1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GetElementPtrTypeIterator.h" 71 #include "llvm/IR/InlineAsm.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsAArch64.h" 77 #include "llvm/IR/IntrinsicsWebAssembly.h" 78 #include "llvm/IR/LLVMContext.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Statepoint.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/Support/AtomicOrdering.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/MathExtras.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Target/TargetIntrinsicInfo.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetOptions.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include <cstddef> 100 #include <iterator> 101 #include <limits> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace PatternMatch; 106 using namespace SwitchCG; 107 108 #define DEBUG_TYPE "isel" 109 110 /// LimitFloatPrecision - Generate low-precision inline sequences for 111 /// some float libcalls (6, 8 or 12 bits). 112 static unsigned LimitFloatPrecision; 113 114 static cl::opt<bool> 115 InsertAssertAlign("insert-assert-align", cl::init(true), 116 cl::desc("Insert the experimental `assertalign` node."), 117 cl::ReallyHidden); 118 119 static cl::opt<unsigned, true> 120 LimitFPPrecision("limit-float-precision", 121 cl::desc("Generate low-precision inline sequences " 122 "for some float libcalls"), 123 cl::location(LimitFloatPrecision), cl::Hidden, 124 cl::init(0)); 125 126 static cl::opt<unsigned> SwitchPeelThreshold( 127 "switch-peel-threshold", cl::Hidden, cl::init(66), 128 cl::desc("Set the case probability threshold for peeling the case from a " 129 "switch statement. A value greater than 100 will void this " 130 "optimization")); 131 132 // Limit the width of DAG chains. This is important in general to prevent 133 // DAG-based analysis from blowing up. For example, alias analysis and 134 // load clustering may not complete in reasonable time. It is difficult to 135 // recognize and avoid this situation within each individual analysis, and 136 // future analyses are likely to have the same behavior. Limiting DAG width is 137 // the safe approach and will be especially important with global DAGs. 138 // 139 // MaxParallelChains default is arbitrarily high to avoid affecting 140 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 141 // sequence over this should have been converted to llvm.memcpy by the 142 // frontend. It is easy to induce this behavior with .ll code such as: 143 // %buffer = alloca [4096 x i8] 144 // %data = load [4096 x i8]* %argPtr 145 // store [4096 x i8] %data, [4096 x i8]* %buffer 146 static const unsigned MaxParallelChains = 64; 147 148 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 149 const SDValue *Parts, unsigned NumParts, 150 MVT PartVT, EVT ValueVT, const Value *V, 151 Optional<CallingConv::ID> CC); 152 153 /// getCopyFromParts - Create a value that contains the specified legal parts 154 /// combined into the value they represent. If the parts combine to a type 155 /// larger than ValueVT then AssertOp can be used to specify whether the extra 156 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 157 /// (ISD::AssertSext). 158 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 159 const SDValue *Parts, unsigned NumParts, 160 MVT PartVT, EVT ValueVT, const Value *V, 161 Optional<CallingConv::ID> CC = None, 162 Optional<ISD::NodeType> AssertOp = None) { 163 // Let the target assemble the parts if it wants to 164 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 165 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 166 PartVT, ValueVT, CC)) 167 return Val; 168 169 if (ValueVT.isVector()) 170 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 171 CC); 172 173 assert(NumParts > 0 && "No parts to assemble!"); 174 SDValue Val = Parts[0]; 175 176 if (NumParts > 1) { 177 // Assemble the value from multiple parts. 178 if (ValueVT.isInteger()) { 179 unsigned PartBits = PartVT.getSizeInBits(); 180 unsigned ValueBits = ValueVT.getSizeInBits(); 181 182 // Assemble the power of 2 part. 183 unsigned RoundParts = 184 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 185 unsigned RoundBits = PartBits * RoundParts; 186 EVT RoundVT = RoundBits == ValueBits ? 187 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 188 SDValue Lo, Hi; 189 190 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 191 192 if (RoundParts > 2) { 193 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 194 PartVT, HalfVT, V); 195 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 196 RoundParts / 2, PartVT, HalfVT, V); 197 } else { 198 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 199 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 200 } 201 202 if (DAG.getDataLayout().isBigEndian()) 203 std::swap(Lo, Hi); 204 205 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 212 OddVT, V, CC); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (DAG.getDataLayout().isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueSizeInBits(), DL, 222 TLI.getShiftAmountTy( 223 TotalVT, DAG.getDataLayout()))); 224 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 225 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 226 } 227 } else if (PartVT.isFloatingPoint()) { 228 // FP split into multiple FP parts (for ppcf128) 229 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 230 "Unexpected split"); 231 SDValue Lo, Hi; 232 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 233 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 234 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 235 std::swap(Lo, Hi); 236 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 237 } else { 238 // FP split into integer parts (soft fp) 239 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 240 !PartVT.isVector() && "Unexpected split"); 241 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 242 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 243 } 244 } 245 246 // There is now one part, held in Val. Correct it to match ValueVT. 247 // PartEVT is the type of the register class that holds the value. 248 // ValueVT is the type of the inline asm operation. 249 EVT PartEVT = Val.getValueType(); 250 251 if (PartEVT == ValueVT) 252 return Val; 253 254 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 255 ValueVT.bitsLT(PartEVT)) { 256 // For an FP value in an integer part, we need to truncate to the right 257 // width first. 258 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 259 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 260 } 261 262 // Handle types that have the same size. 263 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 264 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 265 266 // Handle types with different sizes. 267 if (PartEVT.isInteger() && ValueVT.isInteger()) { 268 if (ValueVT.bitsLT(PartEVT)) { 269 // For a truncate, see if we have any information to 270 // indicate whether the truncated bits will always be 271 // zero or sign-extension. 272 if (AssertOp) 273 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 274 DAG.getValueType(ValueVT)); 275 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 276 } 277 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 278 } 279 280 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 281 // FP_ROUND's are always exact here. 282 if (ValueVT.bitsLT(Val.getValueType())) 283 return DAG.getNode( 284 ISD::FP_ROUND, DL, ValueVT, Val, 285 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 286 287 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 288 } 289 290 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 291 // then truncating. 292 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 293 ValueVT.bitsLT(PartEVT)) { 294 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 295 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 296 } 297 298 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 299 } 300 301 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 302 const Twine &ErrMsg) { 303 const Instruction *I = dyn_cast_or_null<Instruction>(V); 304 if (!V) 305 return Ctx.emitError(ErrMsg); 306 307 const char *AsmError = ", possible invalid constraint for vector type"; 308 if (const CallInst *CI = dyn_cast<CallInst>(I)) 309 if (CI->isInlineAsm()) 310 return Ctx.emitError(I, ErrMsg + AsmError); 311 312 return Ctx.emitError(I, ErrMsg); 313 } 314 315 /// getCopyFromPartsVector - Create a value that contains the specified legal 316 /// parts combined into the value they represent. If the parts combine to a 317 /// type larger than ValueVT then AssertOp can be used to specify whether the 318 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 319 /// ValueVT (ISD::AssertSext). 320 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 321 const SDValue *Parts, unsigned NumParts, 322 MVT PartVT, EVT ValueVT, const Value *V, 323 Optional<CallingConv::ID> CallConv) { 324 assert(ValueVT.isVector() && "Not a vector value"); 325 assert(NumParts > 0 && "No parts to assemble!"); 326 const bool IsABIRegCopy = CallConv.has_value(); 327 328 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 329 SDValue Val = Parts[0]; 330 331 // Handle a multi-element vector. 332 if (NumParts > 1) { 333 EVT IntermediateVT; 334 MVT RegisterVT; 335 unsigned NumIntermediates; 336 unsigned NumRegs; 337 338 if (IsABIRegCopy) { 339 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 340 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 341 NumIntermediates, RegisterVT); 342 } else { 343 NumRegs = 344 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 345 NumIntermediates, RegisterVT); 346 } 347 348 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 349 NumParts = NumRegs; // Silence a compiler warning. 350 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 351 assert(RegisterVT.getSizeInBits() == 352 Parts[0].getSimpleValueType().getSizeInBits() && 353 "Part type sizes don't match!"); 354 355 // Assemble the parts into intermediate operands. 356 SmallVector<SDValue, 8> Ops(NumIntermediates); 357 if (NumIntermediates == NumParts) { 358 // If the register was not expanded, truncate or copy the value, 359 // as appropriate. 360 for (unsigned i = 0; i != NumParts; ++i) 361 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 362 PartVT, IntermediateVT, V, CallConv); 363 } else if (NumParts > 0) { 364 // If the intermediate type was expanded, build the intermediate 365 // operands from the parts. 366 assert(NumParts % NumIntermediates == 0 && 367 "Must expand into a divisible number of parts!"); 368 unsigned Factor = NumParts / NumIntermediates; 369 for (unsigned i = 0; i != NumIntermediates; ++i) 370 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 371 PartVT, IntermediateVT, V, CallConv); 372 } 373 374 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 375 // intermediate operands. 376 EVT BuiltVectorTy = 377 IntermediateVT.isVector() 378 ? EVT::getVectorVT( 379 *DAG.getContext(), IntermediateVT.getScalarType(), 380 IntermediateVT.getVectorElementCount() * NumParts) 381 : EVT::getVectorVT(*DAG.getContext(), 382 IntermediateVT.getScalarType(), 383 NumIntermediates); 384 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 385 : ISD::BUILD_VECTOR, 386 DL, BuiltVectorTy, Ops); 387 } 388 389 // There is now one part, held in Val. Correct it to match ValueVT. 390 EVT PartEVT = Val.getValueType(); 391 392 if (PartEVT == ValueVT) 393 return Val; 394 395 if (PartEVT.isVector()) { 396 // Vector/Vector bitcast. 397 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 398 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 399 400 // If the element type of the source/dest vectors are the same, but the 401 // parts vector has more elements than the value vector, then we have a 402 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 403 // elements we want. 404 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 405 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 406 ValueVT.getVectorElementCount().getKnownMinValue()) && 407 (PartEVT.getVectorElementCount().isScalable() == 408 ValueVT.getVectorElementCount().isScalable()) && 409 "Cannot narrow, it would be a lossy transformation"); 410 PartEVT = 411 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 412 ValueVT.getVectorElementCount()); 413 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 414 DAG.getVectorIdxConstant(0, DL)); 415 if (PartEVT == ValueVT) 416 return Val; 417 } 418 419 // Promoted vector extract 420 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 421 } 422 423 // Trivial bitcast if the types are the same size and the destination 424 // vector type is legal. 425 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 426 TLI.isTypeLegal(ValueVT)) 427 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 428 429 if (ValueVT.getVectorNumElements() != 1) { 430 // Certain ABIs require that vectors are passed as integers. For vectors 431 // are the same size, this is an obvious bitcast. 432 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 434 } else if (ValueVT.bitsLT(PartEVT)) { 435 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 436 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 437 // Drop the extra bits. 438 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 439 return DAG.getBitcast(ValueVT, Val); 440 } 441 442 diagnosePossiblyInvalidConstraint( 443 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 444 return DAG.getUNDEF(ValueVT); 445 } 446 447 // Handle cases such as i8 -> <1 x i1> 448 EVT ValueSVT = ValueVT.getVectorElementType(); 449 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 450 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 451 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 452 else 453 Val = ValueVT.isFloatingPoint() 454 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 455 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 456 } 457 458 return DAG.getBuildVector(ValueVT, DL, Val); 459 } 460 461 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 462 SDValue Val, SDValue *Parts, unsigned NumParts, 463 MVT PartVT, const Value *V, 464 Optional<CallingConv::ID> CallConv); 465 466 /// getCopyToParts - Create a series of nodes that contain the specified value 467 /// split into legal parts. If the parts contain more bits than Val, then, for 468 /// integers, ExtendKind can be used to specify how to generate the extra bits. 469 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 470 SDValue *Parts, unsigned NumParts, MVT PartVT, 471 const Value *V, 472 Optional<CallingConv::ID> CallConv = None, 473 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 474 // Let the target split the parts if it wants to 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 477 CallConv)) 478 return; 479 EVT ValueVT = Val.getValueType(); 480 481 // Handle the vector case separately. 482 if (ValueVT.isVector()) 483 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 484 CallConv); 485 486 unsigned PartBits = PartVT.getSizeInBits(); 487 unsigned OrigNumParts = NumParts; 488 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 489 "Copying to an illegal type!"); 490 491 if (NumParts == 0) 492 return; 493 494 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 495 EVT PartEVT = PartVT; 496 if (PartEVT == ValueVT) { 497 assert(NumParts == 1 && "No-op copy with multiple parts!"); 498 Parts[0] = Val; 499 return; 500 } 501 502 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 503 // If the parts cover more bits than the value has, promote the value. 504 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 505 assert(NumParts == 1 && "Do not know what to promote to!"); 506 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 507 } else { 508 if (ValueVT.isFloatingPoint()) { 509 // FP values need to be bitcast, then extended if they are being put 510 // into a larger container. 511 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 512 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 513 } 514 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 515 ValueVT.isInteger() && 516 "Unknown mismatch!"); 517 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 518 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 519 if (PartVT == MVT::x86mmx) 520 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 521 } 522 } else if (PartBits == ValueVT.getSizeInBits()) { 523 // Different types of the same size. 524 assert(NumParts == 1 && PartEVT != ValueVT); 525 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 526 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 527 // If the parts cover less bits than value has, truncate the value. 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 537 // The value may have changed - recompute ValueVT. 538 ValueVT = Val.getValueType(); 539 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 540 "Failed to tile the value with PartVT!"); 541 542 if (NumParts == 1) { 543 if (PartEVT != ValueVT) { 544 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 545 "scalar-to-vector conversion failed"); 546 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 547 } 548 549 Parts[0] = Val; 550 return; 551 } 552 553 // Expand the value into multiple parts. 554 if (NumParts & (NumParts - 1)) { 555 // The number of parts is not a power of 2. Split off and copy the tail. 556 assert(PartVT.isInteger() && ValueVT.isInteger() && 557 "Do not know what to expand to!"); 558 unsigned RoundParts = 1 << Log2_32(NumParts); 559 unsigned RoundBits = RoundParts * PartBits; 560 unsigned OddParts = NumParts - RoundParts; 561 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 562 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 563 564 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 565 CallConv); 566 567 if (DAG.getDataLayout().isBigEndian()) 568 // The odd parts were reversed by getCopyToParts - unreverse them. 569 std::reverse(Parts + RoundParts, Parts + NumParts); 570 571 NumParts = RoundParts; 572 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 573 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 574 } 575 576 // The number of parts is a power of 2. Repeatedly bisect the value using 577 // EXTRACT_ELEMENT. 578 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 579 EVT::getIntegerVT(*DAG.getContext(), 580 ValueVT.getSizeInBits()), 581 Val); 582 583 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 584 for (unsigned i = 0; i < NumParts; i += StepSize) { 585 unsigned ThisBits = StepSize * PartBits / 2; 586 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 587 SDValue &Part0 = Parts[i]; 588 SDValue &Part1 = Parts[i+StepSize/2]; 589 590 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 591 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 592 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 594 595 if (ThisBits == PartBits && ThisVT != PartVT) { 596 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 597 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 598 } 599 } 600 } 601 602 if (DAG.getDataLayout().isBigEndian()) 603 std::reverse(Parts, Parts + OrigNumParts); 604 } 605 606 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 607 const SDLoc &DL, EVT PartVT) { 608 if (!PartVT.isVector()) 609 return SDValue(); 610 611 EVT ValueVT = Val.getValueType(); 612 ElementCount PartNumElts = PartVT.getVectorElementCount(); 613 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 614 615 // We only support widening vectors with equivalent element types and 616 // fixed/scalable properties. If a target needs to widen a fixed-length type 617 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 618 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 619 PartNumElts.isScalable() != ValueNumElts.isScalable() || 620 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 621 return SDValue(); 622 623 // Widening a scalable vector to another scalable vector is done by inserting 624 // the vector into a larger undef one. 625 if (PartNumElts.isScalable()) 626 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 627 Val, DAG.getVectorIdxConstant(0, DL)); 628 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 DAG.ExtractVectorElements(Val, Ops); 634 SDValue EltUndef = DAG.getUNDEF(ElementVT); 635 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 636 637 // FIXME: Use CONCAT for 2x -> 4x. 638 return DAG.getBuildVector(PartVT, DL, Ops); 639 } 640 641 /// getCopyToPartsVector - Create a series of nodes that contain the specified 642 /// value split into legal parts. 643 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 644 SDValue Val, SDValue *Parts, unsigned NumParts, 645 MVT PartVT, const Value *V, 646 Optional<CallingConv::ID> CallConv) { 647 EVT ValueVT = Val.getValueType(); 648 assert(ValueVT.isVector() && "Not a vector"); 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 const bool IsABIRegCopy = CallConv.has_value(); 651 652 if (NumParts == 1) { 653 EVT PartEVT = PartVT; 654 if (PartEVT == ValueVT) { 655 // Nothing to do. 656 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 657 // Bitconvert vector->vector case. 658 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 659 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 660 Val = Widened; 661 } else if (PartVT.isVector() && 662 PartEVT.getVectorElementType().bitsGE( 663 ValueVT.getVectorElementType()) && 664 PartEVT.getVectorElementCount() == 665 ValueVT.getVectorElementCount()) { 666 667 // Promoted vector extract 668 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 669 } else if (PartEVT.isVector() && 670 PartEVT.getVectorElementType() != 671 ValueVT.getVectorElementType() && 672 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 673 TargetLowering::TypeWidenVector) { 674 // Combination of widening and promotion. 675 EVT WidenVT = 676 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 677 PartVT.getVectorElementCount()); 678 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 679 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 680 } else { 681 if (ValueVT.getVectorElementCount().isScalar()) { 682 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 683 DAG.getVectorIdxConstant(0, DL)); 684 } else { 685 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 686 assert(PartVT.getFixedSizeInBits() > ValueSize && 687 "lossy conversion of vector to scalar type"); 688 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 689 Val = DAG.getBitcast(IntermediateType, Val); 690 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 691 } 692 } 693 694 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 695 Parts[0] = Val; 696 return; 697 } 698 699 // Handle a multi-element vector. 700 EVT IntermediateVT; 701 MVT RegisterVT; 702 unsigned NumIntermediates; 703 unsigned NumRegs; 704 if (IsABIRegCopy) { 705 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 706 *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, 707 NumIntermediates, RegisterVT); 708 } else { 709 NumRegs = 710 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } 713 714 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 715 NumParts = NumRegs; // Silence a compiler warning. 716 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 717 718 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 719 "Mixing scalable and fixed vectors when copying in parts"); 720 721 Optional<ElementCount> DestEltCnt; 722 723 if (IntermediateVT.isVector()) 724 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 725 else 726 DestEltCnt = ElementCount::getFixed(NumIntermediates); 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 730 731 if (ValueVT == BuiltVectorTy) { 732 // Nothing to do. 733 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 734 // Bitconvert vector->vector case. 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } else { 737 if (BuiltVectorTy.getVectorElementType().bitsGT( 738 ValueVT.getVectorElementType())) { 739 // Integer promotion. 740 ValueVT = EVT::getVectorVT(*DAG.getContext(), 741 BuiltVectorTy.getVectorElementType(), 742 ValueVT.getVectorElementCount()); 743 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 744 } 745 746 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 747 Val = Widened; 748 } 749 } 750 751 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 752 753 // Split the vector into intermediate operands. 754 SmallVector<SDValue, 8> Ops(NumIntermediates); 755 for (unsigned i = 0; i != NumIntermediates; ++i) { 756 if (IntermediateVT.isVector()) { 757 // This does something sensible for scalable vectors - see the 758 // definition of EXTRACT_SUBVECTOR for further details. 759 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 760 Ops[i] = 761 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 762 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 763 } else { 764 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 765 DAG.getVectorIdxConstant(i, DL)); 766 } 767 } 768 769 // Split the intermediate operands into legal parts. 770 if (NumParts == NumIntermediates) { 771 // If the register was not expanded, promote or copy the value, 772 // as appropriate. 773 for (unsigned i = 0; i != NumParts; ++i) 774 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 775 } else if (NumParts > 0) { 776 // If the intermediate type was expanded, split each the value into 777 // legal parts. 778 assert(NumIntermediates != 0 && "division by zero"); 779 assert(NumParts % NumIntermediates == 0 && 780 "Must expand into a divisible number of parts!"); 781 unsigned Factor = NumParts / NumIntermediates; 782 for (unsigned i = 0; i != NumIntermediates; ++i) 783 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 784 CallConv); 785 } 786 } 787 788 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 789 EVT valuevt, Optional<CallingConv::ID> CC) 790 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 791 RegCount(1, regs.size()), CallConv(CC) {} 792 793 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 794 const DataLayout &DL, unsigned Reg, Type *Ty, 795 Optional<CallingConv::ID> CC) { 796 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 797 798 CallConv = CC; 799 800 for (EVT ValueVT : ValueVTs) { 801 unsigned NumRegs = 802 isABIMangled() 803 ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) 804 : TLI.getNumRegisters(Context, ValueVT); 805 MVT RegisterVT = 806 isABIMangled() 807 ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) 808 : TLI.getRegisterType(Context, ValueVT); 809 for (unsigned i = 0; i != NumRegs; ++i) 810 Regs.push_back(Reg + i); 811 RegVTs.push_back(RegisterVT); 812 RegCount.push_back(NumRegs); 813 Reg += NumRegs; 814 } 815 } 816 817 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 818 FunctionLoweringInfo &FuncInfo, 819 const SDLoc &dl, SDValue &Chain, 820 SDValue *Flag, const Value *V) const { 821 // A Value with type {} or [0 x %t] needs no registers. 822 if (ValueVTs.empty()) 823 return SDValue(); 824 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 // Assemble the legal parts into the final values. 828 SmallVector<SDValue, 4> Values(ValueVTs.size()); 829 SmallVector<SDValue, 8> Parts; 830 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 831 // Copy the legal parts from the registers. 