1 //=== JSON.cpp - JSON value, parsing and serialization - C++ -----------*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===---------------------------------------------------------------------===// 8 9 #include "llvm/Support/JSON.h" 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/Support/ConvertUTF.h" 12 #include "llvm/Support/Error.h" 13 #include "llvm/Support/Format.h" 14 #include "llvm/Support/raw_ostream.h" 15 #include "llvm/Support/NativeFormatting.h" 16 #include <cctype> 17 #include <optional> 18 19 namespace llvm { 20 namespace json { 21 22 Value &Object::operator[](const ObjectKey &K) { 23 return try_emplace(K, nullptr).first->getSecond(); 24 } 25 Value &Object::operator[](ObjectKey &&K) { 26 return try_emplace(std::move(K), nullptr).first->getSecond(); 27 } 28 Value *Object::get(StringRef K) { 29 auto I = find(K); 30 if (I == end()) 31 return nullptr; 32 return &I->second; 33 } 34 const Value *Object::get(StringRef K) const { 35 auto I = find(K); 36 if (I == end()) 37 return nullptr; 38 return &I->second; 39 } 40 std::optional<std::nullptr_t> Object::getNull(StringRef K) const { 41 if (auto *V = get(K)) 42 return V->getAsNull(); 43 return std::nullopt; 44 } 45 std::optional<bool> Object::getBoolean(StringRef K) const { 46 if (auto *V = get(K)) 47 return V->getAsBoolean(); 48 return std::nullopt; 49 } 50 std::optional<double> Object::getNumber(StringRef K) const { 51 if (auto *V = get(K)) 52 return V->getAsNumber(); 53 return std::nullopt; 54 } 55 std::optional<int64_t> Object::getInteger(StringRef K) const { 56 if (auto *V = get(K)) 57 return V->getAsInteger(); 58 return std::nullopt; 59 } 60 std::optional<llvm::StringRef> Object::getString(StringRef K) const { 61 if (auto *V = get(K)) 62 return V->getAsString(); 63 return std::nullopt; 64 } 65 const json::Object *Object::getObject(StringRef K) const { 66 if (auto *V = get(K)) 67 return V->getAsObject(); 68 return nullptr; 69 } 70 json::Object *Object::getObject(StringRef K) { 71 if (auto *V = get(K)) 72 return V->getAsObject(); 73 return nullptr; 74 } 75 const json::Array *Object::getArray(StringRef K) const { 76 if (auto *V = get(K)) 77 return V->getAsArray(); 78 return nullptr; 79 } 80 json::Array *Object::getArray(StringRef K) { 81 if (auto *V = get(K)) 82 return V->getAsArray(); 83 return nullptr; 84 } 85 bool operator==(const Object &LHS, const Object &RHS) { 86 if (LHS.size() != RHS.size()) 87 return false; 88 for (const auto &L : LHS) { 89 auto R = RHS.find(L.first); 90 if (R == RHS.end() || L.second != R->second) 91 return false; 92 } 93 return true; 94 } 95 96 Array::Array(std::initializer_list<Value> Elements) { 97 V.reserve(Elements.size()); 98 for (const Value &V : Elements) { 99 emplace_back(nullptr); 100 back().moveFrom(std::move(V)); 101 } 102 } 103 104 Value::Value(std::initializer_list<Value> Elements) 105 : Value(json::Array(Elements)) {} 106 107 void Value::copyFrom(const Value &M) { 108 Type = M.Type; 109 switch (Type) { 110 case T_Null: 111 case T_Boolean: 112 case T_Double: 113 case T_Integer: 114 case T_UINT64: 115 memcpy(&Union, &M.Union, sizeof(Union)); 116 break; 117 case T_StringRef: 118 create<StringRef>(M.as<StringRef>()); 119 break; 120 case T_String: 121 create<std::string>(M.as<std::string>()); 122 break; 123 case T_Object: 124 