ProcResource<4> {
31  let BufferSize = 48;
32}
33
34// 2 branch units: I[0..1]
35def CyUnitB : ProcResource<2> {
36  let Super  = CyUnitI;
37  let BufferSize = 24;
38}
39
40// 1 indirect-branch unit: I[0]
41def CyUnitBR : ProcResource<1> {
42  let Super  = CyUnitB;
43}
44
45// 2 shifter pipes: I[2..3]
46// When an instruction consumes a CyUnitIS, it also consumes a CyUnitI
47def CyUnitIS : ProcResource<2> {
48  let Super = CyUnitI;
49  let BufferSize = 24;
50}
51
52// 1 mul pipe: I[0]
53def CyUnitIM : ProcResource<1> {
54  let Super = CyUnitBR;
55  let BufferSize = 32;
56}
57
58// 1 div pipe: I[1]
59def CyUnitID : ProcResource<1> {
60  let Super = CyUnitB;
61  let BufferSize = 16;
62}
63
64// 1 integer division unit. This is driven by the ID pipe, but only
65// consumes the pipe for one cycle at issue and another cycle at writeback.
66def CyUnitIntDiv : ProcResource<1>;
67
68// 2 ld/st pipes.
69def CyUnitLS : ProcResource<2> {
70  let BufferSize = 28;
71}
72
73// 3 fp/vector pipes.
74def CyUnitV : ProcResource<3> {
75  let BufferSize = 48;
76}
77// 2 fp/vector arithmetic and multiply pipes: V[0-1]
78def CyUnitVM : ProcResource<2> {
79  let Super = CyUnitV;
80  let BufferSize = 32;
81}
82// 1 fp/vector division/sqrt pipe: V[2]
83def CyUnitVD : ProcResource<1> {
84  let Super = CyUnitV;
85  let BufferSize = 16;
86}
87// 1 fp compare pipe: V[0]
88def CyUnitVC : ProcResource<1> {
89  let Super = CyUnitVM;
90  let BufferSize = 16;
91}
92
93// 2 fp division/square-root units.  These are driven by the VD pipe,
94// but only consume the pipe for one cycle at issue and a cycle at writeback.
95def CyUnitFloatDiv : ProcResource<2>;
96
97//===----------------------------------------------------------------------===//
98// Define scheduler read/write resources and latency on Cyclone.
99// This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1.
100
101let SchedModel = CycloneModel in {
102
103//---
104// 7.8.1. Moves
105//---
106
107// A single nop micro-op (uX).
108def WriteX : SchedWriteRes<[]> { let Latency = 0; }
109
110// Move zero is a register rename (to machine register zero).
111// The move is replaced by a single nop micro-op.
112// MOVZ Rd, #0
113// AND Rd, Rzr, #imm
114def WriteZPred : SchedPredicate<[{TII->isGPRZero(*MI)}]>;
115def WriteImmZ  : SchedWriteVariant<[
116                   SchedVar<WriteZPred, [WriteX]>,
117                   SchedVar<NoSchedPred, [WriteImm]>]>;
118def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>;
119
120// Move GPR is a register rename and single nop micro-op.
121// ORR Xd, XZR, Xm
122// ADD Xd, Xn, #0
123def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(*MI)}]>;
124def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(*MI)}]>;
125def WriteMov      : SchedWriteVariant<[
126                      SchedVar<WriteIMovPred, [WriteX]>,
127                      SchedVar<WriteVMovPred, [WriteX]>,
128                      SchedVar<NoSchedPred,   [WriteI]>]>;
129def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>;
130
131// Move non-zero immediate is an integer ALU op.
132// MOVN,MOVZ,MOVK
133def : WriteRes<WriteImm, [CyUnitI]>;
134
135//---
136// 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional,
137//              Shifts and Bitfield Operations
138//---
139
140// ADR,ADRP
141// ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri
142// ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr
143// ADC(S),SBC(S)
144// Aliases: CMN, CMP, TST
145//
146// Conditional operations.
