1//=- AArch64SchedCyclone.td - Cyclone Scheduling Definitions -*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the machine model for AArch64 Cyclone to support 10// instruction scheduling and other instruction cost heuristics. 11// 12//===----------------------------------------------------------------------===// 13 14def CycloneModel : SchedMachineModel { 15 let IssueWidth = 6; // 6 micro-ops are dispatched per cycle. 16 let MicroOpBufferSize = 192; // Based on the reorder buffer. 17 let LoadLatency = 4; // Optimistic load latency. 18 let MispredictPenalty = 16; // 14-19 cycles are typical. 19 let CompleteModel = 1; 20 21 list<Predicate> UnsupportedFeatures = !listconcat(SVEUnsupported.F, 22 PAUnsupported.F, 23 SMEUnsupported.F, 24 [HasMTE, HasCSSC]); 25} 26 27//===----------------------------------------------------------------------===// 28// Define each kind of processor resource and number available on Cyclone. 29 30// 4 integer pipes 31def CyUnitI : ProcResource<4> { 32 let BufferSize = 48; 33} 34 35// 2 branch units: I[0..1] 36def CyUnitB : ProcResource<2> { 37 let Super = CyUnitI; 38 let BufferSize = 24; 39} 40 41// 1 indirect-branch unit: I[0] 42def CyUnitBR : ProcResource<1> { 43 let Super = CyUnitB; 44} 45 46// 2 shifter pipes: I[2..3] 47// When an instruction consumes a CyUnitIS, it also consumes a CyUnitI 48def CyUnitIS : ProcResource<2> { 49 let Super = CyUnitI; 50 let BufferSize = 24; 51} 52 53// 1 mul pipe: I[0] 54def CyUnitIM : ProcResource<1> { 55 let Super = CyUnitBR; 56 let BufferSize = 32; 57} 58 59// 1 div pipe: I[1] 60def CyUnitID : ProcResource<1> { 61 let Super = CyUnitB; 62 let BufferSize = 16; 63} 64 65// 1 integer division unit. This is driven by the ID pipe, but only 66// consumes the pipe for one cycle at issue and another cycle at writeback. 67def CyUnitIntDiv : ProcResource<1>; 68 69// 2 ld/st pipes. 70def CyUnitLS : ProcResource<2> { 71 let BufferSize = 28; 72} 73 74// 3 fp/vector pipes. 75def CyUnitV : ProcResource<3> { 76 let BufferSize = 48; 77} 78// 2 fp/vector arithmetic and multiply pipes: V[0-1] 79def CyUnitVM : ProcResource<2> { 80 let Super = CyUnitV; 81 let BufferSize = 32; 82} 83// 1 fp/vector division/sqrt pipe: V[2] 84def CyUnitVD : ProcResource<1> { 85 let Super = CyUnitV; 86 let BufferSize = 16; 87} 88// 1 fp compare pipe: V[0] 89def CyUnitVC : ProcResource<1> { 90 let Super = CyUnitVM; 91 let BufferSize = 16; 92} 93 94// 2 fp division/square-root units. These are driven by the VD pipe, 95// but only consume the pipe for one cycle at issue and a cycle at writeback. 96def CyUnitFloatDiv : ProcResource<2>; 97 98//===----------------------------------------------------------------------===// 99// Define scheduler read/write resources and latency on Cyclone. 100// This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1. 101 102let SchedModel = CycloneModel in { 103 104//--- 105// 7.8.1. Moves 106//--- 107 108// A single nop micro-op (uX). 109def WriteX : SchedWriteRes<[]> { let Latency = 0; } 110 111// Move zero is a register rename (to machine register zero). 112// The move is replaced by a single nop micro-op. 113// MOVZ Rd, #0 114// AND Rd, Rzr, #imm 115def WriteZPred : SchedPredicate<[{TII->isGPRZero(*MI)}]>; 116def WriteImmZ : SchedWriteVariant<[ 117 SchedVar<WriteZPred, [WriteX]>, 118 SchedVar<NoSchedPred, [WriteImm]>]>; 119def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>; 120 121// Move GPR is a register rename and single nop micro-op. 122// ORR Xd, XZR, Xm 123// ADD Xd, Xn, #0 124def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(*MI)}]>; 125def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(*MI)}]>; 126def WriteMov : SchedWriteVariant<[ 127 SchedVar<WriteIMovPred, [WriteX]>, 128 SchedVar<WriteVMovPred, [WriteX]>, 129 SchedVar<NoSchedPred, [WriteI]>]>; 130def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>; 131 132// Move non-zero immediate is an integer ALU op. 133// MOVN,MOVZ,MOVK 134def : WriteRes<WriteImm, [CyUnitI]>; 135 136//--- 137// 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional, 138// Shifts and Bitfield Operations 139//--- 140 141// ADR,ADRP 142// ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri 143// ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr 144// ADC(S),SBC(S) 145// Aliases: CMN, CMP, TST 146// 147// Conditional operations. 