create<json::Object>(M.as<json::Object>()); 125 break; 126 case T_Array: 127 create<json::Array>(M.as<json::Array>()); 128 break; 129 } 130 } 131 132 void Value::moveFrom(const Value &&M) { 133 Type = M.Type; 134 switch (Type) { 135 case T_Null: 136 case T_Boolean: 137 case T_Double: 138 case T_Integer: 139 case T_UINT64: 140 memcpy(&Union, &M.Union, sizeof(Union)); 141 break; 142 case T_StringRef: 143 create<StringRef>(M.as<StringRef>()); 144 break; 145 case T_String: 146 create<std::string>(std::move(M.as<std::string>())); 147 M.Type = T_Null; 148 break; 149 case T_Object: 150 create<json::Object>(std::move(M.as<json::Object>())); 151 M.Type = T_Null; 152 break; 153 case T_Array: 154 create<json::Array>(std::move(M.as<json::Array>())); 155 M.Type = T_Null; 156 break; 157 } 158 } 159 160 void Value::destroy() { 161 switch (Type) { 162 case T_Null: 163 case T_Boolean: 164 case T_Double: 165 case T_Integer: 166 case T_UINT64: 167 break; 168 case T_StringRef: 169 as<StringRef>().~StringRef(); 170 break; 171 case T_String: 172 as<std::string>().~basic_string(); 173 break; 174 case T_Object: 175 as<json::Object>().~Object(); 176 break; 177 case T_Array: 178 as<json::Array>().~Array(); 179 break; 180 } 181 } 182 183 bool operator==(const Value &L, const Value &R) { 184 if (L.kind() != R.kind()) 185 return false; 186 switch (L.kind()) { 187 case Value::Null: 188 return *L.getAsNull() == *R.getAsNull(); 189 case Value::Boolean: 190 return *L.getAsBoolean() == *R.getAsBoolean(); 191 case Value::Number: 192 // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323 193 // The same integer must convert to the same double, per the standard. 194 // However we see 64-vs-80-bit precision comparisons with gcc-7 -O3 -m32. 195 // So we avoid floating point promotion for exact comparisons. 196 if (L.Type == Value::T_Integer || R.Type == Value::T_Integer) 197 return L.getAsInteger() == R.getAsInteger(); 198 return *L.getAsNumber() == *R.getAsNumber(); 199 case Value::String: 200 return *L.getAsString() == *R.getAsString(); 201 case Value::Array: 202 return *L.getAsArray() == *R.getAsArray(); 203 case Value::Object: 204 return *L.getAsObject() == *R.getAsObject(); 205 } 206 llvm_unreachable("Unknown value kind"); 207 } 208 209 void Path::report(llvm::StringLiteral Msg) { 210 // Walk up to the root context, and count the number of segments. 211 unsigned Count = 0; 212 const Path *P; 213 for (P = this; P->Parent != nullptr; P = P->Parent) 214 ++Count; 215 Path::Root *R = P->Seg.root(); 216 // Fill in the error message and copy the path (in reverse order). 217 R->ErrorMessage = Msg; 218 R->ErrorPath.resize(Count); 219 auto It = R->ErrorPath.begin(); 220 for (P = this; P->Parent != nullptr; P = P->Parent) 221 *It++ = P->Seg; 222 } 223 224 Error Path::Root::getError() const { 225 std::string S; 226 raw_string_ostream OS(S); 227 OS << (ErrorMessage.empty() ? "invalid JSON contents" : ErrorMessage); 228 if (ErrorPath.empty()) { 229 if (!Name.empty()) 230 OS << " when parsing " << Name; 231 } else { 232 OS << " at " << (Name.empty() ? "(root)" : Name); 233 for (const Path::Segment &S : llvm::reverse(ErrorPath)) { 234 if (S.isField()) 235 OS << '.' << S.field(); 236 else 237 OS << '[' << S.index() << ']'; 238 } 239 } 240 return createStringError(llvm::inconvertibleErrorCode(), OS.str()); 241 } 242 243 namespace { 244 245 std::vector<const Object::value_type *> sortedElements(const Object &O) { 246 std::vector<const Object::value_type *> Elements; 247 for (const auto &E : O) 248 Elements.push_back(&E); 249 llvm::sort(Elements, 250 [](const Object::value_type *L, const Object::value_type *R) { 251 return L->first < R->first; 252 }); 253 return Elements; 254 } 255 256 // Prints a one-line version of a value that isn't our main focus. 