832 EVT ValueVT = ValueVTs[Value]; 833 unsigned NumRegs = RegCount[Value]; 834 MVT RegisterVT = 835 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 836 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 837 : RegVTs[Value]; 838 839 Parts.resize(NumRegs); 840 for (unsigned i = 0; i != NumRegs; ++i) { 841 SDValue P; 842 if (!Flag) { 843 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 844 } else { 845 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 846 *Flag = P.getValue(2); 847 } 848 849 Chain = P.getValue(1); 850 Parts[i] = P; 851 852 // If the source register was virtual and if we know something about it, 853 // add an assert node. 854 if (!Register::isVirtualRegister(Regs[Part + i]) || 855 !RegisterVT.isInteger()) 856 continue; 857 858 const FunctionLoweringInfo::LiveOutInfo *LOI = 859 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 860 if (!LOI) 861 continue; 862 863 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 864 unsigned NumSignBits = LOI->NumSignBits; 865 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 866 867 if (NumZeroBits == RegSize) { 868 // The current value is a zero. 869 // Explicitly express that as it would be easier for 870 // optimizations to kick in. 871 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 872 continue; 873 } 874 875 // FIXME: We capture more information than the dag can represent. For 876 // now, just use the tightest assertzext/assertsext possible. 877 bool isSExt; 878 EVT FromVT(MVT::Other); 879 if (NumZeroBits) { 880 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 881 isSExt = false; 882 } else if (NumSignBits > 1) { 883 FromVT = 884 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 885 isSExt = true; 886 } else { 887 continue; 888 } 889 // Add an assertion node. 890 assert(FromVT != MVT::Other); 891 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 892 RegisterVT, P, DAG.getValueType(FromVT)); 893 } 894 895 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 896 RegisterVT, ValueVT, V, CallConv); 897 Part += NumRegs; 898 Parts.clear(); 899 } 900 901 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 902 } 903 904 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 905 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 906 const Value *V, 907 ISD::NodeType PreferredExtendType) const { 908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 909 ISD::NodeType ExtendKind = PreferredExtendType; 910 911 // Get the list of the values's legal parts. 912 unsigned NumRegs = Regs.size(); 913 SmallVector<SDValue, 8> Parts(NumRegs); 914 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 915 unsigned NumParts = RegCount[Value]; 916 917 MVT RegisterVT = 918 isABIMangled() ? TLI.getRegisterTypeForCallingConv( 919 *DAG.getContext(), CallConv.value(), RegVTs[Value]) 920 : RegVTs[Value]; 921 922 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 923 ExtendKind = ISD::ZERO_EXTEND; 924 925 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 926 NumParts, RegisterVT, V, CallConv, ExtendKind); 927 Part += NumParts; 928 } 929 930 // Copy the parts into the registers. 931 SmallVector<SDValue, 8> Chains(NumRegs); 932 for (unsigned i = 0; i != NumRegs; ++i) { 933 SDValue Part; 934 if (!Flag) { 935 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 936 } else { 937 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 938 *Flag = Part.getValue(1); 939 } 940 941 Chains[i] = Part.getValue(0); 942 } 943 944 if (NumRegs == 1 || Flag) 945 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 946 // flagged to it. That is the CopyToReg nodes and the user are considered 947 // a single scheduling unit. If we create a TokenFactor and return it as 948 // chain, then the TokenFactor is both a predecessor (operand) of the 949 // user as well as a successor (the TF operands are flagged to the user). 950 // c1, f1 = CopyToReg 951 // c2, f2 = CopyToReg 952 // c3 = TokenFactor c1, c2 953 // ... 954 // = op c3, ..., f2 955 Chain = Chains[NumRegs-1]; 956 else 957 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 958 } 959 960 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 961 unsigned MatchingIdx, const SDLoc &dl, 962 SelectionDAG &DAG, 963 std::vector<SDValue> &Ops) const { 964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 965 966 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 967 if (HasMatching) 968 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 969 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 970 // Put the register class of the virtual registers in the flag word. That 971 // way, later passes can recompute register class constraints for inline 972 // assembly as well as normal instructions. 973 // Don't do this for tied operands that can use the regclass information 974 // from the def. 975 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 976 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 977 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 978 } 979 980 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 981 Ops.push_back(Res); 982 983 if (Code == InlineAsm::Kind_Clobber) { 984 // Clobbers should always have a 1:1 mapping with registers, and may 985 // reference registers that have illegal (e.g. vector) types. Hence, we 986 // shouldn't try to apply any sort of splitting logic to them. 987 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 988 "No 1:1 mapping from clobbers to regs?"); 989 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 990 (void)SP; 991 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 992 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 993 assert( 994 (Regs[I] != SP || 995 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 996 "If we clobbered the stack pointer, MFI should know about it."); 997 } 998 return; 999 } 1000 1001 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1002 MVT RegisterVT = RegVTs[Value]; 1003 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1004 RegisterVT); 1005 for (unsigned i = 0; i != NumRegs; ++i) { 1006 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1007 unsigned TheReg = Regs[Reg++]; 1008 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1009 } 1010 } 1011 } 1012 1013 SmallVector<std::pair<unsigned, TypeSize>, 4> 1014 RegsForValue::getRegsAndSizes() const { 1015 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1016 unsigned I = 0; 1017 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1018 unsigned RegCount = std::get<0>(CountAndVT); 1019 MVT RegisterVT = std::get<1>(CountAndVT); 1020 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1021 for (unsigned E = I + RegCount; I != E; ++I) 1022 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1023 } 1024 return OutVec; 1025 } 1026 1027 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1028 const TargetLibraryInfo *li) { 1029 AA = aa; 1030 GFI = gfi; 1031 LibInfo = li; 1032 Context = DAG.getContext(); 1033 LPadToCallSiteMap.clear(); 1034 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1035 } 1036 1037 void SelectionDAGBuilder::clear() { 1038 NodeMap.clear(); 1039 UnusedArgNodeMap.clear(); 1040 PendingLoads.clear(); 1041 PendingExports.clear(); 1042 PendingConstrainedFP.clear(); 1043 PendingConstrainedFPStrict.clear(); 1044 CurInst = nullptr; 1045 HasTailCall = false; 1046 SDNodeOrder = LowestSDNodeOrder; 1047 StatepointLowering.clear(); 1048 } 1049 1050 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1051 DanglingDebugInfoMap.clear(); 1052 } 1053 1054 // Update DAG root to include dependencies on Pending chains. 1055 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1056 SDValue Root = DAG.getRoot(); 1057 1058 if (Pending.empty()) 1059 return Root; 1060 1061 // Add current root to PendingChains, unless we already indirectly 1062 // depend on it. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = Pending.size(); 1065 for (; i != e; ++i) { 1066 assert(Pending[i].getNode()->getNumOperands() > 1); 1067 if (Pending[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 Pending.push_back(Root); 1073 } 1074 1075 if (Pending.size() == 1) 1076 Root = Pending[0]; 1077 else 1078 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1079 1080 DAG.setRoot(Root); 1081 Pending.clear(); 1082 return Root; 1083 } 1084 1085 SDValue SelectionDAGBuilder::getMemoryRoot() { 1086 return updateRoot(PendingLoads); 1087 } 1088 1089 SDValue SelectionDAGBuilder::getRoot() { 1090 // Chain up all pending constrained intrinsics together with all 1091 // pending loads, by simply appending them to PendingLoads and 1092 // then calling getMemoryRoot(). 1093 PendingLoads.reserve(PendingLoads.size() + 1094 PendingConstrainedFP.size() + 1095 PendingConstrainedFPStrict.size()); 1096 PendingLoads.append(PendingConstrainedFP.begin(), 1097 PendingConstrainedFP.end()); 1098 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFP.clear(); 1101 PendingConstrainedFPStrict.clear(); 1102 return getMemoryRoot(); 1103 } 1104 1105 SDValue SelectionDAGBuilder::getControlRoot() { 1106 // We need to emit pending fpexcept.strict constrained intrinsics, 1107 // so append them to the PendingExports list. 1108 PendingExports.append(PendingConstrainedFPStrict.begin(), 1109 PendingConstrainedFPStrict.end()); 1110 PendingConstrainedFPStrict.clear(); 1111 return updateRoot(PendingExports); 1112 } 1113 1114 void SelectionDAGBuilder::visit(const Instruction &I) { 1115 // Set up outgoing PHI node register values before emitting the terminator. 1116 if (I.isTerminator()) { 1117 HandlePHINodesInSuccessorBlocks(I.getParent()); 1118 } 1119 1120 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1121 if (!isa<DbgInfoIntrinsic>(I)) 1122 ++SDNodeOrder; 1123 1124 CurInst = &I; 1125 1126 visit(I.getOpcode(), I); 1127 1128 if (!I.isTerminator() && !HasTailCall && 1129 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1130 CopyToExportRegsIfNeeded(&I); 1131 1132 CurInst = nullptr; 1133 } 1134 1135 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1136 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1137 } 1138 1139 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1140 // Note: this doesn't use InstVisitor, because it has to work with 1141 // ConstantExpr's in addition to instructions. 1142 switch (Opcode) { 1143 default: llvm_unreachable("Unknown instruction type encountered!"); 1144 // Build the switch statement using the Instruction.def file. 1145 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1146 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1147 #include "llvm/IR/Instruction.def" 1148 } 1149 } 1150 1151 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1152 DebugLoc DL, unsigned Order) { 1153 // We treat variadic dbg_values differently at this stage. 1154 if (DI->hasArgList()) { 1155 // For variadic dbg_values we will now insert an undef. 1156 // FIXME: We can potentially recover these! 1157 SmallVector<SDDbgOperand, 2> Locs; 1158 for (const Value *V : DI->getValues()) { 1159 auto Undef = UndefValue::get(V->getType()); 1160 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1161 } 1162 SDDbgValue *SDV = DAG.getDbgValueList( 1163 DI->getVariable(), DI->getExpression(), Locs, {}, 1164 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1165 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1166 } else { 1167 // TODO: Dangling debug info will eventually either be resolved or produce 1168 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1169 // between the original dbg.value location and its resolved DBG_VALUE, 1170 // which we should ideally fill with an extra Undef DBG_VALUE. 1171 assert(DI->getNumVariableLocationOps() == 1 && 1172 "DbgValueInst without an ArgList should have a single location " 1173 "operand."); 1174 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1175 } 1176 } 1177 1178 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1179 const DIExpression *Expr) { 1180 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1181 const DbgValueInst *DI = DDI.getDI(); 1182 DIVariable *DanglingVariable = DI->getVariable(); 1183 DIExpression *DanglingExpr = DI->getExpression(); 1184 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1185 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1186 return true; 1187 } 1188 return false; 1189 }; 1190 1191 for (auto &DDIMI : DanglingDebugInfoMap) { 1192 DanglingDebugInfoVector &DDIV = DDIMI.second; 1193 1194 // If debug info is to be dropped, run it through final checks to see 1195 // whether it can be salvaged. 1196 for (auto &DDI : DDIV) 1197 if (isMatchingDbgValue(DDI)) 1198 salvageUnresolvedDbgValue(DDI); 1199 1200 erase_if(DDIV, isMatchingDbgValue); 1201 } 1202 } 1203 1204 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1205 // generate the debug data structures now that we've seen its definition. 1206 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1207 SDValue Val) { 1208 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1209 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1210 return; 1211 1212 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1213 for (auto &DDI : DDIV) { 1214 const DbgValueInst *DI = DDI.getDI(); 1215 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1216 assert(DI && "Ill-formed DanglingDebugInfo"); 1217 DebugLoc dl = DDI.getdl(); 1218 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1219 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1220 DILocalVariable *Variable = DI->getVariable(); 1221 DIExpression *Expr = DI->getExpression(); 1222 assert(Variable->isValidLocationForIntrinsic(dl) && 1223 "Expected inlined-at fields to agree"); 1224 SDDbgValue *SDV; 1225 if (Val.getNode()) { 1226 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1227 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1228 // we couldn't resolve it directly when examining the DbgValue intrinsic 1229 // in the first place we should not be more successful here). Unless we 1230 // have some test case that prove this to be correct we should avoid 1231 // calling EmitFuncArgumentDbgValue here. 1232 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, 1233 FuncArgumentDbgValueKind::Value, Val)) { 1234 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1235 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1236 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1237 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1238 // inserted after the definition of Val when emitting the instructions 1239 // after ISel. An alternative could be to teach 1240 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1241 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1242 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1243 << ValSDNodeOrder << "\n"); 1244 SDV = getDbgValue(Val, Variable, Expr, dl, 1245 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1246 DAG.AddDbgValue(SDV, false); 1247 } else 1248 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1249 << "in EmitFuncArgumentDbgValue\n"); 1250 } else { 1251 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1252 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1253 auto SDV = 1254 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1255 DAG.AddDbgValue(SDV, false); 1256 } 1257 } 1258 DDIV.clear(); 1259 } 1260 1261 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1262 // TODO: For the variadic implementation, instead of only checking the fail 1263 // state of `handleDebugValue`, we need know specifically which values were 1264 // invalid, so that we attempt to salvage only those values when processing 1265 // a DIArgList. 1266 assert(!DDI.getDI()->hasArgList() && 1267 "Not implemented for variadic dbg_values"); 1268 Value *V = DDI.getDI()->getValue(0); 1269 DILocalVariable *Var = DDI.getDI()->getVariable(); 1270 DIExpression *Expr = DDI.getDI()->getExpression(); 1271 DebugLoc DL = DDI.getdl(); 1272 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1273 unsigned SDOrder = DDI.getSDNodeOrder(); 1274 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1275 // that DW_OP_stack_value is desired. 1276 assert(isa<DbgValueInst>(DDI.getDI())); 1277 bool StackValue = true; 1278 1279 // Can this Value can be encoded without any further work? 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1281 return; 1282 1283 // Attempt to salvage back through as many instructions as possible. Bail if 1284 // a non-instruction is seen, such as a constant expression or global 1285 // variable. FIXME: Further work could recover those too. 1286 while (isa<Instruction>(V)) { 1287 Instruction &VAsInst = *cast<Instruction>(V); 1288 // Temporary "0", awaiting real implementation. 1289 SmallVector<uint64_t, 16> Ops; 1290 SmallVector<Value *, 4> AdditionalValues; 1291 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1292 AdditionalValues); 1293 // If we cannot salvage any further, and haven't yet found a suitable debug 1294 // expression, bail out. 1295 if (!V) 1296 break; 1297 1298 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1299 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1300 // here for variadic dbg_values, remove that condition. 1301 if (!AdditionalValues.empty()) 1302 break; 1303 1304 // New value and expr now represent this debuginfo. 1305 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1306 1307 // Some kind of simplification occurred: check whether the operand of the 1308 // salvaged debug expression can be encoded in this DAG. 1309 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1310 /*IsVariadic=*/false)) { 1311 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1312 << *DDI.getDI() << "\nBy stripping back to:\n " << *V); 1313 return; 1314 } 1315 } 1316 1317 // This was the final opportunity to salvage this debug information, and it 1318 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1319 // any earlier variable location. 1320 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1321 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1322 DAG.AddDbgValue(SDV, false); 1323 1324 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << *DDI.getDI() 1325 << "\n"); 1326 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1327 << "\n"); 1328 } 1329 1330 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1331 DILocalVariable *Var, 1332 DIExpression *Expr, DebugLoc dl, 1333 DebugLoc InstDL, unsigned Order, 1334 bool IsVariadic) { 1335 if (Values.empty()) 1336 return true; 1337 SmallVector<SDDbgOperand> LocationOps; 1338 SmallVector<SDNode *> Dependencies; 1339 for (const Value *V : Values) { 1340 // Constant value. 1341 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1342 isa<ConstantPointerNull>(V)) { 1343 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1344 continue; 1345 } 1346 1347 // If the Value is a frame index, we can create a FrameIndex debug value 1348 // without relying on the DAG at all. 1349 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1350 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1351 if (SI != FuncInfo.StaticAllocaMap.end()) { 1352 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1353 continue; 1354 } 1355 } 1356 1357 // Do not use getValue() in here; we don't want to generate code at 1358 // this point if it hasn't been done yet. 1359 SDValue N = NodeMap[V]; 1360 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1361 N = UnusedArgNodeMap[V]; 1362 if (N.getNode()) { 1363 // Only emit func arg dbg value for non-variadic dbg.values for now. 1364 if (!IsVariadic && 1365 EmitFuncArgumentDbgValue(V, Var, Expr, dl, 1366 FuncArgumentDbgValueKind::Value, N)) 1367 return true; 1368 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1369 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1370 // describe stack slot locations. 1371 // 1372 // Consider "int x = 0; int *px = &x;". There are two kinds of 1373 // interesting debug values here after optimization: 1374 // 1375 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1376 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1377 // 1378 // Both describe the direct values of their associated variables. 1379 Dependencies.push_back(N.getNode()); 1380 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1381 continue; 1382 } 1383 LocationOps.emplace_back( 1384 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1385 continue; 1386 } 1387 1388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1389 // Special rules apply for the first dbg.values of parameter variables in a 1390 // function. Identify them by the fact they reference Argument Values, that 1391 // they're parameters, and they are parameters of the current function. We 1392 // need to let them dangle until they get an SDNode. 1393 bool IsParamOfFunc = 1394 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1395 if (IsParamOfFunc) 1396 return false; 1397 1398 // The value is not used in this block yet (or it would have an SDNode). 1399 // We still want the value to appear for the user if possible -- if it has 1400 // an associated VReg, we can refer to that instead. 1401 auto VMI = FuncInfo.ValueMap.find(V); 1402 if (VMI != FuncInfo.ValueMap.end()) { 1403 unsigned Reg = VMI->second; 1404 // If this is a PHI node, it may be split up into several MI PHI nodes 1405 // (in FunctionLoweringInfo::set). 1406 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1407 V->getType(), None); 1408 if (RFV.occupiesMultipleRegs()) { 1409 // FIXME: We could potentially support variadic dbg_values here. 1410 if (IsVariadic) 1411 return false; 1412 unsigned Offset = 0; 1413 unsigned BitsToDescribe = 0; 1414 if (auto VarSize = Var->getSizeInBits()) 1415 BitsToDescribe = *VarSize; 1416 if (auto Fragment = Expr->getFragmentInfo()) 1417 BitsToDescribe = Fragment->SizeInBits; 1418 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1419 // Bail out if all bits are described already. 1420 if (Offset >= BitsToDescribe) 1421 break; 1422 // TODO: handle scalable vectors. 1423 unsigned RegisterSize = RegAndSize.second; 1424 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1425 ? BitsToDescribe - Offset 1426 : RegisterSize; 1427 auto FragmentExpr = DIExpression::createFragmentExpression( 1428 Expr, Offset, FragmentSize); 1429 if (!FragmentExpr) 1430 continue; 1431 SDDbgValue *SDV = DAG.getVRegDbgValue( 1432 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1433 DAG.AddDbgValue(SDV, false); 1434 Offset += RegisterSize; 1435 } 1436 return true; 1437 } 1438 // We can use simple vreg locations for variadic dbg_values as well. 1439 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1440 continue; 1441 } 1442 // We failed to create a SDDbgOperand for V. 1443 return false; 1444 } 1445 1446 // We have created a SDDbgOperand for each Value in Values. 1447 // Should use Order instead of SDNodeOrder? 1448 assert(!LocationOps.empty()); 1449 SDDbgValue *SDV = 1450 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1451 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1452 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1453 return true; 1454 } 1455 1456 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1457 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1458 for (auto &Pair : DanglingDebugInfoMap) 1459 for (auto &DDI : Pair.second) 1460 salvageUnresolvedDbgValue(DDI); 1461 clearDanglingDebugInfo(); 1462 } 1463 1464 /// getCopyFromRegs - If there was virtual register allocated for the value V 1465 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1466 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1467 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1468 SDValue Result; 1469 1470 if (It != FuncInfo.ValueMap.end()) { 1471 Register InReg = It->second; 1472 1473 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1474 DAG.getDataLayout(), InReg, Ty, 1475 None); // This is not an ABI copy. 1476 SDValue Chain = DAG.getEntryNode(); 1477 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1478 V); 1479 resolveDanglingDebugInfo(V, Result); 1480 } 1481 1482 return Result; 1483 } 1484 1485 /// getValue - Return an SDValue for the given Value. 1486 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1487 // If we already have an SDValue for this value, use it. It's important 1488 // to do this first, so that we don't create a CopyFromReg if we already 1489 // have a regular SDValue. 1490 SDValue &N = NodeMap[V]; 1491 if (N.getNode()) return N; 1492 1493 // If there's a virtual register allocated and initialized for this 1494 // value, use it. 1495 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1496 return copyFromReg; 1497 1498 // Otherwise create a new SDValue and remember it. 1499 SDValue Val = getValueImpl(V); 1500 NodeMap[V] = Val; 1501 resolveDanglingDebugInfo(V, Val); 1502 return Val; 1503 } 1504 1505 /// getNonRegisterValue - Return an SDValue for the given Value, but 1506 /// don't look in FuncInfo.ValueMap for a virtual register. 1507 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1508 // If we already have an SDValue for this value, use it. 1509 SDValue &N = NodeMap[V]; 1510 if (N.getNode()) { 1511 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1512 // Remove the debug location from the node as the node is about to be used 1513 // in a location which may differ from the original debug location. This 1514 // is relevant to Constant and ConstantFP nodes because they can appear 1515 // as constant expressions inside PHI nodes. 1516 N->setDebugLoc(DebugLoc()); 1517 } 1518 return N; 1519 } 1520 1521 // Otherwise create a new SDValue and remember it. 1522 SDValue Val = getValueImpl(V); 1523 NodeMap[V] = Val; 1524 resolveDanglingDebugInfo(V, Val); 1525 return Val; 1526 } 1527 1528 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1529 /// Create an SDValue for the given value. 1530 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1532 1533 if (const Constant *C = dyn_cast<Constant>(V)) { 1534 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1535 1536 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1537 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1538 1539 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1540 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1541 1542 if (isa<ConstantPointerNull>(C)) { 1543 unsigned AS = V->getType()->getPointerAddressSpace(); 1544 return DAG.getConstant(0, getCurSDLoc(), 1545 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1546 } 1547 1548 if (match(C, m_VScale(DAG.getDataLayout()))) 1549 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1550 1551 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1552 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1553 1554 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1555 return DAG.getUNDEF(VT); 1556 1557 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1558 visit(CE->getOpcode(), *CE); 1559 SDValue N1 = NodeMap[V]; 1560 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1561 return N1; 1562 } 1563 1564 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1565 SmallVector<SDValue, 4> Constants; 1566 for (const Use &U : C->operands()) { 1567 SDNode *Val = getValue(U).getNode(); 1568 // If the operand is an empty aggregate, there are no values. 1569 if (!Val) continue; 1570 // Add each leaf value from the operand to the Constants list 1571 // to form a flattened list of all the values. 1572 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1573 Constants.push_back(SDValue(Val, i)); 1574 } 1575 1576 return DAG.getMergeValues(Constants, getCurSDLoc()); 1577 } 1578 1579 if (const ConstantDataSequential *CDS = 1580 dyn_cast<ConstantDataSequential>(C)) { 1581 SmallVector<SDValue, 4> Ops; 1582 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1583 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1584 // Add each leaf value from the operand to the Constants list 1585 // to form a flattened list of all the values. 