//=== JSON.cpp - JSON value, parsing and serialization - C++ -----------*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// #include "llvm/Support/JSON.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/Error.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/NativeFormatting.h" #include #include namespace llvm { namespace json { Value &Object::operator[](const ObjectKey &K) { return try_emplace(K, nullptr).first->getSecond(); } Value &Object::operator[](ObjectKey &&K) { return try_emplace(std::move(K), nullptr).first->getSecond(); } Value *Object::get(StringRef K) { auto I = find(K); if (I == end()) return nullptr; return &I->second; } const Value *Object::get(StringRef K) const { auto I = find(K); if (I == end()) return nullptr; return &I->second; } std::optional Object::getNull(StringRef K) const { if (auto *V = get(K)) return V->getAsNull(); return std::nullopt; } std::optional Object::getBoolean(StringRef K) const { if (auto *V = get(K)) return V->getAsBoolean(); return std::nullopt; } std::optional Object::getNumber(StringRef K) const { if (auto *V = get(K)) return V->getAsNumber(); return std::nullopt; } std::optional Object::getInteger(StringRef K) const { if (auto *V = get(K)) return V->getAsInteger(); return std::nullopt; } std::optional Object::getString(StringRef K) const { if (auto *V = get(K)) return V->getAsString(); return std::nullopt; } const json::Object *Object::getObject(StringRef K) const { if (auto *V = get(K)) return V->getAsObject(); return nullptr; } json::Object *Object::getObject(StringRef K) { if (auto *V = get(K)) return V->getAsObject(); return nullptr; } const json::Array *Object::getArray(StringRef K) const { if (auto *V = get(K)) return V->getAsArray(); return nullptr; } json::Array *Object::getArray(StringRef K) { if (auto *V = get(K)) return V->getAsArray(); return nullptr; } bool operator==(const Object &LHS, const Object &RHS) { if (LHS.size() != RHS.size()) return false; for (const auto &L : LHS) { auto R = RHS.find(L.first); if (R == RHS.end() || L.second != R->second) return false; } return true; } Array::Array(std::initializer_list Elements) { V.reserve(Elements.size()); for (const Value &V : Elements) { emplace_back(nullptr); back().moveFrom(std::move(V)); } } Value::Value(std::initializer_list Elements) : Value(json::Array(Elements)) {} void Value::copyFrom(const Value &M) { Type = M.Type; switch (Type) { case T_Null: case T_Boolean: case T_Double: case T_Integer: case T_UINT64: memcpy(&Union, &M.Union, sizeof(Union)); break; case T_StringRef: create(M.as()); break; case T_String: create(M.as()); break; case T_Object: create(M.as()); break; case T_Array: create(M.as()); break; } } void Value::moveFrom(const Value &&M) { Type = M.Type; switch (Type) { case T_Null: case T_Boolean: case T_Double: case T_Integer: case T_UINT64: memcpy(&Union, &M.Union, sizeof(Union)); break; case T_StringRef: create(M.as()); break; case T_String: create(std::move(M.as())); M.Type = T_Null; break; case T_Object: create(std::move(M.as())); M.Type = T_Null; break; case T_Array: create(std::move(M.as())); M.Type = T_Null; break; } } void Value::destroy() { switch (Type) { case T_Null: case T_Boolean: case T_Double: case T_Integer: case T_UINT64: break; case T_StringRef: as().~StringRef(); break; case T_String: as().~basic_string(); break; case T_Object: as().~Object(); break; case T_Array: as().