148// CCMNi,CCMPi,CCMNr,CCMPr, 149// CSEL,CSINC,CSINV,CSNEG 150// 151// Bit counting and reversal operations. 152// CLS,CLZ,RBIT,REV,REV16,REV32 153def : WriteRes<WriteI, [CyUnitI]>; 154 155// ADD with shifted register operand is a single micro-op that 156// consumes a shift pipeline for two cycles. 157// ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs 158// EXAMPLE: ADDrs Xn, Xm LSL #imm 159def : WriteRes<WriteISReg, [CyUnitIS]> { 160 let Latency = 2; 161 let ReleaseAtCycles = [2]; 162} 163 164// ADD with extended register operand is the same as shifted reg operand. 165// ADD(S)re,SUB(S)re 166// EXAMPLE: ADDXre Xn, Xm, UXTB #1 167def : WriteRes<WriteIEReg, [CyUnitIS]> { 168 let Latency = 2; 169 let ReleaseAtCycles = [2]; 170} 171 172// Variable shift and bitfield operations. 173// ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM 174def : WriteRes<WriteIS, [CyUnitIS]>; 175 176// EXTR Shifts a pair of registers and requires two micro-ops. 177// The second micro-op is delayed, as modeled by ReadExtrHi. 178// EXTR Xn, Xm, #imm 179def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> { 180 let Latency = 2; 181 let NumMicroOps = 2; 182} 183 184// EXTR's first register read is delayed by one cycle, effectively 185// shortening its writer's latency. 186// EXTR Xn, Xm, #imm 187def : ReadAdvance<ReadExtrHi, 1>; 188 189//--- 190// 7.8.6. Multiplies 191//--- 192 193// MUL/MNEG are aliases for MADD/MSUB. 194// MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL 195def : WriteRes<WriteIM32, [CyUnitIM]> { 196 let Latency = 4; 197} 198// MADDX,MSUBX,SMULH,UMULH 199def : WriteRes<WriteIM64, [CyUnitIM]> { 200 let Latency = 5; 201} 202 203//--- 204// 7.8.7. Divide 205//--- 206 207// 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient. 208// The ID pipe is consumed for 2 cycles: issue and writeback. 209// SDIVW,UDIVW 210def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> { 211 let Latency = 10; 212 let ReleaseAtCycles = [2, 10]; 213} 214// 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient. 215// The ID pipe is consumed for 2 cycles: issue and writeback. 216// SDIVX,UDIVX 217def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> { 218 let Latency = 13; 219 let ReleaseAtCycles = [2, 13]; 220} 221 222//--- 223// 7.8.8,7.8.10. Load/Store, single element 224//--- 225 226// Integer loads take 4 cycles and use one LS unit for one cycle. 227def : WriteRes<WriteLD, [CyUnitLS]> { 228 let Latency = 4; 229} 230 231// Store-load forwarding is 4 cycles. 232// 233// Note: The store-exclusive sequence incorporates this 234// latency. However, general heuristics should not model the 235// dependence between a store and subsequent may-alias load because 236// hardware speculation works. 237def : WriteRes<WriteST, [CyUnitLS]> { 238 let Latency = 4; 239} 240 241// Load from base address plus an optionally scaled register offset. 242// Rt latency is latency WriteIS + WriteLD. 243// EXAMPLE: LDR Xn, Xm [, lsl 3] 244def CyWriteLDIdx : SchedWriteVariant<[ 245 SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register. 246 SchedVar<NoSchedPred, [WriteLD]>]>; // Load from register offset. 247def : SchedAlias<WriteLDIdx, CyWriteLDIdx>; // Map AArch64->Cyclone type. 248 249// EXAMPLE: STR Xn, Xm [, lsl 3] 250def CyWriteSTIdx : SchedWriteVariant<[ 251 SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register. 252 SchedVar<NoSchedPred, [WriteST]>]>; // Store to register offset. 253def : SchedAlias<WriteSTIdx, CyWriteSTIdx>; // Map AArch64->Cyclone type. 254 255// Read the (unshifted) base register Xn in the second micro-op one cycle later. 256// EXAMPLE: LDR Xn, Xm [, lsl 3] 257def ReadBaseRS : SchedReadAdvance<1>; 258def CyReadAdrBase : SchedReadVariant<[ 259 SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset. 260 SchedVar<NoSchedPred, [ReadDefault]>]>; // Read base reg with no shift. 261def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type. 262def : ReadAdvance<ReadST, 0>; 263 264//--- 265// 7.8.9,7.8.11. Load/Store, paired 266//--- 267 268// Address pre/post increment is a simple ALU op with one cycle latency. 269def : WriteRes<WriteAdr, [CyUnitI]>; 270 271// LDP high register write is fused with the load, but a nop micro-op remains. 272def : WriteRes<WriteLDHi, []> { 273 let Latency = 4; 274} 275 276// STP is a vector op and store, except for QQ, which is just two stores. 