1586 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1587 Ops.push_back(SDValue(Val, i)); 1588 } 1589 1590 if (isa<ArrayType>(CDS->getType())) 1591 return DAG.getMergeValues(Ops, getCurSDLoc()); 1592 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1593 } 1594 1595 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1596 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1597 "Unknown struct or array constant!"); 1598 1599 SmallVector<EVT, 4> ValueVTs; 1600 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1601 unsigned NumElts = ValueVTs.size(); 1602 if (NumElts == 0) 1603 return SDValue(); // empty struct 1604 SmallVector<SDValue, 4> Constants(NumElts); 1605 for (unsigned i = 0; i != NumElts; ++i) { 1606 EVT EltVT = ValueVTs[i]; 1607 if (isa<UndefValue>(C)) 1608 Constants[i] = DAG.getUNDEF(EltVT); 1609 else if (EltVT.isFloatingPoint()) 1610 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1611 else 1612 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1613 } 1614 1615 return DAG.getMergeValues(Constants, getCurSDLoc()); 1616 } 1617 1618 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1619 return DAG.getBlockAddress(BA, VT); 1620 1621 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1622 return getValue(Equiv->getGlobalValue()); 1623 1624 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1625 return getValue(NC->getGlobalValue()); 1626 1627 VectorType *VecTy = cast<VectorType>(V->getType()); 1628 1629 // Now that we know the number and type of the elements, get that number of 1630 // elements into the Ops array based on what kind of constant it is. 1631 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1632 SmallVector<SDValue, 16> Ops; 1633 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1634 for (unsigned i = 0; i != NumElements; ++i) 1635 Ops.push_back(getValue(CV->getOperand(i))); 1636 1637 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1638 } 1639 1640 if (isa<ConstantAggregateZero>(C)) { 1641 EVT EltVT = 1642 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1643 1644 SDValue Op; 1645 if (EltVT.isFloatingPoint()) 1646 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1647 else 1648 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1649 1650 if (isa<ScalableVectorType>(VecTy)) 1651 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1652 1653 SmallVector<SDValue, 16> Ops; 1654 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1655 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1656 } 1657 1658 llvm_unreachable("Unknown vector constant"); 1659 } 1660 1661 // If this is a static alloca, generate it as the frameindex instead of 1662 // computation. 1663 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1664 DenseMap<const AllocaInst*, int>::iterator SI = 1665 FuncInfo.StaticAllocaMap.find(AI); 1666 if (SI != FuncInfo.StaticAllocaMap.end()) 1667 return DAG.getFrameIndex(SI->second, 1668 TLI.getFrameIndexTy(DAG.getDataLayout())); 1669 } 1670 1671 // If this is an instruction which fast-isel has deferred, select it now. 1672 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1673 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1674 1675 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1676 Inst->getType(), None); 1677 SDValue Chain = DAG.getEntryNode(); 1678 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1679 } 1680 1681 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1682 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1683 1684 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1685 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1686 1687 llvm_unreachable("Can't get register for value!"); 1688 } 1689 1690 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1691 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1692 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1693 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1694 bool IsSEH = isAsynchronousEHPersonality(Pers); 1695 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1696 if (!IsSEH) 1697 CatchPadMBB->setIsEHScopeEntry(); 1698 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1699 if (IsMSVCCXX || IsCoreCLR) 1700 CatchPadMBB->setIsEHFuncletEntry(); 1701 } 1702 1703 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1704 // Update machine-CFG edge. 1705 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1706 FuncInfo.MBB->addSuccessor(TargetMBB); 1707 TargetMBB->setIsEHCatchretTarget(true); 1708 DAG.getMachineFunction().setHasEHCatchret(true); 1709 1710 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1711 bool IsSEH = isAsynchronousEHPersonality(Pers); 1712 if (IsSEH) { 1713 // If this is not a fall-through branch or optimizations are switched off, 1714 // emit the branch. 1715 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1716 TM.getOptLevel() == CodeGenOpt::None) 1717 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1718 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1719 return; 1720 } 1721 1722 // Figure out the funclet membership for the catchret's successor. 1723 // This will be used by the FuncletLayout pass to determine how to order the 1724 // BB's. 1725 // A 'catchret' returns to the outer scope's color. 1726 Value *ParentPad = I.getCatchSwitchParentPad(); 1727 const BasicBlock *SuccessorColor; 1728 if (isa<ConstantTokenNone>(ParentPad)) 1729 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1730 else 1731 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1732 assert(SuccessorColor && "No parent funclet for catchret!"); 1733 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1734 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1735 1736 // Create the terminator node. 1737 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1738 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1739 DAG.getBasicBlock(SuccessorColorMBB)); 1740 DAG.setRoot(Ret); 1741 } 1742 1743 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1744 // Don't emit any special code for the cleanuppad instruction. It just marks 1745 // the start of an EH scope/funclet. 1746 FuncInfo.MBB->setIsEHScopeEntry(); 1747 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1748 if (Pers != EHPersonality::Wasm_CXX) { 1749 FuncInfo.MBB->setIsEHFuncletEntry(); 1750 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1751 } 1752 } 1753 1754 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1755 // not match, it is OK to add only the first unwind destination catchpad to the 1756 // successors, because there will be at least one invoke instruction within the 1757 // catch scope that points to the next unwind destination, if one exists, so 1758 // CFGSort cannot mess up with BB sorting order. 1759 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1760 // call within them, and catchpads only consisting of 'catch (...)' have a 1761 // '__cxa_end_catch' call within them, both of which generate invokes in case 1762 // the next unwind destination exists, i.e., the next unwind destination is not 1763 // the caller.) 1764 // 1765 // Having at most one EH pad successor is also simpler and helps later 1766 // transformations. 1767 // 1768 // For example, 1769 // current: 1770 // invoke void @foo to ... unwind label %catch.dispatch 1771 // catch.dispatch: 1772 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1773 // catch.start: 1774 // ... 1775 // ... in this BB or some other child BB dominated by this BB there will be an 1776 // invoke that points to 'next' BB as an unwind destination 1777 // 1778 // next: ; We don't need to add this to 'current' BB's successor 1779 // ... 1780 static void findWasmUnwindDestinations( 1781 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1782 BranchProbability Prob, 1783 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1784 &UnwindDests) { 1785 while (EHPadBB) { 1786 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1787 if (isa<CleanupPadInst>(Pad)) { 1788 // Stop on cleanup pads. 1789 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1790 UnwindDests.back().first->setIsEHScopeEntry(); 1791 break; 1792 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1793 // Add the catchpad handlers to the possible destinations. We don't 1794 // continue to the unwind destination of the catchswitch for wasm. 1795 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1796 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1797 UnwindDests.back().first->setIsEHScopeEntry(); 1798 } 1799 break; 1800 } else { 1801 continue; 1802 } 1803 } 1804 } 1805 1806 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1807 /// many places it could ultimately go. In the IR, we have a single unwind 1808 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1809 /// This function skips over imaginary basic blocks that hold catchswitch 1810 /// instructions, and finds all the "real" machine 1811 /// basic block destinations. As those destinations may not be successors of 1812 /// EHPadBB, here we also calculate the edge probability to those destinations. 1813 /// The passed-in Prob is the edge probability to EHPadBB. 1814 static void findUnwindDestinations( 1815 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1816 BranchProbability Prob, 1817 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1818 &UnwindDests) { 1819 EHPersonality Personality = 1820 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1821 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1822 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1823 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1824 bool IsSEH = isAsynchronousEHPersonality(Personality); 1825 1826 if (IsWasmCXX) { 1827 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1828 assert(UnwindDests.size() <= 1 && 1829 "There should be at most one unwind destination for wasm"); 1830 return; 1831 } 1832 1833 while (EHPadBB) { 1834 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1835 BasicBlock *NewEHPadBB = nullptr; 1836 if (isa<LandingPadInst>(Pad)) { 1837 // Stop on landingpads. They are not funclets. 1838 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1839 break; 1840 } else if (isa<CleanupPadInst>(Pad)) { 1841 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1842 // personalities. 1843 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1844 UnwindDests.back().first->setIsEHScopeEntry(); 1845 UnwindDests.back().first->setIsEHFuncletEntry(); 1846 break; 1847 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1848 // Add the catchpad handlers to the possible destinations. 1849 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1850 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1851 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1852 if (IsMSVCCXX || IsCoreCLR) 1853 UnwindDests.back().first->setIsEHFuncletEntry(); 1854 if (!IsSEH) 1855 UnwindDests.back().first->setIsEHScopeEntry(); 1856 } 1857 NewEHPadBB = CatchSwitch->getUnwindDest(); 1858 } else { 1859 continue; 1860 } 1861 1862 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1863 if (BPI && NewEHPadBB) 1864 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1865 EHPadBB = NewEHPadBB; 1866 } 1867 } 1868 1869 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1870 // Update successor info. 1871 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1872 auto UnwindDest = I.getUnwindDest(); 1873 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1874 BranchProbability UnwindDestProb = 1875 (BPI && UnwindDest) 1876 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1877 : BranchProbability::getZero(); 1878 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1879 for (auto &UnwindDest : UnwindDests) { 1880 UnwindDest.first->setIsEHPad(); 1881 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1882 } 1883 FuncInfo.MBB->normalizeSuccProbs(); 1884 1885 // Create the terminator node. 1886 SDValue Ret = 1887 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1888 DAG.setRoot(Ret); 1889 } 1890 1891 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1892 report_fatal_error("visitCatchSwitch not yet implemented!"); 1893 } 1894 1895 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1897 auto &DL = DAG.getDataLayout(); 1898 SDValue Chain = getControlRoot(); 1899 SmallVector<ISD::OutputArg, 8> Outs; 1900 SmallVector<SDValue, 8> OutVals; 1901 1902 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1903 // lower 1904 // 1905 // %val = call <ty> @llvm.experimental.deoptimize() 1906 // ret <ty> %val 1907 // 1908 // differently. 1909 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1910 LowerDeoptimizingReturn(); 1911 return; 1912 } 1913 1914 if (!FuncInfo.CanLowerReturn) { 1915 unsigned DemoteReg = FuncInfo.DemoteRegister; 1916 const Function *F = I.getParent()->getParent(); 1917 1918 // Emit a store of the return value through the virtual register. 1919 // Leave Outs empty so that LowerReturn won't try to load return 1920 // registers the usual way. 1921 SmallVector<EVT, 1> PtrValueVTs; 1922 ComputeValueVTs(TLI, DL, 1923 F->getReturnType()->getPointerTo( 1924 DAG.getDataLayout().getAllocaAddrSpace()), 1925 PtrValueVTs); 1926 1927 SDValue RetPtr = 1928 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1929 SDValue RetOp = getValue(I.getOperand(0)); 1930 1931 SmallVector<EVT, 4> ValueVTs, MemVTs; 1932 SmallVector<uint64_t, 4> Offsets; 1933 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1934 &Offsets); 1935 unsigned NumValues = ValueVTs.size(); 1936 1937 SmallVector<SDValue, 4> Chains(NumValues); 1938 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1939 for (unsigned i = 0; i != NumValues; ++i) { 1940 // An aggregate return value cannot wrap around the address space, so 1941 // offsets to its parts don't wrap either. 1942 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1943 TypeSize::Fixed(Offsets[i])); 1944 1945 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1946 if (MemVTs[i] != ValueVTs[i]) 1947 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1948 Chains[i] = DAG.getStore( 1949 Chain, getCurSDLoc(), Val, 1950 // FIXME: better loc info would be nice. 1951 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1952 commonAlignment(BaseAlign, Offsets[i])); 1953 } 1954 1955 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1956 MVT::Other, Chains); 1957 } else if (I.getNumOperands() != 0) { 1958 SmallVector<EVT, 4> ValueVTs; 1959 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1960 unsigned NumValues = ValueVTs.size(); 1961 if (NumValues) { 1962 SDValue RetOp = getValue(I.getOperand(0)); 1963 1964 const Function *F = I.getParent()->getParent(); 1965 1966 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1967 I.getOperand(0)->getType(), F->getCallingConv(), 1968 /*IsVarArg*/ false, DL); 1969 1970 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1971 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1972 ExtendKind = ISD::SIGN_EXTEND; 1973 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1974 ExtendKind = ISD::ZERO_EXTEND; 1975 1976 LLVMContext &Context = F->getContext(); 1977 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1978 1979 for (unsigned j = 0; j != NumValues; ++j) { 1980 EVT VT = ValueVTs[j]; 1981 1982 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1983 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1984 1985 CallingConv::ID CC = F->getCallingConv(); 1986 1987 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1988 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1989 SmallVector<SDValue, 4> Parts(NumParts); 1990 getCopyToParts(DAG, getCurSDLoc(), 1991 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1992 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1993 1994 // 'inreg' on function refers to return value 1995 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1996 if (RetInReg) 1997 Flags.setInReg(); 1998 1999 if (I.getOperand(0)->getType()->isPointerTy()) { 2000 Flags.setPointer(); 2001 Flags.setPointerAddrSpace( 2002 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2003 } 2004 2005 if (NeedsRegBlock) { 2006 Flags.setInConsecutiveRegs(); 2007 if (j == NumValues - 1) 2008 Flags.setInConsecutiveRegsLast(); 2009 } 2010 2011 // Propagate extension type if any 2012 if (ExtendKind == ISD::SIGN_EXTEND) 2013 Flags.setSExt(); 2014 else if (ExtendKind == ISD::ZERO_EXTEND) 2015 Flags.setZExt(); 2016 2017 for (unsigned i = 0; i < NumParts; ++i) { 2018 Outs.push_back(ISD::OutputArg(Flags, 2019 Parts[i].getValueType().getSimpleVT(), 2020 VT, /*isfixed=*/true, 0, 0)); 2021 OutVals.push_back(Parts[i]); 2022 } 2023 } 2024 } 2025 } 2026 2027 // Push in swifterror virtual register as the last element of Outs. This makes 2028 // sure swifterror virtual register will be returned in the swifterror 2029 // physical register. 2030 const Function *F = I.getParent()->getParent(); 2031 if (TLI.supportSwiftError() && 2032 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2033 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2034 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2035 Flags.setSwiftError(); 2036 Outs.push_back(ISD::OutputArg( 2037 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2038 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2039 // Create SDNode for the swifterror virtual register. 2040 OutVals.push_back( 2041 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2042 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2043 EVT(TLI.getPointerTy(DL)))); 2044 } 2045 2046 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2047 CallingConv::ID CallConv = 2048 DAG.getMachineFunction().getFunction().getCallingConv(); 2049 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2050 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2051 2052 // Verify that the target's LowerReturn behaved as expected. 2053 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2054 "LowerReturn didn't return a valid chain!"); 2055 2056 // Update the DAG with the new chain value resulting from return lowering. 2057 DAG.setRoot(Chain); 2058 } 2059 2060 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2061 /// created for it, emit nodes to copy the value into the virtual 2062 /// registers. 2063 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2064 // Skip empty types 2065 if (V->getType()->isEmptyTy()) 2066 return; 2067 2068 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2069 if (VMI != FuncInfo.ValueMap.end()) { 2070 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2071 CopyValueToVirtualRegister(V, VMI->second); 2072 } 2073 } 2074 2075 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2076 /// the current basic block, add it to ValueMap now so that we'll get a 2077 /// CopyTo/FromReg. 2078 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2079 // No need to export constants. 2080 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2081 2082 // Already exported? 2083 if (FuncInfo.isExportedInst(V)) return; 2084 2085 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2086 CopyValueToVirtualRegister(V, Reg); 2087 } 2088 2089 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2090 const BasicBlock *FromBB) { 2091 // The operands of the setcc have to be in this block. We don't know 2092 // how to export them from some other block. 2093 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2094 // Can export from current BB. 2095 if (VI->getParent() == FromBB) 2096 return true; 2097 2098 // Is already exported, noop. 2099 return FuncInfo.isExportedInst(V); 2100 } 2101 2102 // If this is an argument, we can export it if the BB is the entry block or 2103 // if it is already exported. 2104 if (isa<Argument>(V)) { 2105 if (FromBB->isEntryBlock()) 2106 return true; 2107 2108 // Otherwise, can only export this if it is already exported. 2109 return FuncInfo.isExportedInst(V); 2110 } 2111 2112 // Otherwise, constants can always be exported. 2113 return true; 2114 } 2115 2116 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2117 BranchProbability 2118 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2119 const MachineBasicBlock *Dst) const { 2120 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2121 const BasicBlock *SrcBB = Src->getBasicBlock(); 2122 const BasicBlock *DstBB = Dst->getBasicBlock(); 2123 if (!BPI) { 2124 // If BPI is not available, set the default probability as 1 / N, where N is 2125 // the number of successors. 2126 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2127 return BranchProbability(1, SuccSize); 2128 } 2129 return BPI->getEdgeProbability(SrcBB, DstBB); 2130 } 2131 2132 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2133 MachineBasicBlock *Dst, 2134 BranchProbability Prob) { 2135 if (!FuncInfo.BPI) 2136 Src->addSuccessorWithoutProb(Dst); 2137 else { 2138 if (Prob.isUnknown()) 2139 Prob = getEdgeProbability(Src, Dst); 2140 Src->addSuccessor(Dst, Prob); 2141 } 2142 } 2143 2144 static bool InBlock(const Value *V, const BasicBlock *BB) { 2145 if (const Instruction *I = dyn_cast<Instruction>(V)) 2146 return I->getParent() == BB; 2147 return true; 2148 } 2149 2150 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2151 /// This function emits a branch and is used at the leaves of an OR or an 2152 /// AND operator tree. 2153 void 2154 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2155 MachineBasicBlock *TBB, 2156 MachineBasicBlock *FBB, 2157 MachineBasicBlock *CurBB, 2158 MachineBasicBlock *SwitchBB, 2159 BranchProbability TProb, 2160 BranchProbability FProb, 2161 bool InvertCond) { 2162 const BasicBlock *BB = CurBB->getBasicBlock(); 2163 2164 // If the leaf of the tree is a comparison, merge the condition into 2165 // the caseblock. 2166 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2167 // The operands of the cmp have to be in this block. We don't know 2168 // how to export them from some other block. If this is the first block 2169 // of the sequence, no exporting is needed. 2170 if (CurBB == SwitchBB || 2171 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2172 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2173 ISD::CondCode Condition; 2174 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2175 ICmpInst::Predicate Pred = 2176 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2177 Condition = getICmpCondCode(Pred); 2178 } else { 2179 const FCmpInst *FC = cast<FCmpInst>(Cond); 2180 FCmpInst::Predicate Pred = 2181 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2182 Condition = getFCmpCondCode(Pred); 2183 if (TM.Options.NoNaNsFPMath) 2184 Condition = getFCmpCodeWithoutNaN(Condition); 2185 } 2186 2187 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2188 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2189 SL->SwitchCases.push_back(CB); 2190 return; 2191 } 2192 } 2193 2194 // Create a CaseBlock record representing this branch. 2195 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2196 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2197 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2198 SL->SwitchCases.push_back(CB); 2199 } 2200 2201 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2202 MachineBasicBlock *TBB, 2203 MachineBasicBlock *FBB, 2204 MachineBasicBlock *CurBB, 2205 MachineBasicBlock *SwitchBB, 2206 Instruction::BinaryOps Opc, 2207 BranchProbability TProb, 2208 BranchProbability FProb, 2209 bool InvertCond) { 2210 // Skip over not part of the tree and remember to invert op and operands at 2211 // next level. 2212 Value *NotCond; 2213 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2214 InBlock(NotCond, CurBB->getBasicBlock())) { 2215 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2216 !InvertCond); 2217 return; 2218 } 2219 2220 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2221 const Value *BOpOp0, *BOpOp1; 2222 // Compute the effective opcode for Cond, taking into account whether it needs 2223 // to be inverted, e.g. 2224 // and (not (or A, B)), C 2225 // gets lowered as 2226 // and (and (not A, not B), C) 2227 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2228 if (BOp) { 2229 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2230 ? Instruction::And 2231 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2232 ? Instruction::Or 2233 : (Instruction::BinaryOps)0); 2234 if (InvertCond) { 2235 if (BOpc == Instruction::And) 2236 BOpc = Instruction::Or; 2237 else if (BOpc == Instruction::Or) 2238 BOpc = Instruction::And; 2239 } 2240 } 2241 2242 // If this node is not part of the or/and tree, emit it as a branch. 2243 // Note that all nodes in the tree should have same opcode. 2244 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2245 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2246 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2247 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2248 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2249 TProb, FProb, InvertCond); 2250 return; 2251 } 2252 2253 // Create TmpBB after CurBB. 2254 MachineFunction::iterator BBI(CurBB); 2255 MachineFunction &MF = DAG.getMachineFunction(); 2256 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2257 CurBB->getParent()->insert(++BBI, TmpBB); 2258 2259 if (Opc == Instruction::Or) { 2260 // Codegen X | Y as: 2261 // BB1: 2262 // jmp_if_X TBB 2263 // jmp TmpBB 2264 // TmpBB: 2265 // jmp_if_Y TBB 2266 // jmp FBB 2267 // 2268 2269 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2270 // The requirement is that 2271 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2272 // = TrueProb for original BB. 2273 // Assuming the original probabilities are A and B, one choice is to set 2274 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2275 // A/(1+B) and 2B/(1+B). This choice assumes that 2276 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2277 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2278 // TmpBB, but the math is more complicated. 2279 2280 auto NewTrueProb = TProb / 2; 2281 auto NewFalseProb = TProb / 2 + FProb; 2282 // Emit the LHS condition. 2283 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2284 NewFalseProb, InvertCond); 2285 2286 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2287 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2288 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2289 // Emit the RHS condition into TmpBB. 2290 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2291 Probs[1], InvertCond); 2292 } else { 2293 assert(Opc == Instruction::And && "Unknown merge op!"); 2294 // Codegen X & Y as: 2295 // BB1: 2296 // jmp_if_X TmpBB 2297 // jmp FBB 2298 // TmpBB: 2299 // jmp_if_Y TBB 2300 // jmp FBB 2301 // 2302 // This requires creation of TmpBB after CurBB. 2303 2304 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2305 // The requirement is that 2306 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2307 // = FalseProb for original BB. 2308 // Assuming the original probabilities are A and B, one choice is to set 2309 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2310 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2311 // TrueProb for BB1 * FalseProb for TmpBB. 2312 2313 auto NewTrueProb = TProb + FProb / 2; 2314 auto NewFalseProb = FProb / 2; 2315 // Emit the LHS condition. 2316 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2317 NewFalseProb, InvertCond); 2318 2319 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2320 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2321 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2322 // Emit the RHS condition into TmpBB. 2323 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2324 Probs[1], InvertCond); 2325 } 2326 } 2327 2328 /// If the set of cases should be emitted as a series of branches, return true. 2329 /// If we should emit this as a bunch of and/or'd together conditions, return 2330 /// false. 2331 bool 2332 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2333 if (Cases.size() != 2) return true; 2334 2335 // If this is two comparisons of the same values or'd or and'd together, they 2336 // will get folded into a single comparison, so don't emit two blocks. 2337 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2338 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2339 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2340 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2341 return false; 2342 } 2343 2344 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2345 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2346 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2347 Cases[0].CC == Cases[1].CC && 2348 isa<Constant>(Cases[0].CmpRHS) && 2349 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2350 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2351 return false; 2352 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2353 return false; 2354 } 2355 2356 return true; 2357 } 2358 2359 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2360 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2361 2362 // Update machine-CFG edges. 