257 // We interleave writes to OS and JOS, exploiting the lack of extra buffering. 258 // This is OK as we own the implementation. 259 void abbreviate(const Value &V, OStream &JOS) { 260 switch (V.kind()) { 261 case Value::Array: 262 JOS.rawValue(V.getAsArray()->empty() ? "[]" : "[ ... ]"); 263 break; 264 case Value::Object: 265 JOS.rawValue(V.getAsObject()->empty() ? "{}" : "{ ... }"); 266 break; 267 case Value::String: { 268 llvm::StringRef S = *V.getAsString(); 269 if (S.size() < 40) { 270 JOS.value(V); 271 } else { 272 std::string Truncated = fixUTF8(S.take_front(37)); 273 Truncated.append("..."); 274 JOS.value(Truncated); 275 } 276 break; 277 } 278 default: 279 JOS.value(V); 280 } 281 } 282 283 // Prints a semi-expanded version of a value that is our main focus. 284 // Array/Object entries are printed, but not recursively as they may be huge. 285 void abbreviateChildren(const Value &V, OStream &JOS) { 286 switch (V.kind()) { 287 case Value::Array: 288 JOS.array([&] { 289 for (const auto &I : *V.getAsArray()) 290 abbreviate(I, JOS); 291 }); 292 break; 293 case Value::Object: 294 JOS.object([&] { 295 for (const auto *KV : sortedElements(*V.getAsObject())) { 296 JOS.attributeBegin(KV->first); 297 abbreviate(KV->second, JOS); 298 JOS.attributeEnd(); 299 } 300 }); 301 break; 302 default: 303 JOS.value(V); 304 } 305 } 306 307 } // namespace 308 309 void Path::Root::printErrorContext(const Value &R, raw_ostream &OS) const { 310 OStream JOS(OS, /*IndentSize=*/2); 311 // PrintValue recurses down the path, printing the ancestors of our target. 312 // Siblings of nodes along the path are printed with abbreviate(), and the 313 // target itself is printed with the somewhat richer abbreviateChildren(). 314 // 'Recurse' is the lambda itself, to allow recursive calls. 315 auto PrintValue = [&](const Value &V, ArrayRef<Segment> Path, auto &Recurse) { 316 // Print the target node itself, with the error as a comment. 317 // Also used if we can't follow our path, e.g. it names a field that 318 // *should* exist but doesn't. 319 auto HighlightCurrent = [&] { 320 std::string Comment = "error: "; 321 Comment.append(ErrorMessage.data(), ErrorMessage.size()); 322 JOS.comment(Comment); 323 abbreviateChildren(V, JOS); 324 }; 325 if (Path.empty()) // We reached our target. 326 return HighlightCurrent(); 327 const Segment &S = Path.back(); // Path is in reverse order. 328 if (S.isField()) { 329 // Current node is an object, path names a field. 330 llvm::StringRef FieldName = S.field(); 331 const Object *O = V.getAsObject(); 332 if (!O || !O->get(FieldName)) 333 return HighlightCurrent(); 334 JOS.object([&] { 335 for (const auto *KV : sortedElements(*O)) { 336 JOS.attributeBegin(KV->first); 337 if (FieldName.equals(KV->first)) 338 Recurse(KV->second, Path.drop_back(), Recurse); 339 else 340 abbreviate(KV->second, JOS); 341 JOS.attributeEnd(); 342 } 343 }); 344 } else { 345 // Current node is an array, path names an element. 