147// CCMNi,CCMPi,CCMNr,CCMPr,
148// CSEL,CSINC,CSINV,CSNEG
149//
150// Bit counting and reversal operations.
151// CLS,CLZ,RBIT,REV,REV16,REV32
152def : WriteRes<WriteI, [CyUnitI]>;
153
154// ADD with shifted register operand is a single micro-op that
155// consumes a shift pipeline for two cycles.
156// ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs
157// EXAMPLE: ADDrs Xn, Xm LSL #imm
158def : WriteRes<WriteISReg, [CyUnitIS]> {
159  let Latency = 2;
160  let ResourceCycles = [2];
161}
162
163// ADD with extended register operand is the same as shifted reg operand.
164// ADD(S)re,SUB(S)re
165// EXAMPLE: ADDXre Xn, Xm, UXTB #1
166def : WriteRes<WriteIEReg, [CyUnitIS]> {
167  let Latency = 2;
168  let ResourceCycles = [2];
169}
170
171// Variable shift and bitfield operations.
172// ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM
173def : WriteRes<WriteIS, [CyUnitIS]>;
174
175// EXTR Shifts a pair of registers and requires two micro-ops.
176// The second micro-op is delayed, as modeled by ReadExtrHi.
177// EXTR Xn, Xm, #imm
178def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> {
179  let Latency = 2;
180  let NumMicroOps = 2;
181}
182
183// EXTR's first register read is delayed by one cycle, effectively
184// shortening its writer's latency.
185// EXTR Xn, Xm, #imm
186def : ReadAdvance<ReadExtrHi, 1>;
187
188//---
189// 7.8.6. Multiplies
190//---
191
192// MUL/MNEG are aliases for MADD/MSUB.
193// MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL
194def : WriteRes<WriteIM32, [CyUnitIM]> {
195  let Latency = 4;
196}
197// MADDX,MSUBX,SMULH,UMULH
198def : WriteRes<WriteIM64, [CyUnitIM]> {
199  let Latency = 5;
200}
201
202//---
203// 7.8.7. Divide
204//---
205
206// 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient.
207// The ID pipe is consumed for 2 cycles: issue and writeback.
208// SDIVW,UDIVW
209def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> {
210  let Latency = 10;
211  let ResourceCycles = [2, 10];
212}
213// 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient.
214// The ID pipe is consumed for 2 cycles: issue and writeback.
215// SDIVX,UDIVX
216def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> {
217  let Latency = 13;
218  let ResourceCycles = [2, 13];
219}
220
221//---
222// 7.8.8,7.8.10. Load/Store, single element
223//---
224
225// Integer loads take 4 cycles and use one LS unit for one cycle.
226def : WriteRes<WriteLD, [CyUnitLS]> {
227  let Latency = 4;
228}
229
230// Store-load forwarding is 4 cycles.
231//
232// Note: The store-exclusive sequence incorporates this
233// latency. However, general heuristics should not model the
234// dependence between a store and subsequent may-alias load because
235// hardware speculation works.
236def : WriteRes<WriteST, [CyUnitLS]> {
237  let Latency = 4;
238}
239
240// Load from base address plus an optionally scaled register offset.
241// Rt latency is latency WriteIS + WriteLD.
242// EXAMPLE: LDR Xn, Xm [, lsl 3]
243def CyWriteLDIdx : SchedWriteVariant<[
244  SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register.
245  SchedVar<NoSchedPred,   [WriteLD]>]>;        // Load from register offset.
246def : SchedAlias<WriteLDIdx, CyWriteLDIdx>;    // Map AArch64->Cyclone type.
247
248// EXAMPLE: STR Xn, Xm [, lsl 3]
249def CyWriteSTIdx : SchedWriteVariant<[
250  SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register.
251  SchedVar<NoSchedPred,   [WriteST]>]>;        // Store to register offset.
252def : SchedAlias<WriteSTIdx, CyWriteSTIdx>;    // Map AArch64->Cyclone type.
253
254// Read the (unshifted) base register Xn in the second micro-op one cycle later.
