1 //===- COFFObjectFile.cpp - COFF object file implementation ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the COFFObjectFile class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/StringSwitch.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/BinaryFormat/COFF.h" 19 #include "llvm/Object/Binary.h" 20 #include "llvm/Object/COFF.h" 21 #include "llvm/Object/Error.h" 22 #include "llvm/Object/ObjectFile.h" 23 #include "llvm/Support/BinaryStreamReader.h" 24 #include "llvm/Support/Endian.h" 25 #include "llvm/Support/Error.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBufferRef.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cinttypes> 32 #include <cstddef> 33 #include <cstring> 34 #include <limits> 35 #include <memory> 36 #include <system_error> 37 38 using namespace llvm; 39 using namespace object; 40 41 using support::ulittle16_t; 42 using support::ulittle32_t; 43 using support::ulittle64_t; 44 using support::little16_t; 45 46 // Returns false if size is greater than the buffer size. And sets ec. 47 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 48 if (M.getBufferSize() < Size) { 49 EC = object_error::unexpected_eof; 50 return false; 51 } 52 return true; 53 } 54 55 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 56 // Returns unexpected_eof if error. 57 template <typename T> 58 static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, 59 const uint64_t Size = sizeof(T)) { 60 uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr); 61 if (Error E = Binary::checkOffset(M, Addr, Size)) 62 return E; 63 Obj = reinterpret_cast<const T *>(Addr); 64 return Error::success(); 65 } 66 67 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 68 // prefixed slashes. 69 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 70 assert(Str.size() <= 6 && "String too long, possible overflow."); 71 if (Str.size() > 6) 72 return true; 73 74 uint64_t Value = 0; 75 while (!Str.empty()) { 76 unsigned CharVal; 77 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 78 CharVal = Str[0] - 'A'; 79 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 80 CharVal = Str[0] - 'a' + 26; 81 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 82 CharVal = Str[0] - '0' + 52; 83 else if (Str[0] == '+') // 62 84 CharVal = 62; 85 else if (Str[0] == '/') // 63 86 CharVal = 63; 87 else 88 return true; 89 90 Value = (Value * 64) + CharVal; 91 Str = Str.substr(1); 92 } 93 94 if (Value > std::numeric_limits<uint32_t>::max()) 95 return true; 96 97 Result = static_cast<uint32_t>(Value); 98 return false; 99 } 100 101 template <typename coff_symbol_type> 102 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 103 const coff_symbol_type *Addr = 104 reinterpret_cast<const coff_symbol_type *>(Ref.p); 105 106 assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr))); 107 #ifndef NDEBUG 108 // Verify that the symbol points to a valid entry in the symbol table. 109 uintptr_t Offset = 110 reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base()); 111 112 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 113 "Symbol did not point to the beginning of a symbol"); 114 #endif 115 116 return Addr; 117 } 118 119 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 120 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 121 122 #ifndef NDEBUG 123 // Verify that the section points to a valid entry in the section table. 124 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 125 report_fatal_error("Section was outside of section table."); 126 127 uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) - 128 reinterpret_cast<uintptr_t>(SectionTable); 129 assert(Offset % sizeof(coff_section) == 0 && 130 "Section did not point to the beginning of a section"); 131 #endif 132 133 return Addr; 134 } 135 136 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 137 auto End = reinterpret_cast<uintptr_t>(StringTable); 138 if (SymbolTable16) { 139 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 140 Symb += 1 + Symb->NumberOfAuxSymbols; 141 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 142 } else if (SymbolTable32) { 143 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 144 Symb += 1 + Symb->NumberOfAuxSymbols; 145 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 146 } else { 147 llvm_unreachable("no symbol table pointer!"); 148 } 149 } 150 151 Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 152 return getSymbolName(getCOFFSymbol(Ref)); 153 } 154 155 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 156 return getCOFFSymbol(Ref).getValue(); 157 } 158 159 uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { 160 // MSVC/link.exe seems to align symbols to the next-power-of-2 161 // up to 32 bytes. 162 COFFSymbolRef Symb = getCOFFSymbol(Ref); 163 return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); 164 } 165 166 Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 167 uint64_t Result = cantFail(getSymbolValue(Ref)); 168 COFFSymbolRef Symb = getCOFFSymbol(Ref); 169 int32_t SectionNumber = Symb.getSectionNumber(); 170 171 if (Symb.isAnyUndefined() || Symb.isCommon() || 172 COFF::isReservedSectionNumber(SectionNumber)) 173 return Result; 174 175 Expected<const coff_section *> Section = getSection(SectionNumber); 176 if (!Section) 177 return Section.takeError(); 178 Result += (*Section)->VirtualAddress; 179 180 // The section VirtualAddress does not include ImageBase, and we want to 181 // return virtual addresses. 182 Result += getImageBase(); 183 184 return Result; 185 } 186 187 Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 188 COFFSymbolRef Symb = getCOFFSymbol(Ref); 189 int32_t SectionNumber = Symb.getSectionNumber(); 190 191 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 192 return SymbolRef::ST_Function; 193 if (Symb.isAnyUndefined()) 194 return SymbolRef::ST_Unknown; 195 if (Symb.isCommon()) 196 return SymbolRef::ST_Data; 197 if (Symb.isFileRecord()) 198 return SymbolRef::ST_File; 199 200 // TODO: perhaps we need a new symbol type ST_Section. 201 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 202 return SymbolRef::ST_Debug; 203 204 if (!COFF::isReservedSectionNumber(SectionNumber)) 205 return SymbolRef::ST_Data; 206 207 return SymbolRef::ST_Other; 208 } 209 210 Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 211 COFFSymbolRef Symb = getCOFFSymbol(Ref); 212 uint32_t Result = SymbolRef::SF_None; 213 214 if (Symb.isExternal() || Symb.isWeakExternal()) 215 Result |= SymbolRef::SF_Global; 216 217 if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { 218 Result |= SymbolRef::SF_Weak; 219 if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) 220 Result |= SymbolRef::SF_Undefined; 221 } 222 223 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 224 Result |= SymbolRef::SF_Absolute; 225 226 if (Symb.isFileRecord()) 227 Result |= SymbolRef::SF_FormatSpecific; 228 229 if (Symb.isSectionDefinition()) 230 Result |= SymbolRef::SF_FormatSpecific; 231 232 if (Symb.isCommon()) 233 Result |= SymbolRef::SF_Common; 234 235 if (Symb.isUndefined()) 236 Result |= SymbolRef::SF_Undefined; 237 238 return Result; 239 } 240 241 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 242 COFFSymbolRef Symb = getCOFFSymbol(Ref); 243 return Symb.getValue(); 244 } 245 246 Expected<section_iterator> 247 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 248 COFFSymbolRef Symb = getCOFFSymbol(Ref); 249 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 250 return section_end(); 251 Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber()); 252 if (!Sec) 253 return Sec.takeError(); 254 DataRefImpl Ret; 255 Ret.p = reinterpret_cast<uintptr_t>(*Sec); 256 return section_iterator(SectionRef(Ret, this)); 257 } 258 259 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 260 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 261 return Symb.getSectionNumber(); 262 } 263 264 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 265 const coff_section *Sec = toSec(Ref); 266 Sec += 1; 267 Ref.p = reinterpret_cast<uintptr_t>(Sec); 268 } 269 270 Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const { 271 const coff_section *Sec = toSec(Ref); 272 return getSectionName(Sec); 273 } 274 275 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 276 const coff_section *Sec = toSec(Ref); 277 uint64_t Result = Sec->VirtualAddress; 278 279 // The section VirtualAddress does not include ImageBase, and we want to 280 // return virtual addresses. 