~Array(); break; } } bool operator==(const Value &L, const Value &R) { if (L.kind() != R.kind()) return false; switch (L.kind()) { case Value::Null: return *L.getAsNull() == *R.getAsNull(); case Value::Boolean: return *L.getAsBoolean() == *R.getAsBoolean(); case Value::Number: // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=323 // The same integer must convert to the same double, per the standard. // However we see 64-vs-80-bit precision comparisons with gcc-7 -O3 -m32. // So we avoid floating point promotion for exact comparisons. if (L.Type == Value::T_Integer || R.Type == Value::T_Integer) return L.getAsInteger() == R.getAsInteger(); return *L.getAsNumber() == *R.getAsNumber(); case Value::String: return *L.getAsString() == *R.getAsString(); case Value::Array: return *L.getAsArray() == *R.getAsArray(); case Value::Object: return *L.getAsObject() == *R.getAsObject(); } llvm_unreachable("Unknown value kind"); } void Path::report(llvm::StringLiteral Msg) { // Walk up to the root context, and count the number of segments. unsigned Count = 0; const Path *P; for (P = this; P->Parent != nullptr; P = P->Parent) ++Count; Path::Root *R = P->Seg.root(); // Fill in the error message and copy the path (in reverse order). R->ErrorMessage = Msg; R->ErrorPath.resize(Count); auto It = R->ErrorPath.begin(); for (P = this; P->Parent != nullptr; P = P->Parent) *It++ = P->Seg; } Error Path::Root::getError() const { std::string S; raw_string_ostream OS(S); OS << (ErrorMessage.empty() ? "invalid JSON contents" : ErrorMessage); if (ErrorPath.empty()) { if (!Name.empty()) OS << " when parsing " << Name; } else { OS << " at " << (Name.empty() ? "(root)" : Name); for (const Path::Segment &S : llvm::reverse(ErrorPath)) { if (S.isField()) OS << '.' << S.field(); else OS << '[' << S.index() << ']'; } } return createStringError(llvm::inconvertibleErrorCode(), OS.str()); } namespace { std::vector sortedElements(const Object &O) { std::vector Elements; for (const auto &E : O) Elements.push_back(&E); llvm::sort(Elements, [](const Object::value_type *L, const Object::value_type *R) { return L->first < R->first; }); return Elements; } // Prints a one-line version of a value that isn't our main focus. // We interleave writes to OS and JOS, exploiting the lack of extra buffering. // This is OK as we own the implementation. void abbreviate(const Value &V, OStream &JOS) { switch (V.kind()) { case Value::Array: JOS.rawValue(V.getAsArray()->empty() ? "[]" : "[ ... ]"); break; case Value::Object: JOS.rawValue(V.getAsObject()->empty() ? "{}" : "{ ... }"); break; case Value::String: { llvm::StringRef S = *V.getAsString(); if (S.size() < 40) { JOS.value(V); } else { std::string Truncated = fixUTF8(S.take_front(37)); Truncated.append("..."); JOS.value(Truncated); } break; } default: JOS.value(V); } } // Prints a semi-expanded version of a value that is our main focus. // Array/Object entries are printed, but not recursively as they may be huge. void abbreviateChildren(const Value &V, OStream &JOS) { switch (V.kind()) { case Value::Array: JOS.array([&] { for (const auto &I : *V.getAsArray()) abbreviate(I, JOS); }); break; case Value::Object: JOS.object([&] { for (const auto *KV : sortedElements(*V.getAsObject())) { JOS.attributeBegin(KV->first); abbreviate(KV->second, JOS); JOS.attributeEnd(); } }); break; default: JOS.value(V); } } } // namespace void Path::Root::printErrorContext(const Value &R, raw_ostream &OS) const { OStream JOS(OS, /*IndentSize=*/2); // PrintValue recurses down the path, printing the ancestors of our target. // Siblings of nodes along the path are printed with abbreviate(), and the // target itself is printed with the somewhat richer abbreviateChildren(). // 'Recurse' is the lambda itself, to allow recursive calls. auto PrintValue = [&](const Value &V, ArrayRef Path, auto &Recurse) { // Print the target node itself, with the error as a comment. // Also used if we can't follow our path, e.g. it names a field that // *should* exist but