346 const Array *A = V.getAsArray(); 347 if (!A || S.index() >= A->size()) 348 return HighlightCurrent(); 349 JOS.array([&] { 350 unsigned Current = 0; 351 for (const auto &V : *A) { 352 if (Current++ == S.index()) 353 Recurse(V, Path.drop_back(), Recurse); 354 else 355 abbreviate(V, JOS); 356 } 357 }); 358 } 359 }; 360 PrintValue(R, ErrorPath, PrintValue); 361 } 362 363 namespace { 364 // Simple recursive-descent JSON parser. 365 class Parser { 366 public: 367 Parser(StringRef JSON) 368 : Start(JSON.begin()), P(JSON.begin()), End(JSON.end()) {} 369 370 bool checkUTF8() { 371 size_t ErrOffset; 372 if (isUTF8(StringRef(Start, End - Start), &ErrOffset)) 373 return true; 374 P = Start + ErrOffset; // For line/column calculation. 375 return parseError("Invalid UTF-8 sequence"); 376 } 377 378 bool parseValue(Value &Out); 379 380 bool assertEnd() { 381 eatWhitespace(); 382 if (P == End) 383 return true; 384 return parseError("Text after end of document"); 385 } 386 387 Error takeError() { 388 assert(Err); 389 return std::move(*Err); 390 } 391 392 private: 393 void eatWhitespace() { 394 while (P != End && (*P == ' ' || *P == '\r' || *P == '\n' || *P == '\t')) 395 ++P; 396 } 397 398 // On invalid syntax, parseX() functions return false and set Err. 399 bool parseNumber(char First, Value &Out); 400 bool parseString(std::string &Out); 401 bool parseUnicode(std::string &Out); 402 bool parseError(const char *Msg); // always returns false 403 404 char next() { return P == End ? 0 : *P++; } 405 char peek() { return P == End ? 0 : *P; } 406 static bool isNumber(char C) { 407 return C == '0' || C == '1' || C == '2' || C == '3' || C == '4' || 408 C == '5' || C == '6' || C == '7' || C == '8' || C == '9' || 409 C == 'e' || C == 'E' || C == '+' || C == '-' || C == '.'; 410 } 411 412 std::optional<Error> Err; 413 const char *Start, *P, *End; 414 }; 415 416 bool Parser::parseValue(Value &Out) { 417 eatWhitespace(); 418 if (P == End) 419 return parseError("Unexpected EOF"); 420 switch (char C = next()) { 421 // Bare null/true/false are easy - first char identifies them. 422 case 'n': 423 Out = nullptr; 424 return (next() == 'u' && next() == 'l' && next() == 'l') || 425 parseError("Invalid JSON value (null?)"); 426 case 't': 427 Out = true; 428 return (next() == 'r' && next() == 'u' && next() == 'e') || 429 parseError("Invalid JSON value (true?)"); 430 case 'f': 431 Out = false; 432 return (next() == 'a' && next() == 'l' && next() == 's' && next() == 'e') || 433 parseError("Invalid JSON value (false?)"); 434 case '"': { 435 std::string S; 436 if (parseString(S)) { 437 Out = std::move(S); 438 return true; 439 } 440 return false; 441 } 442 case '[': { 443 Out = Array{}; 444 Array &A = *Out.getAsArray(); 445 eatWhitespace(); 446 if (peek() == ']') { 447 ++P; 448 return true; 449 } 450 for (;;) { 451 A.emplace_back(nullptr); 452 if (!parseValue(A.back())) 453 return false; 454 eatWhitespace(); 455 switch (next()) { 456 case ',': 457 eatWhitespace(); 458 continue; 459 case ']': 460 return true; 461 default: 462 return parseError("Expected , or ] after array element"); 463 } 464 } 465 } 466 case '{': { 467 Out = Object{}; 468 Object &O = *Out.getAsObject(); 469 