//===- COFFObjectFile.cpp - COFF object file implementation ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares the COFFObjectFile class. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/Object/Binary.h" #include "llvm/Object/COFF.h" #include "llvm/Object/Error.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/BinaryStreamReader.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBufferRef.h" #include #include #include #include #include #include #include #include using namespace llvm; using namespace object; using support::ulittle16_t; using support::ulittle32_t; using support::ulittle64_t; using support::little16_t; // Returns false if size is greater than the buffer size. And sets ec. static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { if (M.getBufferSize() < Size) { EC = object_error::unexpected_eof; return false; } return true; } // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. // Returns unexpected_eof if error. template static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr, const uint64_t Size = sizeof(T)) { uintptr_t Addr = reinterpret_cast(Ptr); if (Error E = Binary::checkOffset(M, Addr, Size)) return E; Obj = reinterpret_cast(Addr); return Error::success(); } // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without // prefixed slashes. static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { assert(Str.size() <= 6 && "String too long, possible overflow."); if (Str.size() > 6) return true; uint64_t Value = 0; while (!Str.empty()) { unsigned CharVal; if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 CharVal = Str[0] - 'A'; else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 CharVal = Str[0] - 'a' + 26; else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 CharVal = Str[0] - '0' + 52; else if (Str[0] == '+') // 62 CharVal = 62; else if (Str[0] == '/') // 63 CharVal = 63; else return true; Value = (Value * 64) + CharVal; Str = Str.substr(1); } if (Value > std::numeric_limits::max()) return true; Result = static_cast(Value); return false; } template const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { const coff_symbol_type *Addr = reinterpret_cast(Ref.p); assert(!checkOffset(Data, reinterpret_cast(Addr), sizeof(*Addr))); #ifndef NDEBUG // Verify that the symbol points to a valid entry in the symbol table. uintptr_t Offset = reinterpret_cast(Addr) - reinterpret_cast(base()); assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && "Symbol did not point to the beginning of a symbol"); #endif return Addr; } const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { const coff_section *Addr = reinterpret_cast(Ref.p); #ifndef NDEBUG // Verify that the section points to a valid entry in the section table. if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) report_fatal_error("Section was outside of section table."); uintptr_t Offset = reinterpret_cast(Addr) - reinterpret_cast(SectionTable); assert(Offset % sizeof(coff_section) == 0 && "Section did not point to the beginning of a section"); #endif return Addr; } void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { auto End = reinterpret_cast(StringTable); if (SymbolTable16) { const coff_symbol16 *Symb = toSymb(Ref); Symb += 1 + Symb->NumberOfAuxSymbols; Ref.p = std::min(reinterpret_cast(Symb), End); } else if (SymbolTable32) { const coff_symbol32 *Symb = toSymb(Ref); Symb += 1 + Symb->NumberOfAuxSymbols; Ref.p = std::min(reinterpret_cast(Symb), End); } else { llvm_unreachable("no symbol table pointer!"); } } Expected COFFObjectFile::getSymbolName(DataRefImpl Ref) const { return getSymbolName(getCOFFSymbol(Ref)); } uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { return getCOFFSymbol(Ref).getValue(); } uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const { // MSVC/link.exe seems to align symbols to the next-power-of-2 // up to 32 bytes. COFFSymbolRef Symb = getCOFFSymbol(Ref); return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue())); } Expected COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { uint64_t Result = cantFail(getSymbolValue(Ref)); COFFSymbolRef Symb = getCOFFSymbol(Ref); int32_t SectionNumber = Symb.getSectionNumber(); if (Symb.isAnyUndefined() || Symb.isCommon() || COFF::isReservedSectionNumber(SectionNumber)) return Result; Expected Section = getSection(SectionNumber); if (!Section) return Section.takeError(); Result += (*Section)->VirtualAddress; // The section VirtualAddress does not include ImageBase, and we want to // return virtual addresses. Result += getImageBase(); return Result; } Expected COFFObjectFile::getSymbolType(DataRefImpl Ref) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); int32_t SectionNumber = Symb.getSectionNumber(); if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) return SymbolRef::ST_Function; if (Symb.isAnyUndefined()) return SymbolRef::ST_Unknown; if (Symb.isCommon()) return SymbolRef::ST_Data; if (Symb.isFileRecord()) return SymbolRef::ST_File; // TODO: perhaps we need a new symbol type ST_Section. if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) return SymbolRef::ST_Debug; if (!COFF::isReservedSectionNumber(SectionNumber)) return SymbolRef::ST_Data; return SymbolRef::ST_Other; } Expected COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); uint32_t Result = SymbolRef::SF_None; if (Symb.isExternal() || Symb.isWeakExternal()) Result |= SymbolRef::SF_Global; if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) { Result |= SymbolRef::SF_Weak; if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS) Result |= SymbolRef::SF_Undefined; } if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) Result |= SymbolRef::SF_Absolute; if (Symb.isFileRecord()) Result |= SymbolRef::SF_FormatSpecific; if (Symb.isSectionDefinition()) Result |= SymbolRef::SF_FormatSpecific; if (Symb.isCommon()) Result |= SymbolRef::SF_Common; if (Symb.isUndefined()) Result |= SymbolRef::SF_Undefined; return Result; } uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); return Symb.getValue(); } Expected COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { COFFSymbolRef Symb = getCOFFSymbol(Ref); if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) return section_end(); Expected Sec = getSection(Symb.getSectionNumber()); if (!Sec) return Sec.takeError(); DataRefImpl Ret; Ret.p = reinterpret_cast(*Sec); return section_iterator(SectionRef(Ret, this)); } unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); return Symb.getSectionNumber(); } void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { const coff_section *Sec = toSec(Ref); Sec += 1; Ref.p = reinterpret_cast(Sec); } Expected COFFObjectFile::getSectionName(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); return