doesn't. auto HighlightCurrent = [&] { std::string Comment = "error: "; Comment.append(ErrorMessage.data(), ErrorMessage.size()); JOS.comment(Comment); abbreviateChildren(V, JOS); }; if (Path.empty()) // We reached our target. return HighlightCurrent(); const Segment &S = Path.back(); // Path is in reverse order. if (S.isField()) { // Current node is an object, path names a field. llvm::StringRef FieldName = S.field(); const Object *O = V.getAsObject(); if (!O || !O->get(FieldName)) return HighlightCurrent(); JOS.object([&] { for (const auto *KV : sortedElements(*O)) { JOS.attributeBegin(KV->first); if (FieldName.equals(KV->first)) Recurse(KV->second, Path.drop_back(), Recurse); else abbreviate(KV->second, JOS); JOS.attributeEnd(); } }); } else { // Current node is an array, path names an element. const Array *A = V.getAsArray(); if (!A || S.index() >= A->size()) return HighlightCurrent(); JOS.array([&] { unsigned Current = 0; for (const auto &V : *A) { if (Current++ == S.index()) Recurse(V, Path.drop_back(), Recurse); else abbreviate(V, JOS); } }); } }; PrintValue(R, ErrorPath, PrintValue); } namespace { // Simple recursive-descent JSON parser. class Parser { public: Parser(StringRef JSON) : Start(JSON.begin()), P(JSON.begin()), End(JSON.end()) {} bool checkUTF8() { size_t ErrOffset; if (isUTF8(StringRef(Start, End - Start), &ErrOffset)) return true; P = Start + ErrOffset; // For line/column calculation. return parseError("Invalid UTF-8 sequence"); } bool parseValue(Value &Out); bool assertEnd() { eatWhitespace(); if (P == End) return true; return parseError("Text after end of document"); } Error takeError() { assert(Err); return std::move(*Err); } private: void eatWhitespace() { while (P != End && (*P == ' ' || *P == '\r' || *P == '\n' || *P == '\t')) ++P; } // On invalid syntax, parseX() functions return false and set Err. bool parseNumber(char First, Value &Out); bool parseString(std::string &Out); bool parseUnicode(std::string &Out); bool parseError(const char *Msg); // always returns false char next() { return P == End ? 0 : *P++; } char peek() { return P == End ? 0 : *P; } static bool isNumber(char C) { return C == '0' || C == '1' || C == '2' || C == '3' || C == '4' || C == '5' || C == '6' || C == '7' || C == '8' || C == '9' || C == 'e' || C == 'E' || C == '+' || C == '-' || C == '.'; } std::optional Err; const char *Start, *P, *End; }; bool Parser::parseValue(Value &Out) { eatWhitespace(); if (P == End) return parseError("Unexpected EOF"); switch (char C = next()) { // Bare null/true/false are easy - first char identifies them. case 'n': Out = nullptr; return (next() == 'u' && next() == 'l' && next() == 'l') || parseError("Invalid JSON value (null?)"); case 't': Out = true; return (next() == 'r' && next() == 'u' && next() == 'e') || parseError("Invalid JSON value (true?)"); case 'f': Out = false; return (next() == 'a' && next() == 'l' && next() == 's' && next() == 'e') || parseError("Invalid JSON value (false?)"); case '"': { std::string S; if (parseString(S)) { Out = std::move(S); return true; } return false; } case '[': { Out = Array{}; Array &A = *Out.getAsArray(); eatWhitespace(); if (peek() == ']') { ++P; return true; } for (;;) { A.emplace_back(nullptr); if (!parseValue(A.back())) return false; eatWhitespace(); switch (next()) { case ',': eatWhitespace(); continue; case ']': return true; default: return parseError("Expected , or ] after array element"); } } } case '{': { Out = Object{}; Object &O = *Out.getAsObject(); eatWhitespace(); if (peek() == '}') { ++P; return true; } for (;;) { if (next() != '"') return parseError("Expected object key"); std::string K; if (!parseString(K)) return false; eatWhitespace(); if (next() != ':') return parseError("Expected : after object key"); eatWhitespace(); if (!parseValue(O[std::move(K)])) return false; eatWhitespace(); switch (next()) { case ',': eatWhitespace(); continue; case '}': return true; default: return parseError("Expected , or } after object property"); } } } default: if (isNumber(C)) return parseNumber(C, Out); return parseError("Invalid JSON value"); } } bool Parser::parseNumber(char First, Value &Out) { // Read the number into a string. (Must be null-terminated for strto*). SmallString<24> S; S.push_back(First); while (isNumber(peek())) S.push_back(next()); char *End; // Try first to parse as integer, and if so preserve full 64 bits. // We check for errno for out of bounds errors and for End == S.end() // to make sure that the numeric string is not malformed. errno = 0; int64_t I = std::strtoll(S.c_str(), &End, 10); if (End == S.end() && errno != ERANGE) { Out = int64_t(I); return true; } // strtroull has a special handling for negative numbers, but in this // case we don't want to do that because negative numbers were already // handled in the previous block. if (First != '-') { errno = 0; uint64_t UI = std::strtoull(S.c_str(), &End, 10); if (End == S.end() && errno != ERANGE) { Out = UI; return true; } } // If it's not an integer Out = std::strtod(S.c_str(), &End); return End == S.end() || parseError("Invalid JSON value (number?)"); } bool Parser::parseString(std::string &Out) { // leading quote was already consumed. for (char C = next(); C != '"'; C = next()) { if (LLVM_UNLIKELY(P == End)) return parseError("Unterminated string"); if (LLVM_UNLIKELY((C & 0x1f) == C)) return parseError("Control character in string"); if (LLVM_LIKELY(C != '\\')) { Out.push_back(C); continue; } // Handle escape sequence. switch (C = next()) { case '"': case '\\': case '/': Out.push_back(C); break; case 'b': Out.push_back('\b'); break; case 'f': Out.push_back('\f'); break; case 'n': Out.push_back('\n'); break; case 'r': Out.push_back('\r'); break; case 't': Out.push_back('\t'); break; case 'u': if (!parseUnicode(Out)) return false; break; default: return parseError("Invalid escape sequence"); } } return true; } static void encodeUtf8(uint32_t Rune, std::string &Out) { if (Rune < 0x80) { Out.push_back(Rune & 0x7F); } else if (Rune < 0x800) { uint8_t FirstByte = 0xC0 | ((Rune & 0x7C0) >> 6); uint8_t SecondByte = 0x80 | (Rune & 0x3F); Out.push_back(FirstByte); Out.push_back(SecondByte); } else if (Rune < 0x10000) { uint8_t FirstByte = 0xE0 | ((Rune & 0xF000) >> 12); uint8_t SecondByte = 0x80 | ((Rune & 0xFC0) >> 6); uint8_t ThirdByte = 0x80 | (Rune & 0x3F); Out.push_back(FirstByte); Out.push_back(SecondByte); Out.push_back(ThirdByte); } else if (Rune < 0x110000) { uint8_t FirstByte = 0xF0 | ((Rune & 0x1F0000) >> 18); uint8_t SecondByte = 0x80 | ((Rune & 0x3F000) >> 12); uint8_t ThirdByte = 0x80 | ((Rune & 0xFC0) >> 6); uint8_t FourthByte = 0x80 | (Rune & 0x3F); Out.push_back(FirstByte); Out.push_back(SecondByte); Out.push_back(ThirdByte); Out.push_back(FourthByte); } else { llvm_unreachable("Invalid codepoint"); } } // Parse a UTF-16 \uNNNN escape sequence. "\u" has already been consumed. // May parse several sequential escapes to ensure proper surrogate handling. // We do not use ConvertUTF.h, it can't accept and replace unpaired surrogates. // These are invalid Unicode but valid JSON (RFC 8259, section 8.2). bool Parser::parseUnicode(std::string &Out) { // Invalid UTF is not a JSON error (RFC 8529ยง8.2). It gets replaced by U+FFFD. auto Invalid = [&] { Out.append(/* UTF-8 */ {'\xef', '\xbf', '\xbd'}); }; // Decodes 4 hex digits from the stream into Out, returns false on error. auto Parse4Hex = [this](uint16_t &Out) -> bool { Out = 0; char Bytes[] = {next(), next(), next(), next()}; for (unsigned char C : Bytes) { if (!std::isxdigit(C)) return parseError("Invalid \\u escape sequence"); Out <<= 4; Out |= (C > '9') ? (C & ~0x20) - 'A' + 10 : (C - '0'); } return true; }; uint16_t First; // UTF-16 code unit from the first \u escape. if (!Parse4Hex(First)) return false; // We loop to allow proper surrogate-pair error handling. while (true) { // Case 1: the UTF-16 code unit is already a codepoint in the BMP. if (LLVM_LIKELY(First < 0xD800 || First >= 0xE000)) { encodeUtf8(First, Out); return true; } // Case 2: it's an (unpaired) trailing surrogate. if (LLVM_UNLIKELY(First >= 0xDC00)) { Invalid(); return true; } // Case 3: it's a leading surrogate. We expect a trailing one next. // Case 3a: there's no trailing \u escape. Don't advance in the stream. if (LLVM_UNLIKELY(P + 2 > End || *P != '\\' || *(P + 1) != 'u')) { Invalid(); // Leading surrogate was unpaired. return true; } P += 2; uint16_t Second; if (!Parse4Hex(Second)) return false; // Case 3b: there was another \u escape, but it wasn't a trailing surrogate. if (LLVM_UNLIKELY(Second < 0xDC00 || Second >= 0xE000)) { Invalid(); // Leading surrogate was unpaired. First = Second; // Second escape still needs to be processed. continue; } // Case 3c: a valid surrogate pair encoding an astral codepoint. encodeUtf8(0x10000 | ((First - 0xD800) << 10) | (Second - 0xDC00), Out); return true; } } bool Parser::parseError(const char *Msg) { int Line = 1; const char *StartOfLine = Start; for (const char *X = Start; X < P; ++X) { if (*X == 0x0A) { ++Line; StartOfLine = X + 1; } } Err.emplace( std::make_unique(Msg, Line, P - StartOfLine, P - Start)); return false; } } // namespace Expected parse(StringRef JSON) { Parser P(JSON); Value E = nullptr; if (P.checkUTF8()) if (P.parseValue(E)) if (P.assertEnd()) return std::move(E); return P.takeError(); } char ParseError::ID = 0; bool isUTF8(llvm::StringRef S, size_t *ErrOffset) { // Fast-path for ASCII, which is valid UTF-8. if (LLVM_LIKELY(isASCII(S))) return true; const UTF8 *Data = reinterpret_cast(S.data()), *Rest = Data; if (LLVM_LIKELY(isLegalUTF8String(&Rest, Data + S.size()))) return true; if (ErrOffset) *ErrOffset = Rest - Data; return false; } std::string fixUTF8(llvm::StringRef S) { // This isn't particularly efficient, but is only for error-recovery. std::vector Codepoints(S.size()); // 1 codepoint per byte suffices. const UTF8 *In8 = reinterpret_cast(S.data()); UTF32 *Out32 = Codepoints.data(); ConvertUTF8toUTF32(&In8, In8 + S.size(), &Out32, Out32 + Codepoints.size(), lenientConversion); Codepoints.resize(Out32 - Codepoints.data()); std::string Res(4 * Codepoints.size(), 0); // 4 bytes per codepoint suffice const UTF32 *In32 = Codepoints.data(); UTF8 *Out8 = reinterpret_cast(&Res[0]); ConvertUTF32toUTF8(&In32, In32 + Codepoints.size(), &Out8, Out8 + Res.size(), strictConversion); Res.resize(reinterpret_cast(Out8) - Res.data()); return Res; } static void quote(llvm::raw_ostream &OS, llvm::StringRef S) { OS << '\"'; for (unsigned char C : S) { if (C == 0x22 || C == 0x5C) OS << '\\'; if (C >= 0x20) { OS << C; continue; } OS << '\\'; switch (C) { // A few characters are common enough to make short escapes worthwhile. case '\t': OS << 't'; break; case '\n': OS << 'n'; break; case '\r': OS << 'r'; break; default: OS << 'u'; llvm::write_hex(OS, C, llvm::HexPrintStyle::Lower, 4); break; } } OS << '\"'; } void llvm::json::OStream::value(const Value &V) { switch (V.kind()) { case Value::Null: valueBegin(); OS << "null"; return; case Value::Boolean: valueBegin(); OS << (*V.getAsBoolean() ? "true" : "false"); return; case Value::Number: valueBegin(); if (V.Type == Value::T_Integer) OS << *V.getAsInteger(); else if (V.Type == Value::T_UINT64) OS << *V.getAsUINT64(); else OS << format("%.