255// EXAMPLE: LDR Xn, Xm [, lsl 3]
256def ReadBaseRS : SchedReadAdvance<1>;
257def CyReadAdrBase : SchedReadVariant<[
258  SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset.
259  SchedVar<NoSchedPred,   [ReadDefault]>]>;   // Read base reg with no shift.
260def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type.
261def : ReadAdvance<ReadST, 0>;
262
263//---
264// 7.8.9,7.8.11. Load/Store, paired
265//---
266
267// Address pre/post increment is a simple ALU op with one cycle latency.
268def : WriteRes<WriteAdr, [CyUnitI]>;
269
270// LDP high register write is fused with the load, but a nop micro-op remains.
271def : WriteRes<WriteLDHi, []> {
272  let Latency = 4;
273}
274
275// STP is a vector op and store, except for QQ, which is just two stores.
276def : SchedAlias<WriteSTP, WriteVSTShuffle>;
277def : InstRW<[WriteST, WriteST], (instrs STPQi)>;
278
279//---
280// 7.8.13. Branches
281//---
282
283// Branches take a single micro-op.
284// The misprediction penalty is defined as a SchedMachineModel property.
285def : WriteRes<WriteBr,    [CyUnitB]>  {let Latency = 0;}
286def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;}
287
288//---
289// 7.8.14. Never-issued Instructions, Barrier and Hint Operations
290//---
291
292// NOP,SEV,SEVL,WFE,WFI,YIELD
293def : WriteRes<WriteHint, []> {let Latency = 0;}
294// ISB
295def : InstRW<[WriteI], (instrs ISB)>;
296// SLREX,DMB,DSB
297def : WriteRes<WriteBarrier, [CyUnitLS]>;
298
299// System instructions get an invalid latency because the latency of
300// other operations across them is meaningless.
301def : WriteRes<WriteSys, []> {let Latency = -1;}
302
303//===----------------------------------------------------------------------===//
304// 7.9 Vector Unit Instructions
305
306// Simple vector operations take 2 cycles.
307def : WriteRes<WriteVd, [CyUnitV]> {let Latency = 2;}
308def : WriteRes<WriteVq, [CyUnitV]> {let Latency = 2;}
309
310// Define some longer latency vector op types for Cyclone.
311def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
312def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;}
313def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;}
314def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;}
315
316// Simple floating-point operations take 2 cycles.
317def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;}
318
319//---
320// 7.9.1 Vector Moves
321//---
322
323// TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently
324// generates expensive int-float conversion instead:
325// FMOVDi Dd, #0.0
326// FMOVv2f64ns Vd.2d, #0.0
327
328// FMOVSi,FMOVDi
329def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;}
330
331// MOVI,MVNI are WriteV
332// FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV
333
334// Move FPR is a register rename and single nop micro-op.
335// ORR.16b Vd,Vn,Vn
336// COPY is handled above in the WriteMov Variant.
337def WriteVMov    : SchedWriteVariant<[
338                     SchedVar<WriteVMovPred, [WriteX]>,
339                     SchedVar<NoSchedPred,   [WriteVq]>]>;
340def : InstRW<[WriteVMov], (instrs ORRv16i8)>;
341
342// FMOVSr,FMOVDr are WriteF.
343
344// MOV V,V is a WriteV.
345
346// CPY D,V[x] is a WriteV
347
348// INS V[x],V[y] is a WriteV.
349
350// FMOVWSr,FMOVXDr,FMOVXDHighr
351def : WriteRes<WriteFCopy, [CyUnitLS]> {
352  let Latency = 5;
353}
354
355// FMOVSWr,FMOVDXr
356def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>;
357
358// INS V[x],R
359def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteVq]>;
360def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>;
361
362// SMOV,UMOV R,V[x]
363def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>;
364def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>;
365
366// DUP V,R
367def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>;
368
369// DUP V,V[x] is a WriteV.