277def : SchedAlias<WriteSTP, WriteVSTShuffle>; 278def : InstRW<[WriteST, WriteST], (instrs STPQi)>; 279 280//--- 281// 7.8.13. Branches 282//--- 283 284// Branches take a single micro-op. 285// The misprediction penalty is defined as a SchedMachineModel property. 286def : WriteRes<WriteBr, [CyUnitB]> {let Latency = 0;} 287def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;} 288 289//--- 290// 7.8.14. Never-issued Instructions, Barrier and Hint Operations 291//--- 292 293// NOP,SEV,SEVL,WFE,WFI,YIELD 294def : WriteRes<WriteHint, []> {let Latency = 0;} 295// ISB 296def : InstRW<[WriteI], (instrs ISB)>; 297// SLREX,DMB,DSB 298def : WriteRes<WriteBarrier, [CyUnitLS]>; 299 300// System instructions get an invalid latency because the latency of 301// other operations across them is meaningless. 302def : WriteRes<WriteSys, []> {let Latency = -1;} 303 304//===----------------------------------------------------------------------===// 305// 7.9 Vector Unit Instructions 306 307// Simple vector operations take 2 cycles. 308def : WriteRes<WriteVd, [CyUnitV]> {let Latency = 2;} 309def : WriteRes<WriteVq, [CyUnitV]> {let Latency = 2;} 310 311// Define some longer latency vector op types for Cyclone. 312def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;} 313def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;} 314def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;} 315def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;} 316 317// Simple floating-point operations take 2 cycles. 318def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;} 319 320//--- 321// 7.9.1 Vector Moves 322//--- 323 324// TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently 325// generates expensive int-float conversion instead: 326// FMOVDi Dd, #0.0 327// FMOVv2f64ns Vd.2d, #0.0 328 329// FMOVSi,FMOVDi 330def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;} 331 332// MOVI,MVNI are WriteV 333// FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV 334 335// Move FPR is a register rename and single nop micro-op. 336// ORR.16b Vd,Vn,Vn 337// COPY is handled above in the WriteMov Variant. 338def WriteVMov : SchedWriteVariant<[ 339 SchedVar<WriteVMovPred, [WriteX]>, 340 SchedVar<NoSchedPred, [WriteVq]>]>; 341def : InstRW<[WriteVMov], (instrs ORRv16i8)>; 342 343// FMOVSr,FMOVDr are WriteF. 344 345// MOV V,V is a WriteV. 346 347// CPY D,V[x] is a WriteV 348 349// INS V[x],V[y] is a WriteV. 350 351// FMOVWSr,FMOVXDr,FMOVXDHighr 352def : WriteRes<WriteFCopy, [CyUnitLS]> { 353 let Latency = 5; 354} 355 356// FMOVSWr,FMOVDXr 357def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>; 358 359// INS V[x],R 360def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteVq]>; 361def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>; 362 363// SMOV,UMOV R,V[x] 364def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>; 365def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>; 366 367// DUP V,R 368def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>; 369 370// DUP V,V[x] is a WriteV. 371 372//--- 373// 7.9.2 Integer Arithmetic, Logical, and Comparisons 374//--- 375 376// BIC,ORR V,#imm are WriteV 377 378def : InstRW<[CyWriteV3], (instregex "ABSv")>; 379 380// MVN,NEG,NOT are WriteV 381 382def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>; 383 384// ADDP is a WriteV. 385def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;} 386def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>; 387 388def : InstRW<[CyWriteV3], 389 (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>; 390 391def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>; 392 393// ADD,SUB are WriteV 394 395// Forward declare. 396def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;} 397 398// Add/Diff and accumulate uses the vector multiply unit. 399def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;} 400def CyReadVAccum : SchedReadAdvance<1, 401 [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>; 402 403def : InstRW<[CyWriteVAccum, CyReadVAccum], 404 (instregex "SADALP","UADALP")>; 405 406def : InstRW<[CyWriteVAccum, CyReadVAccum], 407 (instregex "SABAv","UABAv","SABALv","UABALv")>; 408 409def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>; 410 411def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>; 412 413def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>; 414 415// WriteV