*g", std::numeric_limits::max_digits10, *V.getAsNumber()); return; case Value::String: valueBegin(); quote(OS, *V.getAsString()); return; case Value::Array: return array([&] { for (const Value &E : *V.getAsArray()) value(E); }); case Value::Object: return object([&] { for (const Object::value_type *E : sortedElements(*V.getAsObject())) attribute(E->first, E->second); }); } } void llvm::json::OStream::valueBegin() { assert(Stack.back().Ctx != Object && "Only attributes allowed here"); if (Stack.back().HasValue) { assert(Stack.back().Ctx != Singleton && "Only one value allowed here"); OS << ','; } if (Stack.back().Ctx == Array) newline(); flushComment(); Stack.back().HasValue = true; } void OStream::comment(llvm::StringRef Comment) { assert(PendingComment.empty() && "Only one comment per value!"); PendingComment = Comment; } void OStream::flushComment() { if (PendingComment.empty()) return; OS << (IndentSize ? "/* " : "/*"); // Be sure not to accidentally emit "*/". Transform to "* /". while (!PendingComment.empty()) { auto Pos = PendingComment.find("*/"); if (Pos == StringRef::npos) { OS << PendingComment; PendingComment = ""; } else { OS << PendingComment.take_front(Pos) << "* /"; PendingComment = PendingComment.drop_front(Pos + 2); } } OS << (IndentSize ? " */" : "*/"); // Comments are on their own line unless attached to an attribute value. if (Stack.size() > 1 && Stack.back().Ctx == Singleton) { if (IndentSize) OS << ' '; } else { newline(); } } void llvm::json::OStream::newline() { if (IndentSize) { OS.write('\n'); OS.indent(Indent); } } void llvm::json::OStream::arrayBegin() { valueBegin(); Stack.emplace_back(); Stack.back().Ctx = Array; Indent += IndentSize; OS << '['; } void llvm::json::OStream::arrayEnd() { assert(Stack.back().Ctx == Array); Indent -= IndentSize; if (Stack.back().HasValue) newline(); OS << ']'; assert(PendingComment.empty()); Stack.pop_back(); assert(!Stack.empty()); } void llvm::json::OStream::objectBegin() { valueBegin(); Stack.emplace_back(); Stack.back().Ctx = Object; Indent += IndentSize; OS << '{'; } void llvm::json::OStream::objectEnd() { assert(Stack.back().Ctx == Object); Indent -= IndentSize; if (Stack.back().HasValue) newline(); OS << '}'; assert(PendingComment.empty()); Stack.pop_back(); assert(!Stack.empty()); } void llvm::json::OStream::attributeBegin(llvm::StringRef Key) { assert(Stack.back().Ctx == Object); if (Stack.back().HasValue) OS << ','; newline(); flushComment(); Stack.back().HasValue = true; Stack.emplace_back(); Stack.back().Ctx = Singleton; if (LLVM_LIKELY(isUTF8(Key))) { quote(OS, Key); } else { assert(false && "Invalid UTF-8 in attribute key"); quote(OS, fixUTF8(Key)); } OS.write(':'); if (IndentSize) OS.write(' '); } void llvm::json::OStream::attributeEnd() { assert(Stack.back().Ctx == Singleton); assert(Stack.back().HasValue && "Attribute must have a value"); assert(PendingComment.empty()); Stack.pop_back(); assert(Stack.back().Ctx == Object); } raw_ostream &llvm::json::OStream::rawValueBegin() { valueBegin(); Stack.emplace_back(); Stack.back().Ctx = RawValue; return OS; } void llvm::json::OStream::rawValueEnd() { assert(Stack.back().Ctx == RawValue); Stack.pop_back(); } } // namespace json } // namespace llvm void llvm::format_provider::format( const llvm::json::Value &E, raw_ostream &OS, StringRef Options) { unsigned IndentAmount = 0; if (!Options.empty() && Options.getAsInteger(/*Radix=*/10, IndentAmount)) llvm_unreachable("json::Value format options should be an integer"); json::OStream(OS, IndentAmount).value(E); }