370
371//---
372// 7.9.2 Integer Arithmetic, Logical, and Comparisons
373//---
374
375// BIC,ORR V,#imm are WriteV
376
377def : InstRW<[CyWriteV3], (instregex "ABSv")>;
378
379// MVN,NEG,NOT are WriteV
380
381def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>;
382
383// ADDP is a WriteV.
384def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
385def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>;
386
387def : InstRW<[CyWriteV3],
388             (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>;
389
390def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>;
391
392// ADD,SUB are WriteV
393
394// Forward declare.
395def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
396
397// Add/Diff and accumulate uses the vector multiply unit.
398def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
399def CyReadVAccum  : SchedReadAdvance<1,
400                    [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>;
401
402def : InstRW<[CyWriteVAccum, CyReadVAccum],
403             (instregex "SADALP","UADALP")>;
404
405def : InstRW<[CyWriteVAccum, CyReadVAccum],
406             (instregex "SABAv","UABAv","SABALv","UABALv")>;
407
408def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>;
409
410def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>;
411
412def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>;
413
414// WriteV includes:
415// AND,BIC,CMTST,EOR,ORN,ORR
416// ADDP
417// SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD
418// SADDL,SSUBL,UADDL,USUBL
419// SADDW,SSUBW,UADDW,USUBW
420
421def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv",
422                                     "CMLEv","CMLTv",
423                                     "CMHIv","CMHSv")>;
424
425def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv",
426                                     "SMAXPv","SMINPv","UMAXPv","UMINPv")>;
427
428def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv",
429                                       "SABDLv","UABDLv")>;
430
431//---
432// 7.9.3 Floating Point Arithmetic and Comparisons
433//---
434
435// FABS,FNEG are WriteF
436
437def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>;
438def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>;
439
440def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i",
441                                     "FMINPv2i","FMINNMPv2i")>;
442
443def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>;
444
445def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32,
446                                  FSUBSrr,FSUBv2f32,FSUBv4f32,
447                                  FADDPv2f32,FADDPv4f32,
448                                  FABD32,FABDv2f32,FABDv4f32)>;
449def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64,
450                                  FSUBDrr,FSUBv2f64,
451                                  FADDPv2f64,
452                                  FABD64,FABDv2f64)>;
453
454def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>;
455
456def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT",
457                                     "FMAXS","FMAXD","FMAXv",
458                                     "FMINS","FMIND","FMINv",
459                                     "FMAXNMS","FMAXNMD","FMAXNMv",
460                                     "FMINNMS","FMINNMD","FMINNMv",
461                                     "FMAXPv2f","FMAXPv4f",
462                                     "FMINPv2f","FMINPv4f",
463                                     "FMAXNMPv2f","FMAXNMPv4f",
464                                     "FMINNMPv2f","FMINNMPv4f")>;
465
466// FCMP,FCMPE,FCCMP,FCCMPE
467def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;}
468
469// FCSEL is a WriteF.
470
471//---
472// 7.9.4 Shifts and Bitfield Operations
473//---
474
475// SHL is a WriteV
476
477def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
478def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>;
479
480def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
481def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>;
482
483// Shift and accumulate uses the vector multiply unit.
484def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
485def CyReadVShiftAcc  : SchedReadAdvance<1,
486                        [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>;
487def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc],
488             (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>;
489
490// SSHL,USHL are WriteV.
491
492def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>;
493
494// SQSHL,SQSHLU,UQSHL are WriteV.
495
496def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>;
497
498// WriteV includes:
499// SHLL,SSHLL,USHLL
500// SLI,SRI
501// BIF,BIT,BSL,BSP
502// EXT
503// CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN
504// XTN2
505
506def : InstRW<[CyWriteV4],
507             (instregex "RSHRNv","SHRNv",
508                        "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv",
509                        "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>;
510
511//---
512// 7.9.5 Multiplication
513//---
514
515def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;}
516def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv",
517                             "SQDMULLv","SQDMULHv","SQRDMULHv")>;
518
519// FMUL,FMULX,FNMUL default to WriteFMul.