getSectionName(Sec); } uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); uint64_t Result = Sec->VirtualAddress; // The section VirtualAddress does not include ImageBase, and we want to // return virtual addresses. Result += getImageBase(); return Result; } uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const { return toSec(Sec) - SectionTable; } uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { return getSectionSize(toSec(Ref)); } Expected> COFFObjectFile::getSectionContents(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); ArrayRef Res; if (Error E = getSectionContents(Sec, Res)) return std::move(E); return Res; } uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); return Sec->getAlignment(); } bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const { return false; } bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; } bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; } bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE; return (Sec->Characteristics & BssFlags) == BssFlags; } // The .debug sections are the only debug sections for COFF // (\see MCObjectFileInfo.cpp). bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const { Expected SectionNameOrErr = getSectionName(Ref); if (!SectionNameOrErr) { // TODO: Report the error message properly. consumeError(SectionNameOrErr.takeError()); return false; } StringRef SectionName = SectionNameOrErr.get(); return SectionName.startswith(".debug"); } unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { uintptr_t Offset = Sec.getRawDataRefImpl().p - reinterpret_cast(SectionTable); assert((Offset % sizeof(coff_section)) == 0); return (Offset / sizeof(coff_section)) + 1; } bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); // In COFF, a virtual section won't have any in-file // content, so the file pointer to the content will be zero. return Sec->PointerToRawData == 0; } static uint32_t getNumberOfRelocations(const coff_section *Sec, MemoryBufferRef M, const uint8_t *base) { // The field for the number of relocations in COFF section table is only // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to // NumberOfRelocations field, and the actual relocation count is stored in the // VirtualAddress field in the first relocation entry. if (Sec->hasExtendedRelocations()) { const coff_relocation *FirstReloc; if (Error E = getObject(FirstReloc, M, reinterpret_cast( base + Sec->PointerToRelocations))) { consumeError(std::move(E)); return 0; } // -1 to exclude this first relocation entry. return FirstReloc->VirtualAddress - 1; } return Sec->NumberOfRelocations; } static const coff_relocation * getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); if (!NumRelocs) return nullptr; auto begin = reinterpret_cast( Base + Sec->PointerToRelocations); if (Sec->hasExtendedRelocations()) { // Skip the first relocation entry repurposed to store the number of // relocations. begin++; } if (auto E = Binary::checkOffset(M, reinterpret_cast(begin), sizeof(coff_relocation) * NumRelocs)) { consumeError(std::move(E)); return nullptr; } return begin; } relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); const coff_relocation *begin = getFirstReloc(Sec, Data, base()); if (begin && Sec->VirtualAddress != 0) report_fatal_error("Sections with relocations should have an address of 0"); DataRefImpl Ret; Ret.p = reinterpret_cast(begin); return relocation_iterator(RelocationRef(Ret, this)); } relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { const coff_section *Sec = toSec(Ref); const coff_relocation *I = getFirstReloc(Sec, Data, base()); if (I) I += getNumberOfRelocations(Sec, Data, base()); DataRefImpl Ret; Ret.p = reinterpret_cast(I); return relocation_iterator(RelocationRef(Ret, this)); } // Initialize the pointer to the symbol table. Error COFFObjectFile::initSymbolTablePtr() { if (COFFHeader) if (Error E = getObject( SymbolTable16, Data, base() + getPointerToSymbolTable(), (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) return E; if (COFFBigObjHeader) if (Error E = getObject( SymbolTable32, Data, base() + getPointerToSymbolTable(), (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) return E; // Find string table. The first four byte of the string table contains the // total size of the string table, including the size field itself. If the // string table is empty, the value of the first four byte would be 4. uint32_t StringTableOffset = getPointerToSymbolTable() + getNumberOfSymbols() * getSymbolTableEntrySize(); const uint8_t *StringTableAddr = base() + StringTableOffset; const ulittle32_t *StringTableSizePtr; if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr)) return E; StringTableSize = *StringTableSizePtr; if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize)) return E; // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some // tools like cvtres write a size of 0 for an empty table instead of 4. if (StringTableSize < 4) StringTableSize = 4; // Check that the string table is null terminated if has any in it. if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) return createStringError(object_error::parse_failed, "string table missing null terminator"); return Error::success(); } uint64_t COFFObjectFile::getImageBase() const { if (PE32Header) return PE32Header->ImageBase; else if (PE32PlusHeader) return PE32PlusHeader->ImageBase; // This actually comes up in practice. return 0; } // Returns the file offset for the given VA. Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { uint64_t ImageBase = getImageBase(); uint64_t Rva = Addr - ImageBase; assert(Rva <= UINT32_MAX); return getRvaPtr((uint32_t)Rva, Res); } // Returns the file offset for the given RVA. Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res, const char *ErrorContext) const { for (const SectionRef &S : sections()) { const coff_section *Section = getCOFFSection(S); uint32_t SectionStart = Section->VirtualAddress; uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; if (SectionStart <= Addr && Addr < SectionEnd) { // A table/directory entry can be pointing to somewhere in a stripped // section, in an object that went through `objcopy --only-keep-debug`. // In this case we don't want to cause the parsing of the object file to // fail, otherwise it will be impossible to use this object as debug info // in LLDB. Return SectionStrippedError here so that // COFFObjectFile::initialize can ignore the error. // Somewhat common binaries may have RVAs pointing outside of the // provided raw data. Instead of rejecting the binaries, just // treat the section as stripped for these purposes. if (Section->SizeOfRawData < Section->VirtualSize && Addr >= SectionStart + Section->SizeOfRawData) { return make_error(); } uint32_t Offset = Addr - SectionStart; Res = reinterpret_cast(base()) + Section->PointerToRawData + Offset; return Error::success(); } } if (ErrorContext) return createStringError(object_error::parse_failed, "RVA 0x%" PRIx32 " for %s not found", Addr, ErrorContext); return createStringError(object_error::parse_failed, "RVA 0x%" PRIx32 " not found", Addr); } Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size, ArrayRef &Contents, const char *ErrorContext) const { for (const SectionRef &S : sections()) { const coff_section *Section = getCOFFSection(S); uint32_t SectionStart = Section->VirtualAddress; // Check if this RVA is within the section bounds. Be careful about integer // overflow. uint32_t OffsetIntoSection = RVA - SectionStart; if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize && Size <= Section->VirtualSize - OffsetIntoSection) { uintptr_t Begin = reinterpret_cast(base()) + Section->PointerToRawData + OffsetIntoSection; Contents = ArrayRef(reinterpret_cast(Begin), Size); return Error::success(); } } if (ErrorContext) return createStringError(object_error::parse_failed, "RVA 0x%" PRIx32 " for %s not found", RVA, ErrorContext); return createStringError(object_error::parse_failed, "RVA 0x%" PRIx32 " not found", RVA); } // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name // table entry. Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, StringRef &Name) const { uintptr_t IntPtr = 0; if (Error E = getRvaPtr(Rva, IntPtr)) return E; const uint8_t *Ptr = reinterpret_cast(IntPtr); Hint = *reinterpret_cast(Ptr); Name = StringRef(reinterpret_cast(Ptr + 2)); return Error::success(); } Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir, const codeview::DebugInfo *&PDBInfo, StringRef &PDBFileName) const { ArrayRef InfoBytes; if (Error E = getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData, InfoBytes, "PDB info")) return E; if (InfoBytes.size() < sizeof(*PDBInfo) + 1) return createStringError(object_error::parse_failed, "PDB info too small"); PDBInfo = reinterpret_cast(InfoBytes.data()); InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo)); PDBFileName = StringRef(reinterpret_cast(InfoBytes.data()), InfoBytes.size()); // Truncate the name at the first null byte. Ignore any padding. PDBFileName = PDBFileName.split('\0').first; return Error::success(); } Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo, StringRef &PDBFileName) const { for (const debug_directory &D : debug_directories()) if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW) return getDebugPDBInfo(&D, PDBInfo, PDBFileName); // If we get here, there is no PDB info to return. PDBInfo = nullptr; PDBFileName = StringRef(); return Error::success(); } // Find the import table. Error COFFObjectFile::initImportTablePtr() { // First, we get the RVA of the import table. If the file lacks a pointer to // the import table, do nothing. const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE); if (!DataEntry) return Error::success(); // Do nothing if the pointer to import table is NULL. if (DataEntry->RelativeVirtualAddress == 0) return Error::success(); uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; // Find the section that contains the RVA. This is needed because the RVA is // the import table's memory address which is different from its file offset. uintptr_t IntPtr = 0; if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table")) return E; if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) return E; ImportDirectory = reinterpret_cast< const coff_import_directory_table_entry *>(IntPtr); return Error::success(); } // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. Error COFFObjectFile::initDelayImportTablePtr() { const data_directory *DataEntry = getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR); if (!DataEntry) return Error::success(); if (DataEntry->RelativeVirtualAddress == 0) return Error::success(); uint32_t RVA = DataEntry->RelativeVirtualAddress; NumberOfDelayImportDirectory = DataEntry->Size / sizeof(delay_import_directory_table_entry) - 1; uintptr_t IntPtr = 0; if (Error E = getRvaPtr(RVA, IntPtr, "delay import table")) return E; if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) return E; DelayImportDirectory = reinterpret_cast< const delay_import_directory_table_entry *>(IntPtr); return Error::success(); } // Find the export table. Error COFFObjectFile::initExportTablePtr() { // First, we get the RVA of the export table. If the file lacks a pointer to // the export table, do nothing. const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE); if (!DataEntry) return Error::success(); // Do nothing if the pointer to export table is NULL. if (DataEntry->RelativeVirtualAddress == 0) return Error::success(); uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; uintptr_t IntPtr = 0; if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table")) return E; if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) return E; ExportDirectory = reinterpret_cast(IntPtr); return Error::success(); } Error COFFObjectFile::initBaseRelocPtr() { const data_directory *DataEntry = getDataDirectory(COFF::BASE_RELOCATION_TABLE); if (!DataEntry) return Error::success(); if (DataEntry->RelativeVirtualAddress == 0) return Error::success(); uintptr_t IntPtr = 0; if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "base reloc table")) return E; if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) return E; BaseRelocHeader = reinterpret_cast( IntPtr); BaseRelocEnd = reinterpret_cast( IntPtr + DataEntry->Size); // FIXME: Verify the section containing BaseRelocHeader has at least // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. return Error::success(); } Error COFFObjectFile::initDebugDirectoryPtr() { // Get the RVA of the debug directory. Do nothing if it does not exist. const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY); if (!DataEntry) return Error::success(); // Do nothing if the RVA is NULL. if (DataEntry->RelativeVirtualAddress == 0) return Error::success(); // Check that the size is a multiple of the entry size. if (DataEntry->Size % sizeof(debug_directory) != 0) return createStringError(object_error::parse_failed, "debug directory has uneven size"); uintptr_t IntPtr = 0; if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "debug directory")) return E; if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) return E; DebugDirectoryBegin = reinterpret_cast(IntPtr); DebugDirectoryEnd = reinterpret_cast( IntPtr + DataEntry->Size); // FIXME: Verify the section containing DebugDirectoryBegin has at least // DataEntry->Size bytes after DataEntry->RelativeVirtualAddress. return Error::success(); } Error COFFObjectFile::initTLSDirectoryPtr() { // Get the RVA of the TLS directory. Do nothing if it does not exist. const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE); if (!DataEntry) return Error::success(); // Do nothing if the RVA is NULL. if (DataEntry->RelativeVirtualAddress == 0) return Error::success(); uint64_t DirSize = is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32); // Check that the size is correct. if (DataEntry->Size != DirSize) return createStringError( object_error::parse_failed, "TLS Directory size (%u) is not the expected size (%" PRIu64 ").", static_cast(DataEntry->Size), DirSize); uintptr_t IntPtr = 0; if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory")) return E; if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) return E; if (is64()) TLSDirectory64 = reinterpret_cast(IntPtr); else TLSDirectory32 = reinterpret_cast(IntPtr); return Error::success(); } Error COFFObjectFile::initLoadConfigPtr() { // Get the RVA of the debug directory. Do nothing if it does not exist. const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE); if (!DataEntry) return Error::success(); // Do nothing if the RVA is NULL. if (DataEntry->RelativeVirtualAddress == 0) return Error::success(); uintptr_t IntPtr = 0; if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "load config table")) return E; if (Error E = checkOffset(Data, IntPtr, DataEntry->Size)) return E; LoadConfig = (const void *)IntPtr; return Error::success(); } Expected> COFFObjectFile::create(MemoryBufferRef Object) { std::unique_ptr Obj(new COFFObjectFile(std::move(Object))); if (Error E = Obj->initialize()) return std::move(E); return std::move(Obj); } COFFObjectFile::COFFObjectFile(MemoryBufferRef Object) : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), ImportDirectory(nullptr), DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), ExportDirectory(nullptr), BaseRelocHeader(nullptr), BaseRelocEnd(nullptr), DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr), TLSDirectory32(nullptr), TLSDirectory64(nullptr) {} static Error ignoreStrippedErrors(Error E) { if (E.isA()) { consumeError(std::move(E)); return Error::success(); } return E; } Error COFFObjectFile::initialize() { // Check that we at least have enough room for a header. std::error_code EC; if (!checkSize(Data, EC, sizeof(coff_file_header))) return errorCodeToError(EC); // The current location in the file where we are looking at. uint64_t CurPtr = 0; // PE header is optional and is present only in executables. If it exists, // it is placed right after COFF header. bool HasPEHeader = false; // Check if this is a PE/COFF file. if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { // PE/COFF, seek through MS-DOS compatibility stub and 4-byte // PE signature to find 'normal' COFF header. const auto *DH = reinterpret_cast(base()); if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { CurPtr = DH->AddressOfNewExeHeader; // Check the PE magic bytes. ("PE\0\0") if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { return createStringError(object_error::parse_failed, "incorrect PE magic"); } CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. HasPEHeader = true; } } if (Error E = getObject(COFFHeader, Data, base() + CurPtr)) return E; // It might be a bigobj file, let's check. Note that COFF bigobj and COFF // import libraries share a common prefix but bigobj is more restrictive. if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && COFFHeader->NumberOfSections == uint16_t(0xffff) && checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr)) return E; // Verify that we are dealing with bigobj. if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, sizeof(COFF::BigObjMagic)) == 0) { COFFHeader = nullptr; CurPtr += sizeof(coff_bigobj_file_header); } else { // It's not a bigobj. COFFBigObjHeader = nullptr; } } if (COFFHeader) { // The prior checkSize call may have failed. This isn't a hard error // because we were just trying to sniff out bigobj. EC = std::error_code(); CurPtr += sizeof(coff_file_header); if (COFFHeader->isImportLibrary()) return errorCodeToError(EC); } if (HasPEHeader) { const pe32_header *Header; if (Error E = getObject(Header, Data, base() + CurPtr)) return E; const uint8_t *DataDirAddr; uint64_t DataDirSize; if (Header->Magic == COFF::PE32Header::PE32) { PE32Header = Header; DataDirAddr = base() + CurPtr + sizeof(pe32_header); DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { PE32PlusHeader = reinterpret_cast(Header); DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; } else { // It's neither PE32 nor PE32+. return createStringError(object_error::parse_failed, "incorrect PE magic"); } if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)) return E; } if (COFFHeader) CurPtr += COFFHeader->SizeOfOptionalHeader; assert(COFFHeader || COFFBigObjHeader); if (Error E = getObject(SectionTable, Data, base() + CurPtr, (uint64_t)getNumberOfSections() * sizeof(coff_section))) return E; // Initialize the pointer to the symbol table. if (getPointerToSymbolTable() != 0) { if (Error E = initSymbolTablePtr()) { // Recover from errors reading the symbol table. consumeError(std::move(E)); SymbolTable16 = nullptr; SymbolTable32 = nullptr; StringTable = nullptr; StringTableSize = 0; } } else { // We had better not have any symbols if we don't have a symbol table. if (getNumberOfSymbols() != 0) { return createStringError(object_error::parse_failed, "symbol table missing"); } } // Initialize the pointer to the beginning of the import table. if (Error E = ignoreStrippedErrors(initImportTablePtr())) return E; if (Error E = ignoreStrippedErrors(initDelayImportTablePtr())) return E; // Initialize the pointer to the export table. if (Error E = ignoreStrippedErrors(initExportTablePtr())) return E; // Initialize the pointer to the base relocation table. if (Error E = ignoreStrippedErrors(initBaseRelocPtr())) return E; // Initialize the pointer to the debug directory. if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr())) return E; // Initialize the pointer to the TLS directory. if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr())) return E; if (Error E = ignoreStrippedErrors(initLoadConfigPtr())) return E; return Error::success(); } basic_symbol_iterator COFFObjectFile::symbol_begin() const { DataRefImpl Ret; Ret.p = getSymbolTable(); return basic_symbol_iterator(SymbolRef(Ret, this)); } basic_symbol_iterator COFFObjectFile::symbol_end() const { // The symbol table ends where the string table begins. DataRefImpl Ret; Ret.p = reinterpret_cast(StringTable); return basic_symbol_iterator(SymbolRef(Ret, this)); } import_directory_iterator COFFObjectFile::import_directory_begin() const { if (!ImportDirectory) return import_directory_end(); if (ImportDirectory->isNull()) return import_directory_end(); return import_directory_iterator( ImportDirectoryEntryRef(ImportDirectory, 0, this)); } import_directory_iterator