281 Result += getImageBase(); 282 return Result; 283 } 284 285 uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { 286 return toSec(Sec) - SectionTable; 287 } 288 289 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 290 return getSectionSize(toSec(Ref)); 291 } 292 293 Expected<ArrayRef<uint8_t>> 294 COFFObjectFile::getSectionContents(DataRefImpl Ref) const { 295 const coff_section *Sec = toSec(Ref); 296 ArrayRef<uint8_t> Res; 297 if (Error E = getSectionContents(Sec, Res)) 298 return std::move(E); 299 return Res; 300 } 301 302 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 303 const coff_section *Sec = toSec(Ref); 304 return Sec->getAlignment(); 305 } 306 307 bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { 308 return false; 309 } 310 311 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 312 const coff_section *Sec = toSec(Ref); 313 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 314 } 315 316 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 317 const coff_section *Sec = toSec(Ref); 318 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 319 } 320 321 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 322 const coff_section *Sec = toSec(Ref); 323 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 324 COFF::IMAGE_SCN_MEM_READ | 325 COFF::IMAGE_SCN_MEM_WRITE; 326 return (Sec->Characteristics & BssFlags) == BssFlags; 327 } 328 329 // The .debug sections are the only debug sections for COFF 330 // (\see MCObjectFileInfo.cpp). 331 bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const { 332 Expected<StringRef> SectionNameOrErr = getSectionName(Ref); 333 if (!SectionNameOrErr) { 334 // TODO: Report the error message properly. 335 consumeError(SectionNameOrErr.takeError()); 336 return false; 337 } 338 StringRef SectionName = SectionNameOrErr.get(); 339 return SectionName.startswith(".debug"); 340 } 341 342 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 343 uintptr_t Offset = 344 Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable); 345 assert((Offset % sizeof(coff_section)) == 0); 346 return (Offset / sizeof(coff_section)) + 1; 347 } 348 349 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 350 const coff_section *Sec = toSec(Ref); 351 // In COFF, a virtual section won't have any in-file 352 // content, so the file pointer to the content will be zero. 353 return Sec->PointerToRawData == 0; 354 } 355 356 static uint32_t getNumberOfRelocations(const coff_section *Sec, 357 MemoryBufferRef M, const uint8_t *base) { 358 // The field for the number of relocations in COFF section table is only 359 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 360 // NumberOfRelocations field, and the actual relocation count is stored in the 361 // VirtualAddress field in the first relocation entry. 362 if (Sec->hasExtendedRelocations()) { 363 const coff_relocation *FirstReloc; 364 if (Error E = getObject(FirstReloc, M, 365 reinterpret_cast<const coff_relocation *>( 366 base + Sec->PointerToRelocations))) { 367 consumeError(std::move(E)); 368 return 0; 369 } 370 // -1 to exclude this first relocation entry. 371 return FirstReloc->VirtualAddress - 1; 372 } 373 return Sec->NumberOfRelocations; 374 } 375 376 static const coff_relocation * 377 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 378 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 379 if (!NumRelocs) 380 return nullptr; 381 auto begin = reinterpret_cast<const coff_relocation *>( 382 Base + Sec->PointerToRelocations); 383 if (Sec->hasExtendedRelocations()) { 384 // Skip the first relocation entry repurposed to store the number of 385 // relocations. 386 begin++; 387 } 388 if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin), 389 sizeof(coff_relocation) * NumRelocs)) { 390 consumeError(std::move(E)); 391 return nullptr; 392 } 393 return begin; 394 } 395 396 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 397 const coff_section *Sec = toSec(Ref); 398 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 399 if (begin && Sec->VirtualAddress != 0) 400 report_fatal_error("Sections with relocations should have an address of 0"); 401 DataRefImpl Ret; 402 Ret.p = reinterpret_cast<uintptr_t>(begin); 403 return relocation_iterator(RelocationRef(Ret, this)); 404 } 405 406 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 407 const coff_section *Sec = toSec(Ref); 408 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 409 if (I) 410 I += getNumberOfRelocations(Sec, Data, base()); 411 DataRefImpl Ret; 412 Ret.p = reinterpret_cast<uintptr_t>(I); 413 return relocation_iterator(RelocationRef(Ret, this)); 414 } 415 416 // Initialize the pointer to the symbol table. 417 Error COFFObjectFile::initSymbolTablePtr() { 418 if (COFFHeader) 419 if (Error E = getObject( 420 SymbolTable16, Data, base() + getPointerToSymbolTable(), 421 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 422 return E; 423 424 if (COFFBigObjHeader) 425 if (Error E = getObject( 426 SymbolTable32, Data, base() + getPointerToSymbolTable(), 427 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 428 return E; 429 430 // Find string table. The first four byte of the string table contains the 431 // total size of the string table, including the size field itself. If the 432 // string table is empty, the value of the first four byte would be 4. 433 uint32_t StringTableOffset = getPointerToSymbolTable() + 434 getNumberOfSymbols() * getSymbolTableEntrySize(); 435 const uint8_t *StringTableAddr = base() + StringTableOffset; 436 const ulittle32_t *StringTableSizePtr; 437 if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) 438 return E; 439 StringTableSize = *StringTableSizePtr; 440 if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) 441 return E; 442 443 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 444 // tools like cvtres write a size of 0 for an empty table instead of 4. 445 if (StringTableSize < 4) 446 StringTableSize = 4; 447 448 // Check that the string table is null terminated if has any in it. 449 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 450 return createStringError(object_error::parse_failed, 451 "string table missing null terminator"); 452 return Error::success(); 453 } 454 455 uint64_t COFFObjectFile::getImageBase() const { 456 if (PE32Header) 457 return PE32Header->ImageBase; 458 else if (PE32PlusHeader) 459 return PE32PlusHeader->ImageBase; 460 // This actually comes up in practice. 461 return 0; 462 } 463 464 // Returns the file offset for the given VA. 465 Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 466 uint64_t ImageBase = getImageBase(); 467 uint64_t Rva = Addr - ImageBase; 468 assert(Rva <= UINT32_MAX); 469 return getRvaPtr((uint32_t)Rva, Res); 470 } 471 472 // Returns the file offset for the given RVA. 473 Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res, 474 const char *ErrorContext) const { 475 for (const SectionRef &S : sections()) { 476 const coff_section *Section = getCOFFSection(S); 477 uint32_t SectionStart = Section->VirtualAddress; 478 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 479 if (SectionStart <= Addr && Addr < SectionEnd) { 480 // A table/directory entry can be pointing to somewhere in a stripped 481 // section, in an object that went through `objcopy --only-keep-debug`. 482 // In this case we don't want to cause the parsing of the object file to 483 // fail, otherwise it will be impossible to use this object as debug info 484 // in LLDB. Return SectionStrippedError here so that 485 // COFFObjectFile::initialize can ignore the error. 486 // Somewhat common binaries may have RVAs pointing outside of the 487 // provided raw data. Instead of rejecting the binaries, just 488 // treat the section as stripped for these purposes. 489 if (Section->SizeOfRawData < Section->VirtualSize && 490 Addr >= SectionStart + Section->SizeOfRawData) { 491 return make_error<SectionStrippedError>(); 492 } 493 uint32_t Offset = Addr - SectionStart; 494 Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData + 495 Offset; 496 return Error::success(); 497 } 498 } 499 if (ErrorContext) 500 return createStringError(object_error::parse_failed, 501 "RVA 0x%" PRIx32 " for %s not found", Addr, 502 ErrorContext); 503 return createStringError(object_error::parse_failed, 504 "RVA 0x%" PRIx32 " not found", Addr); 505 } 506 507 Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, 508 ArrayRef<uint8_t> &Contents, 509 const char *ErrorContext) const { 510 for (const SectionRef &S : sections()) { 511 const coff_section *Section = getCOFFSection(S); 512 uint32_t SectionStart = Section->VirtualAddress; 513 // Check if this RVA is within the section bounds. Be careful about integer 514 // overflow. 