2363 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2364 2365 if (I.isUnconditional()) { 2366 // Update machine-CFG edges. 2367 BrMBB->addSuccessor(Succ0MBB); 2368 2369 // If this is not a fall-through branch or optimizations are switched off, 2370 // emit the branch. 2371 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2372 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2373 MVT::Other, getControlRoot(), 2374 DAG.getBasicBlock(Succ0MBB))); 2375 2376 return; 2377 } 2378 2379 // If this condition is one of the special cases we handle, do special stuff 2380 // now. 2381 const Value *CondVal = I.getCondition(); 2382 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2383 2384 // If this is a series of conditions that are or'd or and'd together, emit 2385 // this as a sequence of branches instead of setcc's with and/or operations. 2386 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2387 // unpredictable branches, and vector extracts because those jumps are likely 2388 // expensive for any target), this should improve performance. 2389 // For example, instead of something like: 2390 // cmp A, B 2391 // C = seteq 2392 // cmp D, E 2393 // F = setle 2394 // or C, F 2395 // jnz foo 2396 // Emit: 2397 // cmp A, B 2398 // je foo 2399 // cmp D, E 2400 // jle foo 2401 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2402 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2403 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2404 Value *Vec; 2405 const Value *BOp0, *BOp1; 2406 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2407 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2408 Opcode = Instruction::And; 2409 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2410 Opcode = Instruction::Or; 2411 2412 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2413 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2414 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2415 getEdgeProbability(BrMBB, Succ0MBB), 2416 getEdgeProbability(BrMBB, Succ1MBB), 2417 /*InvertCond=*/false); 2418 // If the compares in later blocks need to use values not currently 2419 // exported from this block, export them now. This block should always 2420 // be the first entry. 2421 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2422 2423 // Allow some cases to be rejected. 2424 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2425 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2426 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2427 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2428 } 2429 2430 // Emit the branch for this block. 2431 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2432 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2433 return; 2434 } 2435 2436 // Okay, we decided not to do this, remove any inserted MBB's and clear 2437 // SwitchCases. 2438 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2439 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2440 2441 SL->SwitchCases.clear(); 2442 } 2443 } 2444 2445 // Create a CaseBlock record representing this branch. 2446 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2447 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2448 2449 // Use visitSwitchCase to actually insert the fast branch sequence for this 2450 // cond branch. 2451 visitSwitchCase(CB, BrMBB); 2452 } 2453 2454 /// visitSwitchCase - Emits the necessary code to represent a single node in 2455 /// the binary search tree resulting from lowering a switch instruction. 2456 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2457 MachineBasicBlock *SwitchBB) { 2458 SDValue Cond; 2459 SDValue CondLHS = getValue(CB.CmpLHS); 2460 SDLoc dl = CB.DL; 2461 2462 if (CB.CC == ISD::SETTRUE) { 2463 // Branch or fall through to TrueBB. 2464 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2465 SwitchBB->normalizeSuccProbs(); 2466 if (CB.TrueBB != NextBlock(SwitchBB)) { 2467 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2468 DAG.getBasicBlock(CB.TrueBB))); 2469 } 2470 return; 2471 } 2472 2473 auto &TLI = DAG.getTargetLoweringInfo(); 2474 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2475 2476 // Build the setcc now. 2477 if (!CB.CmpMHS) { 2478 // Fold "(X == true)" to X and "(X == false)" to !X to 2479 // handle common cases produced by branch lowering. 2480 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2481 CB.CC == ISD::SETEQ) 2482 Cond = CondLHS; 2483 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2484 CB.CC == ISD::SETEQ) { 2485 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2486 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2487 } else { 2488 SDValue CondRHS = getValue(CB.CmpRHS); 2489 2490 // If a pointer's DAG type is larger than its memory type then the DAG 2491 // values are zero-extended. This breaks signed comparisons so truncate 2492 // back to the underlying type before doing the compare. 2493 if (CondLHS.getValueType() != MemVT) { 2494 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2495 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2496 } 2497 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2498 } 2499 } else { 2500 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2501 2502 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2503 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2504 2505 SDValue CmpOp = getValue(CB.CmpMHS); 2506 EVT VT = CmpOp.getValueType(); 2507 2508 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2509 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2510 ISD::SETLE); 2511 } else { 2512 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2513 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2514 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2515 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2516 } 2517 } 2518 2519 // Update successor info 2520 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2521 // TrueBB and FalseBB are always different unless the incoming IR is 2522 // degenerate. This only happens when running llc on weird IR. 2523 if (CB.TrueBB != CB.FalseBB) 2524 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2525 SwitchBB->normalizeSuccProbs(); 2526 2527 // If the lhs block is the next block, invert the condition so that we can 2528 // fall through to the lhs instead of the rhs block. 2529 if (CB.TrueBB == NextBlock(SwitchBB)) { 2530 std::swap(CB.TrueBB, CB.FalseBB); 2531 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2532 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2533 } 2534 2535 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2536 MVT::Other, getControlRoot(), Cond, 2537 DAG.getBasicBlock(CB.TrueBB)); 2538 2539 // Insert the false branch. Do this even if it's a fall through branch, 2540 // this makes it easier to do DAG optimizations which require inverting 2541 // the branch condition. 2542 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2543 DAG.getBasicBlock(CB.FalseBB)); 2544 2545 DAG.setRoot(BrCond); 2546 } 2547 2548 /// visitJumpTable - Emit JumpTable node in the current MBB 2549 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2550 // Emit the code for the jump table 2551 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2552 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2553 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2554 JT.Reg, PTy); 2555 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2556 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2557 MVT::Other, Index.getValue(1), 2558 Table, Index); 2559 DAG.setRoot(BrJumpTable); 2560 } 2561 2562 /// visitJumpTableHeader - This function emits necessary code to produce index 2563 /// in the JumpTable from switch case. 2564 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2565 JumpTableHeader &JTH, 2566 MachineBasicBlock *SwitchBB) { 2567 SDLoc dl = getCurSDLoc(); 2568 2569 // Subtract the lowest switch case value from the value being switched on. 2570 SDValue SwitchOp = getValue(JTH.SValue); 2571 EVT VT = SwitchOp.getValueType(); 2572 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2573 DAG.getConstant(JTH.First, dl, VT)); 2574 2575 // The SDNode we just created, which holds the value being switched on minus 2576 // the smallest case value, needs to be copied to a virtual register so it 2577 // can be used as an index into the jump table in a subsequent basic block. 2578 // This value may be smaller or larger than the target's pointer type, and 2579 // therefore require extension or truncating. 2580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2581 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2582 2583 unsigned JumpTableReg = 2584 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2585 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2586 JumpTableReg, SwitchOp); 2587 JT.Reg = JumpTableReg; 2588 2589 if (!JTH.FallthroughUnreachable) { 2590 // Emit the range check for the jump table, and branch to the default block 2591 // for the switch statement if the value being switched on exceeds the 2592 // largest case in the switch. 2593 SDValue CMP = DAG.getSetCC( 2594 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2595 Sub.getValueType()), 2596 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2597 2598 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2599 MVT::Other, CopyTo, CMP, 2600 DAG.getBasicBlock(JT.Default)); 2601 2602 // Avoid emitting unnecessary branches to the next block. 2603 if (JT.MBB != NextBlock(SwitchBB)) 2604 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2605 DAG.getBasicBlock(JT.MBB)); 2606 2607 DAG.setRoot(BrCond); 2608 } else { 2609 // Avoid emitting unnecessary branches to the next block. 2610 if (JT.MBB != NextBlock(SwitchBB)) 2611 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2612 DAG.getBasicBlock(JT.MBB))); 2613 else 2614 DAG.setRoot(CopyTo); 2615 } 2616 } 2617 2618 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2619 /// variable if there exists one. 2620 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2621 SDValue &Chain) { 2622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2623 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2624 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2625 MachineFunction &MF = DAG.getMachineFunction(); 2626 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2627 MachineSDNode *Node = 2628 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2629 if (Global) { 2630 MachinePointerInfo MPInfo(Global); 2631 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2632 MachineMemOperand::MODereferenceable; 2633 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2634 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2635 DAG.setNodeMemRefs(Node, {MemRef}); 2636 } 2637 if (PtrTy != PtrMemTy) 2638 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2639 return SDValue(Node, 0); 2640 } 2641 2642 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2643 /// tail spliced into a stack protector check success bb. 2644 /// 2645 /// For a high level explanation of how this fits into the stack protector 2646 /// generation see the comment on the declaration of class 2647 /// StackProtectorDescriptor. 2648 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2649 MachineBasicBlock *ParentBB) { 2650 2651 // First create the loads to the guard/stack slot for the comparison. 2652 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2653 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2654 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2655 2656 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2657 int FI = MFI.getStackProtectorIndex(); 2658 2659 SDValue Guard; 2660 SDLoc dl = getCurSDLoc(); 2661 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2662 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2663 Align Align = 2664 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2665 2666 // Generate code to load the content of the guard slot. 2667 SDValue GuardVal = DAG.getLoad( 2668 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2669 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2670 MachineMemOperand::MOVolatile); 2671 2672 if (TLI.useStackGuardXorFP()) 2673 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2674 2675 // Retrieve guard check function, nullptr if instrumentation is inlined. 2676 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2677 // The target provides a guard check function to validate the guard value. 2678 // Generate a call to that function with the content of the guard slot as 2679 // argument. 2680 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2681 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2682 2683 TargetLowering::ArgListTy Args; 2684 TargetLowering::ArgListEntry Entry; 2685 Entry.Node = GuardVal; 2686 Entry.Ty = FnTy->getParamType(0); 2687 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2688 Entry.IsInReg = true; 2689 Args.push_back(Entry); 2690 2691 TargetLowering::CallLoweringInfo CLI(DAG); 2692 CLI.setDebugLoc(getCurSDLoc()) 2693 .setChain(DAG.getEntryNode()) 2694 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2695 getValue(GuardCheckFn), std::move(Args)); 2696 2697 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2698 DAG.setRoot(Result.second); 2699 return; 2700 } 2701 2702 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2703 // Otherwise, emit a volatile load to retrieve the stack guard value. 2704 SDValue Chain = DAG.getEntryNode(); 2705 if (TLI.useLoadStackGuardNode()) { 2706 Guard = getLoadStackGuard(DAG, dl, Chain); 2707 } else { 2708 const Value *IRGuard = TLI.getSDagStackGuard(M); 2709 SDValue GuardPtr = getValue(IRGuard); 2710 2711 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2712 MachinePointerInfo(IRGuard, 0), Align, 2713 MachineMemOperand::MOVolatile); 2714 } 2715 2716 // Perform the comparison via a getsetcc. 2717 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2718 *DAG.getContext(), 2719 Guard.getValueType()), 2720 Guard, GuardVal, ISD::SETNE); 2721 2722 // If the guard/stackslot do not equal, branch to failure MBB. 2723 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2724 MVT::Other, GuardVal.getOperand(0), 2725 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2726 // Otherwise branch to success MBB. 2727 SDValue Br = DAG.getNode(ISD::BR, dl, 2728 MVT::Other, BrCond, 2729 DAG.getBasicBlock(SPD.getSuccessMBB())); 2730 2731 DAG.setRoot(Br); 2732 } 2733 2734 /// Codegen the failure basic block for a stack protector check. 2735 /// 2736 /// A failure stack protector machine basic block consists simply of a call to 2737 /// __stack_chk_fail(). 2738 /// 2739 /// For a high level explanation of how this fits into the stack protector 2740 /// generation see the comment on the declaration of class 2741 /// StackProtectorDescriptor. 2742 void 2743 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2745 TargetLowering::MakeLibCallOptions CallOptions; 2746 CallOptions.setDiscardResult(true); 2747 SDValue Chain = 2748 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2749 None, CallOptions, getCurSDLoc()).second; 2750 // On PS4/PS5, the "return address" must still be within the calling 2751 // function, even if it's at the very end, so emit an explicit TRAP here. 2752 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2753 if (TM.getTargetTriple().isPS()) 2754 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2755 // WebAssembly needs an unreachable instruction after a non-returning call, 2756 // because the function return type can be different from __stack_chk_fail's 2757 // return type (void). 2758 if (TM.getTargetTriple().isWasm()) 2759 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2760 2761 DAG.setRoot(Chain); 2762 } 2763 2764 /// visitBitTestHeader - This function emits necessary code to produce value 2765 /// suitable for "bit tests" 2766 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2767 MachineBasicBlock *SwitchBB) { 2768 SDLoc dl = getCurSDLoc(); 2769 2770 // Subtract the minimum value. 2771 SDValue SwitchOp = getValue(B.SValue); 2772 EVT VT = SwitchOp.getValueType(); 2773 SDValue RangeSub = 2774 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2775 2776 // Determine the type of the test operands. 2777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2778 bool UsePtrType = false; 2779 if (!TLI.isTypeLegal(VT)) { 2780 UsePtrType = true; 2781 } else { 2782 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2783 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2784 // Switch table case range are encoded into series of masks. 2785 // Just use pointer type, it's guaranteed to fit. 2786 UsePtrType = true; 2787 break; 2788 } 2789 } 2790 SDValue Sub = RangeSub; 2791 if (UsePtrType) { 2792 VT = TLI.getPointerTy(DAG.getDataLayout()); 2793 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2794 } 2795 2796 B.RegVT = VT.getSimpleVT(); 2797 B.Reg = FuncInfo.CreateReg(B.RegVT); 2798 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2799 2800 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2801 2802 if (!B.FallthroughUnreachable) 2803 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2804 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2805 SwitchBB->normalizeSuccProbs(); 2806 2807 SDValue Root = CopyTo; 2808 if (!B.FallthroughUnreachable) { 2809 // Conditional branch to the default block. 2810 SDValue RangeCmp = DAG.getSetCC(dl, 2811 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2812 RangeSub.getValueType()), 2813 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2814 ISD::SETUGT); 2815 2816 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2817 DAG.getBasicBlock(B.Default)); 2818 } 2819 2820 // Avoid emitting unnecessary branches to the next block. 2821 if (MBB != NextBlock(SwitchBB)) 2822 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2823 2824 DAG.setRoot(Root); 2825 } 2826 2827 /// visitBitTestCase - this function produces one "bit test" 2828 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2829 MachineBasicBlock* NextMBB, 2830 BranchProbability BranchProbToNext, 2831 unsigned Reg, 2832 BitTestCase &B, 2833 MachineBasicBlock *SwitchBB) { 2834 SDLoc dl = getCurSDLoc(); 2835 MVT VT = BB.RegVT; 2836 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2837 SDValue Cmp; 2838 unsigned PopCount = countPopulation(B.Mask); 2839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2840 if (PopCount == 1) { 2841 // Testing for a single bit; just compare the shift count with what it 2842 // would need to be to shift a 1 bit in that position. 2843 Cmp = DAG.getSetCC( 2844 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2845 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2846 ISD::SETEQ); 2847 } else if (PopCount == BB.Range) { 2848 // There is only one zero bit in the range, test for it directly. 2849 Cmp = DAG.getSetCC( 2850 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2851 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2852 ISD::SETNE); 2853 } else { 2854 // Make desired shift 2855 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2856 DAG.getConstant(1, dl, VT), ShiftOp); 2857 2858 // Emit bit tests and jumps 2859 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2860 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2861 Cmp = DAG.getSetCC( 2862 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2863 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2864 } 2865 2866 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2867 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2868 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2869 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2870 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2871 // one as they are relative probabilities (and thus work more like weights), 2872 // and hence we need to normalize them to let the sum of them become one. 2873 SwitchBB->normalizeSuccProbs(); 2874 2875 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2876 MVT::Other, getControlRoot(), 2877 Cmp, DAG.getBasicBlock(B.TargetBB)); 2878 2879 // Avoid emitting unnecessary branches to the next block. 2880 if (NextMBB != NextBlock(SwitchBB)) 2881 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2882 DAG.getBasicBlock(NextMBB)); 2883 2884 DAG.setRoot(BrAnd); 2885 } 2886 2887 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2888 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2889 2890 // Retrieve successors. Look through artificial IR level blocks like 2891 // catchswitch for successors. 2892 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2893 const BasicBlock *EHPadBB = I.getSuccessor(1); 2894 2895 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2896 // have to do anything here to lower funclet bundles. 2897 assert(!I.hasOperandBundlesOtherThan( 2898 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2899 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2900 LLVMContext::OB_cfguardtarget, 2901 LLVMContext::OB_clang_arc_attachedcall}) && 2902 "Cannot lower invokes with arbitrary operand bundles yet!"); 2903 2904 const Value *Callee(I.getCalledOperand()); 2905 const Function *Fn = dyn_cast<Function>(Callee); 2906 if (isa<InlineAsm>(Callee)) 2907 visitInlineAsm(I, EHPadBB); 2908 else if (Fn && Fn->isIntrinsic()) { 2909 switch (Fn->getIntrinsicID()) { 2910 default: 2911 llvm_unreachable("Cannot invoke this intrinsic"); 2912 case Intrinsic::donothing: 2913 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2914 case Intrinsic::seh_try_begin: 2915 case Intrinsic::seh_scope_begin: 2916 case Intrinsic::seh_try_end: 2917 case Intrinsic::seh_scope_end: 2918 break; 2919 case Intrinsic::experimental_patchpoint_void: 2920 case Intrinsic::experimental_patchpoint_i64: 2921 visitPatchpoint(I, EHPadBB); 2922 break; 2923 case Intrinsic::experimental_gc_statepoint: 2924 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2925 break; 2926 case Intrinsic::wasm_rethrow: { 2927 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2928 // special because it can be invoked, so we manually lower it to a DAG 2929 // node here. 2930 SmallVector<SDValue, 8> Ops; 2931 Ops.push_back(getRoot()); // inchain 2932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2933 Ops.push_back( 2934 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2935 TLI.getPointerTy(DAG.getDataLayout()))); 2936 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2937 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2938 break; 2939 } 2940 } 2941 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2942 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2943 // Eventually we will support lowering the @llvm.experimental.deoptimize 2944 // intrinsic, and right now there are no plans to support other intrinsics 2945 // with deopt state. 2946 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2947 } else { 2948 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2949 } 2950 2951 // If the value of the invoke is used outside of its defining block, make it 2952 // available as a virtual register. 2953 // We already took care of the exported value for the statepoint instruction 2954 // during call to the LowerStatepoint. 2955 if (!isa<GCStatepointInst>(I)) { 2956 CopyToExportRegsIfNeeded(&I); 2957 } 2958 2959 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2960 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2961 BranchProbability EHPadBBProb = 2962 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2963 : BranchProbability::getZero(); 2964 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2965 2966 // Update successor info. 2967 addSuccessorWithProb(InvokeMBB, Return); 2968 for (auto &UnwindDest : UnwindDests) { 2969 UnwindDest.first->setIsEHPad(); 2970 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2971 } 2972 InvokeMBB->normalizeSuccProbs(); 2973 2974 // Drop into normal successor. 2975 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2976 DAG.getBasicBlock(Return))); 2977 } 2978 2979 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2980 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2981 2982 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2983 // have to do anything here to lower funclet bundles. 2984 assert(!I.hasOperandBundlesOtherThan( 2985 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2986 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2987 2988 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2989 visitInlineAsm(I); 2990 CopyToExportRegsIfNeeded(&I); 2991 2992 // Retrieve successors. 2993 SmallPtrSet<BasicBlock *, 8> Dests; 2994 Dests.insert(I.getDefaultDest()); 2995 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2996 2997 // Update successor info. 2998 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2999 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3000 BasicBlock *Dest = I.getIndirectDest(i); 3001 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3002 Target->setIsInlineAsmBrIndirectTarget(); 3003 Target->setHasAddressTaken(); 3004 // Don't add duplicate machine successors. 3005 if (Dests.insert(Dest).second) 3006 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3007 } 3008 CallBrMBB->normalizeSuccProbs(); 3009 3010 // Drop into default successor. 3011 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3012 MVT::Other, getControlRoot(), 3013 DAG.getBasicBlock(Return))); 3014 } 3015 3016 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3017 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3018 } 3019 3020 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3021 assert(FuncInfo.MBB->isEHPad() && 3022 "Call to landingpad not in landing pad!"); 3023 3024 // If there aren't registers to copy the values into (e.g., during SjLj 3025 // exceptions), then don't bother to create these DAG nodes. 3026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3027 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3028 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3029 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3030 return; 3031 3032 // If landingpad's return type is token type, we don't create DAG nodes 3033 // for its exception pointer and selector value. The extraction of exception 3034 // pointer or selector value from token type landingpads is not currently 3035 // supported. 3036 if (LP.getType()->isTokenTy()) 3037 return; 3038 3039 SmallVector<EVT, 2> ValueVTs; 3040 SDLoc dl = getCurSDLoc(); 3041 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3042 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3043 3044 // Get the two live-in registers as SDValues. The physregs have already been 3045 // copied into virtual registers. 3046 SDValue Ops[2]; 3047 if (FuncInfo.ExceptionPointerVirtReg) { 3048 Ops[0] = DAG.getZExtOrTrunc( 3049 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3050 FuncInfo.ExceptionPointerVirtReg, 3051 TLI.getPointerTy(DAG.getDataLayout())), 3052 dl, ValueVTs[0]); 3053 } else { 3054 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3055 } 3056 Ops[1] = DAG.getZExtOrTrunc( 3057 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3058 FuncInfo.ExceptionSelectorVirtReg, 3059 TLI.getPointerTy(DAG.getDataLayout())), 3060 dl, ValueVTs[1]); 3061 3062 // Merge into one. 3063 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3064 DAG.getVTList(ValueVTs), Ops); 3065 setValue(&LP, Res); 3066 } 3067 3068 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3069 MachineBasicBlock *Last) { 3070 // Update JTCases. 