includes: 416// AND,BIC,CMTST,EOR,ORN,ORR 417// ADDP 418// SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD 419// SADDL,SSUBL,UADDL,USUBL 420// SADDW,SSUBW,UADDW,USUBW 421 422def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv", 423 "CMLEv","CMLTv", 424 "CMHIv","CMHSv")>; 425 426def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv", 427 "SMAXPv","SMINPv","UMAXPv","UMINPv")>; 428 429def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv", 430 "SABDLv","UABDLv")>; 431 432//--- 433// 7.9.3 Floating Point Arithmetic and Comparisons 434//--- 435 436// FABS,FNEG are WriteF 437 438def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>; 439def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>; 440 441def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i", 442 "FMINPv2i","FMINNMPv2i")>; 443 444def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>; 445 446def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32, 447 FSUBSrr,FSUBv2f32,FSUBv4f32, 448 FADDPv2f32,FADDPv4f32, 449 FABD32,FABDv2f32,FABDv4f32)>; 450def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64, 451 FSUBDrr,FSUBv2f64, 452 FADDPv2f64, 453 FABD64,FABDv2f64)>; 454 455def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>; 456 457def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT", 458 "FMAXS","FMAXD","FMAXv", 459 "FMINS","FMIND","FMINv", 460 "FMAXNMS","FMAXNMD","FMAXNMv", 461 "FMINNMS","FMINNMD","FMINNMv", 462 "FMAXPv2f","FMAXPv4f", 463 "FMINPv2f","FMINPv4f", 464 "FMAXNMPv2f","FMAXNMPv4f", 465 "FMINNMPv2f","FMINNMPv4f")>; 466 467// FCMP,FCMPE,FCCMP,FCCMPE 468def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;} 469 470// FCSEL is a WriteF. 471 472//--- 473// 7.9.4 Shifts and Bitfield Operations 474//--- 475 476// SHL is a WriteV 477 478def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;} 479def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>; 480 481def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;} 482def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>; 483 484// Shift and accumulate uses the vector multiply unit. 485def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;} 486def CyReadVShiftAcc : SchedReadAdvance<1, 487 [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>; 488def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc], 489 (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>; 490 491// SSHL,USHL are WriteV. 492 493def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>; 494 495// SQSHL,SQSHLU,UQSHL are WriteV. 496 497def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>; 498 499// WriteV includes: 500// SHLL,SSHLL,USHLL 501// SLI,SRI 502// BIF,BIT,BSL,BSP 503// EXT 504// CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN 505// XTN2 506 507def : InstRW<[CyWriteV4], 508 (instregex "RSHRNv","SHRNv", 509 "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv", 510 "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>; 511 512//--- 513// 7.9.5 Multiplication 514//--- 515 516def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;} 517def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv", 518 "SQDMULLv","SQDMULHv","SQRDMULHv")>; 519 520// FMUL,FMULX,FNMUL default to WriteFMul. 521def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;} 522 523def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;} 524def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed, 525 FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>; 526 527def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>; 528def : InstRW<[CyWriteVMul, CyReadVMulAcc], 529 (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL", 530 "SQDMLAL","SQDMLSL")>; 531 532def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;} 533def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;} 534def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>; 535def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>; 536 537def : InstRW<[CyWriteSMul, CyReadSMul], 538 (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr, 539 FMLAv2f32,FMLAv4f32, 540 FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>; 541def : InstRW<[CyWriteDMul, CyReadDMul], 542 (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr, 543 FMLAv2f64,FMLAv2i64_indexed, 544 FMLSv2f64,FMLSv2i64_indexed)>; 545 546def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; } 547def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>; 548 549//--- 550// 7.9.6 Divide and Square Root 551//--- 552 553// FDIV,FSQRT 554// TODO: Add 64-bit variant with 19 cycle latency. 