515 uint32_t OffsetIntoSection = RVA - SectionStart; 516 if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && 517 Size <= Section->VirtualSize - OffsetIntoSection) { 518 uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) + 519 Section->PointerToRawData + OffsetIntoSection; 520 Contents = 521 ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size); 522 return Error::success(); 523 } 524 } 525 if (ErrorContext) 526 return createStringError(object_error::parse_failed, 527 "RVA 0x%" PRIx32 " for %s not found", RVA, 528 ErrorContext); 529 return createStringError(object_error::parse_failed, 530 "RVA 0x%" PRIx32 " not found", RVA); 531 } 532 533 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 534 // table entry. 535 Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 536 StringRef &Name) const { 537 uintptr_t IntPtr = 0; 538 if (Error E = getRvaPtr(Rva, IntPtr)) 539 return E; 540 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 541 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 542 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 543 return Error::success(); 544 } 545 546 Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, 547 const codeview::DebugInfo *&PDBInfo, 548 StringRef &PDBFileName) const { 549 ArrayRef<uint8_t> InfoBytes; 550 if (Error E = 551 getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData, 552 InfoBytes, "PDB info")) 553 return E; 554 if (InfoBytes.size() < sizeof(*PDBInfo) + 1) 555 return createStringError(object_error::parse_failed, "PDB info too small"); 556 PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data()); 557 InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); 558 PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()), 559 InfoBytes.size()); 560 // Truncate the name at the first null byte. Ignore any padding. 561 PDBFileName = PDBFileName.split('\0').first; 562 return Error::success(); 563 } 564 565 Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, 566 StringRef &PDBFileName) const { 567 for (const debug_directory &D : debug_directories()) 568 if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) 569 return getDebugPDBInfo(&D, PDBInfo, PDBFileName); 570 // If we get here, there is no PDB info to return. 571 PDBInfo = nullptr; 572 PDBFileName = StringRef(); 573 return Error::success(); 574 } 575 576 // Find the import table. 577 Error COFFObjectFile::initImportTablePtr() { 578 // First, we get the RVA of the import table. If the file lacks a pointer to 579 // the import table, do nothing. 580 const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); 581 if (!DataEntry) 582 return Error::success(); 583 584 // Do nothing if the pointer to import table is NULL. 585 if (DataEntry->RelativeVirtualAddress == 0) 586 return Error::success(); 587 588 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 589 590 // Find the section that contains the RVA. This is needed because the RVA is 591 // the import table's memory address which is different from its file offset. 592 uintptr_t IntPtr = 0; 593 if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table")) 594 return E; 595 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 596 return E; 597 ImportDirectory = reinterpret_cast< 598 const coff_import_directory_table_entry *>(IntPtr); 599 return Error::success(); 600 } 601 602 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 603 Error COFFObjectFile::initDelayImportTablePtr() { 604 const data_directory *DataEntry = 605 getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); 606 if (!DataEntry) 607 return Error::success(); 608 if (DataEntry->RelativeVirtualAddress == 0) 609 return Error::success(); 610 611 uint32_t RVA = DataEntry->RelativeVirtualAddress; 612 NumberOfDelayImportDirectory = DataEntry->Size / 613 sizeof(delay_import_directory_table_entry) - 1; 614 615 uintptr_t IntPtr = 0; 616 if (Error E = getRvaPtr(RVA, IntPtr, "delay import table")) 617 return E; 618 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 619 return E; 620 621 DelayImportDirectory = reinterpret_cast< 622 const delay_import_directory_table_entry *>(IntPtr); 623 return Error::success(); 624 } 625 626 // Find the export table. 627 Error COFFObjectFile::initExportTablePtr() { 628 // First, we get the RVA of the export table. If the file lacks a pointer to 629 // the export table, do nothing. 630 const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); 631 if (!DataEntry) 632 return Error::success(); 633 634 // Do nothing if the pointer to export table is NULL. 635 if (DataEntry->RelativeVirtualAddress == 0) 636 return Error::success(); 637 638 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 639 uintptr_t IntPtr = 0; 640 if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table")) 641 return E; 642 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 643 return E; 644 645 ExportDirectory = 646 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 647 return Error::success(); 648 } 649 650 Error COFFObjectFile::initBaseRelocPtr() { 651 const data_directory *DataEntry = 652 getDataDirectory(COFF::BASE_RELOCATION_TABLE); 653 if (!DataEntry) 654 return Error::success(); 655 if (DataEntry->RelativeVirtualAddress == 0) 656 return Error::success(); 657 658 uintptr_t IntPtr = 0; 659 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 660 "base reloc table")) 661 return E; 662 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 663 return E; 664 665 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 666 IntPtr); 667 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 668 IntPtr + DataEntry->Size); 669 // FIXME: Verify the section containing BaseRelocHeader has at least 670 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 671 return Error::success(); 672 } 673 674 Error COFFObjectFile::initDebugDirectoryPtr() { 675 // Get the RVA of the debug directory. Do nothing if it does not exist. 676 const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); 677 if (!DataEntry) 678 return Error::success(); 679 680 // Do nothing if the RVA is NULL. 681 if (DataEntry->RelativeVirtualAddress == 0) 682 return Error::success(); 683 684 // Check that the size is a multiple of the entry size. 685 if (DataEntry->Size % sizeof(debug_directory) != 0) 686 return createStringError(object_error::parse_failed, 687 "debug directory has uneven size"); 688 689 uintptr_t IntPtr = 0; 690 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 691 "debug directory")) 692 return E; 693 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 694 return E; 695 696 DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr); 697 DebugDirectoryEnd = reinterpret_cast<const debug_directory *>( 698 IntPtr + DataEntry->Size); 699 // FIXME: Verify the section containing DebugDirectoryBegin has at least 700 // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. 701 return Error::success(); 702 } 703 704 Error COFFObjectFile::initTLSDirectoryPtr() { 705 // Get the RVA of the TLS directory. Do nothing if it does not exist. 706 const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); 707 if (!DataEntry) 708 return Error::success(); 709 710 // Do nothing if the RVA is NULL. 711 if (DataEntry->RelativeVirtualAddress == 0) 712 return Error::success(); 713 714 uint64_t DirSize = 715 is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); 716 717 // Check that the size is correct. 718 if (DataEntry->Size != DirSize) 719 return createStringError( 720 object_error::parse_failed, 721 "TLS Directory size (%u) is not the expected size (%" PRIu64 ").", 722 static_cast<uint32_t>(DataEntry->Size), DirSize); 723 724 uintptr_t IntPtr = 0; 725 if (Error E = 726 getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory")) 727 return E; 728 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 729 return E; 730 731 if (is64()) 732 TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr); 733 else 734 TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr); 735 736 return Error::success(); 737 } 738 739 Error COFFObjectFile::initLoadConfigPtr() { 740 // Get the RVA of the debug directory. Do nothing if it does not exist. 