eatWhitespace(); 470 if (peek() == '}') { 471 ++P; 472 return true; 473 } 474 for (;;) { 475 if (next() != '"') 476 return parseError("Expected object key"); 477 std::string K; 478 if (!parseString(K)) 479 return false; 480 eatWhitespace(); 481 if (next() != ':') 482 return parseError("Expected : after object key"); 483 eatWhitespace(); 484 if (!parseValue(O[std::move(K)])) 485 return false; 486 eatWhitespace(); 487 switch (next()) { 488 case ',': 489 eatWhitespace(); 490 continue; 491 case '}': 492 return true; 493 default: 494 return parseError("Expected , or } after object property"); 495 } 496 } 497 } 498 default: 499 if (isNumber(C)) 500 return parseNumber(C, Out); 501 return parseError("Invalid JSON value"); 502 } 503 } 504 505 bool Parser::parseNumber(char First, Value &Out) { 506 // Read the number into a string. (Must be null-terminated for strto*). 507 SmallString<24> S; 508 S.push_back(First); 509 while (isNumber(peek())) 510 S.push_back(next()); 511 char *End; 512 // Try first to parse as integer, and if so preserve full 64 bits. 513 // We check for errno for out of bounds errors and for End == S.end() 514 // to make sure that the numeric string is not malformed. 515 errno = 0; 516 int64_t I = std::strtoll(S.c_str(), &End, 10); 517 if (End == S.end() && errno != ERANGE) { 518 Out = int64_t(I); 519 return true; 520 } 521 // strtroull has a special handling for negative numbers, but in this 522 // case we don't want to do that because negative numbers were already 523 // handled in the previous block. 524 if (First != '-') { 525 errno = 0; 526 uint64_t UI = std::strtoull(S.c_str(), &End, 10); 527 if (End == S.end() && errno != ERANGE) { 528 Out = UI; 529 return true; 530 } 531 } 532 // If it's not an integer 533 Out = std::strtod(S.c_str(), &End); 534 return End == S.end() || parseError("Invalid JSON value (number?)"); 535 } 536 537 bool Parser::parseString(std::string &Out) { 538 // leading quote was already consumed. 539 for (char C = next(); C != '"'; C = next()) { 540 if (LLVM_UNLIKELY(P == End)) 541 return parseError("Unterminated string"); 542 if (LLVM_UNLIKELY((C & 0x1f) == C)) 543 return parseError("Control character in string"); 544 if (LLVM_LIKELY(C != '\\')) { 545 Out.push_back(C); 546 continue; 547 } 548 // Handle escape sequence. 549 switch (C = next()) { 550 case '"': 551 case '\\': 552 case '/': 553 Out.push_back(C); 554 break; 555 case 'b': 556 Out.push_back('\b'); 557 break; 558 case 'f': 559 Out.push_back('\f'); 560 break; 561 case 'n': 562 Out.push_back('\n'); 563 break; 564 case 'r': 565 Out.push_back('\r'); 566 break; 567 case 't': 568 Out.push_back('\t'); 569 break; 570 case 'u': 571 if (!parseUnicode(Out)) 572 return false; 573 break; 574 default: 575 return parseError("Invalid escape sequence"); 576 } 577 } 578 return true; 579 } 580 581 static void encodeUtf8(uint32_t Rune, std::string &Out) { 582 if (Rune < 0x80) { 583 Out.push_back(Rune & 0x7F); 584 } else if (Rune < 0x800) { 585 uint8_t FirstByte = 0xC0 | ((Rune & 0x7C0) >> 6); 586 uint8_t SecondByte = 0x80 | (Rune & 0x3F); 587 Out.push_back(FirstByte); 588 Out.push_back(SecondByte); 589 } else if (Rune < 0x10000) { 590 uint8_t FirstByte = 0xE0 | ((Rune & 0xF000) >> 12); 591 uint8_t SecondByte = 0x80 | ((Rune & 0xFC0) >> 6); 592 uint8_t ThirdByte = 0x80 | (Rune & 0x3F); 593 Out.push_back(FirstByte); 594 Out.push_back(SecondByte); 595 Out.push_back(ThirdByte); 596 } else if (Rune < 0x110000) { 597 uint8_t FirstByte = 0xF0 | ((Rune & 0x1F0000) >> 18); 598 uint8_t SecondByte = 0x80 | ((Rune & 0x3F000) >> 12); 599 uint8_t ThirdByte = 0x80 | ((Rune & 0xFC0) >> 6); 600 uint8_t FourthByte = 0x80 | (Rune & 0x3F); 601 Out.push_back(FirstByte); 602 Out.push_back(SecondByte); 603 Out.push_back(ThirdByte); 604 Out.push_back(FourthByte); 605 } else { 606 llvm_unreachable("Invalid codepoint"); 607 } 608 } 609 610 // Parse a UTF-16 \uNNNN escape sequence. "\u" has already been consumed. 611 // May parse several sequential escapes to ensure proper surrogate handling. 612 // We do not use ConvertUTF.h, it can't accept and replace unpaired surrogates. 613 // These are invalid Unicode but valid JSON (RFC 8259, section 8.2). 614 bool Parser::parseUnicode(std::string &Out) { 615 // Invalid UTF is not a JSON error (RFC 8529§8.2). It gets replaced by U+FFFD. 616 auto Invalid = [&] { Out.append(/* UTF-8 */ {'\xef', '\xbf', '\xbd'}); }; 617 // Decodes 4 hex digits from the stream into Out, returns false on error. 618 auto Parse4Hex = [this](uint16_t &Out) -> bool { 619 Out = 0; 620 char Bytes[] = {next(), next(), next(), next()}; 621 for (unsigned char C : Bytes) { 622 if (!std::isxdigit(C)) 623 return parseError("Invalid \\u escape sequence"); 624 Out <<= 4; 625 Out |= (C > '9') ? (C & ~0x20) - 'A' + 10 : (C - '0'); 626 } 627 return true; 628 }; 629 uint16_t First; // UTF-16 code unit from the first \u escape. 630 if (!Parse4Hex(First)) 631 return false; 632 633 // We loop to allow proper surrogate-pair error handling. 634 while (true) { 635 // Case 1: the UTF-16 code unit is already a codepoint in the BMP. 636 if (LLVM_LIKELY(First < 0xD800 || First >= 0xE000)) { 637 encodeUtf8(First, Out); 638 return true; 639 } 640 641 // Case 2: it's an (unpaired) trailing surrogate. 642 if (LLVM_UNLIKELY(First >= 0xDC00)) { 643 Invalid(); 644 return true; 645 } 646 647 // Case 3: it's a leading surrogate. We expect a trailing one next. 648 // Case 3a: there's no trailing \u escape. Don't advance in the stream. 649 if (LLVM_UNLIKELY(P + 2 > End || *P != '\\' || *(P + 1) != 'u')) { 650 Invalid(); // Leading surrogate was unpaired. 651 return true; 652 } 653 P += 2; 654 uint16_t Second; 655 if (!Parse4Hex(Second)) 656 return false; 657 // Case 3b: there was another \u escape, but it wasn't a trailing surrogate. 658 if (LLVM_UNLIKELY(Second < 0xDC00 || Second >= 0xE000)) { 659 Invalid(); // Leading surrogate was unpaired. 660 First = Second; // Second escape still needs to be processed. 661 continue; 662 } 663 // Case 3c: a valid surrogate pair encoding an astral codepoint. 664 encodeUtf8(0x10000 | ((First - 0xD800) << 10) | (Second - 0xDC00), Out); 665 return true; 666 } 667 } 668 669 bool Parser::parseError(const char *Msg) { 670 int Line = 1; 671 const char *StartOfLine = Start; 672 for (const char *X = Start; X < P; ++X) { 673 if (*X == 0x0A) { 674 ++Line; 675 StartOfLine = X + 1; 676 } 677 } 678 Err.emplace( 679 std::make_unique<ParseError>(Msg, Line, P - StartOfLine, P - Start)); 680 return false; 681 } 682 } // namespace 683 684 Expected<Value> parse(StringRef JSON) { 685 Parser P(JSON); 686 Value E = nullptr; 687 if (P.checkUTF8()) 688 if (P.parseValue(E)) 689 if (P.assertEnd()) 690 return std::move(E); 691 return P.takeError(); 692 } 693 char ParseError::ID = 0; 694 695 bool isUTF8(llvm::StringRef S, size_t *ErrOffset) { 696 // Fast-path for ASCII, which is valid UTF-8. 