555// TODO: Specialize FSQRT for longer latency. 556def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> { 557 let Latency = 17; 558 let ReleaseAtCycles = [2, 17]; 559} 560 561def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>; 562 563def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; } 564def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>; 565 566def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; } 567def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; } 568def : InstRW<[WriteFRECPS], (instregex "FRECPSv")>; 569def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>; 570 571//--- 572// 7.9.7 Integer-FP Conversions 573//--- 574 575// FCVT lengthen f16/s32 576def : InstRW<[WriteVq], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>; 577 578// FCVT,FCVTN,FCVTXN 579// SCVTF,UCVTF V,V 580// FRINT(AIMNPXZ) V,V 581def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;} 582 583// SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles. 584def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>; 585def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>; 586 587// FCVT Rd, S/D = V6+LD4: 10 cycles 588def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>; 589def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>; 590 591// FCVTL is a WriteV 592 593//--- 594// 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup 595//--- 596 597def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;} 598def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr, 599 AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr, 600 SHA1SU0rrr)>; 601 602def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;} 603def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>; 604 605def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;} 606def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr, 607 SHA256Hrrr,SHA256H2rrr)>; 608 609// TRN,UZP,ZUP are WriteV. 610 611// TBL,TBX are WriteV. 612 613//--- 614// 7.9.11-7.9.14 Load/Store, single element and paired 615//--- 616 617// Loading into the vector unit takes 5 cycles vs 4 for integer loads. 618def : WriteRes<WriteVLD, [CyUnitLS]> { 619 let Latency = 5; 620} 621 622// Store-load forwarding is 4 cycles. 623def : WriteRes<WriteVST, [CyUnitLS]> { 624 let Latency = 4; 625} 626 627// WriteVLDPair/VSTPair sequences are expanded by the target description. 628 629//--- 630// 7.9.15 Load, element operations 631//--- 632 633// Only the first WriteVLD and WriteAdr for writeback matches def operands. 634// Subsequent WriteVLDs consume resources. Since all loaded values have the 635// same latency, this is acceptable. 636 637// Vd is read 5 cycles after issuing the vector load. 638def : ReadAdvance<ReadVLD, 5>; 639 640def : InstRW<[WriteVLD], 641 (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 642def : InstRW<[WriteVLD, WriteAdr], 643 (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; 644 645// Register writes from the load's high half are fused micro-ops. 646def : InstRW<[WriteVLD], 647 (instregex "LD1Twov(8b|4h|2s|1d)$")>; 648def : InstRW<[WriteVLD, WriteAdr], 649 (instregex "LD1Twov(8b|4h|2s|1d)_POST")>; 650def : InstRW<[WriteVLD, WriteVLD], 651 (instregex "LD1Twov(16b|8h|4s|2d)$")>; 652def : InstRW<[WriteVLD, WriteAdr, WriteVLD], 653 (instregex "LD1Twov(16b|8h|4s|2d)_POST")>; 654 655def : InstRW<[WriteVLD, WriteVLD], 656 (instregex "LD1Threev(8b|4h|2s|1d)$")>; 657def : InstRW<[WriteVLD, WriteAdr, WriteVLD], 658 (instregex "LD1Threev(8b|4h|2s|1d)_POST")>; 659def : InstRW<[WriteVLD, WriteVLD, WriteVLD], 660 (instregex "LD1Threev(16b|8h|4s|2d)$")>; 661def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD], 662 (instregex "LD1Threev(16b|8h|4s|2d)_POST")>; 663 664def : InstRW<[WriteVLD, WriteVLD], 665 (instregex "LD1Fourv(8b|4h|2s|1d)$")>; 666def : InstRW<[WriteVLD, WriteAdr, WriteVLD], 667 (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>; 668def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD], 669 (instregex "LD1Fourv(16b|8h|4s|2d)$")>; 670def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD], 671 (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>; 672 673def : InstRW<[WriteVLDShuffle, ReadVLD], 