3071 for (JumpTableBlock &JTB : SL->JTCases) 3072 if (JTB.first.HeaderBB == First) 3073 JTB.first.HeaderBB = Last; 3074 3075 // Update BitTestCases. 3076 for (BitTestBlock &BTB : SL->BitTestCases) 3077 if (BTB.Parent == First) 3078 BTB.Parent = Last; 3079 } 3080 3081 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3082 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3083 3084 // Update machine-CFG edges with unique successors. 3085 SmallSet<BasicBlock*, 32> Done; 3086 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3087 BasicBlock *BB = I.getSuccessor(i); 3088 bool Inserted = Done.insert(BB).second; 3089 if (!Inserted) 3090 continue; 3091 3092 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3093 addSuccessorWithProb(IndirectBrMBB, Succ); 3094 } 3095 IndirectBrMBB->normalizeSuccProbs(); 3096 3097 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3098 MVT::Other, getControlRoot(), 3099 getValue(I.getAddress()))); 3100 } 3101 3102 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3103 if (!DAG.getTarget().Options.TrapUnreachable) 3104 return; 3105 3106 // We may be able to ignore unreachable behind a noreturn call. 3107 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3108 const BasicBlock &BB = *I.getParent(); 3109 if (&I != &BB.front()) { 3110 BasicBlock::const_iterator PredI = 3111 std::prev(BasicBlock::const_iterator(&I)); 3112 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3113 if (Call->doesNotReturn()) 3114 return; 3115 } 3116 } 3117 } 3118 3119 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3120 } 3121 3122 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3123 SDNodeFlags Flags; 3124 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3125 Flags.copyFMF(*FPOp); 3126 3127 SDValue Op = getValue(I.getOperand(0)); 3128 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3129 Op, Flags); 3130 setValue(&I, UnNodeValue); 3131 } 3132 3133 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3134 SDNodeFlags Flags; 3135 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3136 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3137 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3138 } 3139 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3140 Flags.setExact(ExactOp->isExact()); 3141 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3142 Flags.copyFMF(*FPOp); 3143 3144 SDValue Op1 = getValue(I.getOperand(0)); 3145 SDValue Op2 = getValue(I.getOperand(1)); 3146 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3147 Op1, Op2, Flags); 3148 setValue(&I, BinNodeValue); 3149 } 3150 3151 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3152 SDValue Op1 = getValue(I.getOperand(0)); 3153 SDValue Op2 = getValue(I.getOperand(1)); 3154 3155 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3156 Op1.getValueType(), DAG.getDataLayout()); 3157 3158 // Coerce the shift amount to the right type if we can. This exposes the 3159 // truncate or zext to optimization early. 3160 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3161 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3162 "Unexpected shift type"); 3163 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3164 } 3165 3166 bool nuw = false; 3167 bool nsw = false; 3168 bool exact = false; 3169 3170 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3171 3172 if (const OverflowingBinaryOperator *OFBinOp = 3173 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3174 nuw = OFBinOp->hasNoUnsignedWrap(); 3175 nsw = OFBinOp->hasNoSignedWrap(); 3176 } 3177 if (const PossiblyExactOperator *ExactOp = 3178 dyn_cast<const PossiblyExactOperator>(&I)) 3179 exact = ExactOp->isExact(); 3180 } 3181 SDNodeFlags Flags; 3182 Flags.setExact(exact); 3183 Flags.setNoSignedWrap(nsw); 3184 Flags.setNoUnsignedWrap(nuw); 3185 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3186 Flags); 3187 setValue(&I, Res); 3188 } 3189 3190 void SelectionDAGBuilder::visitSDiv(const User &I) { 3191 SDValue Op1 = getValue(I.getOperand(0)); 3192 SDValue Op2 = getValue(I.getOperand(1)); 3193 3194 SDNodeFlags Flags; 3195 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3196 cast<PossiblyExactOperator>(&I)->isExact()); 3197 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3198 Op2, Flags)); 3199 } 3200 3201 void SelectionDAGBuilder::visitICmp(const User &I) { 3202 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3204 predicate = IC->getPredicate(); 3205 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3206 predicate = ICmpInst::Predicate(IC->getPredicate()); 3207 SDValue Op1 = getValue(I.getOperand(0)); 3208 SDValue Op2 = getValue(I.getOperand(1)); 3209 ISD::CondCode Opcode = getICmpCondCode(predicate); 3210 3211 auto &TLI = DAG.getTargetLoweringInfo(); 3212 EVT MemVT = 3213 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3214 3215 // If a pointer's DAG type is larger than its memory type then the DAG values 3216 // are zero-extended. This breaks signed comparisons so truncate back to the 3217 // underlying type before doing the compare. 3218 if (Op1.getValueType() != MemVT) { 3219 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3220 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3221 } 3222 3223 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3224 I.getType()); 3225 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3226 } 3227 3228 void SelectionDAGBuilder::visitFCmp(const User &I) { 3229 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3230 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3231 predicate = FC->getPredicate(); 3232 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3233 predicate = FCmpInst::Predicate(FC->getPredicate()); 3234 SDValue Op1 = getValue(I.getOperand(0)); 3235 SDValue Op2 = getValue(I.getOperand(1)); 3236 3237 ISD::CondCode Condition = getFCmpCondCode(predicate); 3238 auto *FPMO = cast<FPMathOperator>(&I); 3239 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3240 Condition = getFCmpCodeWithoutNaN(Condition); 3241 3242 SDNodeFlags Flags; 3243 Flags.copyFMF(*FPMO); 3244 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3245 3246 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3247 I.getType()); 3248 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3249 } 3250 3251 // Check if the condition of the select has one use or two users that are both 3252 // selects with the same condition. 3253 static bool hasOnlySelectUsers(const Value *Cond) { 3254 return llvm::all_of(Cond->users(), [](const Value *V) { 3255 return isa<SelectInst>(V); 3256 }); 3257 } 3258 3259 void SelectionDAGBuilder::visitSelect(const User &I) { 3260 SmallVector<EVT, 4> ValueVTs; 3261 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3262 ValueVTs); 3263 unsigned NumValues = ValueVTs.size(); 3264 if (NumValues == 0) return; 3265 3266 SmallVector<SDValue, 4> Values(NumValues); 3267 SDValue Cond = getValue(I.getOperand(0)); 3268 SDValue LHSVal = getValue(I.getOperand(1)); 3269 SDValue RHSVal = getValue(I.getOperand(2)); 3270 SmallVector<SDValue, 1> BaseOps(1, Cond); 3271 ISD::NodeType OpCode = 3272 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3273 3274 bool IsUnaryAbs = false; 3275 bool Negate = false; 3276 3277 SDNodeFlags Flags; 3278 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3279 Flags.copyFMF(*FPOp); 3280 3281 // Min/max matching is only viable if all output VTs are the same. 3282 if (is_splat(ValueVTs)) { 3283 EVT VT = ValueVTs[0]; 3284 LLVMContext &Ctx = *DAG.getContext(); 3285 auto &TLI = DAG.getTargetLoweringInfo(); 3286 3287 // We care about the legality of the operation after it has been type 3288 // legalized. 3289 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3290 VT = TLI.getTypeToTransformTo(Ctx, VT); 3291 3292 // If the vselect is legal, assume we want to leave this as a vector setcc + 3293 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3294 // min/max is legal on the scalar type. 3295 bool UseScalarMinMax = VT.isVector() && 3296 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3297 3298 Value *LHS, *RHS; 3299 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3300 ISD::NodeType Opc = ISD::DELETED_NODE; 3301 switch (SPR.Flavor) { 3302 case SPF_UMAX: Opc = ISD::UMAX; break; 3303 case SPF_UMIN: Opc = ISD::UMIN; break; 3304 case SPF_SMAX: Opc = ISD::SMAX; break; 3305 case SPF_SMIN: Opc = ISD::SMIN; break; 3306 case SPF_FMINNUM: 3307 switch (SPR.NaNBehavior) { 3308 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3309 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3310 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3311 case SPNB_RETURNS_ANY: { 3312 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3313 Opc = ISD::FMINNUM; 3314 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3315 Opc = ISD::FMINIMUM; 3316 else if (UseScalarMinMax) 3317 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3318 ISD::FMINNUM : ISD::FMINIMUM; 3319 break; 3320 } 3321 } 3322 break; 3323 case SPF_FMAXNUM: 3324 switch (SPR.NaNBehavior) { 3325 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3326 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3327 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3328 case SPNB_RETURNS_ANY: 3329 3330 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3331 Opc = ISD::FMAXNUM; 3332 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3333 Opc = ISD::FMAXIMUM; 3334 else if (UseScalarMinMax) 3335 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3336 ISD::FMAXNUM : ISD::FMAXIMUM; 3337 break; 3338 } 3339 break; 3340 case SPF_NABS: 3341 Negate = true; 3342 LLVM_FALLTHROUGH; 3343 case SPF_ABS: 3344 IsUnaryAbs = true; 3345 Opc = ISD::ABS; 3346 break; 3347 default: break; 3348 } 3349 3350 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3351 (TLI.isOperationLegalOrCustom(Opc, VT) || 3352 (UseScalarMinMax && 3353 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3354 // If the underlying comparison instruction is used by any other 3355 // instruction, the consumed instructions won't be destroyed, so it is 3356 // not profitable to convert to a min/max. 3357 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3358 OpCode = Opc; 3359 LHSVal = getValue(LHS); 3360 RHSVal = getValue(RHS); 3361 BaseOps.clear(); 3362 } 3363 3364 if (IsUnaryAbs) { 3365 OpCode = Opc; 3366 LHSVal = getValue(LHS); 3367 BaseOps.clear(); 3368 } 3369 } 3370 3371 if (IsUnaryAbs) { 3372 for (unsigned i = 0; i != NumValues; ++i) { 3373 SDLoc dl = getCurSDLoc(); 3374 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3375 Values[i] = 3376 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3377 if (Negate) 3378 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3379 Values[i]); 3380 } 3381 } else { 3382 for (unsigned i = 0; i != NumValues; ++i) { 3383 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3384 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3385 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3386 Values[i] = DAG.getNode( 3387 OpCode, getCurSDLoc(), 3388 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3389 } 3390 } 3391 3392 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3393 DAG.getVTList(ValueVTs), Values)); 3394 } 3395 3396 void SelectionDAGBuilder::visitTrunc(const User &I) { 3397 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3398 SDValue N = getValue(I.getOperand(0)); 3399 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3400 I.getType()); 3401 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3402 } 3403 3404 void SelectionDAGBuilder::visitZExt(const User &I) { 3405 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3406 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3407 SDValue N = getValue(I.getOperand(0)); 3408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3409 I.getType()); 3410 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3411 } 3412 3413 void SelectionDAGBuilder::visitSExt(const User &I) { 3414 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3415 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3416 SDValue N = getValue(I.getOperand(0)); 3417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3418 I.getType()); 3419 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3420 } 3421 3422 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3423 // FPTrunc is never a no-op cast, no need to check 3424 SDValue N = getValue(I.getOperand(0)); 3425 SDLoc dl = getCurSDLoc(); 3426 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3427 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3428 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3429 DAG.getTargetConstant( 3430 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3431 } 3432 3433 void SelectionDAGBuilder::visitFPExt(const User &I) { 3434 // FPExt is never a no-op cast, no need to check 3435 SDValue N = getValue(I.getOperand(0)); 3436 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3437 I.getType()); 3438 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3439 } 3440 3441 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3442 // FPToUI is never a no-op cast, no need to check 3443 SDValue N = getValue(I.getOperand(0)); 3444 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3445 I.getType()); 3446 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3447 } 3448 3449 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3450 // FPToSI is never a no-op cast, no need to check 3451 SDValue N = getValue(I.getOperand(0)); 3452 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3453 I.getType()); 3454 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3455 } 3456 3457 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3458 // UIToFP is never a no-op cast, no need to check 3459 SDValue N = getValue(I.getOperand(0)); 3460 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3461 I.getType()); 3462 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3463 } 3464 3465 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3466 // SIToFP is never a no-op cast, no need to check 3467 SDValue N = getValue(I.getOperand(0)); 3468 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3469 I.getType()); 3470 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3471 } 3472 3473 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3474 // What to do depends on the size of the integer and the size of the pointer. 3475 // We can either truncate, zero extend, or no-op, accordingly. 3476 SDValue N = getValue(I.getOperand(0)); 3477 auto &TLI = DAG.getTargetLoweringInfo(); 3478 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3479 I.getType()); 3480 EVT PtrMemVT = 3481 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3482 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3483 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3484 setValue(&I, N); 3485 } 3486 3487 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3488 // What to do depends on the size of the integer and the size of the pointer. 3489 // We can either truncate, zero extend, or no-op, accordingly. 3490 SDValue N = getValue(I.getOperand(0)); 3491 auto &TLI = DAG.getTargetLoweringInfo(); 3492 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3493 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3494 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3495 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3496 setValue(&I, N); 3497 } 3498 3499 void SelectionDAGBuilder::visitBitCast(const User &I) { 3500 SDValue N = getValue(I.getOperand(0)); 3501 SDLoc dl = getCurSDLoc(); 3502 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3503 I.getType()); 3504 3505 // BitCast assures us that source and destination are the same size so this is 3506 // either a BITCAST or a no-op. 3507 if (DestVT != N.getValueType()) 3508 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3509 DestVT, N)); // convert types. 3510 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3511 // might fold any kind of constant expression to an integer constant and that 3512 // is not what we are looking for. Only recognize a bitcast of a genuine 3513 // constant integer as an opaque constant. 3514 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3515 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3516 /*isOpaque*/true)); 3517 else 3518 setValue(&I, N); // noop cast. 3519 } 3520 3521 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3523 const Value *SV = I.getOperand(0); 3524 SDValue N = getValue(SV); 3525 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3526 3527 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3528 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3529 3530 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3531 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3532 3533 setValue(&I, N); 3534 } 3535 3536 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3537 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3538 SDValue InVec = getValue(I.getOperand(0)); 3539 SDValue InVal = getValue(I.getOperand(1)); 3540 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3541 TLI.getVectorIdxTy(DAG.getDataLayout())); 3542 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3543 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3544 InVec, InVal, InIdx)); 3545 } 3546 3547 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 SDValue InVec = getValue(I.getOperand(0)); 3550 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3551 TLI.getVectorIdxTy(DAG.getDataLayout())); 3552 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3553 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3554 InVec, InIdx)); 3555 } 3556 3557 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3558 SDValue Src1 = getValue(I.getOperand(0)); 3559 SDValue Src2 = getValue(I.getOperand(1)); 3560 ArrayRef<int> Mask; 3561 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3562 Mask = SVI->getShuffleMask(); 3563 else 3564 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3565 SDLoc DL = getCurSDLoc(); 3566 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3567 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3568 EVT SrcVT = Src1.getValueType(); 3569 3570 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3571 VT.isScalableVector()) { 3572 // Canonical splat form of first element of first input vector. 3573 SDValue FirstElt = 3574 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3575 DAG.getVectorIdxConstant(0, DL)); 3576 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3577 return; 3578 } 3579 3580 // For now, we only handle splats for scalable vectors. 3581 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3582 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3583 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3584 3585 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3586 unsigned MaskNumElts = Mask.size(); 3587 3588 if (SrcNumElts == MaskNumElts) { 3589 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3590 return; 3591 } 3592 3593 // Normalize the shuffle vector since mask and vector length don't match. 3594 if (SrcNumElts < MaskNumElts) { 3595 // Mask is longer than the source vectors. We can use concatenate vector to 3596 // make the mask and vectors lengths match. 3597 3598 if (MaskNumElts % SrcNumElts == 0) { 3599 // Mask length is a multiple of the source vector length. 3600 // Check if the shuffle is some kind of concatenation of the input 3601 // vectors. 3602 unsigned NumConcat = MaskNumElts / SrcNumElts; 3603 bool IsConcat = true; 3604 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3605 for (unsigned i = 0; i != MaskNumElts; ++i) { 3606 int Idx = Mask[i]; 3607 if (Idx < 0) 3608 continue; 3609 // Ensure the indices in each SrcVT sized piece are sequential and that 3610 // the same source is used for the whole piece. 3611 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3612 (ConcatSrcs[i / SrcNumElts] >= 0 && 3613 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3614 IsConcat = false; 3615 break; 3616 } 3617 // Remember which source this index came from. 3618 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3619 } 3620 3621 // The shuffle is concatenating multiple vectors together. Just emit 3622 // a CONCAT_VECTORS operation. 3623 if (IsConcat) { 3624 SmallVector<SDValue, 8> ConcatOps; 3625 for (auto Src : ConcatSrcs) { 3626 if (Src < 0) 3627 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3628 else if (Src == 0) 3629 ConcatOps.push_back(Src1); 3630 else 3631 ConcatOps.push_back(Src2); 3632 } 3633 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3634 return; 3635 } 3636 } 3637 3638 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3639 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3640 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3641 PaddedMaskNumElts); 3642 3643 // Pad both vectors with undefs to make them the same length as the mask. 3644 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3645 3646 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3647 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3648 MOps1[0] = Src1; 3649 MOps2[0] = Src2; 3650 3651 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3652 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3653 3654 // Readjust mask for new input vector length. 3655 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3656 for (unsigned i = 0; i != MaskNumElts; ++i) { 3657 int Idx = Mask[i]; 3658 if (Idx >= (int)SrcNumElts) 3659 Idx -= SrcNumElts - PaddedMaskNumElts; 3660 MappedOps[i] = Idx; 3661 } 3662 3663 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3664 3665 // If the concatenated vector was padded, extract a subvector with the 3666 // correct number of elements. 3667 if (MaskNumElts != PaddedMaskNumElts) 3668 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3669 DAG.getVectorIdxConstant(0, DL)); 3670 3671 setValue(&I, Result); 3672 return; 3673 } 3674 3675 if (SrcNumElts > MaskNumElts) { 3676 // Analyze the access pattern of the vector to see if we can extract 3677 // two subvectors and do the shuffle. 3678 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3679 bool CanExtract = true; 3680 for (int Idx : Mask) { 3681 unsigned Input = 0; 3682 if (Idx < 0) 3683 continue; 3684 3685 if (Idx >= (int)SrcNumElts) { 3686 Input = 1; 3687 Idx -= SrcNumElts; 3688 } 3689 3690 // If all the indices come from the same MaskNumElts sized portion of 3691 // the sources we can use extract. Also make sure the extract wouldn't 3692 // extract past the end of the source. 3693 int NewStartIdx = alignDown(Idx, MaskNumElts); 3694 if (NewStartIdx + MaskNumElts > SrcNumElts || 3695 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3696 CanExtract = false; 3697 // Make sure we always update StartIdx as we use it to track if all 3698 // elements are undef. 3699 StartIdx[Input] = NewStartIdx; 3700 } 3701 3702 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3703 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3704 return; 3705 } 3706 if (CanExtract) { 3707 // Extract appropriate subvector and generate a vector shuffle 3708 for (unsigned Input = 0; Input < 2; ++Input) { 3709 SDValue &Src = Input == 0 ? Src1 : Src2; 3710 if (StartIdx[Input] < 0) 3711 Src = DAG.getUNDEF(VT); 3712 else { 3713 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3714 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3715 } 3716 } 3717 3718 // Calculate new mask. 3719 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3720 for (int &Idx : MappedOps) { 3721 if (Idx >= (int)SrcNumElts) 3722 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3723 else if (Idx >= 0) 3724 Idx -= StartIdx[0]; 3725 } 3726 3727 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3728 return; 3729 } 3730 } 3731 3732 // We can't use either concat vectors or extract subvectors so fall back to 3733 // replacing the shuffle with extract and build vector. 3734 // to insert and build vector. 3735 EVT EltVT = VT.getVectorElementType(); 3736 SmallVector<SDValue,8> Ops; 3737 for (int Idx : Mask) { 3738 SDValue Res; 3739 3740 if (Idx < 0) { 3741 Res = DAG.getUNDEF(EltVT); 3742 } else { 3743 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3744 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3745 3746 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3747 DAG.getVectorIdxConstant(Idx, DL)); 3748 } 3749 3750 Ops.push_back(Res); 3751 } 3752 3753 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3754 } 3755 3756 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3757 ArrayRef<unsigned> Indices = I.getIndices(); 3758 const Value *Op0 = I.getOperand(0); 3759 const Value *Op1 = I.getOperand(1); 3760 Type *AggTy = I.getType(); 3761 Type *ValTy = Op1->getType(); 3762 bool IntoUndef = isa<UndefValue>(Op0); 3763 bool FromUndef = isa<UndefValue>(Op1); 3764 3765 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3766 3767 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3768 SmallVector<EVT, 4> AggValueVTs; 3769 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3770 SmallVector<EVT, 4> ValValueVTs; 3771 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3772 3773 unsigned NumAggValues = AggValueVTs.size(); 3774 unsigned NumValValues = ValValueVTs.size(); 3775 SmallVector<SDValue, 4> Values(NumAggValues); 3776 3777 // Ignore an insertvalue that produces an empty object 3778 if (!NumAggValues) { 3779 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3780 return; 3781 } 3782 3783 SDValue Agg = getValue(Op0); 3784 unsigned i = 0; 3785 // Copy the beginning value(s) from the original aggregate. 3786 for (; i != LinearIndex; ++i) 3787 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3788 SDValue(Agg.getNode(), Agg.getResNo() + i); 3789 // Copy values from the inserted value(s). 3790 if (NumValValues) { 3791 SDValue Val = getValue(Op1); 3792 for (; i != LinearIndex + NumValValues; ++i) 3793 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3794 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3795 } 3796 // Copy remaining value(s) from the original aggregate. 3797 for (; i != NumAggValues; ++i) 3798 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3799 SDValue(Agg.getNode(), Agg.getResNo() + i); 3800 3801 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3802 DAG.getVTList(AggValueVTs), Values)); 3803 } 3804 3805 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3806 ArrayRef<unsigned> Indices = I.getIndices(); 3807 const Value *Op0 = I.getOperand(0); 3808 Type *AggTy = Op0->getType(); 3809 Type *ValTy = I.getType(); 3810 bool OutOfUndef = isa<UndefValue>(Op0); 3811 3812 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3813 3814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3815 SmallVector<EVT, 4> ValValueVTs; 3816 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3817 3818 unsigned NumValValues = ValValueVTs.size(); 3819 3820 // Ignore a extractvalue that produces an empty object 3821 if (!NumValValues) { 3822 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3823 return; 3824 } 3825 3826 SmallVector<SDValue, 4> Values(NumValValues); 3827 3828 SDValue Agg = getValue(Op0); 3829 // Copy out the selected value(s). 3830 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3831 Values[i - LinearIndex] = 3832 OutOfUndef ? 3833 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3834 SDValue(Agg.getNode(), Agg.getResNo() + i); 3835 3836 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3837 DAG.getVTList(ValValueVTs), Values)); 3838 } 3839 3840 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3841 Value *Op0 = I.getOperand(0); 3842 // Note that the pointer operand may be a vector of pointers. Take the scalar 3843 // element which holds a pointer. 3844 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3845 SDValue N = getValue(Op0); 3846 SDLoc dl = getCurSDLoc(); 3847 auto &TLI = DAG.getTargetLoweringInfo(); 3848 3849 // Normalize Vector GEP - all scalar operands should be converted to the 3850 // splat vector. 