697 if (LLVM_LIKELY(isASCII(S))) 698 return true; 699 700 const UTF8 *Data = reinterpret_cast<const UTF8 *>(S.data()), *Rest = Data; 701 if (LLVM_LIKELY(isLegalUTF8String(&Rest, Data + S.size()))) 702 return true; 703 704 if (ErrOffset) 705 *ErrOffset = Rest - Data; 706 return false; 707 } 708 709 std::string fixUTF8(llvm::StringRef S) { 710 // This isn't particularly efficient, but is only for error-recovery. 711 std::vector<UTF32> Codepoints(S.size()); // 1 codepoint per byte suffices. 712 const UTF8 *In8 = reinterpret_cast<const UTF8 *>(S.data()); 713 UTF32 *Out32 = Codepoints.data(); 714 ConvertUTF8toUTF32(&In8, In8 + S.size(), &Out32, Out32 + Codepoints.size(), 715 lenientConversion); 716 Codepoints.resize(Out32 - Codepoints.data()); 717 std::string Res(4 * Codepoints.size(), 0); // 4 bytes per codepoint suffice 718 const UTF32 *In32 = Codepoints.data(); 719 UTF8 *Out8 = reinterpret_cast<UTF8 *>(&Res[0]); 720 ConvertUTF32toUTF8(&In32, In32 + Codepoints.size(), &Out8, Out8 + Res.size(), 721 strictConversion); 722 Res.resize(reinterpret_cast<char *>(Out8) - Res.data()); 723 return Res; 724 } 725 726 static void quote(llvm::raw_ostream &OS, llvm::StringRef S) { 727 OS << '\"'; 728 for (unsigned char C : S) { 729 if (C == 0x22 || C == 0x5C) 730 OS << '\\'; 731 if (C >= 0x20) { 732 OS << C; 733 continue; 734 } 735 OS << '\\'; 736 switch (C) { 737 // A few characters are common enough to make short escapes worthwhile. 738 case '\t': 739 OS << 't'; 740 break; 741 case '\n': 742 OS << 'n'; 743 break; 744 case '\r': 745 OS << 'r'; 746 break; 747 default: 748 OS << 'u'; 749 llvm::write_hex(OS, C, llvm::HexPrintStyle::Lower, 4); 750 break; 751 } 752 } 753 OS << '\"'; 754 } 755 756 void llvm::json::OStream::value(const Value &V) { 757 switch (V.kind()) { 758 case Value::Null: 759 valueBegin(); 760 OS << "null"; 761 return; 762 case Value::Boolean: 763 valueBegin(); 764 OS << (*V.getAsBoolean() ? "true" : "false"); 765 return; 766 case Value::Number: 767 valueBegin(); 768 if (V.Type == Value::T_Integer) 769 OS << *V.getAsInteger(); 770 else if (V.Type == Value::T_UINT64) 771 OS << *V.getAsUINT64(); 772 else 773 OS << format("%.*g", std::numeric_limits<double>::max_digits10, 774 *V.getAsNumber()); 775 return; 776 case Value::String: 777 valueBegin(); 778 quote(OS, *V.getAsString()); 779 return; 780 case Value::Array: 781 return array([&] { 782 for (const Value &E : *V.getAsArray()) 783 value(E); 784 }); 785 case Value::Object: 786 return object([&] { 787 for (const Object::value_type *E : sortedElements(*V.getAsObject())) 788 attribute(E->first, E->second); 789 }); 790 } 791 } 792 793 void llvm::json::OStream::valueBegin() { 794 assert(Stack.back().Ctx != Object && "Only attributes allowed here"); 795 if (Stack.back().HasValue) { 796 assert(Stack.back().Ctx != Singleton && "Only one value allowed here"); 797 OS << ','; 798 } 799 if (Stack.back().Ctx == Array) 800 newline(); 801 flushComment(); 802 Stack.back().HasValue = true; 803 } 804 805 void OStream::comment(llvm::StringRef Comment) { 806 assert(PendingComment.empty() && "Only one comment per value!"); 807 PendingComment = Comment; 808 } 809 810 void OStream::flushComment() { 811 if (PendingComment.empty()) 812 return; 813 OS << (IndentSize ? "/* " : "/*"); 814 // Be sure not to accidentally emit "*/". Transform to "* /". 