674 (instregex "LD1i(8|16|32)$")>; 675def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr], 676 (instregex "LD1i(8|16|32)_POST")>; 677 678def : InstRW<[WriteVLDShuffle, ReadVLD], (instrs LD1i64)>; 679def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>; 680 681def : InstRW<[WriteVLDShuffle], 682 (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 683def : InstRW<[WriteVLDShuffle, WriteAdr], 684 (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 685 686def : InstRW<[WriteVLDShuffle, WriteVq], 687 (instregex "LD2Twov(8b|4h|2s)$")>; 688def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVq], 689 (instregex "LD2Twov(8b|4h|2s)_POST$")>; 690def : InstRW<[WriteVLDShuffle, WriteVLDShuffle], 691 (instregex "LD2Twov(16b|8h|4s|2d)$")>; 692def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle], 693 (instregex "LD2Twov(16b|8h|4s|2d)_POST")>; 694 695def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVq], 696 (instregex "LD2i(8|16|32)$")>; 697def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVq], 698 (instregex "LD2i(8|16|32)_POST")>; 699def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVq], 700 (instregex "LD2i64$")>; 701def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVq], 702 (instregex "LD2i64_POST")>; 703 704def : InstRW<[WriteVLDShuffle, WriteVq], 705 (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 706def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVq], 707 (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; 708 709def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVq], 710 (instregex "LD3Threev(8b|4h|2s)$")>; 711def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVq], 712 (instregex "LD3Threev(8b|4h|2s)_POST")>; 713def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle], 714 (instregex "LD3Threev(16b|8h|4s|2d)$")>; 715def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle], 716 (instregex "LD3Threev(16b|8h|4s|2d)_POST")>; 717 718def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVq, WriteVq], 719 (instregex "LD3i(8|16|32)$")>; 720def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVq, WriteVq], 721 (instregex "LD3i(8|16|32)_POST")>; 722 723def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteVq], 724 (instregex "LD3i64$")>; 725def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteVq], 726 (instregex "LD3i64_POST")>; 727 728def : InstRW<[WriteVLDShuffle, WriteVq, WriteVq], 729 (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>; 730def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVq, WriteVq], 731 (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>; 732 733def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVq], 734 (instrs LD3Rv1d,LD3Rv2d)>; 735def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVq], 736 (instrs LD3Rv1d_POST,LD3Rv2d_POST)>; 737 738def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVq, WriteVq], 739 (instregex "LD4Fourv(8b|4h|2s)$")>; 740def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVq, WriteVq], 741 (instregex "LD4Fourv(8b|4h|2s)_POST")>; 742def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle, 743 WriteVLDPairShuffle, WriteVLDPairShuffle], 744 (instregex "LD4Fourv(16b|8h|4s|2d)$")>; 745def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle, 746 WriteVLDPairShuffle, WriteVLDPairShuffle], 747 (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>; 748 749def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVq, WriteVq, WriteVq], 750 (instregex "LD4i(8|16|32)$")>; 751def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVq, WriteVq, WriteVq], 752 (instregex "LD4i(8|16|32)_POST")>; 753 754 755def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteVq, WriteVq], 756 (instrs LD4i64)>; 757def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteVq], 758 (instrs LD4i64_POST)>; 759 760def : InstRW<[WriteVLDShuffle, WriteVq, WriteVq, WriteVq], 761 (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>; 762def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVq, WriteVq, WriteVq], 763 (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>; 764 765def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVq, WriteVq], 766 (instrs LD4Rv1d,LD4Rv2d)>; 767def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVq, WriteVq], 768 (instrs LD4Rv1d_POST,LD4Rv2d_POST)>; 769 770//--- 771// 7.9.16 Store, element operations 772//--- 773 774// Only the WriteAdr for writeback matches a def operands. 