520def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;}
521
522def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;}
523def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed,
524                               FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>;
525
526def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>;
527def : InstRW<[CyWriteVMul, CyReadVMulAcc],
528             (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL",
529              "SQDMLAL","SQDMLSL")>;
530
531def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;}
532def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;}
533def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>;
534def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>;
535
536def : InstRW<[CyWriteSMul, CyReadSMul],
537             (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr,
538              FMLAv2f32,FMLAv4f32,
539              FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>;
540def : InstRW<[CyWriteDMul, CyReadDMul],
541             (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr,
542              FMLAv2f64,FMLAv2i64_indexed,
543              FMLSv2f64,FMLSv2i64_indexed)>;
544
545def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; }
546def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>;
547
548//---
549// 7.9.6 Divide and Square Root
550//---
551
552// FDIV,FSQRT
553// TODO: Add 64-bit variant with 19 cycle latency.
554// TODO: Specialize FSQRT for longer latency.
555def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> {
556  let Latency = 17;
557  let ResourceCycles = [2, 17];
558}
559
560def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>;
561
562def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; }
563def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>;
564
565def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; }
566def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; }
567def : InstRW<[WriteFRECPS],  (instregex "FRECPSv")>;
568def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>;
569
570//---
571// 7.9.7 Integer-FP Conversions
572//---
573
574// FCVT lengthen f16/s32
575def : InstRW<[WriteVq], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>;
576
577// FCVT,FCVTN,FCVTXN
578// SCVTF,UCVTF V,V
579// FRINT(AIMNPXZ) V,V
580def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;}
581
582// SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles.
583def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>;
584def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>;
585
586// FCVT Rd, S/D = V6+LD4: 10 cycles
587def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>;
588def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>;
589
590// FCVTL is a WriteV
591
592//---
593// 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup
594//---
595
596def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;}
597def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr,
598                                       AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr,
599                                       SHA1SU0rrr)>;
600
601def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;}
602def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>;
603
604def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;}
605def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr,
606                                       SHA256Hrrr,SHA256H2rrr)>;
607
608// TRN,UZP,ZUP are WriteV.
609
610// TBL,TBX are WriteV.
611
612//---
613// 7.9.11-7.9.14 Load/Store, single element and paired
614//---
615
616// Loading into the vector unit takes 5 cycles vs 4 for integer loads.
617def : WriteRes<WriteVLD, [CyUnitLS]> {
618  let Latency = 5;
619}
620
621// Store-load forwarding is 4 cycles.
622def : WriteRes<WriteVST, [CyUnitLS]> {
623  let Latency = 4;
624}
625
626// WriteVLDPair/VSTPair sequences are expanded by the target description.
627
628//---
629// 7.9.15 Load, element operations
630//---
631
632// Only the first WriteVLD and WriteAdr for writeback matches def operands.
633// Subsequent WriteVLDs consume resources. Since all loaded values have the
634// same latency, this is acceptable.
635
636// Vd is read 5 cycles after issuing the vector load.
637def : ReadAdvance<ReadVLD, 5>;
638
639def : InstRW<[WriteVLD],
640             (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
641def : InstRW<[WriteVLD, WriteAdr],
642             (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
643
644// Register writes from the load's high half are fused micro-ops.