COFFObjectFile::import_directory_end() const { return import_directory_iterator( ImportDirectoryEntryRef(nullptr, -1, this)); } delay_import_directory_iterator COFFObjectFile::delay_import_directory_begin() const { return delay_import_directory_iterator( DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); } delay_import_directory_iterator COFFObjectFile::delay_import_directory_end() const { return delay_import_directory_iterator( DelayImportDirectoryEntryRef( DelayImportDirectory, NumberOfDelayImportDirectory, this)); } export_directory_iterator COFFObjectFile::export_directory_begin() const { return export_directory_iterator( ExportDirectoryEntryRef(ExportDirectory, 0, this)); } export_directory_iterator COFFObjectFile::export_directory_end() const { if (!ExportDirectory) return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); ExportDirectoryEntryRef Ref(ExportDirectory, ExportDirectory->AddressTableEntries, this); return export_directory_iterator(Ref); } section_iterator COFFObjectFile::section_begin() const { DataRefImpl Ret; Ret.p = reinterpret_cast(SectionTable); return section_iterator(SectionRef(Ret, this)); } section_iterator COFFObjectFile::section_end() const { DataRefImpl Ret; int NumSections = COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); Ret.p = reinterpret_cast(SectionTable + NumSections); return section_iterator(SectionRef(Ret, this)); } base_reloc_iterator COFFObjectFile::base_reloc_begin() const { return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); } base_reloc_iterator COFFObjectFile::base_reloc_end() const { return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); } uint8_t COFFObjectFile::getBytesInAddress() const { return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4; } StringRef COFFObjectFile::getFileFormatName() const { switch(getMachine()) { case COFF::IMAGE_FILE_MACHINE_I386: return "COFF-i386"; case COFF::IMAGE_FILE_MACHINE_AMD64: return "COFF-x86-64"; case COFF::IMAGE_FILE_MACHINE_ARMNT: return "COFF-ARM"; case COFF::IMAGE_FILE_MACHINE_ARM64: return "COFF-ARM64"; default: return "COFF-"; } } Triple::ArchType COFFObjectFile::getArch() const { switch (getMachine()) { case COFF::IMAGE_FILE_MACHINE_I386: return Triple::x86; case COFF::IMAGE_FILE_MACHINE_AMD64: return Triple::x86_64; case COFF::IMAGE_FILE_MACHINE_ARMNT: return Triple::thumb; case COFF::IMAGE_FILE_MACHINE_ARM64: return Triple::aarch64; default: return Triple::UnknownArch; } } Expected COFFObjectFile::getStartAddress() const { if (PE32Header) return PE32Header->AddressOfEntryPoint; return 0; } iterator_range COFFObjectFile::import_directories() const { return make_range(import_directory_begin(), import_directory_end()); } iterator_range COFFObjectFile::delay_import_directories() const { return make_range(delay_import_directory_begin(), delay_import_directory_end()); } iterator_range COFFObjectFile::export_directories() const { return make_range(export_directory_begin(), export_directory_end()); } iterator_range COFFObjectFile::base_relocs() const { return make_range(base_reloc_begin(), base_reloc_end()); } const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const { if (!DataDirectory) return nullptr; assert(PE32Header || PE32PlusHeader); uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize : PE32PlusHeader->NumberOfRvaAndSize; if (Index >= NumEnt) return nullptr; return &DataDirectory[Index]; } Expected COFFObjectFile::getSection(int32_t Index) const { // Perhaps getting the section of a reserved section index should be an error, // but callers rely on this to return null. if (COFF::isReservedSectionNumber(Index)) return (const coff_section *)nullptr; if (static_cast(Index) <= getNumberOfSections()) { // We already verified the section table data, so no need to check again. return SectionTable + (Index - 1); } return createStringError(object_error::parse_failed, "section index out of bounds"); } Expected COFFObjectFile::getString(uint32_t Offset) const { if (StringTableSize <= 4) // Tried to get a string from an empty string table. return createStringError(object_error::parse_failed, "string table empty"); if (Offset >= StringTableSize) return errorCodeToError(object_error::unexpected_eof); return StringRef(StringTable + Offset); } Expected COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const { return getSymbolName(Symbol.getGeneric()); } Expected COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const { // Check for string table entry. First 4 bytes are 0. if (Symbol->Name.Offset.Zeroes == 0) return getString(Symbol->Name.Offset.Offset); // Null terminated, let ::strlen figure out the length. if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) return StringRef(Symbol->Name.ShortName); // Not null terminated, use all 8 bytes. return StringRef(Symbol->Name.ShortName, COFF::NameSize); } ArrayRef COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { const uint8_t *Aux = nullptr; size_t SymbolSize = getSymbolTableEntrySize(); if (Symbol.getNumberOfAuxSymbols() > 0) { // AUX data comes immediately after the symbol in COFF Aux = reinterpret_cast(Symbol.getRawPtr()) + SymbolSize; #ifndef NDEBUG // Verify that the Aux symbol points to a valid entry in the symbol table. uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); if (Offset < getPointerToSymbolTable() || Offset >= getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) report_fatal_error("Aux Symbol data was outside of symbol table."); assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && "Aux Symbol data did not point to the beginning of a symbol"); #endif } return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); } uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const { uintptr_t Offset = reinterpret_cast(Symbol.getRawPtr()) - getSymbolTable(); assert(Offset % getSymbolTableEntrySize() == 0 && "Symbol did not point to the beginning of a symbol"); size_t Index = Offset / getSymbolTableEntrySize(); assert(Index < getNumberOfSymbols()); return Index; } Expected COFFObjectFile::getSectionName(const coff_section *Sec) const { StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first; // Check for string table entry. First byte is '/'. if (Name.startswith("/")) { uint32_t Offset; if (Name.startswith("//")) { if (decodeBase64StringEntry(Name.substr(2), Offset)) return createStringError(object_error::parse_failed, "invalid section name"); } else { if (Name.substr(1).getAsInteger(10, Offset)) return createStringError(object_error::parse_failed, "invalid section name"); } return getString(Offset); } return Name; } uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { // SizeOfRawData and VirtualSize change what they represent depending on // whether or not we have an executable image. // // For