3851 bool IsVectorGEP = I.getType()->isVectorTy(); 3852 ElementCount VectorElementCount = 3853 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3854 : ElementCount::getFixed(0); 3855 3856 if (IsVectorGEP && !N.getValueType().isVector()) { 3857 LLVMContext &Context = *DAG.getContext(); 3858 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3859 if (VectorElementCount.isScalable()) 3860 N = DAG.getSplatVector(VT, dl, N); 3861 else 3862 N = DAG.getSplatBuildVector(VT, dl, N); 3863 } 3864 3865 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3866 GTI != E; ++GTI) { 3867 const Value *Idx = GTI.getOperand(); 3868 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3869 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3870 if (Field) { 3871 // N = N + Offset 3872 uint64_t Offset = 3873 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3874 3875 // In an inbounds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3882 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3883 } 3884 } else { 3885 // IdxSize is the width of the arithmetic according to IR semantics. 3886 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3887 // (and fix up the result later). 3888 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3889 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3890 TypeSize ElementSize = 3891 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3892 // We intentionally mask away the high bits here; ElementSize may not 3893 // fit in IdxTy. 3894 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3895 bool ElementScalable = ElementSize.isScalable(); 3896 3897 // If this is a scalar constant or a splat vector of constants, 3898 // handle it quickly. 3899 const auto *C = dyn_cast<Constant>(Idx); 3900 if (C && isa<VectorType>(C->getType())) 3901 C = C->getSplatValue(); 3902 3903 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3904 if (CI && CI->isZero()) 3905 continue; 3906 if (CI && !ElementScalable) { 3907 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3908 LLVMContext &Context = *DAG.getContext(); 3909 SDValue OffsVal; 3910 if (IsVectorGEP) 3911 OffsVal = DAG.getConstant( 3912 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3913 else 3914 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3915 3916 // In an inbounds GEP with an offset that is nonnegative even when 3917 // interpreted as signed, assume there is no unsigned overflow. 3918 SDNodeFlags Flags; 3919 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3920 Flags.setNoUnsignedWrap(true); 3921 3922 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3923 3924 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3925 continue; 3926 } 3927 3928 // N = N + Idx * ElementMul; 3929 SDValue IdxN = getValue(Idx); 3930 3931 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3932 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3933 VectorElementCount); 3934 if (VectorElementCount.isScalable()) 3935 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3936 else 3937 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3938 } 3939 3940 // If the index is smaller or larger than intptr_t, truncate or extend 3941 // it. 3942 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3943 3944 if (ElementScalable) { 3945 EVT VScaleTy = N.getValueType().getScalarType(); 3946 SDValue VScale = DAG.getNode( 3947 ISD::VSCALE, dl, VScaleTy, 3948 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3949 if (IsVectorGEP) 3950 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3951 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3952 } else { 3953 // If this is a multiply by a power of two, turn it into a shl 3954 // immediately. This is a very common case. 3955 if (ElementMul != 1) { 3956 if (ElementMul.isPowerOf2()) { 3957 unsigned Amt = ElementMul.logBase2(); 3958 IdxN = DAG.getNode(ISD::SHL, dl, 3959 N.getValueType(), IdxN, 3960 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3961 } else { 3962 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3963 IdxN.getValueType()); 3964 IdxN = DAG.getNode(ISD::MUL, dl, 3965 N.getValueType(), IdxN, Scale); 3966 } 3967 } 3968 } 3969 3970 N = DAG.getNode(ISD::ADD, dl, 3971 N.getValueType(), N, IdxN); 3972 } 3973 } 3974 3975 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3976 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3977 if (IsVectorGEP) { 3978 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3979 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3980 } 3981 3982 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3983 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3984 3985 setValue(&I, N); 3986 } 3987 3988 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3989 // If this is a fixed sized alloca in the entry block of the function, 3990 // allocate it statically on the stack. 3991 if (FuncInfo.StaticAllocaMap.count(&I)) 3992 return; // getValue will auto-populate this. 3993 3994 SDLoc dl = getCurSDLoc(); 3995 Type *Ty = I.getAllocatedType(); 3996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3997 auto &DL = DAG.getDataLayout(); 3998 TypeSize TySize = DL.getTypeAllocSize(Ty); 3999 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4000 4001 SDValue AllocSize = getValue(I.getArraySize()); 4002 4003 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4004 if (AllocSize.getValueType() != IntPtr) 4005 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4006 4007 if (TySize.isScalable()) 4008 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4009 DAG.getVScale(dl, IntPtr, 4010 APInt(IntPtr.getScalarSizeInBits(), 4011 TySize.getKnownMinValue()))); 4012 else 4013 AllocSize = 4014 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4015 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4016 4017 // Handle alignment. If the requested alignment is less than or equal to 4018 // the stack alignment, ignore it. If the size is greater than or equal to 4019 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4020 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4021 if (*Alignment <= StackAlign) 4022 Alignment = None; 4023 4024 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4025 // Round the size of the allocation up to the stack alignment size 4026 // by add SA-1 to the size. This doesn't overflow because we're computing 4027 // an address inside an alloca. 4028 SDNodeFlags Flags; 4029 Flags.setNoUnsignedWrap(true); 4030 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4031 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4032 4033 // Mask out the low bits for alignment purposes. 4034 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4035 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4036 4037 SDValue Ops[] = { 4038 getRoot(), AllocSize, 4039 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4040 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4041 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4042 setValue(&I, DSA); 4043 DAG.setRoot(DSA.getValue(1)); 4044 4045 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4046 } 4047 4048 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4049 if (I.isAtomic()) 4050 return visitAtomicLoad(I); 4051 4052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4053 const Value *SV = I.getOperand(0); 4054 if (TLI.supportSwiftError()) { 4055 // Swifterror values can come from either a function parameter with 4056 // swifterror attribute or an alloca with swifterror attribute. 4057 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4058 if (Arg->hasSwiftErrorAttr()) 4059 return visitLoadFromSwiftError(I); 4060 } 4061 4062 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4063 if (Alloca->isSwiftError()) 4064 return visitLoadFromSwiftError(I); 4065 } 4066 } 4067 4068 SDValue Ptr = getValue(SV); 4069 4070 Type *Ty = I.getType(); 4071 Align Alignment = I.getAlign(); 4072 4073 AAMDNodes AAInfo = I.getAAMetadata(); 4074 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4075 4076 SmallVector<EVT, 4> ValueVTs, MemVTs; 4077 SmallVector<uint64_t, 4> Offsets; 4078 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4079 unsigned NumValues = ValueVTs.size(); 4080 if (NumValues == 0) 4081 return; 4082 4083 bool isVolatile = I.isVolatile(); 4084 MachineMemOperand::Flags MMOFlags = 4085 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4086 4087 SDValue Root; 4088 bool ConstantMemory = false; 4089 if (isVolatile) 4090 // Serialize volatile loads with other side effects. 4091 Root = getRoot(); 4092 else if (NumValues > MaxParallelChains) 4093 Root = getMemoryRoot(); 4094 else if (AA && 4095 AA->pointsToConstantMemory(MemoryLocation( 4096 SV, 4097 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4098 AAInfo))) { 4099 // Do not serialize (non-volatile) loads of constant memory with anything. 4100 Root = DAG.getEntryNode(); 4101 ConstantMemory = true; 4102 MMOFlags |= MachineMemOperand::MOInvariant; 4103 4104 // FIXME: pointsToConstantMemory probably does not imply dereferenceable, 4105 // but the previous usage implied it did. Probably should check 4106 // isDereferenceableAndAlignedPointer. 4107 MMOFlags |= MachineMemOperand::MODereferenceable; 4108 } else { 4109 // Do not serialize non-volatile loads against each other. 4110 Root = DAG.getRoot(); 4111 } 4112 4113 SDLoc dl = getCurSDLoc(); 4114 4115 if (isVolatile) 4116 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4117 4118 // An aggregate load cannot wrap around the address space, so offsets to its 4119 // parts don't wrap either. 4120 SDNodeFlags Flags; 4121 Flags.setNoUnsignedWrap(true); 4122 4123 SmallVector<SDValue, 4> Values(NumValues); 4124 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4125 EVT PtrVT = Ptr.getValueType(); 4126 4127 unsigned ChainI = 0; 4128 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4129 // Serializing loads here may result in excessive register pressure, and 4130 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4131 // could recover a bit by hoisting nodes upward in the chain by recognizing 4132 // they are side-effect free or do not alias. The optimizer should really 4133 // avoid this case by converting large object/array copies to llvm.memcpy 4134 // (MaxParallelChains should always remain as failsafe). 4135 if (ChainI == MaxParallelChains) { 4136 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4137 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4138 makeArrayRef(Chains.data(), ChainI)); 4139 Root = Chain; 4140 ChainI = 0; 4141 } 4142 SDValue A = DAG.getNode(ISD::ADD, dl, 4143 PtrVT, Ptr, 4144 DAG.getConstant(Offsets[i], dl, PtrVT), 4145 Flags); 4146 4147 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4148 MachinePointerInfo(SV, Offsets[i]), Alignment, 4149 MMOFlags, AAInfo, Ranges); 4150 Chains[ChainI] = L.getValue(1); 4151 4152 if (MemVTs[i] != ValueVTs[i]) 4153 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4154 4155 Values[i] = L; 4156 } 4157 4158 if (!ConstantMemory) { 4159 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4160 makeArrayRef(Chains.data(), ChainI)); 4161 if (isVolatile) 4162 DAG.setRoot(Chain); 4163 else 4164 PendingLoads.push_back(Chain); 4165 } 4166 4167 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4168 DAG.getVTList(ValueVTs), Values)); 4169 } 4170 4171 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4172 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4173 "call visitStoreToSwiftError when backend supports swifterror"); 4174 4175 SmallVector<EVT, 4> ValueVTs; 4176 SmallVector<uint64_t, 4> Offsets; 4177 const Value *SrcV = I.getOperand(0); 4178 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4179 SrcV->getType(), ValueVTs, &Offsets); 4180 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4181 "expect a single EVT for swifterror"); 4182 4183 SDValue Src = getValue(SrcV); 4184 // Create a virtual register, then update the virtual register. 4185 Register VReg = 4186 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4187 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4188 // Chain can be getRoot or getControlRoot. 4189 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4190 SDValue(Src.getNode(), Src.getResNo())); 4191 DAG.setRoot(CopyNode); 4192 } 4193 4194 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4195 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4196 "call visitLoadFromSwiftError when backend supports swifterror"); 4197 4198 assert(!I.isVolatile() && 4199 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4200 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4201 "Support volatile, non temporal, invariant for load_from_swift_error"); 4202 4203 const Value *SV = I.getOperand(0); 4204 Type *Ty = I.getType(); 4205 assert( 4206 (!AA || 4207 !AA->pointsToConstantMemory(MemoryLocation( 4208 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4209 I.getAAMetadata()))) && 4210 "load_from_swift_error should not be constant memory"); 4211 4212 SmallVector<EVT, 4> ValueVTs; 4213 SmallVector<uint64_t, 4> Offsets; 4214 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4215 ValueVTs, &Offsets); 4216 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4217 "expect a single EVT for swifterror"); 4218 4219 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4220 SDValue L = DAG.getCopyFromReg( 4221 getRoot(), getCurSDLoc(), 4222 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4223 4224 setValue(&I, L); 4225 } 4226 4227 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4228 if (I.isAtomic()) 4229 return visitAtomicStore(I); 4230 4231 const Value *SrcV = I.getOperand(0); 4232 const Value *PtrV = I.getOperand(1); 4233 4234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4235 if (TLI.supportSwiftError()) { 4236 // Swifterror values can come from either a function parameter with 4237 // swifterror attribute or an alloca with swifterror attribute. 4238 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4239 if (Arg->hasSwiftErrorAttr()) 4240 return visitStoreToSwiftError(I); 4241 } 4242 4243 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4244 if (Alloca->isSwiftError()) 4245 return visitStoreToSwiftError(I); 4246 } 4247 } 4248 4249 SmallVector<EVT, 4> ValueVTs, MemVTs; 4250 SmallVector<uint64_t, 4> Offsets; 4251 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4252 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4253 unsigned NumValues = ValueVTs.size(); 4254 if (NumValues == 0) 4255 return; 4256 4257 // Get the lowered operands. Note that we do this after 4258 // checking if NumResults is zero, because with zero results 4259 // the operands won't have values in the map. 4260 SDValue Src = getValue(SrcV); 4261 SDValue Ptr = getValue(PtrV); 4262 4263 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4264 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4265 SDLoc dl = getCurSDLoc(); 4266 Align Alignment = I.getAlign(); 4267 AAMDNodes AAInfo = I.getAAMetadata(); 4268 4269 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4270 4271 // An aggregate load cannot wrap around the address space, so offsets to its 4272 // parts don't wrap either. 4273 SDNodeFlags Flags; 4274 Flags.setNoUnsignedWrap(true); 4275 4276 unsigned ChainI = 0; 4277 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4278 // See visitLoad comments. 4279 if (ChainI == MaxParallelChains) { 4280 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4281 makeArrayRef(Chains.data(), ChainI)); 4282 Root = Chain; 4283 ChainI = 0; 4284 } 4285 SDValue Add = 4286 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4287 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4288 if (MemVTs[i] != ValueVTs[i]) 4289 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4290 SDValue St = 4291 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4292 Alignment, MMOFlags, AAInfo); 4293 Chains[ChainI] = St; 4294 } 4295 4296 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4297 makeArrayRef(Chains.data(), ChainI)); 4298 DAG.setRoot(StoreNode); 4299 } 4300 4301 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4302 bool IsCompressing) { 4303 SDLoc sdl = getCurSDLoc(); 4304 4305 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4306 MaybeAlign &Alignment) { 4307 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4308 Src0 = I.getArgOperand(0); 4309 Ptr = I.getArgOperand(1); 4310 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4311 Mask = I.getArgOperand(3); 4312 }; 4313 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4314 MaybeAlign &Alignment) { 4315 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4316 Src0 = I.getArgOperand(0); 4317 Ptr = I.getArgOperand(1); 4318 Mask = I.getArgOperand(2); 4319 Alignment = None; 4320 }; 4321 4322 Value *PtrOperand, *MaskOperand, *Src0Operand; 4323 MaybeAlign Alignment; 4324 if (IsCompressing) 4325 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4326 else 4327 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4328 4329 SDValue Ptr = getValue(PtrOperand); 4330 SDValue Src0 = getValue(Src0Operand); 4331 SDValue Mask = getValue(MaskOperand); 4332 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4333 4334 EVT VT = Src0.getValueType(); 4335 if (!Alignment) 4336 Alignment = DAG.getEVTAlign(VT); 4337 4338 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4339 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4340 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4341 SDValue StoreNode = 4342 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4343 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4344 DAG.setRoot(StoreNode); 4345 setValue(&I, StoreNode); 4346 } 4347 4348 // Get a uniform base for the Gather/Scatter intrinsic. 4349 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4350 // We try to represent it as a base pointer + vector of indices. 4351 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4352 // The first operand of the GEP may be a single pointer or a vector of pointers 4353 // Example: 4354 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4355 // or 4356 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4357 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4358 // 4359 // When the first GEP operand is a single pointer - it is the uniform base we 4360 // are looking for. If first operand of the GEP is a splat vector - we 4361 // extract the splat value and use it as a uniform base. 4362 // In all other cases the function returns 'false'. 4363 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4364 ISD::MemIndexType &IndexType, SDValue &Scale, 4365 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4366 uint64_t ElemSize) { 4367 SelectionDAG& DAG = SDB->DAG; 4368 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4369 const DataLayout &DL = DAG.getDataLayout(); 4370 4371 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4372 4373 // Handle splat constant pointer. 4374 if (auto *C = dyn_cast<Constant>(Ptr)) { 4375 C = C->getSplatValue(); 4376 if (!C) 4377 return false; 4378 4379 Base = SDB->getValue(C); 4380 4381 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4382 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4383 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4384 IndexType = ISD::SIGNED_SCALED; 4385 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4386 return true; 4387 } 4388 4389 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4390 if (!GEP || GEP->getParent() != CurBB) 4391 return false; 4392 4393 if (GEP->getNumOperands() != 2) 4394 return false; 4395 4396 const Value *BasePtr = GEP->getPointerOperand(); 4397 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4398 4399 // Make sure the base is scalar and the index is a vector. 4400 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4401 return false; 4402 4403 Base = SDB->getValue(BasePtr); 4404 Index = SDB->getValue(IndexVal); 4405 IndexType = ISD::SIGNED_SCALED; 4406 4407 // MGATHER/MSCATTER are only required to support scaling by one or by the 4408 // element size. Other scales may be produced using target-specific DAG 4409 // combines. 4410 uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4411 if (ScaleVal != ElemSize && ScaleVal != 1) 4412 return false; 4413 4414 Scale = 4415 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4416 return true; 4417 } 4418 4419 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4420 SDLoc sdl = getCurSDLoc(); 4421 4422 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4423 const Value *Ptr = I.getArgOperand(1); 4424 SDValue Src0 = getValue(I.getArgOperand(0)); 4425 SDValue Mask = getValue(I.getArgOperand(3)); 4426 EVT VT = Src0.getValueType(); 4427 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4428 ->getMaybeAlignValue() 4429 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4431 4432 SDValue Base; 4433 SDValue Index; 4434 ISD::MemIndexType IndexType; 4435 SDValue Scale; 4436 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4437 I.getParent(), VT.getScalarStoreSize()); 4438 4439 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4440 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4441 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4442 // TODO: Make MachineMemOperands aware of scalable 4443 // vectors. 4444 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4445 if (!UniformBase) { 4446 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4447 Index = getValue(Ptr); 4448 IndexType = ISD::SIGNED_SCALED; 4449 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4450 } 4451 4452 EVT IdxVT = Index.getValueType(); 4453 EVT EltTy = IdxVT.getVectorElementType(); 4454 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4455 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4456 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4457 } 4458 4459 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4460 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4461 Ops, MMO, IndexType, false); 4462 DAG.setRoot(Scatter); 4463 setValue(&I, Scatter); 4464 } 4465 4466 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4467 SDLoc sdl = getCurSDLoc(); 4468 4469 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4470 MaybeAlign &Alignment) { 4471 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4472 Ptr = I.getArgOperand(0); 4473 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4474 Mask = I.getArgOperand(2); 4475 Src0 = I.getArgOperand(3); 4476 }; 4477 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4478 MaybeAlign &Alignment) { 4479 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4480 Ptr = I.getArgOperand(0); 4481 Alignment = None; 4482 Mask = I.getArgOperand(1); 4483 Src0 = I.getArgOperand(2); 4484 }; 4485 4486 Value *PtrOperand, *MaskOperand, *Src0Operand; 4487 MaybeAlign Alignment; 4488 if (IsExpanding) 4489 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4490 else 4491 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4492 4493 SDValue Ptr = getValue(PtrOperand); 4494 SDValue Src0 = getValue(Src0Operand); 4495 SDValue Mask = getValue(MaskOperand); 4496 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4497 4498 EVT VT = Src0.getValueType(); 4499 if (!Alignment) 4500 Alignment = DAG.getEVTAlign(VT); 4501 4502 AAMDNodes AAInfo = I.getAAMetadata(); 4503 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4504 4505 // Do not serialize masked loads of constant memory with anything. 4506 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4507 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4508 4509 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4510 4511 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4512 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4513 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4514 4515 SDValue Load = 4516 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4517 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4518 if (AddToChain) 4519 PendingLoads.push_back(Load.getValue(1)); 4520 setValue(&I, Load); 4521 } 4522 4523 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4524 SDLoc sdl = getCurSDLoc(); 4525 4526 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4527 const Value *Ptr = I.getArgOperand(0); 4528 SDValue Src0 = getValue(I.getArgOperand(3)); 4529 SDValue Mask = getValue(I.getArgOperand(2)); 4530 4531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4532 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4533 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4534 ->getMaybeAlignValue() 4535 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4536 4537 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4538 4539 SDValue Root = DAG.getRoot(); 4540 SDValue Base; 4541 SDValue Index; 4542 ISD::MemIndexType IndexType; 4543 SDValue Scale; 4544 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4545 I.getParent(), VT.getScalarStoreSize()); 4546 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4547 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4548 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4549 // TODO: Make MachineMemOperands aware of scalable 4550 // vectors. 4551 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4552 4553 if (!UniformBase) { 4554 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4555 Index = getValue(Ptr); 4556 IndexType = ISD::SIGNED_SCALED; 4557 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4558 } 4559 4560 EVT IdxVT = Index.getValueType(); 4561 EVT EltTy = IdxVT.getVectorElementType(); 4562 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4563 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4564 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4565 } 4566 4567 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4568 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4569 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4570 4571 PendingLoads.push_back(Gather.getValue(1)); 4572 setValue(&I, Gather); 4573 } 4574 4575 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4576 SDLoc dl = getCurSDLoc(); 4577 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4578 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4579 SyncScope::ID SSID = I.getSyncScopeID(); 4580 4581 SDValue InChain = getRoot(); 4582 4583 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4584 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4585 4586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4587 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4588 4589 MachineFunction &MF = DAG.getMachineFunction(); 4590 MachineMemOperand *MMO = MF.getMachineMemOperand( 4591 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4592 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4593 FailureOrdering); 4594 4595 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4596 dl, MemVT, VTs, InChain, 4597 getValue(I.getPointerOperand()), 4598 getValue(I.getCompareOperand()), 4599 getValue(I.getNewValOperand()), MMO); 4600 4601 SDValue OutChain = L.getValue(2); 4602 4603 setValue(&I, L); 4604 DAG.setRoot(OutChain); 4605 } 4606 4607 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4608 SDLoc dl = getCurSDLoc(); 4609 ISD::NodeType NT; 4610 switch (I.getOperation()) { 4611 default: llvm_unreachable("Unknown atomicrmw operation"); 4612 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4613 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4614 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4615 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4616 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4617 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4618 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4619 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4620 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4621 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4622 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4623 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4624 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4625 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4626 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4627 } 4628 AtomicOrdering Ordering = I.getOrdering(); 4629 SyncScope::ID SSID = I.getSyncScopeID(); 4630 4631 SDValue InChain = getRoot(); 4632 4633 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4635 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4636 4637 MachineFunction &MF = DAG.getMachineFunction(); 4638 MachineMemOperand *MMO = MF.getMachineMemOperand( 4639 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4640 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4641 4642 SDValue L = 4643 DAG.getAtomic(NT, dl, MemVT, InChain, 4644 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4645 MMO); 4646 4647 SDValue OutChain = L.getValue(1); 4648 4649 setValue(&I, L); 4650 DAG.setRoot(OutChain); 4651 } 4652 4653 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4654 SDLoc dl = getCurSDLoc(); 4655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4656 SDValue Ops[3]; 4657 Ops[0] = getRoot(); 4658 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4659 TLI.getFenceOperandTy(DAG.getDataLayout())); 4660 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4661 TLI.getFenceOperandTy(DAG.getDataLayout())); 4662 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4663 } 4664 4665 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4666 SDLoc dl = getCurSDLoc(); 4667 AtomicOrdering Order = I.getOrdering(); 4668 SyncScope::ID SSID = I.getSyncScopeID(); 4669 4670 SDValue InChain = getRoot(); 4671 4672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4673 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4674 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4675 4676 if (!TLI.supportsUnalignedAtomics() && 4677 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4678 report_fatal_error("Cannot generate unaligned atomic load"); 4679 4680 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4681 4682 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4683 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4684 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4685 4686 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4687 4688 SDValue Ptr = getValue(I.getPointerOperand()); 4689 4690 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4691 // TODO: Once this is better exercised by tests, it should be merged with 4692 // the normal path for loads to prevent future divergence. 