645def : InstRW<[WriteVLD],
646             (instregex "LD1Twov(8b|4h|2s|1d)$")>;
647def : InstRW<[WriteVLD, WriteAdr],
648             (instregex "LD1Twov(8b|4h|2s|1d)_POST")>;
649def : InstRW<[WriteVLD, WriteVLD],
650             (instregex "LD1Twov(16b|8h|4s|2d)$")>;
651def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
652             (instregex "LD1Twov(16b|8h|4s|2d)_POST")>;
653
654def : InstRW<[WriteVLD, WriteVLD],
655             (instregex "LD1Threev(8b|4h|2s|1d)$")>;
656def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
657             (instregex "LD1Threev(8b|4h|2s|1d)_POST")>;
658def : InstRW<[WriteVLD, WriteVLD, WriteVLD],
659             (instregex "LD1Threev(16b|8h|4s|2d)$")>;
660def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD],
661             (instregex "LD1Threev(16b|8h|4s|2d)_POST")>;
662
663def : InstRW<[WriteVLD, WriteVLD],
664             (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
665def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
666             (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>;
667def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD],
668             (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
669def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD],
670             (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>;
671
672def : InstRW<[WriteVLDShuffle, ReadVLD],
673             (instregex "LD1i(8|16|32)$")>;
674def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],
675             (instregex "LD1i(8|16|32)_POST")>;
676
677def : InstRW<[WriteVLDShuffle, ReadVLD],          (instrs LD1i64)>;
678def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>;
679
680def : InstRW<[WriteVLDShuffle],
681             (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
682def : InstRW<[WriteVLDShuffle, WriteAdr],
683             (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
684
685def : InstRW<[WriteVLDShuffle, WriteVq],
686             (instregex "LD2Twov(8b|4h|2s)$")>;
687def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVq],
688             (instregex "LD2Twov(8b|4h|2s)_POST$")>;
689def : InstRW<[WriteVLDShuffle, WriteVLDShuffle],
690             (instregex "LD2Twov(16b|8h|4s|2d)$")>;
691def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle],
692             (instregex "LD2Twov(16b|8h|4s|2d)_POST")>;
693
694def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVq],
695             (instregex "LD2i(8|16|32)$")>;
696def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVq],
697             (instregex "LD2i(8|16|32)_POST")>;
698def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVq],
699             (instregex "LD2i64$")>;
700def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVq],
701             (instregex "LD2i64_POST")>;
702
703def : InstRW<[WriteVLDShuffle, WriteVq],
704             (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
705def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVq],
706             (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
707
708def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVq],
709             (instregex "LD3Threev(8b|4h|2s)$")>;
710def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVq],
711             (instregex "LD3Threev(8b|4h|2s)_POST")>;
712def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle],
713             (instregex "LD3Threev(16b|8h|4s|2d)$")>;
714def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle],
715             (instregex "LD3Threev(16b|8h|4s|2d)_POST")>;
716
717def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVq, WriteVq],
718             (instregex "LD3i(8|16|32)$")>;
719def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVq, WriteVq],
720             (instregex "LD3i(8|16|32)_POST")>;
721
722def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteVq],
723             (instregex "LD3i64$")>;
724def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteVq],
725             (instregex "LD3i64_POST")>;
726
727def : InstRW<[WriteVLDShuffle, WriteVq, WriteVq],
728             (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>;
729def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVq, WriteVq],
730             (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>;
731
732def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVq],
733             (instrs LD3Rv1d,LD3Rv2d)>;
734def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVq],
735             (instrs LD3Rv1d_POST,LD3Rv2d_POST)>;
736
737def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVq, WriteVq],
738             (instregex "LD4Fourv(8b|4h|2s)$")>;
739def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVq, WriteVq],
740             (instregex "LD4Fourv(8b|4h|2s)_POST")>;
741def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle,
742              WriteVLDPairShuffle, WriteVLDPairShuffle],
743             (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
744def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle,
745              WriteVLDPairShuffle, WriteVLDPairShuffle],
746             (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>;
747
748def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVq, WriteVq, WriteVq],
749             (instregex "LD4i(8|16|32)$")>;
750def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVq, WriteVq, WriteVq],
751             (instregex "LD4i(8|16|32)_POST")>;
752
753
754def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteVq, WriteVq],
755             (instrs LD4i64)>;
756def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteVq],
757             (instrs LD4i64_POST)>;
758
759def : InstRW<[WriteVLDShuffle, WriteVq, WriteVq, WriteVq],
760             (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>;
761def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVq, WriteVq, WriteVq],
762             (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>;
763
764def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVq, WriteVq],
765             (instrs LD4Rv1d,LD4Rv2d)>;
766def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVq, WriteVq],
767             (instrs LD4Rv1d_POST,LD4Rv2d_POST)>;
768
769//---
770// 7.9.16 Store, element operations
771//---
772
773// Only the WriteAdr for writeback matches a def operands.