741 const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); 742 if (!DataEntry) 743 return Error::success(); 744 745 // Do nothing if the RVA is NULL. 746 if (DataEntry->RelativeVirtualAddress == 0) 747 return Error::success(); 748 uintptr_t IntPtr = 0; 749 if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, 750 "load config table")) 751 return E; 752 if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) 753 return E; 754 755 LoadConfig = (const void *)IntPtr; 756 return Error::success(); 757 } 758 759 Expected<std::unique_ptr<COFFObjectFile>> 760 COFFObjectFile::create(MemoryBufferRef Object) { 761 std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object))); 762 if (Error E = Obj->initialize()) 763 return std::move(E); 764 return std::move(Obj); 765 } 766 767 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) 768 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 769 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 770 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 771 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 772 ImportDirectory(nullptr), DelayImportDirectory(nullptr), 773 NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), 774 BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), 775 DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), 776 TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} 777 778 static Error ignoreStrippedErrors(Error E) { 779 if (E.isA<SectionStrippedError>()) { 780 consumeError(std::move(E)); 781 return Error::success(); 782 } 783 return E; 784 } 785 786 Error COFFObjectFile::initialize() { 787 // Check that we at least have enough room for a header. 788 std::error_code EC; 789 if (!checkSize(Data, EC, sizeof(coff_file_header))) 790 return errorCodeToError(EC); 791 792 // The current location in the file where we are looking at. 793 uint64_t CurPtr = 0; 794 795 // PE header is optional and is present only in executables. If it exists, 796 // it is placed right after COFF header. 797 bool HasPEHeader = false; 798 799 // Check if this is a PE/COFF file. 800 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 801 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 802 // PE signature to find 'normal' COFF header. 803 const auto *DH = reinterpret_cast<const dos_header *>(base()); 804 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 805 CurPtr = DH->AddressOfNewExeHeader; 806 // Check the PE magic bytes. ("PE\0\0") 807 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 808 return createStringError(object_error::parse_failed, 809 "incorrect PE magic"); 810 } 811 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 812 HasPEHeader = true; 813 } 814 } 815 816 if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) 817 return E; 818 819 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 820 // import libraries share a common prefix but bigobj is more restrictive. 821 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 822 COFFHeader->NumberOfSections == uint16_t(0xffff) && 823 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 824 if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) 825 return E; 826 827 // Verify that we are dealing with bigobj. 828 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 829 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 830 sizeof(COFF::BigObjMagic)) == 0) { 831 COFFHeader = nullptr; 832 CurPtr += sizeof(coff_bigobj_file_header); 833 } else { 834 // It's not a bigobj. 835 COFFBigObjHeader = nullptr; 836 } 837 } 838 if (COFFHeader) { 839 // The prior checkSize call may have failed. This isn't a hard error 840 // because we were just trying to sniff out bigobj. 841 EC = std::error_code(); 842 CurPtr += sizeof(coff_file_header); 843 844 if (COFFHeader->isImportLibrary()) 845 return errorCodeToError(EC); 846 } 847 848 if (HasPEHeader) { 849 const pe32_header *Header; 850 if (Error E = getObject(Header, Data, base() + CurPtr)) 851 return E; 852 853 const uint8_t *DataDirAddr; 854 uint64_t DataDirSize; 855 if (Header->Magic == COFF::PE32Header::PE32) { 856 PE32Header = Header; 857 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 858 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 859 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 860 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 861 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 862 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 863 } else { 864 // It's neither PE32 nor PE32+. 865 return createStringError(object_error::parse_failed, 866 "incorrect PE magic"); 867 } 868 if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) 869 return E; 870 } 871 872 if (COFFHeader) 873 CurPtr += COFFHeader->SizeOfOptionalHeader; 874 875 assert(COFFHeader || COFFBigObjHeader); 876 877 if (Error E = 878 getObject(SectionTable, Data, base() + CurPtr, 879 (uint64_t)getNumberOfSections() * sizeof(coff_section))) 880 return E; 881 882 // Initialize the pointer to the symbol table. 883 if (getPointerToSymbolTable() != 0) { 884 if (Error E = initSymbolTablePtr()) { 885 // Recover from errors reading the symbol table. 886 consumeError(std::move(E)); 887 SymbolTable16 = nullptr; 888 SymbolTable32 = nullptr; 889 StringTable = nullptr; 890 StringTableSize = 0; 891 } 892 } else { 893 // We had better not have any symbols if we don't have a symbol table. 894 if (getNumberOfSymbols() != 0) { 895 return createStringError(object_error::parse_failed, 896 "symbol table missing"); 897 } 898 } 899 900 // Initialize the pointer to the beginning of the import table. 901 if (Error E = ignoreStrippedErrors(initImportTablePtr())) 902 return E; 903 if (Error E = ignoreStrippedErrors(initDelayImportTablePtr())) 904 return E; 905 906 // Initialize the pointer to the export table. 907 if (Error E = ignoreStrippedErrors(initExportTablePtr())) 908 return E; 909 910 // Initialize the pointer to the base relocation table. 911 if (Error E = ignoreStrippedErrors(initBaseRelocPtr())) 912 return E; 913 914 // Initialize the pointer to the debug directory. 915 if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr())) 916 return E; 917 918 // Initialize the pointer to the TLS directory. 919 if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr())) 920 return E; 921 922 if (Error E = ignoreStrippedErrors(initLoadConfigPtr())) 923 return E; 924 925 return Error::success(); 926 } 927 928 basic_symbol_iterator COFFObjectFile::symbol_begin() const { 929 DataRefImpl Ret; 930 Ret.p = getSymbolTable(); 931 return basic_symbol_iterator(SymbolRef(Ret, this)); 932 } 933 934 basic_symbol_iterator COFFObjectFile::symbol_end() const { 935 // The symbol table ends where the string table begins. 936 DataRefImpl Ret; 937 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 938 return basic_symbol_iterator(SymbolRef(Ret, this)); 939 } 940 941 import_directory_iterator COFFObjectFile::import_directory_begin() const { 942 if (!ImportDirectory) 943 return import_directory_end(); 944 if (ImportDirectory->isNull()) 945 return import_directory_end(); 946 return import_directory_iterator( 947 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 948 } 949 950 import_directory_iterator COFFObjectFile::import_directory_end() const { 951 return import_directory_iterator( 952 ImportDirectoryEntryRef(nullptr, -1, this)); 953 } 954 955 delay_import_directory_iterator 956 COFFObjectFile::delay_import_directory_begin() const { 957 return delay_import_directory_iterator( 958 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 959 } 960 961 delay_import_directory_iterator 962 COFFObjectFile::delay_import_directory_end() const { 963 return delay_import_directory_iterator( 964 DelayImportDirectoryEntryRef( 965 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 966 } 967 968 export_directory_iterator COFFObjectFile::export_directory_begin() const { 969 return export_directory_iterator( 970 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 971 } 972 973 export_directory_iterator COFFObjectFile::export_directory_end() const { 974 if (!ExportDirectory) 975 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 976 ExportDirectoryEntryRef Ref(ExportDirectory, 977 ExportDirectory->AddressTableEntries, this); 978 return export_directory_iterator(Ref); 979 } 980 981 section_iterator COFFObjectFile::section_begin() const { 982 DataRefImpl Ret; 983 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 984 return section_iterator(SectionRef(Ret, this)); 985 } 986 987 section_iterator COFFObjectFile::section_end() const { 988 DataRefImpl Ret; 989 int NumSections = 990 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 991 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 992 return section_iterator(SectionRef(Ret, this)); 993 } 994 995 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 996 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 997 } 998 999 