775// Subsequent WriteVLDs only consume resources. 776 777def : InstRW<[WriteVST], 778 (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 779def : InstRW<[WriteAdr, WriteVST], 780 (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; 781 782def : InstRW<[WriteVSTShuffle], 783 (instregex "ST1Twov(8b|4h|2s|1d)$")>; 784def : InstRW<[WriteAdr, WriteVSTShuffle], 785 (instregex "ST1Twov(8b|4h|2s|1d)_POST")>; 786def : InstRW<[WriteVST, WriteVST], 787 (instregex "ST1Twov(16b|8h|4s|2d)$")>; 788def : InstRW<[WriteAdr, WriteVST, WriteVST], 789 (instregex "ST1Twov(16b|8h|4s|2d)_POST")>; 790 791def : InstRW<[WriteVSTShuffle, WriteVST], 792 (instregex "ST1Threev(8b|4h|2s|1d)$")>; 793def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST], 794 (instregex "ST1Threev(8b|4h|2s|1d)_POST")>; 795def : InstRW<[WriteVST, WriteVST, WriteVST], 796 (instregex "ST1Threev(16b|8h|4s|2d)$")>; 797def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST], 798 (instregex "ST1Threev(16b|8h|4s|2d)_POST")>; 799 800def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], 801 (instregex "ST1Fourv(8b|4h|2s|1d)$")>; 802def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], 803 (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>; 804def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST], 805 (instregex "ST1Fourv(16b|8h|4s|2d)$")>; 806def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST], 807 (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>; 808 809def : InstRW<[WriteVSTShuffle], (instregex "ST1i(8|16|32)$")>; 810def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>; 811 812def : InstRW<[WriteVSTShuffle], (instrs ST1i64)>; 813def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>; 814 815def : InstRW<[WriteVSTShuffle], 816 (instregex "ST2Twov(8b|4h|2s)$")>; 817def : InstRW<[WriteAdr, WriteVSTShuffle], 818 (instregex "ST2Twov(8b|4h|2s)_POST")>; 819def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], 820 (instregex "ST2Twov(16b|8h|4s|2d)$")>; 821def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], 822 (instregex "ST2Twov(16b|8h|4s|2d)_POST")>; 823 824def : InstRW<[WriteVSTShuffle], (instregex "ST2i(8|16|32)$")>; 825def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>; 826def : InstRW<[WriteVSTShuffle], (instrs ST2i64)>; 827def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>; 828 829def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], 830 (instregex "ST3Threev(8b|4h|2s)$")>; 831def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], 832 (instregex "ST3Threev(8b|4h|2s)_POST")>; 833def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle], 834 (instregex "ST3Threev(16b|8h|4s|2d)$")>; 835def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle], 836 (instregex "ST3Threev(16b|8h|4s|2d)_POST")>; 837 838def : InstRW<[WriteVSTShuffle], (instregex "ST3i(8|16|32)$")>; 839def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>; 840 841def :InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64)>; 842def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>; 843 844def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle], 845 (instregex "ST4Fourv(8b|4h|2s|1d)$")>; 846def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle], 847 (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>; 848def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle, 849 WriteVSTPairShuffle, WriteVSTPairShuffle], 850 (instregex "ST4Fourv(16b|8h|4s|2d)$")>; 851def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle, 852 WriteVSTPairShuffle, WriteVSTPairShuffle], 853 (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>; 854 855def : InstRW<[WriteVSTPairShuffle], (instregex "ST4i(8|16|32)$")>; 856def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>; 857 858def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST4i64)>; 859def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>; 860 861// Atomic operations are not supported. 862def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } 863 864//--- 865// Unused SchedRead types 866//--- 867 868def : ReadAdvance<ReadI, 0>; 869def : ReadAdvance<ReadISReg, 0>; 870def : ReadAdvance<ReadIEReg, 0>; 871def : ReadAdvance<ReadIM, 0>; 872def : ReadAdvance<ReadIMA, 0>; 873def : ReadAdvance<ReadID, 0>; 874 875} // SchedModel = CycloneModel 876