4693 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4694 if (MemVT != VT) 4695 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4696 4697 setValue(&I, L); 4698 SDValue OutChain = L.getValue(1); 4699 if (!I.isUnordered()) 4700 DAG.setRoot(OutChain); 4701 else 4702 PendingLoads.push_back(OutChain); 4703 return; 4704 } 4705 4706 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4707 Ptr, MMO); 4708 4709 SDValue OutChain = L.getValue(1); 4710 if (MemVT != VT) 4711 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4712 4713 setValue(&I, L); 4714 DAG.setRoot(OutChain); 4715 } 4716 4717 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4718 SDLoc dl = getCurSDLoc(); 4719 4720 AtomicOrdering Ordering = I.getOrdering(); 4721 SyncScope::ID SSID = I.getSyncScopeID(); 4722 4723 SDValue InChain = getRoot(); 4724 4725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4726 EVT MemVT = 4727 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4728 4729 if (I.getAlign().value() < MemVT.getSizeInBits() / 8) 4730 report_fatal_error("Cannot generate unaligned atomic store"); 4731 4732 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4733 4734 MachineFunction &MF = DAG.getMachineFunction(); 4735 MachineMemOperand *MMO = MF.getMachineMemOperand( 4736 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4737 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4738 4739 SDValue Val = getValue(I.getValueOperand()); 4740 if (Val.getValueType() != MemVT) 4741 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4742 SDValue Ptr = getValue(I.getPointerOperand()); 4743 4744 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4745 // TODO: Once this is better exercised by tests, it should be merged with 4746 // the normal path for stores to prevent future divergence. 4747 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4748 DAG.setRoot(S); 4749 return; 4750 } 4751 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4752 Ptr, Val, MMO); 4753 4754 4755 DAG.setRoot(OutChain); 4756 } 4757 4758 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4759 /// node. 4760 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4761 unsigned Intrinsic) { 4762 // Ignore the callsite's attributes. A specific call site may be marked with 4763 // readnone, but the lowering code will expect the chain based on the 4764 // definition. 4765 const Function *F = I.getCalledFunction(); 4766 bool HasChain = !F->doesNotAccessMemory(); 4767 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4768 4769 // Build the operand list. 4770 SmallVector<SDValue, 8> Ops; 4771 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4772 if (OnlyLoad) { 4773 // We don't need to serialize loads against other loads. 4774 Ops.push_back(DAG.getRoot()); 4775 } else { 4776 Ops.push_back(getRoot()); 4777 } 4778 } 4779 4780 // Info is set by getTgtMemIntrinsic 4781 TargetLowering::IntrinsicInfo Info; 4782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4783 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4784 DAG.getMachineFunction(), 4785 Intrinsic); 4786 4787 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4788 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4789 Info.opc == ISD::INTRINSIC_W_CHAIN) 4790 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4791 TLI.getPointerTy(DAG.getDataLayout()))); 4792 4793 // Add all operands of the call to the operand list. 4794 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4795 const Value *Arg = I.getArgOperand(i); 4796 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4797 Ops.push_back(getValue(Arg)); 4798 continue; 4799 } 4800 4801 // Use TargetConstant instead of a regular constant for immarg. 4802 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4803 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4804 assert(CI->getBitWidth() <= 64 && 4805 "large intrinsic immediates not handled"); 4806 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4807 } else { 4808 Ops.push_back( 4809 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4810 } 4811 } 4812 4813 SmallVector<EVT, 4> ValueVTs; 4814 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4815 4816 if (HasChain) 4817 ValueVTs.push_back(MVT::Other); 4818 4819 SDVTList VTs = DAG.getVTList(ValueVTs); 4820 4821 // Propagate fast-math-flags from IR to node(s). 4822 SDNodeFlags Flags; 4823 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4824 Flags.copyFMF(*FPMO); 4825 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4826 4827 // Create the node. 4828 SDValue Result; 4829 if (IsTgtIntrinsic) { 4830 // This is target intrinsic that touches memory 4831 Result = 4832 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4833 MachinePointerInfo(Info.ptrVal, Info.offset), 4834 Info.align, Info.flags, Info.size, 4835 I.getAAMetadata()); 4836 } else if (!HasChain) { 4837 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4838 } else if (!I.getType()->isVoidTy()) { 4839 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4840 } else { 4841 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4842 } 4843 4844 if (HasChain) { 4845 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4846 if (OnlyLoad) 4847 PendingLoads.push_back(Chain); 4848 else 4849 DAG.setRoot(Chain); 4850 } 4851 4852 if (!I.getType()->isVoidTy()) { 4853 if (!isa<VectorType>(I.getType())) 4854 Result = lowerRangeToAssertZExt(DAG, I, Result); 4855 4856 MaybeAlign Alignment = I.getRetAlign(); 4857 if (!Alignment) 4858 Alignment = F->getAttributes().getRetAlignment(); 4859 // Insert `assertalign` node if there's an alignment. 4860 if (InsertAssertAlign && Alignment) { 4861 Result = 4862 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4863 } 4864 4865 setValue(&I, Result); 4866 } 4867 } 4868 4869 /// GetSignificand - Get the significand and build it into a floating-point 4870 /// number with exponent of 1: 4871 /// 4872 /// Op = (Op & 0x007fffff) | 0x3f800000; 4873 /// 4874 /// where Op is the hexadecimal representation of floating point value. 4875 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4876 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4877 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4878 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4879 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4880 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4881 } 4882 4883 /// GetExponent - Get the exponent: 4884 /// 4885 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4886 /// 4887 /// where Op is the hexadecimal representation of floating point value. 4888 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4889 const TargetLowering &TLI, const SDLoc &dl) { 4890 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4891 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4892 SDValue t1 = DAG.getNode( 4893 ISD::SRL, dl, MVT::i32, t0, 4894 DAG.getConstant(23, dl, 4895 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 4896 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4897 DAG.getConstant(127, dl, MVT::i32)); 4898 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4899 } 4900 4901 /// getF32Constant - Get 32-bit floating point constant. 4902 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4903 const SDLoc &dl) { 4904 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4905 MVT::f32); 4906 } 4907 4908 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4909 SelectionDAG &DAG) { 4910 // TODO: What fast-math-flags should be set on the floating-point nodes? 4911 4912 // IntegerPartOfX = ((int32_t)(t0); 4913 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4914 4915 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4916 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4917 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4918 4919 // IntegerPartOfX <<= 23; 4920 IntegerPartOfX = 4921 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4922 DAG.getConstant(23, dl, 4923 DAG.getTargetLoweringInfo().getShiftAmountTy( 4924 MVT::i32, DAG.getDataLayout()))); 4925 4926 SDValue TwoToFractionalPartOfX; 4927 if (LimitFloatPrecision <= 6) { 4928 // For floating-point precision of 6: 4929 // 4930 // TwoToFractionalPartOfX = 4931 // 0.997535578f + 4932 // (0.735607626f + 0.252464424f * x) * x; 4933 // 4934 // error 0.0144103317, which is 6 bits 4935 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4936 getF32Constant(DAG, 0x3e814304, dl)); 4937 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4938 getF32Constant(DAG, 0x3f3c50c8, dl)); 4939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4940 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4941 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4942 } else if (LimitFloatPrecision <= 12) { 4943 // For floating-point precision of 12: 4944 // 4945 // TwoToFractionalPartOfX = 4946 // 0.999892986f + 4947 // (0.696457318f + 4948 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4949 // 4950 // error 0.000107046256, which is 13 to 14 bits 4951 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4952 getF32Constant(DAG, 0x3da235e3, dl)); 4953 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4954 getF32Constant(DAG, 0x3e65b8f3, dl)); 4955 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4956 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4957 getF32Constant(DAG, 0x3f324b07, dl)); 4958 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4959 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4960 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4961 } else { // LimitFloatPrecision <= 18 4962 // For floating-point precision of 18: 4963 // 4964 // TwoToFractionalPartOfX = 4965 // 0.999999982f + 4966 // (0.693148872f + 4967 // (0.240227044f + 4968 // (0.554906021e-1f + 4969 // (0.961591928e-2f + 4970 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4971 // error 2.47208000*10^(-7), which is better than 18 bits 4972 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4973 getF32Constant(DAG, 0x3924b03e, dl)); 4974 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4975 getF32Constant(DAG, 0x3ab24b87, dl)); 4976 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4977 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4978 getF32Constant(DAG, 0x3c1d8c17, dl)); 4979 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4980 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4981 getF32Constant(DAG, 0x3d634a1d, dl)); 4982 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4983 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4984 getF32Constant(DAG, 0x3e75fe14, dl)); 4985 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4986 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4987 getF32Constant(DAG, 0x3f317234, dl)); 4988 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4989 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4990 getF32Constant(DAG, 0x3f800000, dl)); 4991 } 4992 4993 // Add the exponent into the result in integer domain. 4994 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4995 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4996 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4997 } 4998 4999 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5000 /// limited-precision mode. 5001 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5002 const TargetLowering &TLI, SDNodeFlags Flags) { 5003 if (Op.getValueType() == MVT::f32 && 5004 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5005 5006 // Put the exponent in the right bit position for later addition to the 5007 // final result: 5008 // 5009 // t0 = Op * log2(e) 5010 5011 // TODO: What fast-math-flags should be set here? 5012 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5013 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5014 return getLimitedPrecisionExp2(t0, dl, DAG); 5015 } 5016 5017 // No special expansion. 5018 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5019 } 5020 5021 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5022 /// limited-precision mode. 5023 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5024 const TargetLowering &TLI, SDNodeFlags Flags) { 5025 // TODO: What fast-math-flags should be set on the floating-point nodes? 5026 5027 if (Op.getValueType() == MVT::f32 && 5028 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5029 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5030 5031 // Scale the exponent by log(2). 5032 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5033 SDValue LogOfExponent = 5034 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5035 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5036 5037 // Get the significand and build it into a floating-point number with 5038 // exponent of 1. 5039 SDValue X = GetSignificand(DAG, Op1, dl); 5040 5041 SDValue LogOfMantissa; 5042 if (LimitFloatPrecision <= 6) { 5043 // For floating-point precision of 6: 5044 // 5045 // LogofMantissa = 5046 // -1.1609546f + 5047 // (1.4034025f - 0.23903021f * x) * x; 5048 // 5049 // error 0.0034276066, which is better than 8 bits 5050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5051 getF32Constant(DAG, 0xbe74c456, dl)); 5052 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5053 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5055 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5056 getF32Constant(DAG, 0x3f949a29, dl)); 5057 } else if (LimitFloatPrecision <= 12) { 5058 // For floating-point precision of 12: 5059 // 5060 // LogOfMantissa = 5061 // -1.7417939f + 5062 // (2.8212026f + 5063 // (-1.4699568f + 5064 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5065 // 5066 // error 0.000061011436, which is 14 bits 5067 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5068 getF32Constant(DAG, 0xbd67b6d6, dl)); 5069 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5070 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5071 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5072 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5073 getF32Constant(DAG, 0x3fbc278b, dl)); 5074 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5075 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5076 getF32Constant(DAG, 0x40348e95, dl)); 5077 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5078 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5079 getF32Constant(DAG, 0x3fdef31a, dl)); 5080 } else { // LimitFloatPrecision <= 18 5081 // For floating-point precision of 18: 5082 // 5083 // LogOfMantissa = 5084 // -2.1072184f + 5085 // (4.2372794f + 5086 // (-3.7029485f + 5087 // (2.2781945f + 5088 // (-0.87823314f + 5089 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5090 // 5091 // error 0.0000023660568, which is better than 18 bits 5092 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5093 getF32Constant(DAG, 0xbc91e5ac, dl)); 5094 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5095 getF32Constant(DAG, 0x3e4350aa, dl)); 5096 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5097 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5098 getF32Constant(DAG, 0x3f60d3e3, dl)); 5099 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5100 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5101 getF32Constant(DAG, 0x4011cdf0, dl)); 5102 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5103 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5104 getF32Constant(DAG, 0x406cfd1c, dl)); 5105 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5106 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5107 getF32Constant(DAG, 0x408797cb, dl)); 5108 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5109 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5110 getF32Constant(DAG, 0x4006dcab, dl)); 5111 } 5112 5113 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5114 } 5115 5116 // No special expansion. 5117 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5118 } 5119 5120 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5121 /// limited-precision mode. 5122 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5123 const TargetLowering &TLI, SDNodeFlags Flags) { 5124 // TODO: What fast-math-flags should be set on the floating-point nodes? 5125 5126 if (Op.getValueType() == MVT::f32 && 5127 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5128 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5129 5130 // Get the exponent. 5131 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5132 5133 // Get the significand and build it into a floating-point number with 5134 // exponent of 1. 5135 SDValue X = GetSignificand(DAG, Op1, dl); 5136 5137 // Different possible minimax approximations of significand in 5138 // floating-point for various degrees of accuracy over [1,2]. 5139 SDValue Log2ofMantissa; 5140 if (LimitFloatPrecision <= 6) { 5141 // For floating-point precision of 6: 5142 // 5143 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5144 // 5145 // error 0.0049451742, which is more than 7 bits 5146 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5147 getF32Constant(DAG, 0xbeb08fe0, dl)); 5148 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5149 getF32Constant(DAG, 0x40019463, dl)); 5150 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5151 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5152 getF32Constant(DAG, 0x3fd6633d, dl)); 5153 } else if (LimitFloatPrecision <= 12) { 5154 // For floating-point precision of 12: 5155 // 5156 // Log2ofMantissa = 5157 // -2.51285454f + 5158 // (4.07009056f + 5159 // (-2.12067489f + 5160 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5161 // 5162 // error 0.0000876136000, which is better than 13 bits 5163 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5164 getF32Constant(DAG, 0xbda7262e, dl)); 5165 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5166 getF32Constant(DAG, 0x3f25280b, dl)); 5167 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5168 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5169 getF32Constant(DAG, 0x4007b923, dl)); 5170 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5171 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5172 getF32Constant(DAG, 0x40823e2f, dl)); 5173 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5174 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5175 getF32Constant(DAG, 0x4020d29c, dl)); 5176 } else { // LimitFloatPrecision <= 18 5177 // For floating-point precision of 18: 5178 // 5179 // Log2ofMantissa = 5180 // -3.0400495f + 5181 // (6.1129976f + 5182 // (-5.3420409f + 5183 // (3.2865683f + 5184 // (-1.2669343f + 5185 // (0.27515199f - 5186 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5187 // 5188 // error 0.0000018516, which is better than 18 bits 5189 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5190 getF32Constant(DAG, 0xbcd2769e, dl)); 5191 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5192 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5193 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5194 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5195 getF32Constant(DAG, 0x3fa22ae7, dl)); 5196 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5197 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5198 getF32Constant(DAG, 0x40525723, dl)); 5199 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5200 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5201 getF32Constant(DAG, 0x40aaf200, dl)); 5202 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5203 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5204 getF32Constant(DAG, 0x40c39dad, dl)); 5205 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5206 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5207 getF32Constant(DAG, 0x4042902c, dl)); 5208 } 5209 5210 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5211 } 5212 5213 // No special expansion. 5214 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5215 } 5216 5217 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5218 /// limited-precision mode. 5219 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5220 const TargetLowering &TLI, SDNodeFlags Flags) { 5221 // TODO: What fast-math-flags should be set on the floating-point nodes? 5222 5223 if (Op.getValueType() == MVT::f32 && 5224 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5225 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5226 5227 // Scale the exponent by log10(2) [0.30102999f]. 5228 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5229 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5230 getF32Constant(DAG, 0x3e9a209a, dl)); 5231 5232 // Get the significand and build it into a floating-point number with 5233 // exponent of 1. 5234 SDValue X = GetSignificand(DAG, Op1, dl); 5235 5236 SDValue Log10ofMantissa; 5237 if (LimitFloatPrecision <= 6) { 5238 // For floating-point precision of 6: 5239 // 5240 // Log10ofMantissa = 5241 // -0.50419619f + 5242 // (0.60948995f - 0.10380950f * x) * x; 5243 // 5244 // error 0.0014886165, which is 6 bits 5245 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5246 getF32Constant(DAG, 0xbdd49a13, dl)); 5247 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5248 getF32Constant(DAG, 0x3f1c0789, dl)); 5249 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5250 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5251 getF32Constant(DAG, 0x3f011300, dl)); 5252 } else if (LimitFloatPrecision <= 12) { 5253 // For floating-point precision of 12: 5254 // 5255 // Log10ofMantissa = 5256 // -0.64831180f + 5257 // (0.91751397f + 5258 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5259 // 5260 // error 0.00019228036, which is better than 12 bits 5261 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5262 getF32Constant(DAG, 0x3d431f31, dl)); 5263 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5264 getF32Constant(DAG, 0x3ea21fb2, dl)); 5265 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5266 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5267 getF32Constant(DAG, 0x3f6ae232, dl)); 5268 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5269 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5270 getF32Constant(DAG, 0x3f25f7c3, dl)); 5271 } else { // LimitFloatPrecision <= 18 5272 // For floating-point precision of 18: 5273 // 5274 // Log10ofMantissa = 5275 // -0.84299375f + 5276 // (1.5327582f + 5277 // (-1.0688956f + 5278 // (0.49102474f + 5279 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5280 // 5281 // error 0.0000037995730, which is better than 18 bits 5282 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5283 getF32Constant(DAG, 0x3c5d51ce, dl)); 5284 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5285 getF32Constant(DAG, 0x3e00685a, dl)); 5286 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5287 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5288 getF32Constant(DAG, 0x3efb6798, dl)); 5289 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5290 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5291 getF32Constant(DAG, 0x3f88d192, dl)); 5292 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5293 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5294 getF32Constant(DAG, 0x3fc4316c, dl)); 5295 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5296 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5297 getF32Constant(DAG, 0x3f57ce70, dl)); 5298 } 5299 5300 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5301 } 5302 5303 // No special expansion. 5304 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5305 } 5306 5307 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5308 /// limited-precision mode. 5309 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5310 const TargetLowering &TLI, SDNodeFlags Flags) { 5311 if (Op.getValueType() == MVT::f32 && 5312 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5313 return getLimitedPrecisionExp2(Op, dl, DAG); 5314 5315 // No special expansion. 5316 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5317 } 5318 5319 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5320 /// limited-precision mode with x == 10.0f. 5321 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5322 SelectionDAG &DAG, const TargetLowering &TLI, 5323 SDNodeFlags Flags) { 5324 bool IsExp10 = false; 5325 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5326 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5327 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5328 APFloat Ten(10.0f); 5329 IsExp10 = LHSC->isExactlyValue(Ten); 5330 } 5331 } 5332 5333 // TODO: What fast-math-flags should be set on the FMUL node? 5334 if (IsExp10) { 5335 // Put the exponent in the right bit position for later addition to the 5336 // final result: 5337 // 5338 // #define LOG2OF10 3.3219281f 5339 // t0 = Op * LOG2OF10; 5340 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5341 getF32Constant(DAG, 0x40549a78, dl)); 5342 return getLimitedPrecisionExp2(t0, dl, DAG); 5343 } 5344 5345 // No special expansion. 5346 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5347 } 5348 5349 /// ExpandPowI - Expand a llvm.powi intrinsic. 5350 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5351 SelectionDAG &DAG) { 5352 // If RHS is a constant, we can expand this out to a multiplication tree if 5353 // it's beneficial on the target, otherwise we end up lowering to a call to 5354 // __powidf2 (for example). 