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 1000 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 1001 } 1002 1003 uint8_t COFFObjectFile::getBytesInAddress() const { 1004 return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; 1005 } 1006 1007 StringRef COFFObjectFile::getFileFormatName() const { 1008 switch(getMachine()) { 1009 case COFF::IMAGE_FILE_MACHINE_I386: 1010 return "COFF-i386"; 1011 case COFF::IMAGE_FILE_MACHINE_AMD64: 1012 return "COFF-x86-64"; 1013 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1014 return "COFF-ARM"; 1015 case COFF::IMAGE_FILE_MACHINE_ARM64: 1016 return "COFF-ARM64"; 1017 default: 1018 return "COFF-<unknown arch>"; 1019 } 1020 } 1021 1022 Triple::ArchType COFFObjectFile::getArch() const { 1023 switch (getMachine()) { 1024 case COFF::IMAGE_FILE_MACHINE_I386: 1025 return Triple::x86; 1026 case COFF::IMAGE_FILE_MACHINE_AMD64: 1027 return Triple::x86_64; 1028 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1029 return Triple::thumb; 1030 case COFF::IMAGE_FILE_MACHINE_ARM64: 1031 return Triple::aarch64; 1032 default: 1033 return Triple::UnknownArch; 1034 } 1035 } 1036 1037 Expected<uint64_t> COFFObjectFile::getStartAddress() const { 1038 if (PE32Header) 1039 return PE32Header->AddressOfEntryPoint; 1040 return 0; 1041 } 1042 1043 iterator_range<import_directory_iterator> 1044 COFFObjectFile::import_directories() const { 1045 return make_range(import_directory_begin(), import_directory_end()); 1046 } 1047 1048 iterator_range<delay_import_directory_iterator> 1049 COFFObjectFile::delay_import_directories() const { 1050 return make_range(delay_import_directory_begin(), 1051 delay_import_directory_end()); 1052 } 1053 1054 iterator_range<export_directory_iterator> 1055 COFFObjectFile::export_directories() const { 1056 return make_range(export_directory_begin(), export_directory_end()); 1057 } 1058 1059 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 1060 return make_range(base_reloc_begin(), base_reloc_end()); 1061 } 1062 1063 const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { 1064 if (!DataDirectory) 1065 return nullptr; 1066 assert(PE32Header || PE32PlusHeader); 1067 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 1068 : PE32PlusHeader->NumberOfRvaAndSize; 1069 if (Index >= NumEnt) 1070 return nullptr; 1071 return &DataDirectory[Index]; 1072 } 1073 1074 Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const { 1075 // Perhaps getting the section of a reserved section index should be an error, 1076 // but callers rely on this to return null. 1077 if (COFF::isReservedSectionNumber(Index)) 1078 return (const coff_section *)nullptr; 1079 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 1080 // We already verified the section table data, so no need to check again. 1081 return SectionTable + (Index - 1); 1082 } 1083 return createStringError(object_error::parse_failed, 1084 "section index out of bounds"); 1085 } 1086 1087 Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const { 1088 if (StringTableSize <= 4) 1089 // Tried to get a string from an empty string table. 1090 return createStringError(object_error::parse_failed, "string table empty"); 1091 if (Offset >= StringTableSize) 1092 return errorCodeToError(object_error::unexpected_eof); 1093 return StringRef(StringTable + Offset); 1094 } 1095 1096 Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { 1097 return getSymbolName(Symbol.getGeneric()); 1098 } 1099 1100 Expected<StringRef> 1101 COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { 1102 // Check for string table entry. First 4 bytes are 0. 1103 if (Symbol->Name.Offset.Zeroes == 0) 1104 return getString(Symbol->Name.Offset.Offset); 1105 1106 // Null terminated, let ::strlen figure out the length. 1107 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 1108 return StringRef(Symbol->Name.ShortName); 1109 1110 // Not null terminated, use all 8 bytes. 1111 return StringRef(Symbol->Name.ShortName, COFF::NameSize); 1112 } 1113 1114 ArrayRef<uint8_t> 1115 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 1116 const uint8_t *Aux = nullptr; 1117 1118 size_t SymbolSize = getSymbolTableEntrySize(); 1119 if (Symbol.getNumberOfAuxSymbols() > 0) { 1120 // AUX data comes immediately after the symbol in COFF 1121 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 1122 #ifndef NDEBUG 1123 // Verify that the Aux symbol points to a valid entry in the symbol table. 1124 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 1125 if (Offset < getPointerToSymbolTable() || 1126 Offset >= 1127 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 1128 report_fatal_error("Aux Symbol data was outside of symbol table."); 1129 1130 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 1131 "Aux Symbol data did not point to the beginning of a symbol"); 1132 #endif 1133 } 1134 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 1135 } 1136 1137 uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { 1138 uintptr_t Offset = 1139 reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable(); 1140 assert(Offset % getSymbolTableEntrySize() == 0 && 1141 "Symbol did not point to the beginning of a symbol"); 1142 size_t Index = Offset / getSymbolTableEntrySize(); 1143 assert(Index < getNumberOfSymbols()); 1144 return Index; 1145 } 1146 1147 Expected<StringRef> 1148 COFFObjectFile::getSectionName(const coff_section *Sec) const { 1149 StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first; 1150 1151 // Check for string table entry. First byte is '/'. 1152 if (Name.startswith("/")) { 1153 uint32_t Offset; 1154 if (Name.startswith("//")) { 1155 if (decodeBase64StringEntry(Name.substr(2), Offset)) 1156 return createStringError(object_error::parse_failed, 1157 "invalid section name"); 1158 } else { 1159 if (Name.substr(1).getAsInteger(10, Offset)) 1160 return createStringError(object_error::parse_failed, 1161 "invalid section name"); 1162 } 1163 return getString(Offset); 1164 } 1165 1166 return Name; 1167 } 1168 1169 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 1170 // SizeOfRawData and VirtualSize change what they represent depending on 1171 // whether or not we have an executable image. 1172 // 1173 // For object files, SizeOfRawData contains the size of section's data; 1174 // VirtualSize should be zero but isn't due to buggy COFF writers. 1175 // 1176 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 1177 // actual section size is in VirtualSize. It is possible for VirtualSize to 1178 // be greater than SizeOfRawData; the contents past that point should be 1179 // considered to be zero. 1180 if (getDOSHeader()) 1181 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 1182 return Sec->SizeOfRawData; 1183 } 1184 1185 Error COFFObjectFile::getSectionContents(const coff_section *Sec, 1186 ArrayRef<uint8_t> &Res) const { 1187 // In COFF, a virtual section won't have any in-file 1188 // content, so the file pointer to the content will be zero. 1189 if (Sec->PointerToRawData == 0) 1190 return Error::success(); 1191 // The only thing that we need to verify is that the contents is contained 1192 // within the file bounds. We don't need to make sure it doesn't cover other 1193 // data, as there's nothing that says that is not allowed. 1194 uintptr_t ConStart = 1195 reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData; 1196 uint32_t SectionSize = getSectionSize(Sec); 1197 if (Error E = checkOffset(Data, ConStart, SectionSize)) 1198 return E; 1199 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 1200 return Error::success(); 1201 } 1202 1203 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 1204 return reinterpret_cast<const coff_relocation*>(Rel.p); 1205 } 1206 1207 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 1208 Rel.p = reinterpret_cast<uintptr_t>( 1209 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 1210 } 1211 1212 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 1213 const coff_relocation *R = toRel(Rel); 1214 return R->VirtualAddress; 1215 } 1216 1217 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 1218 const coff_relocation *R = toRel(Rel); 1219 DataRefImpl Ref; 1220 if (R->SymbolTableIndex >= getNumberOfSymbols()) 1221 return symbol_end(); 1222 if (SymbolTable16) 1223 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 1224 else if (SymbolTable32) 1225 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 1226 else 1227 llvm_unreachable("no symbol table pointer!"); 1228 return symbol_iterator(SymbolRef(Ref, this)); 1229 } 1230 1231 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 