object files, SizeOfRawData contains the size of section's data; // VirtualSize should be zero but isn't due to buggy COFF writers. // // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the // actual section size is in VirtualSize. It is possible for VirtualSize to // be greater than SizeOfRawData; the contents past that point should be // considered to be zero. if (getDOSHeader()) return std::min(Sec->VirtualSize, Sec->SizeOfRawData); return Sec->SizeOfRawData; } Error COFFObjectFile::getSectionContents(const coff_section *Sec, ArrayRef &Res) const { // In COFF, a virtual section won't have any in-file // content, so the file pointer to the content will be zero. if (Sec->PointerToRawData == 0) return Error::success(); // The only thing that we need to verify is that the contents is contained // within the file bounds. We don't need to make sure it doesn't cover other // data, as there's nothing that says that is not allowed. uintptr_t ConStart = reinterpret_cast(base()) + Sec->PointerToRawData; uint32_t SectionSize = getSectionSize(Sec); if (Error E = checkOffset(Data, ConStart, SectionSize)) return E; Res = makeArrayRef(reinterpret_cast(ConStart), SectionSize); return Error::success(); } const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { return reinterpret_cast(Rel.p); } void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { Rel.p = reinterpret_cast( reinterpret_cast(Rel.p) + 1); } uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { const coff_relocation *R = toRel(Rel); return R->VirtualAddress; } symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { const coff_relocation *R = toRel(Rel); DataRefImpl Ref; if (R->SymbolTableIndex >= getNumberOfSymbols()) return symbol_end(); if (SymbolTable16) Ref.p = reinterpret_cast(SymbolTable16 + R->SymbolTableIndex); else if (SymbolTable32) Ref.p = reinterpret_cast(SymbolTable32 + R->SymbolTableIndex); else llvm_unreachable("no symbol table pointer!"); return symbol_iterator(SymbolRef(Ref, this)); } uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { const coff_relocation* R = toRel(Rel); return R->Type; } const coff_section * COFFObjectFile::getCOFFSection(const SectionRef &Section) const { return toSec(Section.getRawDataRefImpl()); } COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { if (SymbolTable16) return toSymb(Ref); if (SymbolTable32) return toSymb(Ref); llvm_unreachable("no symbol table pointer!"); } COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { return getCOFFSymbol(Symbol.getRawDataRefImpl()); } const coff_relocation * COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { return toRel(Reloc.getRawDataRefImpl()); } ArrayRef COFFObjectFile::getRelocations(const coff_section *Sec) const { return {getFirstReloc(Sec, Data, base()), getNumberOfRelocations(Sec, Data, base())}; } #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ case COFF::reloc_type: \ return #reloc_type; StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const { switch (getMachine()) { case COFF::IMAGE_FILE_MACHINE_AMD64: switch (Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); default: return "Unknown"; } break; case COFF::IMAGE_FILE_MACHINE_ARMNT: switch (Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR); default: return "Unknown"; } break; case COFF::IMAGE_FILE_MACHINE_ARM64: switch (Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32); default: return "Unknown"; } break; case COFF::IMAGE_FILE_MACHINE_I386: switch (Type) { LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); default: return "Unknown"; } break; default: return "Unknown"; } } #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME void COFFObjectFile::getRelocationTypeName( DataRefImpl Rel, SmallVectorImpl &Result) const { const coff_relocation *Reloc = toRel(Rel); StringRef Res = getRelocationTypeName(Reloc->Type); Result.append(Res.begin(), Res.end()); } bool COFFObjectFile::isRelocatableObject() const { return !DataDirectory; } StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const { return StringSwitch(Name) .Case("eh_fram", "eh_frame") .Default(Name); } bool ImportDirectoryEntryRef:: operator==(const ImportDirectoryEntryRef &Other) const { return ImportTable == Other.ImportTable && Index == Other.Index; } void ImportDirectoryEntryRef::moveNext() { ++Index; if (ImportTable[Index].isNull()) { Index = -1; ImportTable = nullptr; } } Error ImportDirectoryEntryRef::getImportTableEntry( const coff_import_directory_table_entry *&Result) const { return getObject(Result, OwningObject->Data, ImportTable + Index); } static imported_symbol_iterator makeImportedSymbolIterator(const COFFObjectFile *Object, uintptr_t Ptr, int Index) { if (Object->getBytesInAddress() == 4) { auto *P = reinterpret_cast(Ptr); return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); } auto *P = reinterpret_cast(Ptr); return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); } static imported_symbol_iterator importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { uintptr_t IntPtr = 0; // FIXME: Handle errors. cantFail(Object->getRvaPtr(RVA, IntPtr)); return makeImportedSymbolIterator(Object, IntPtr, 0); } static imported_symbol_iterator importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { uintptr_t IntPtr = 0; // FIXME: Handle errors. cantFail(Object->getRvaPtr(RVA, IntPtr)); // Forward the pointer to the last entry which is null. int Index = 0; if (Object->getBytesInAddress() == 4) { auto *Entry = reinterpret_cast(IntPtr); while (*Entry++) ++Index; } else { auto *Entry = reinterpret_cast(IntPtr); while (*Entry++) ++Index; } return makeImportedSymbolIterator(Object, IntPtr, Index); } imported_symbol_iterator ImportDirectoryEntryRef::imported_symbol_begin() const { return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA, OwningObject); } imported_symbol_iterator ImportDirectoryEntryRef::imported_symbol_end() const { return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA, OwningObject); } iterator_range ImportDirectoryEntryRef::imported_symbols() const { return make_range(imported_symbol_begin(), imported_symbol_end()); } imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const { return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, OwningObject); } imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const { return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, OwningObject); } iterator_range ImportDirectoryEntryRef::lookup_table_symbols() const { return make_range(lookup_table_begin(), lookup_table_end()); } Error ImportDirectoryEntryRef::getName(StringRef &Result) const { uintptr_t IntPtr = 0; if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr, "import directory name")) return E; Result = StringRef(reinterpret_cast(IntPtr)); return