815 while (!PendingComment.empty()) { 816 auto Pos = PendingComment.find("*/"); 817 if (Pos == StringRef::npos) { 818 OS << PendingComment; 819 PendingComment = ""; 820 } else { 821 OS << PendingComment.take_front(Pos) << "* /"; 822 PendingComment = PendingComment.drop_front(Pos + 2); 823 } 824 } 825 OS << (IndentSize ? " */" : "*/"); 826 // Comments are on their own line unless attached to an attribute value. 827 if (Stack.size() > 1 && Stack.back().Ctx == Singleton) { 828 if (IndentSize) 829 OS << ' '; 830 } else { 831 newline(); 832 } 833 } 834 835 void llvm::json::OStream::newline() { 836 if (IndentSize) { 837 OS.write('\n'); 838 OS.indent(Indent); 839 } 840 } 841 842 void llvm::json::OStream::arrayBegin() { 843 valueBegin(); 844 Stack.emplace_back(); 845 Stack.back().Ctx = Array; 846 Indent += IndentSize; 847 OS << '['; 848 } 849 850 void llvm::json::OStream::arrayEnd() { 851 assert(Stack.back().Ctx == Array); 852 Indent -= IndentSize; 853 if (Stack.back().HasValue) 854 newline(); 855 OS << ']'; 856 assert(PendingComment.empty()); 857 Stack.pop_back(); 858 assert(!Stack.empty()); 859 } 860 861 void llvm::json::OStream::objectBegin() { 862 valueBegin(); 863 Stack.emplace_back(); 864 Stack.back().Ctx = Object; 865 Indent += IndentSize; 866 OS << '{'; 867 } 868 869 void llvm::json::OStream::objectEnd() { 870 assert(Stack.back().Ctx == Object); 871 Indent -= IndentSize; 872 if (Stack.back().HasValue) 873 newline(); 874 OS << '}'; 875 assert(PendingComment.empty()); 876 Stack.pop_back(); 877 assert(!Stack.empty()); 878 } 879 880 void llvm::json::OStream::attributeBegin(llvm::StringRef Key) { 881 assert(Stack.back().Ctx == Object); 882 if (Stack.back().HasValue) 883 OS << ','; 884 newline(); 885 flushComment(); 886 Stack.back().HasValue = true; 887 Stack.emplace_back(); 888 Stack.back().Ctx = Singleton; 889 if (LLVM_LIKELY(isUTF8(Key))) { 890 quote(OS, Key); 891 } else { 892 assert(false && "Invalid UTF-8 in attribute key"); 893 quote(OS, fixUTF8(Key)); 894 } 895 OS.write(':'); 896 if (IndentSize) 897 OS.write(' '); 898 } 899 900 void llvm::json::OStream::attributeEnd() { 901 assert(Stack.back().Ctx == Singleton); 902 assert(Stack.back().HasValue && "Attribute must have a value"); 903 assert(PendingComment.empty()); 904 Stack.pop_back(); 905 assert(Stack.back().Ctx == Object); 906 } 907 908 raw_ostream &llvm::json::OStream::rawValueBegin() { 909 valueBegin(); 910 Stack.emplace_back(); 911 Stack.back().Ctx = RawValue; 912 return OS; 913 } 914 915 void llvm::json::OStream::rawValueEnd() { 916 assert(Stack.back().Ctx == RawValue); 917 Stack.pop_back(); 918 } 919 920 } // namespace json 921 } // namespace llvm 922 923 void llvm::format_provider<llvm::json::Value>::format( 924 const llvm::json::Value &E, raw_ostream &OS, StringRef Options) { 925 unsigned IndentAmount = 0; 926 if (!Options.empty() && Options.getAsInteger(/*Radix=*/10, IndentAmount)) 927 llvm_unreachable("json::Value format options should be an integer"); 928 json::OStream(OS, IndentAmount).value(E); 929 } 930 931