1232 const coff_relocation* R = toRel(Rel); 1233 return R->Type; 1234 } 1235 1236 const coff_section * 1237 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1238 return toSec(Section.getRawDataRefImpl()); 1239 } 1240 1241 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1242 if (SymbolTable16) 1243 return toSymb<coff_symbol16>(Ref); 1244 if (SymbolTable32) 1245 return toSymb<coff_symbol32>(Ref); 1246 llvm_unreachable("no symbol table pointer!"); 1247 } 1248 1249 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1250 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1251 } 1252 1253 const coff_relocation * 1254 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1255 return toRel(Reloc.getRawDataRefImpl()); 1256 } 1257 1258 ArrayRef<coff_relocation> 1259 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1260 return {getFirstReloc(Sec, Data, base()), 1261 getNumberOfRelocations(Sec, Data, base())}; 1262 } 1263 1264 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1265 case COFF::reloc_type: \ 1266 return #reloc_type; 1267 1268 StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { 1269 switch (getMachine()) { 1270 case COFF::IMAGE_FILE_MACHINE_AMD64: 1271 switch (Type) { 1272 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1273 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1274 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1275 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1276 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1277 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1278 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1279 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1280 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1281 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1282 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1283 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1284 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1285 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1286 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1287 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1288 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1289 default: 1290 return "Unknown"; 1291 } 1292 break; 1293 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1294 switch (Type) { 1295 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1296 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1297 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1298 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1299 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1300 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1301 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1302 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1303 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); 1304 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1305 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1306 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1307 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1308 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1309 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1310 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1311 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); 1312 default: 1313 return "Unknown"; 1314 } 1315 break; 1316 case COFF::IMAGE_FILE_MACHINE_ARM64: 1317 switch (Type) { 1318 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); 1319 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); 1320 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); 1321 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); 1322 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); 1323 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); 1324 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); 1325 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); 1326 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); 1327 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); 1328 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); 1329 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); 1330 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); 1331 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); 1332 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); 1333 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); 1334 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); 1335 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); 1336 default: 1337 return "Unknown"; 1338 } 1339 break; 1340 case COFF::IMAGE_FILE_MACHINE_I386: 1341 switch (Type) { 1342 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1343 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1344 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1345 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1346 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1347 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1348 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1349 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1350 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1351 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1352 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1353 default: 1354 return "Unknown"; 1355 } 1356 break; 1357 default: 1358 return "Unknown"; 1359 } 1360 } 1361 1362 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1363 1364 void COFFObjectFile::getRelocationTypeName( 1365 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1366 const coff_relocation *Reloc = toRel(Rel); 1367 StringRef Res = getRelocationTypeName(Reloc->Type); 1368 Result.append(Res.begin(), Res.end()); 1369 } 1370 1371 bool COFFObjectFile::isRelocatableObject() const { 1372 return !DataDirectory; 1373 } 1374 1375 StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { 1376 return StringSwitch<StringRef>(Name) 1377 .Case("eh_fram", "eh_frame") 1378 .Default(Name); 1379 } 1380 1381 bool ImportDirectoryEntryRef:: 1382 operator==(const ImportDirectoryEntryRef &Other) const { 1383 return ImportTable == Other.ImportTable && Index == Other.Index; 1384 } 1385 1386 void ImportDirectoryEntryRef::moveNext() { 1387 ++Index; 1388 if (ImportTable[Index].isNull()) { 1389 Index = -1; 1390 ImportTable = nullptr; 1391 } 1392 } 1393 1394 Error ImportDirectoryEntryRef::getImportTableEntry( 1395 const coff_import_directory_table_entry *&Result) const { 1396 return getObject(Result, OwningObject->Data, ImportTable + Index); 1397 } 1398 1399 static imported_symbol_iterator 1400 makeImportedSymbolIterator(const COFFObjectFile *Object, 1401 uintptr_t Ptr, int Index) { 1402 if (Object->getBytesInAddress() == 4) { 1403 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1404 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1405 } 1406 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1407 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1408 } 1409 1410 static imported_symbol_iterator 1411 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1412 uintptr_t IntPtr = 0; 1413 // FIXME: Handle errors. 1414 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1415 return makeImportedSymbolIterator(Object, IntPtr, 0); 1416 } 1417 1418 static imported_symbol_iterator 1419 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1420 uintptr_t IntPtr = 0; 1421 // FIXME: Handle errors. 