Error::success(); } Error ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { Result = ImportTable[Index].ImportLookupTableRVA; return Error::success(); } Error ImportDirectoryEntryRef::getImportAddressTableRVA( uint32_t &Result) const { Result = ImportTable[Index].ImportAddressTableRVA; return Error::success(); } bool DelayImportDirectoryEntryRef:: operator==(const DelayImportDirectoryEntryRef &Other) const { return Table == Other.Table && Index == Other.Index; } void DelayImportDirectoryEntryRef::moveNext() { ++Index; } imported_symbol_iterator DelayImportDirectoryEntryRef::imported_symbol_begin() const { return importedSymbolBegin(Table[Index].DelayImportNameTable, OwningObject); } imported_symbol_iterator DelayImportDirectoryEntryRef::imported_symbol_end() const { return importedSymbolEnd(Table[Index].DelayImportNameTable, OwningObject); } iterator_range DelayImportDirectoryEntryRef::imported_symbols() const { return make_range(imported_symbol_begin(), imported_symbol_end()); } Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const { uintptr_t IntPtr = 0; if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr, "delay import directory name")) return E; Result = StringRef(reinterpret_cast(IntPtr)); return Error::success(); } Error DelayImportDirectoryEntryRef::getDelayImportTable( const delay_import_directory_table_entry *&Result) const { Result = &Table[Index]; return Error::success(); } Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex, uint64_t &Result) const { uint32_t RVA = Table[Index].DelayImportAddressTable + AddrIndex * (OwningObject->is64() ? 8 : 4); uintptr_t IntPtr = 0; if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address")) return E; if (OwningObject->is64()) Result = *reinterpret_cast(IntPtr); else Result = *reinterpret_cast(IntPtr); return Error::success(); } bool ExportDirectoryEntryRef:: operator==(const ExportDirectoryEntryRef &Other) const { return ExportTable == Other.ExportTable && Index == Other.Index; } void ExportDirectoryEntryRef::moveNext() { ++Index; } // Returns the name of the current export symbol. If the symbol is exported only // by ordinal, the empty string is set as a result. Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const { uintptr_t IntPtr = 0; if (Error E = OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name")) return E; Result = StringRef(reinterpret_cast(IntPtr)); return Error::success(); } // Returns the starting ordinal number. Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { Result = ExportTable->OrdinalBase; return Error::success(); } // Returns the export ordinal of the current export symbol. Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { Result = ExportTable->OrdinalBase + Index; return Error::success(); } // Returns the address of the current export symbol. Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { uintptr_t IntPtr = 0; if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr, "export address")) return EC; const export_address_table_entry *entry = reinterpret_cast(IntPtr); Result = entry[Index].ExportRVA; return Error::success(); } // Returns the name of the current export symbol. If the symbol is exported only // by ordinal, the empty string is set as a result. Error ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { uintptr_t IntPtr = 0; if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr, "export ordinal table")) return EC; const ulittle16_t *Start = reinterpret_cast(IntPtr); uint32_t NumEntries = ExportTable->NumberOfNamePointers; int Offset = 0; for (const ulittle16_t *I = Start, *E = Start + NumEntries; I < E; ++I, ++Offset) { if (*I != Index) continue; if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr, "export table entry")) return EC; const ulittle32_t *NamePtr = reinterpret_cast(IntPtr); if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr, "export symbol name")) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return Error::success(); } Result = ""; return Error::success(); } Error ExportDirectoryEntryRef::isForwarder(bool &Result) const { const data_directory *DataEntry = OwningObject->getDataDirectory(COFF::EXPORT_TABLE); if (!DataEntry) return createStringError(object_error::parse_failed, "export table missing"); uint32_t RVA; if (auto EC = getExportRVA(RVA)) return EC; uint32_t Begin = DataEntry->RelativeVirtualAddress; uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size; Result = (Begin <= RVA && RVA < End); return Error::success(); } Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const { uint32_t RVA; if (auto EC = getExportRVA(RVA)) return EC; uintptr_t IntPtr = 0; if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target")) return EC; Result = StringRef(reinterpret_cast(IntPtr)); return Error::success(); } bool ImportedSymbolRef:: operator==(const ImportedSymbolRef &Other) const { return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 && Index == Other.Index; } void ImportedSymbolRef::moveNext() { ++Index; } Error ImportedSymbolRef::getSymbolName(StringRef &Result) const { uint32_t RVA; if (Entry32) { // If a symbol is imported only by ordinal, it has no name. if (Entry32[Index].isOrdinal()) return Error::success(); RVA = Entry32[Index].getHintNameRVA(); } else { if (Entry64[Index].isOrdinal()) return Error::success(); RVA = Entry64[Index].getHintNameRVA(); } uintptr_t IntPtr = 0; if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name")) return EC; // +2 because the first two bytes is hint. Result = StringRef(reinterpret_cast(IntPtr + 2)); return Error::success(); } Error ImportedSymbolRef::isOrdinal(bool &Result) const { if (Entry32) Result = Entry32[Index].isOrdinal(); else Result = Entry64[Index].isOrdinal(); return Error::success(); } Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const { if (Entry32) Result = Entry32[Index].getHintNameRVA(); else Result = Entry64[Index].getHintNameRVA(); return Error::success(); } Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const { uint32_t RVA; if (Entry32) { if (Entry32[Index].isOrdinal()) { Result = Entry32[Index].getOrdinal(); return Error::success(); } RVA = Entry32[Index].getHintNameRVA(); } else { if (Entry64[Index].isOrdinal()) { Result = Entry64[Index].getOrdinal(); return Error::success(); } RVA = Entry64[Index].getHintNameRVA(); } uintptr_t IntPtr = 0; if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal")) return EC; Result = *reinterpret_cast(IntPtr); return Error::success(); } Expected> ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { return COFFObjectFile::create(Object); } bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { return Header == Other.Header && Index == Other.Index; } void BaseRelocRef::moveNext() { // Header->BlockSize is the size of the current block, including the // size of the header itself. uint32_t Size = sizeof(*Header) + sizeof(coff_base_reloc_block_entry) * (Index + 1); if (Size == Header->BlockSize) { // .reloc contains a list of base relocation blocks. Each block // consists of the header followed by entries. The header contains // how many entories will follow. When we reach the end of the // current block, proceed to the next block. Header = reinterpret_cast( reinterpret_cast(Header) + Size); Index = 0; } else { ++Index; } } Error BaseRelocRef::getType(uint8_t &Type) const { auto *Entry = reinterpret_cast(Header + 1); Type = Entry[Index].getType(); return Error::success(); } Error BaseRelocRef::getRVA(uint32_t &Result) const { auto *Entry = reinterpret_cast(Header + 1); Result = Header->PageRVA + Entry[Index].getOffset(); return Error::success(); } #define RETURN_IF_ERROR(Expr) \ do { \ Error E = (Expr); \ if (E) \ return std::move(E); \ } while (0) Expected> ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) { BinaryStreamReader Reader = BinaryStreamReader(BBS); Reader.setOffset(Offset); uint16_t Length; RETURN_IF_ERROR(Reader.readInteger(Length)); ArrayRef RawDirString; RETURN_IF_ERROR(Reader.readArray(RawDirString, Length)); return RawDirString; } Expected> ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) { return getDirStringAtOffset(Entry.Identifier.getNameOffset()); } Expected ResourceSectionRef::getTableAtOffset(uint32_t Offset) { const coff_resource_dir_table *Table = nullptr; BinaryStreamReader Reader(BBS); Reader.setOffset(Offset); RETURN_IF_ERROR(Reader.readObject(Table)); assert(Table != nullptr); return *Table; } Expected ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) { const coff_resource_dir_entry *Entry = nullptr; BinaryStreamReader Reader(BBS); Reader.setOffset(Offset); RETURN_IF_ERROR(Reader.readObject(Entry)); assert(Entry != nullptr); return *Entry; } Expected ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) { const coff_resource_data_entry *Entry = nullptr; BinaryStreamReader Reader(BBS); Reader.setOffset(Offset); RETURN_IF_ERROR(Reader.readObject(Entry)); assert(Entry != nullptr); return *Entry; } Expected ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) { assert(Entry.Offset.isSubDir()); return getTableAtOffset(Entry.Offset.value()); } Expected ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) { assert(!Entry.Offset.isSubDir()); return getDataEntryAtOffset(Entry.Offset.value()); } Expected ResourceSectionRef::getBaseTable() { return getTableAtOffset(0); } Expected ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table, uint32_t Index) { if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries)) return createStringError(object_error::parse_failed, "index out of range"); const uint8_t *TablePtr = reinterpret_cast(&Table); ptrdiff_t TableOffset = TablePtr - BBS.data().data(); return getTableEntryAtOffset(TableOffset + sizeof(Table) + Index * sizeof(coff_resource_dir_entry)); } Error ResourceSectionRef::load(const COFFObjectFile *O) { for (const SectionRef &S : O->sections()) { Expected Name = S.getName(); if (!Name) return Name.takeError(); if (*Name == ".rsrc" || *Name == ".rsrc$01") return load(O, S); } return createStringError(object_error::parse_failed, "no resource section found"); } Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) { Obj = O; Section = S; Expected Contents = Section.getContents(); if (!Contents) return Contents.takeError(); BBS = BinaryByteStream(*Contents, support::little); const coff_section *COFFSect = Obj->getCOFFSection(Section); ArrayRef OrigRelocs = Obj->getRelocations(COFFSect); Relocs.reserve(OrigRelocs.size()); for (const coff_relocation &R : OrigRelocs) Relocs.push_back(&R); llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) { return A->VirtualAddress < B->VirtualAddress; }); return Error::success(); } Expected ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) { if (!Obj) return createStringError(object_error::parse_failed, "no object provided"); // Find a potential relocation at the DataRVA field (first member of // the coff_resource_data_entry struct). const uint8_t *EntryPtr = reinterpret_cast(&Entry); ptrdiff_t EntryOffset = EntryPtr - BBS.data().data(); coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0), ulittle16_t(0)}; auto RelocsForOffset = std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget, [](const coff_relocation *A, const coff_relocation *B) { return A->VirtualAddress < B->VirtualAddress; }); if (RelocsForOffset.first != RelocsForOffset.second) { // We found a relocation with the right offset. Check that it does have // the expected type. const coff_relocation &R = **RelocsForOffset.first; uint16_t RVAReloc; switch (Obj->getMachine()) { case COFF::IMAGE_FILE_MACHINE_I386: RVAReloc = COFF::IMAGE_REL_I386_DIR32NB; break; case COFF::IMAGE_FILE_MACHINE_AMD64: RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB; break; case COFF::IMAGE_FILE_MACHINE_ARMNT: RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB; break; case COFF::IMAGE_FILE_MACHINE_ARM64: RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB; break; default: return createStringError(object_error::parse_failed, "unsupported architecture"); } if (R.Type != RVAReloc) return createStringError(object_error::parse_failed, "unexpected relocation type"); // Get the relocation's symbol Expected Sym = Obj->getSymbol(R.SymbolTableIndex); if (!Sym) return Sym.takeError(); // And the symbol's section Expected Section = Obj->getSection(Sym->getSectionNumber()); if (!Section) return Section.takeError(); // Add the initial value of DataRVA to the symbol's offset to find the // data it points at. uint64_t Offset = Entry.DataRVA + Sym->getValue(); ArrayRef Contents; if (Error E = Obj->getSectionContents(*Section, Contents)) return std::move(E); if (Offset + Entry.DataSize > Contents.size()) return createStringError(object_error::parse_failed, "data outside of section"); // Return a reference to the data inside the section. return StringRef(reinterpret_cast(Contents.data()) + Offset, Entry.DataSize); } else { // Relocatable objects need a relocation for the DataRVA field. if (Obj->isRelocatableObject()) return createStringError(object_error::parse_failed, "no relocation found for DataRVA"); // Locate the section that contains the address that DataRVA points at. uint64_t VA = Entry.DataRVA + Obj->getImageBase(); for (const SectionRef &S : Obj->sections()) { if (VA >= S.getAddress() && VA + Entry.DataSize <= S.getAddress() + S.getSize()) { uint64_t Offset = VA - S.getAddress(); Expected Contents = S.getContents(); if (!Contents) return Contents.takeError(); return Contents->slice(Offset, Offset + Entry.DataSize); } } return createStringError(object_error::parse_failed, "address not found in image"); } }