774// Subsequent WriteVLDs only consume resources.
775
776def : InstRW<[WriteVST],
777             (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
778def : InstRW<[WriteAdr, WriteVST],
779             (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
780
781def : InstRW<[WriteVSTShuffle],
782             (instregex "ST1Twov(8b|4h|2s|1d)$")>;
783def : InstRW<[WriteAdr, WriteVSTShuffle],
784             (instregex "ST1Twov(8b|4h|2s|1d)_POST")>;
785def : InstRW<[WriteVST, WriteVST],
786             (instregex "ST1Twov(16b|8h|4s|2d)$")>;
787def : InstRW<[WriteAdr, WriteVST, WriteVST],
788             (instregex "ST1Twov(16b|8h|4s|2d)_POST")>;
789
790def : InstRW<[WriteVSTShuffle, WriteVST],
791             (instregex "ST1Threev(8b|4h|2s|1d)$")>;
792def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST],
793             (instregex "ST1Threev(8b|4h|2s|1d)_POST")>;
794def : InstRW<[WriteVST, WriteVST, WriteVST],
795             (instregex "ST1Threev(16b|8h|4s|2d)$")>;
796def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST],
797             (instregex "ST1Threev(16b|8h|4s|2d)_POST")>;
798
799def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
800             (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
801def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
802             (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>;
803def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST],
804             (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
805def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST],
806             (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>;
807
808def : InstRW<[WriteVSTShuffle],           (instregex "ST1i(8|16|32)$")>;
809def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>;
810
811def : InstRW<[WriteVSTShuffle],           (instrs ST1i64)>;
812def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>;
813
814def : InstRW<[WriteVSTShuffle],
815             (instregex "ST2Twov(8b|4h|2s)$")>;
816def : InstRW<[WriteAdr, WriteVSTShuffle],
817             (instregex "ST2Twov(8b|4h|2s)_POST")>;
818def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
819             (instregex "ST2Twov(16b|8h|4s|2d)$")>;
820def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
821             (instregex "ST2Twov(16b|8h|4s|2d)_POST")>;
822
823def : InstRW<[WriteVSTShuffle],           (instregex "ST2i(8|16|32)$")>;
824def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>;
825def : InstRW<[WriteVSTShuffle],           (instrs ST2i64)>;
826def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>;
827
828def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
829             (instregex "ST3Threev(8b|4h|2s)$")>;
830def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
831             (instregex "ST3Threev(8b|4h|2s)_POST")>;
832def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
833             (instregex "ST3Threev(16b|8h|4s|2d)$")>;
834def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
835             (instregex "ST3Threev(16b|8h|4s|2d)_POST")>;
836
837def : InstRW<[WriteVSTShuffle],           (instregex "ST3i(8|16|32)$")>;
838def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>;
839
840def :InstRW<[WriteVSTShuffle, WriteVSTShuffle],           (instrs ST3i64)>;
841def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>;
842
843def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle],
844            (instregex "ST4Fourv(8b|4h|2s|1d)$")>;
845def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle],
846            (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>;
847def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle,
848              WriteVSTPairShuffle, WriteVSTPairShuffle],
849             (instregex "ST4Fourv(16b|8h|4s|2d)$")>;
850def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle,
851              WriteVSTPairShuffle, WriteVSTPairShuffle],
852             (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>;
853
854def : InstRW<[WriteVSTPairShuffle],           (instregex "ST4i(8|16|32)$")>;
855def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>;
856
857def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],          (instrs ST4i64)>;
858def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>;
859
860// Atomic operations are not supported.
861def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
862
863//---
864// Unused SchedRead types
865//---
866
867def : ReadAdvance<ReadI, 0>;
868def : ReadAdvance<ReadISReg, 0>;
869def : ReadAdvance<ReadIEReg, 0>;
870def : ReadAdvance<ReadIM, 0>;
871def : ReadAdvance<ReadIMA, 0>;
872def : ReadAdvance<ReadID, 0>;
873
874} // SchedModel = CycloneModel
875