1422 cantFail(Object->getRvaPtr(RVA, IntPtr)); 1423 // Forward the pointer to the last entry which is null. 1424 int Index = 0; 1425 if (Object->getBytesInAddress() == 4) { 1426 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1427 while (*Entry++) 1428 ++Index; 1429 } else { 1430 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1431 while (*Entry++) 1432 ++Index; 1433 } 1434 return makeImportedSymbolIterator(Object, IntPtr, Index); 1435 } 1436 1437 imported_symbol_iterator 1438 ImportDirectoryEntryRef::imported_symbol_begin() const { 1439 return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, 1440 OwningObject); 1441 } 1442 1443 imported_symbol_iterator 1444 ImportDirectoryEntryRef::imported_symbol_end() const { 1445 return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, 1446 OwningObject); 1447 } 1448 1449 iterator_range<imported_symbol_iterator> 1450 ImportDirectoryEntryRef::imported_symbols() const { 1451 return make_range(imported_symbol_begin(), imported_symbol_end()); 1452 } 1453 1454 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { 1455 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1456 OwningObject); 1457 } 1458 1459 imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { 1460 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1461 OwningObject); 1462 } 1463 1464 iterator_range<imported_symbol_iterator> 1465 ImportDirectoryEntryRef::lookup_table_symbols() const { 1466 return make_range(lookup_table_begin(), lookup_table_end()); 1467 } 1468 1469 Error ImportDirectoryEntryRef::getName(StringRef &Result) const { 1470 uintptr_t IntPtr = 0; 1471 if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr, 1472 "import directory name")) 1473 return E; 1474 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1475 return Error::success(); 1476 } 1477 1478 Error 1479 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1480 Result = ImportTable[Index].ImportLookupTableRVA; 1481 return Error::success(); 1482 } 1483 1484 Error ImportDirectoryEntryRef::getImportAddressTableRVA( 1485 uint32_t &Result) const { 1486 Result = ImportTable[Index].ImportAddressTableRVA; 1487 return Error::success(); 1488 } 1489 1490 bool DelayImportDirectoryEntryRef:: 1491 operator==(const DelayImportDirectoryEntryRef &Other) const { 1492 return Table == Other.Table && Index == Other.Index; 1493 } 1494 1495 void DelayImportDirectoryEntryRef::moveNext() { 1496 ++Index; 1497 } 1498 1499 imported_symbol_iterator 1500 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1501 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1502 OwningObject); 1503 } 1504 1505 imported_symbol_iterator 1506 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1507 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1508 OwningObject); 1509 } 1510 1511 iterator_range<imported_symbol_iterator> 1512 DelayImportDirectoryEntryRef::imported_symbols() const { 1513 return make_range(imported_symbol_begin(), imported_symbol_end()); 1514 } 1515 1516 Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1517 uintptr_t IntPtr = 0; 1518 if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr, 1519 "delay import directory name")) 1520 return E; 1521 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1522 return Error::success(); 1523 } 1524 1525 Error DelayImportDirectoryEntryRef::getDelayImportTable( 1526 const delay_import_directory_table_entry *&Result) const { 1527 Result = &Table[Index]; 1528 return Error::success(); 1529 } 1530 1531 Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, 1532 uint64_t &Result) const { 1533 uint32_t RVA = Table[Index].DelayImportAddressTable + 1534 AddrIndex * (OwningObject->is64() ? 8 : 4); 1535 uintptr_t IntPtr = 0; 1536 if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address")) 1537 return E; 1538 if (OwningObject->is64()) 1539 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1540 else 1541 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1542 return Error::success(); 1543 } 1544 1545 bool ExportDirectoryEntryRef:: 1546 operator==(const ExportDirectoryEntryRef &Other) const { 1547 return ExportTable == Other.ExportTable && Index == Other.Index; 1548 } 1549 1550 void ExportDirectoryEntryRef::moveNext() { 1551 ++Index; 1552 } 1553 1554 // Returns the name of the current export symbol. If the symbol is exported only 1555 // by ordinal, the empty string is set as a result. 1556 Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1557 uintptr_t IntPtr = 0; 1558 if (Error E = 1559 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name")) 1560 return E; 1561 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1562 return Error::success(); 1563 } 1564 1565 // Returns the starting ordinal number. 1566 Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1567 Result = ExportTable->OrdinalBase; 1568 return Error::success(); 1569 } 1570 1571 // Returns the export ordinal of the current export symbol. 1572 Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1573 Result = ExportTable->OrdinalBase + Index; 1574 return Error::success(); 1575 } 1576 1577 // Returns the address of the current export symbol. 1578 Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1579 uintptr_t IntPtr = 0; 1580 if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, 1581 IntPtr, "export address")) 1582 return EC; 1583 const export_address_table_entry *entry = 1584 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1585 Result = entry[Index].ExportRVA; 1586 return Error::success(); 1587 } 1588 1589 // Returns the name of the current export symbol. If the symbol is exported only 1590 // by ordinal, the empty string is set as a result. 1591 Error 1592 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1593 uintptr_t IntPtr = 0; 1594 if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr, 1595 "export ordinal table")) 1596 return EC; 1597 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1598 1599 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1600 int Offset = 0; 1601 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1602 I < E; ++I, ++Offset) { 1603 if (*I != Index) 1604 continue; 1605 if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr, 1606 "export table entry")) 1607 return EC; 1608 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1609 if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr, 1610 "export symbol name")) 1611 return EC; 1612 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1613 return Error::success(); 1614 } 1615 Result = ""; 1616 return Error::success(); 1617 } 1618 1619 Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { 1620 const data_directory *DataEntry = 1621 OwningObject->getDataDirectory(COFF::EXPORT_TABLE); 1622 if (!DataEntry) 1623 return createStringError(object_error::parse_failed, 1624 "export table missing"); 1625 uint32_t RVA; 1626 if (auto EC = getExportRVA(RVA)) 1627 return EC; 1628 uint32_t Begin = DataEntry->RelativeVirtualAddress; 1629 uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; 1630 Result = (Begin <= RVA && RVA < End); 1631 return Error::success(); 1632 } 1633 1634 Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { 1635 uint32_t RVA; 1636 if (auto EC = getExportRVA(RVA)) 1637 return EC; 1638 uintptr_t IntPtr = 0; 1639 if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target")) 1640 return EC; 1641 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1642 return Error::success(); 1643 } 1644 1645 bool ImportedSymbolRef:: 1646 operator==(const ImportedSymbolRef &Other) const { 1647 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1648 && Index == Other.Index; 1649 } 1650 1651 void ImportedSymbolRef::moveNext() { 1652 ++Index; 1653 } 1654 1655 Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1656 uint32_t RVA; 1657 if (Entry32) { 1658 // If a symbol is imported only by ordinal, it has no name. 1659 if (Entry32[Index].isOrdinal()) 1660 return Error::success(); 1661 RVA = Entry32[Index].getHintNameRVA(); 1662 } else { 1663 if (Entry64[Index].isOrdinal()) 1664 return Error::success(); 1665 RVA = Entry64[Index].getHintNameRVA(); 1666 } 1667 uintptr_t IntPtr = 0; 1668 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name")) 1669 return EC; 1670 // +2 because the first two bytes is hint. 1671 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1672 return Error::success(); 1673 } 1674 1675 Error ImportedSymbolRef::isOrdinal(bool &Result) const { 1676 if (Entry32) 1677 Result = Entry32[Index].isOrdinal(); 1678 else 1679 Result = Entry64[Index].isOrdinal(); 1680 return Error::success(); 1681 } 1682 1683 Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { 1684 if (Entry32) 1685 Result = Entry32[Index].getHintNameRVA(); 1686 else 1687 Result = Entry64[Index].getHintNameRVA(); 1688 return Error::success(); 1689 } 1690 1691 Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1692 uint32_t RVA; 1693 if (Entry32) { 1694 if (Entry32[Index].isOrdinal()) { 1695 Result = Entry32[Index].getOrdinal(); 1696 return Error::success(); 1697 } 1698 RVA = Entry32[Index].getHintNameRVA(); 1699 } else { 1700 if (Entry64[Index].isOrdinal()) { 1701 Result = Entry64[Index].getOrdinal(); 1702 return Error::success(); 1703 } 1704 RVA = Entry64[Index].getHintNameRVA(); 1705 } 1706 uintptr_t IntPtr = 0; 1707 if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal")) 1708 return EC; 1709 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1710 return Error::success(); 1711 } 1712 1713 Expected<std::unique_ptr<COFFObjectFile>> 1714 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1715 return COFFObjectFile::create(Object); 1716 } 1717 1718 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1719 return Header == Other.Header && Index == Other.Index; 1720 } 1721 1722 void BaseRelocRef::moveNext() { 1723 // Header->BlockSize is the size of the current block, including the 1724 // size of the header itself. 1725 uint32_t Size = sizeof(*Header) + 1726 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1727 if (Size == Header->BlockSize) { 1728 // .reloc contains a list of base relocation blocks. Each block 1729 // consists of the header followed by entries. The header contains 1730 // how many entories will follow. When we reach the end of the 1731 // current block, proceed to the next block. 1732 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1733 reinterpret_cast<const uint8_t *>(Header) + Size); 1734 Index = 0; 1735 } else { 1736 ++Index; 1737 } 1738 } 1739 1740 Error BaseRelocRef::getType(uint8_t &Type) const { 1741 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1742 Type = Entry[Index].getType(); 1743 return Error::success(); 1744 } 1745 1746 Error BaseRelocRef::getRVA(uint32_t &Result) const { 1747 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1748 Result = Header->PageRVA + Entry[Index].getOffset(); 1749 return Error::success(); 1750 } 1751 1752 #define RETURN_IF_ERROR(Expr) \ 1753 do { \ 1754 Error E = (Expr); \ 1755 if (E) \ 1756 return std::move(E); \ 1757 } while (0) 1758 1759 Expected<ArrayRef<UTF16>> 1760 ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { 1761 BinaryStreamReader Reader = BinaryStreamReader(BBS); 1762 Reader.setOffset(Offset); 1763 uint16_t Length; 1764 RETURN_IF_ERROR(Reader.readInteger(Length)); 1765 ArrayRef<UTF16> RawDirString; 1766 RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); 1767 return RawDirString; 1768 } 1769 1770 Expected<ArrayRef<UTF16>> 1771 ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { 1772 return getDirStringAtOffset(Entry.Identifier.getNameOffset()); 1773 } 1774 1775 Expected<const coff_resource_dir_table &> 1776 ResourceSectionRef::getTableAtOffset(uint32_t Offset) { 1777 const coff_resource_dir_table *Table = nullptr; 1778 1779 BinaryStreamReader Reader(BBS); 1780 Reader.setOffset(Offset); 1781 RETURN_IF_ERROR(Reader.readObject(Table)); 1782 assert(Table != nullptr); 1783 return *Table; 1784 } 1785 1786 Expected<const coff_resource_dir_entry &> 1787 ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { 1788 const coff_resource_dir_entry *Entry = nullptr; 1789 1790 BinaryStreamReader Reader(BBS); 1791 Reader.setOffset(Offset); 1792 RETURN_IF_ERROR(Reader.readObject(Entry)); 1793 assert(Entry != nullptr); 1794 return *Entry; 1795 } 1796 1797 Expected<const coff_resource_data_entry &> 1798 ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { 1799 const coff_resource_data_entry *Entry = nullptr; 1800 1801 BinaryStreamReader Reader(BBS); 1802 Reader.setOffset(Offset); 1803 RETURN_IF_ERROR(Reader.readObject(Entry)); 1804 assert(Entry != nullptr); 1805 return *Entry; 1806 } 1807 1808 Expected<const coff_resource_dir_table &> 1809 ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { 1810 assert(Entry.Offset.isSubDir()); 1811 return getTableAtOffset(Entry.Offset.value()); 1812 } 1813 1814 Expected<const coff_resource_data_entry &> 1815 ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { 1816 assert(!Entry.Offset.isSubDir()); 1817 return getDataEntryAtOffset(Entry.Offset.value()); 1818 } 1819 1820 Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() { 1821 return getTableAtOffset(0); 1822 } 1823 1824 Expected<const coff_resource_dir_entry &> 1825 ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, 1826 uint32_t Index) { 1827 if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) 1828 return createStringError(object_error::parse_failed, "index out of range"); 1829 const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table); 1830 ptrdiff_t TableOffset = TablePtr - BBS.data().data(); 1831 return getTableEntryAtOffset(TableOffset + sizeof(Table) + 1832 Index * sizeof(coff_resource_dir_entry)); 1833 } 1834 1835 Error ResourceSectionRef::load(const COFFObjectFile *O) { 1836 for (const SectionRef &S : O->sections()) { 1837 Expected<StringRef> Name = S.getName(); 1838 if (!Name) 1839 return Name.takeError(); 1840 1841 if (*Name == ".rsrc" || *Name == ".rsrc$01") 1842 return load(O, S); 1843 } 1844 return createStringError(object_error::parse_failed, 1845 "no resource section found"); 1846 } 1847 1848 Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { 1849 Obj = O; 1850 Section = S; 1851 Expected<StringRef> Contents = Section.getContents(); 1852 if (!Contents) 1853 return Contents.takeError(); 1854 BBS = BinaryByteStream(*Contents, support::little); 1855 const coff_section *COFFSect = Obj->getCOFFSection(Section); 1856 ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect); 1857 Relocs.reserve(OrigRelocs.size()); 1858 for (const coff_relocation &R : OrigRelocs) 1859 Relocs.push_back(&R); 1860 llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) { 1861 return A->VirtualAddress < B->VirtualAddress; 1862 }); 1863 return Error::success(); 1864 } 1865 1866 Expected<StringRef> 1867 ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { 1868 if (!Obj) 1869 return createStringError(object_error::parse_failed, "no object provided"); 1870 1871 // Find a potential relocation at the DataRVA field (first member of 1872 // the coff_resource_data_entry struct). 1873 const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry); 1874 ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); 1875 coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), 1876 ulittle16_t(0)}; 1877 auto RelocsForOffset = 1878 std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, 1879 [](const coff_relocation *A, const coff_relocation *B) { 1880 return A->VirtualAddress < B->VirtualAddress; 1881 }); 1882 1883 if (RelocsForOffset.first != RelocsForOffset.second) { 1884 // We found a relocation with the right offset. Check that it does have 1885 // the expected type. 1886 const coff_relocation &R = **RelocsForOffset.first; 1887 uint16_t RVAReloc; 1888 switch (Obj->getMachine()) { 1889 case COFF::IMAGE_FILE_MACHINE_I386: 1890 RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; 1891 break; 1892 case COFF::IMAGE_FILE_MACHINE_AMD64: 1893 RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; 1894 break; 1895 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1896 RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; 1897 break; 1898 case COFF::IMAGE_FILE_MACHINE_ARM64: 1899 RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; 1900 break; 1901 default: 1902 return createStringError(object_error::parse_failed, 1903 "unsupported architecture"); 1904 } 1905 if (R.Type != RVAReloc) 1906 return createStringError(object_error::parse_failed, 1907 "unexpected relocation type"); 1908 // Get the relocation's symbol 1909 Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex); 1910 if (!Sym) 1911 return Sym.takeError(); 1912 // And the symbol's section 1913 Expected<const coff_section *> Section = 1914 Obj->getSection(Sym->getSectionNumber()); 1915 if (!Section) 1916 return Section.takeError(); 1917 // Add the initial value of DataRVA to the symbol's offset to find the 1918 // data it points at. 1919 uint64_t Offset = Entry.DataRVA + Sym->getValue(); 1920 ArrayRef<uint8_t> Contents; 1921 if (Error E = Obj->getSectionContents(*Section, Contents)) 1922 return std::move(E); 1923 if (Offset + Entry.DataSize > Contents.size()) 1924 return createStringError(object_error::parse_failed, 1925 "data outside of section"); 1926 // Return a reference to the data inside the section. 1927 return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset, 1928 Entry.DataSize); 1929 } else { 1930 // Relocatable objects need a relocation for the DataRVA field. 1931 if (Obj->isRelocatableObject()) 1932 return createStringError(object_error::parse_failed, 1933 "no relocation found for DataRVA"); 1934 1935 // Locate the section that contains the address that DataRVA points at. 1936 uint64_t VA = Entry.DataRVA + Obj->getImageBase(); 1937 for (const SectionRef &S : Obj->sections()) { 1938 if (VA >= S.getAddress() && 1939 VA + Entry.DataSize <= S.getAddress() + S.getSize()) { 1940 uint64_t Offset = VA - S.getAddress(); 1941 Expected<StringRef> Contents = S.getContents(); 1942 if (!Contents) 1943 return Contents.takeError(); 1944 return Contents->slice(Offset, Offset + Entry.DataSize); 1945 } 1946 } 1947 return createStringError(object_error::parse_failed, 1948 "address not found in image"); 1949 } 1950 } 1951