5355 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5356 unsigned Val = RHSC->getSExtValue(); 5357 5358 // powi(x, 0) -> 1.0 5359 if (Val == 0) 5360 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5361 5362 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5363 Val, DAG.shouldOptForSize())) { 5364 // Get the exponent as a positive value. 5365 if ((int)Val < 0) 5366 Val = -Val; 5367 // We use the simple binary decomposition method to generate the multiply 5368 // sequence. There are more optimal ways to do this (for example, 5369 // powi(x,15) generates one more multiply than it should), but this has 5370 // the benefit of being both really simple and much better than a libcall. 5371 SDValue Res; // Logically starts equal to 1.0 5372 SDValue CurSquare = LHS; 5373 // TODO: Intrinsics should have fast-math-flags that propagate to these 5374 // nodes. 5375 while (Val) { 5376 if (Val & 1) { 5377 if (Res.getNode()) 5378 Res = 5379 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5380 else 5381 Res = CurSquare; // 1.0*CurSquare. 5382 } 5383 5384 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5385 CurSquare, CurSquare); 5386 Val >>= 1; 5387 } 5388 5389 // If the original was negative, invert the result, producing 1/(x*x*x). 5390 if (RHSC->getSExtValue() < 0) 5391 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5392 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5393 return Res; 5394 } 5395 } 5396 5397 // Otherwise, expand to a libcall. 5398 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5399 } 5400 5401 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5402 SDValue LHS, SDValue RHS, SDValue Scale, 5403 SelectionDAG &DAG, const TargetLowering &TLI) { 5404 EVT VT = LHS.getValueType(); 5405 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5406 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5407 LLVMContext &Ctx = *DAG.getContext(); 5408 5409 // If the type is legal but the operation isn't, this node might survive all 5410 // the way to operation legalization. If we end up there and we do not have 5411 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5412 // node. 5413 5414 // Coax the legalizer into expanding the node during type legalization instead 5415 // by bumping the size by one bit. This will force it to Promote, enabling the 5416 // early expansion and avoiding the need to expand later. 5417 5418 // We don't have to do this if Scale is 0; that can always be expanded, unless 5419 // it's a saturating signed operation. Those can experience true integer 5420 // division overflow, a case which we must avoid. 5421 5422 // FIXME: We wouldn't have to do this (or any of the early 5423 // expansion/promotion) if it was possible to expand a libcall of an 5424 // illegal type during operation legalization. But it's not, so things 5425 // get a bit hacky. 5426 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5427 if ((ScaleInt > 0 || (Saturating && Signed)) && 5428 (TLI.isTypeLegal(VT) || 5429 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5430 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5431 Opcode, VT, ScaleInt); 5432 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5433 EVT PromVT; 5434 if (VT.isScalarInteger()) 5435 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5436 else if (VT.isVector()) { 5437 PromVT = VT.getVectorElementType(); 5438 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5439 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5440 } else 5441 llvm_unreachable("Wrong VT for DIVFIX?"); 5442 if (Signed) { 5443 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5444 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5445 } else { 5446 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5447 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5448 } 5449 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5450 // For saturating operations, we need to shift up the LHS to get the 5451 // proper saturation width, and then shift down again afterwards. 5452 if (Saturating) 5453 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5454 DAG.getConstant(1, DL, ShiftTy)); 5455 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5456 if (Saturating) 5457 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5458 DAG.getConstant(1, DL, ShiftTy)); 5459 return DAG.getZExtOrTrunc(Res, DL, VT); 5460 } 5461 } 5462 5463 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5464 } 5465 5466 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5467 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5468 static void 5469 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5470 const SDValue &N) { 5471 switch (N.getOpcode()) { 5472 case ISD::CopyFromReg: { 5473 SDValue Op = N.getOperand(1); 5474 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5475 Op.getValueType().getSizeInBits()); 5476 return; 5477 } 5478 case ISD::BITCAST: 5479 case ISD::AssertZext: 5480 case ISD::AssertSext: 5481 case ISD::TRUNCATE: 5482 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5483 return; 5484 case ISD::BUILD_PAIR: 5485 case ISD::BUILD_VECTOR: 5486 case ISD::CONCAT_VECTORS: 5487 for (SDValue Op : N->op_values()) 5488 getUnderlyingArgRegs(Regs, Op); 5489 return; 5490 default: 5491 return; 5492 } 5493 } 5494 5495 /// If the DbgValueInst is a dbg_value of a function argument, create the 5496 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5497 /// instruction selection, they will be inserted to the entry BB. 5498 /// We don't currently support this for variadic dbg_values, as they shouldn't 5499 /// appear for function arguments or in the prologue. 5500 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5501 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5502 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5503 const Argument *Arg = dyn_cast<Argument>(V); 5504 if (!Arg) 5505 return false; 5506 5507 MachineFunction &MF = DAG.getMachineFunction(); 5508 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5509 5510 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5511 // we've been asked to pursue. 5512 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5513 bool Indirect) { 5514 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5515 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5516 // pointing at the VReg, which will be patched up later. 5517 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5518 auto MIB = BuildMI(MF, DL, Inst); 5519 MIB.addReg(Reg); 5520 MIB.addImm(0); 5521 MIB.addMetadata(Variable); 5522 auto *NewDIExpr = FragExpr; 5523 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5524 // the DIExpression. 5525 if (Indirect) 5526 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5527 MIB.addMetadata(NewDIExpr); 5528 return MIB; 5529 } else { 5530 // Create a completely standard DBG_VALUE. 5531 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5532 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5533 } 5534 }; 5535 5536 if (Kind == FuncArgumentDbgValueKind::Value) { 5537 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5538 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5539 // the entry block. 5540 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5541 if (!IsInEntryBlock) 5542 return false; 5543 5544 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5545 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5546 // variable that also is a param. 5547 // 5548 // Although, if we are at the top of the entry block already, we can still 5549 // emit using ArgDbgValue. This might catch some situations when the 5550 // dbg.value refers to an argument that isn't used in the entry block, so 5551 // any CopyToReg node would be optimized out and the only way to express 5552 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5553 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5554 // we should only emit as ArgDbgValue if the Variable is an argument to the 5555 // current function, and the dbg.value intrinsic is found in the entry 5556 // block. 5557 bool VariableIsFunctionInputArg = Variable->isParameter() && 5558 !DL->getInlinedAt(); 5559 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5560 if (!IsInPrologue && !VariableIsFunctionInputArg) 5561 return false; 5562 5563 // Here we assume that a function argument on IR level only can be used to 5564 // describe one input parameter on source level. If we for example have 5565 // source code like this 5566 // 5567 // struct A { long x, y; }; 5568 // void foo(struct A a, long b) { 5569 // ... 5570 // b = a.x; 5571 // ... 5572 // } 5573 // 5574 // and IR like this 5575 // 5576 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5577 // entry: 5578 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5579 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5580 // call void @llvm.dbg.value(metadata i32 %b, "b", 5581 // ... 5582 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5583 // ... 5584 // 5585 // then the last dbg.value is describing a parameter "b" using a value that 5586 // is an argument. But since we already has used %a1 to describe a parameter 5587 // we should not handle that last dbg.value here (that would result in an 5588 // incorrect hoisting of the DBG_VALUE to the function entry). 5589 // Notice that we allow one dbg.value per IR level argument, to accommodate 5590 // for the situation with fragments above. 5591 if (VariableIsFunctionInputArg) { 5592 unsigned ArgNo = Arg->getArgNo(); 5593 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5594 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5595 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5596 return false; 5597 FuncInfo.DescribedArgs.set(ArgNo); 5598 } 5599 } 5600 5601 bool IsIndirect = false; 5602 Optional<MachineOperand> Op; 5603 // Some arguments' frame index is recorded during argument lowering. 5604 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5605 if (FI != std::numeric_limits<int>::max()) 5606 Op = MachineOperand::CreateFI(FI); 5607 5608 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5609 if (!Op && N.getNode()) { 5610 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5611 Register Reg; 5612 if (ArgRegsAndSizes.size() == 1) 5613 Reg = ArgRegsAndSizes.front().first; 5614 5615 if (Reg && Reg.isVirtual()) { 5616 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5617 Register PR = RegInfo.getLiveInPhysReg(Reg); 5618 if (PR) 5619 Reg = PR; 5620 } 5621 if (Reg) { 5622 Op = MachineOperand::CreateReg(Reg, false); 5623 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5624 } 5625 } 5626 5627 if (!Op && N.getNode()) { 5628 // Check if frame index is available. 5629 SDValue LCandidate = peekThroughBitcasts(N); 5630 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5631 if (FrameIndexSDNode *FINode = 5632 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5633 Op = MachineOperand::CreateFI(FINode->getIndex()); 5634 } 5635 5636 if (!Op) { 5637 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5638 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5639 SplitRegs) { 5640 unsigned Offset = 0; 5641 for (const auto &RegAndSize : SplitRegs) { 5642 // If the expression is already a fragment, the current register 5643 // offset+size might extend beyond the fragment. In this case, only 5644 // the register bits that are inside the fragment are relevant. 5645 int RegFragmentSizeInBits = RegAndSize.second; 5646 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5647 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5648 // The register is entirely outside the expression fragment, 5649 // so is irrelevant for debug info. 5650 if (Offset >= ExprFragmentSizeInBits) 5651 break; 5652 // The register is partially outside the expression fragment, only 5653 // the low bits within the fragment are relevant for debug info. 5654 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5655 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5656 } 5657 } 5658 5659 auto FragmentExpr = DIExpression::createFragmentExpression( 5660 Expr, Offset, RegFragmentSizeInBits); 5661 Offset += RegAndSize.second; 5662 // If a valid fragment expression cannot be created, the variable's 5663 // correct value cannot be determined and so it is set as Undef. 5664 if (!FragmentExpr) { 5665 SDDbgValue *SDV = DAG.getConstantDbgValue( 5666 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5667 DAG.AddDbgValue(SDV, false); 5668 continue; 5669 } 5670 MachineInstr *NewMI = 5671 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5672 Kind != FuncArgumentDbgValueKind::Value); 5673 FuncInfo.ArgDbgValues.push_back(NewMI); 5674 } 5675 }; 5676 5677 // Check if ValueMap has reg number. 5678 DenseMap<const Value *, Register>::const_iterator 5679 VMI = FuncInfo.ValueMap.find(V); 5680 if (VMI != FuncInfo.ValueMap.end()) { 5681 const auto &TLI = DAG.getTargetLoweringInfo(); 5682 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5683 V->getType(), None); 5684 if (RFV.occupiesMultipleRegs()) { 5685 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5686 return true; 5687 } 5688 5689 Op = MachineOperand::CreateReg(VMI->second, false); 5690 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5691 } else if (ArgRegsAndSizes.size() > 1) { 5692 // This was split due to the calling convention, and no virtual register 5693 // mapping exists for the value. 5694 splitMultiRegDbgValue(ArgRegsAndSizes); 5695 return true; 5696 } 5697 } 5698 5699 if (!Op) 5700 return false; 5701 5702 assert(Variable->isValidLocationForIntrinsic(DL) && 5703 "Expected inlined-at fields to agree"); 5704 MachineInstr *NewMI = nullptr; 5705 5706 if (Op->isReg()) 5707 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5708 else 5709 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5710 Variable, Expr); 5711 5712 // Otherwise, use ArgDbgValues. 5713 FuncInfo.ArgDbgValues.push_back(NewMI); 5714 return true; 5715 } 5716 5717 /// Return the appropriate SDDbgValue based on N. 5718 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5719 DILocalVariable *Variable, 5720 DIExpression *Expr, 5721 const DebugLoc &dl, 5722 unsigned DbgSDNodeOrder) { 5723 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5724 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5725 // stack slot locations. 5726 // 5727 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5728 // debug values here after optimization: 5729 // 5730 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5731 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5732 // 5733 // Both describe the direct values of their associated variables. 5734 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5735 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5736 } 5737 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5738 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5739 } 5740 5741 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5742 switch (Intrinsic) { 5743 case Intrinsic::smul_fix: 5744 return ISD::SMULFIX; 5745 case Intrinsic::umul_fix: 5746 return ISD::UMULFIX; 5747 case Intrinsic::smul_fix_sat: 5748 return ISD::SMULFIXSAT; 5749 case Intrinsic::umul_fix_sat: 5750 return ISD::UMULFIXSAT; 5751 case Intrinsic::sdiv_fix: 5752 return ISD::SDIVFIX; 5753 case Intrinsic::udiv_fix: 5754 return ISD::UDIVFIX; 5755 case Intrinsic::sdiv_fix_sat: 5756 return ISD::SDIVFIXSAT; 5757 case Intrinsic::udiv_fix_sat: 5758 return ISD::UDIVFIXSAT; 5759 default: 5760 llvm_unreachable("Unhandled fixed point intrinsic"); 5761 } 5762 } 5763 5764 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5765 const char *FunctionName) { 5766 assert(FunctionName && "FunctionName must not be nullptr"); 5767 SDValue Callee = DAG.getExternalSymbol( 5768 FunctionName, 5769 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5770 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5771 } 5772 5773 /// Given a @llvm.call.preallocated.setup, return the corresponding 5774 /// preallocated call. 5775 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5776 assert(cast<CallBase>(PreallocatedSetup) 5777 ->getCalledFunction() 5778 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5779 "expected call_preallocated_setup Value"); 5780 for (const auto *U : PreallocatedSetup->users()) { 5781 auto *UseCall = cast<CallBase>(U); 5782 const Function *Fn = UseCall->getCalledFunction(); 5783 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5784 return UseCall; 5785 } 5786 } 5787 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5788 } 5789 5790 /// Lower the call to the specified intrinsic function. 5791 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5792 unsigned Intrinsic) { 5793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5794 SDLoc sdl = getCurSDLoc(); 5795 DebugLoc dl = getCurDebugLoc(); 5796 SDValue Res; 5797 5798 SDNodeFlags Flags; 5799 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5800 Flags.copyFMF(*FPOp); 5801 5802 switch (Intrinsic) { 5803 default: 5804 // By default, turn this into a target intrinsic node. 5805 visitTargetIntrinsic(I, Intrinsic); 5806 return; 5807 case Intrinsic::vscale: { 5808 match(&I, m_VScale(DAG.getDataLayout())); 5809 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5810 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5811 return; 5812 } 5813 case Intrinsic::vastart: visitVAStart(I); return; 5814 case Intrinsic::vaend: visitVAEnd(I); return; 5815 case Intrinsic::vacopy: visitVACopy(I); return; 5816 case Intrinsic::returnaddress: 5817 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5818 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5819 getValue(I.getArgOperand(0)))); 5820 return; 5821 case Intrinsic::addressofreturnaddress: 5822 setValue(&I, 5823 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5824 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5825 return; 5826 case Intrinsic::sponentry: 5827 setValue(&I, 5828 DAG.getNode(ISD::SPONENTRY, sdl, 5829 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5830 return; 5831 case Intrinsic::frameaddress: 5832 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5833 TLI.getFrameIndexTy(DAG.getDataLayout()), 5834 getValue(I.getArgOperand(0)))); 5835 return; 5836 case Intrinsic::read_volatile_register: 5837 case Intrinsic::read_register: { 5838 Value *Reg = I.getArgOperand(0); 5839 SDValue Chain = getRoot(); 5840 SDValue RegName = 5841 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5842 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5843 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5844 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5845 setValue(&I, Res); 5846 DAG.setRoot(Res.getValue(1)); 5847 return; 5848 } 5849 case Intrinsic::write_register: { 5850 Value *Reg = I.getArgOperand(0); 5851 Value *RegValue = I.getArgOperand(1); 5852 SDValue Chain = getRoot(); 5853 SDValue RegName = 5854 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5855 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5856 RegName, getValue(RegValue))); 5857 return; 5858 } 5859 case Intrinsic::memcpy: { 5860 const auto &MCI = cast<MemCpyInst>(I); 5861 SDValue Op1 = getValue(I.getArgOperand(0)); 5862 SDValue Op2 = getValue(I.getArgOperand(1)); 5863 SDValue Op3 = getValue(I.getArgOperand(2)); 5864 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5865 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5866 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5867 Align Alignment = std::min(DstAlign, SrcAlign); 5868 bool isVol = MCI.isVolatile(); 5869 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5870 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5871 // node. 5872 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5873 SDValue MC = DAG.getMemcpy( 5874 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5875 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 5876 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5877 updateDAGForMaybeTailCall(MC); 5878 return; 5879 } 5880 case Intrinsic::memcpy_inline: { 5881 const auto &MCI = cast<MemCpyInlineInst>(I); 5882 SDValue Dst = getValue(I.getArgOperand(0)); 5883 SDValue Src = getValue(I.getArgOperand(1)); 5884 SDValue Size = getValue(I.getArgOperand(2)); 5885 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5886 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5887 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5888 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5889 Align Alignment = std::min(DstAlign, SrcAlign); 5890 bool isVol = MCI.isVolatile(); 5891 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5892 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5893 // node. 5894 SDValue MC = DAG.getMemcpy( 5895 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5896 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 5897 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 5898 updateDAGForMaybeTailCall(MC); 5899 return; 5900 } 5901 case Intrinsic::memset: { 5902 const auto &MSI = cast<MemSetInst>(I); 5903 SDValue Op1 = getValue(I.getArgOperand(0)); 5904 SDValue Op2 = getValue(I.getArgOperand(1)); 5905 SDValue Op3 = getValue(I.getArgOperand(2)); 5906 // @llvm.memset defines 0 and 1 to both mean no alignment. 5907 Align Alignment = MSI.getDestAlign().valueOrOne(); 5908 bool isVol = MSI.isVolatile(); 5909 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5910 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5911 SDValue MS = DAG.getMemset( 5912 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 5913 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 5914 updateDAGForMaybeTailCall(MS); 5915 return; 5916 } 5917 case Intrinsic::memset_inline: { 5918 const auto &MSII = cast<MemSetInlineInst>(I); 5919 SDValue Dst = getValue(I.getArgOperand(0)); 5920 SDValue Value = getValue(I.getArgOperand(1)); 5921 SDValue Size = getValue(I.getArgOperand(2)); 5922 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 5923 // @llvm.memset defines 0 and 1 to both mean no alignment. 5924 Align DstAlign = MSII.getDestAlign().valueOrOne(); 5925 bool isVol = MSII.isVolatile(); 5926 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5927 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5928 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 5929 /* AlwaysInline */ true, isTC, 5930 MachinePointerInfo(I.getArgOperand(0)), 5931 I.getAAMetadata()); 5932 updateDAGForMaybeTailCall(MC); 5933 return; 5934 } 5935 case Intrinsic::memmove: { 5936 const auto &MMI = cast<MemMoveInst>(I); 5937 SDValue Op1 = getValue(I.getArgOperand(0)); 5938 SDValue Op2 = getValue(I.getArgOperand(1)); 5939 SDValue Op3 = getValue(I.getArgOperand(2)); 5940 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5941 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5942 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5943 Align Alignment = std::min(DstAlign, SrcAlign); 5944 bool isVol = MMI.isVolatile(); 5945 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5946 // FIXME: Support passing different dest/src alignments to the memmove DAG 5947 // node. 5948 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5949 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5950 isTC, MachinePointerInfo(I.getArgOperand(0)), 5951 MachinePointerInfo(I.getArgOperand(1)), 5952 I.getAAMetadata(), AA); 5953 updateDAGForMaybeTailCall(MM); 5954 return; 5955 } 5956 case Intrinsic::memcpy_element_unordered_atomic: { 5957 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5958 SDValue Dst = getValue(MI.getRawDest()); 5959 SDValue Src = getValue(MI.getRawSource()); 5960 SDValue Length = getValue(MI.getLength()); 5961 5962 Type *LengthTy = MI.getLength()->getType(); 5963 unsigned ElemSz = MI.getElementSizeInBytes(); 5964 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5965 SDValue MC = 5966 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 5967 isTC, MachinePointerInfo(MI.getRawDest()), 5968 MachinePointerInfo(MI.getRawSource())); 5969 updateDAGForMaybeTailCall(MC); 5970 return; 5971 } 5972 case Intrinsic::memmove_element_unordered_atomic: { 5973 auto &MI = cast<AtomicMemMoveInst>(I); 5974 SDValue Dst = getValue(MI.getRawDest()); 5975 SDValue Src = getValue(MI.getRawSource()); 5976 SDValue Length = getValue(MI.getLength()); 5977 5978 Type *LengthTy = MI.getLength()->getType(); 5979 unsigned ElemSz = MI.getElementSizeInBytes(); 5980 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5981 SDValue MC = 5982 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 5983 isTC, MachinePointerInfo(MI.getRawDest()), 5984 MachinePointerInfo(MI.getRawSource())); 5985 updateDAGForMaybeTailCall(MC); 5986 return; 5987 } 5988 case Intrinsic::memset_element_unordered_atomic: { 5989 auto &MI = cast<AtomicMemSetInst>(I); 5990 SDValue Dst = getValue(MI.getRawDest()); 5991 SDValue Val = getValue(MI.getValue()); 5992 SDValue Length = getValue(MI.getLength()); 5993 5994 Type *LengthTy = MI.getLength()->getType(); 5995 unsigned ElemSz = MI.getElementSizeInBytes(); 5996 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5997 SDValue MC = 5998 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 5999 isTC, MachinePointerInfo(MI.getRawDest())); 6000 updateDAGForMaybeTailCall(MC); 6001 return; 6002 } 6003 case Intrinsic::call_preallocated_setup: { 6004 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6005 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6006 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6007 getRoot(), SrcValue); 6008 setValue(&I, Res); 6009 DAG.setRoot(Res); 6010 return; 6011 } 6012 case Intrinsic::call_preallocated_arg: { 6013 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6014 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6015 SDValue Ops[3]; 6016 Ops[0] = getRoot(); 6017 Ops[1] = SrcValue; 6018 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6019 MVT::i32); // arg index 6020 SDValue Res = DAG.getNode( 6021 ISD::PREALLOCATED_ARG, sdl, 6022 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6023 setValue(&I, Res); 6024 DAG.setRoot(Res.getValue(1)); 6025 return; 6026 } 6027 case Intrinsic::dbg_addr: 6028 case Intrinsic::dbg_declare: { 6029 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6030 // they are non-variadic. 6031 const auto &DI = cast<DbgVariableIntrinsic>(I); 6032 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6033 DILocalVariable *Variable = DI.getVariable(); 6034 DIExpression *Expression = DI.getExpression(); 6035 dropDanglingDebugInfo(Variable, Expression); 6036 assert(Variable && "Missing variable"); 6037 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6038 << "\n"); 6039 // Check if address has undef value. 6040 const Value *Address = DI.getVariableLocationOp(0); 6041 if (!Address || isa<UndefValue>(Address) || 6042 (Address->use_empty() && !isa<Argument>(Address))) { 6043 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6044 << " (bad/undef/unused-arg address)\n"); 6045 return; 6046 } 6047 6048 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6049 6050 // Check if this variable can be described by a frame index, typically 6051 // either as a static alloca or a byval parameter. 6052 int FI = std::numeric_limits<int>::max(); 6053 if (const auto *AI = 6054 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6055 if (AI->isStaticAlloca()) { 6056 auto I = FuncInfo.StaticAllocaMap.find(AI); 6057 if (I != FuncInfo.StaticAllocaMap.end()) 6058 FI = I->second; 6059 } 6060 } else if (const auto *Arg = dyn_cast<Argument>( 6061 Address->stripInBoundsConstantOffsets())) { 6062 FI = FuncInfo.getArgumentFrameIndex(Arg); 6063 } 6064 6065 // llvm.dbg.addr is control dependent and always generates indirect 6066 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6067 // the MachineFunction variable table. 6068 if (FI != std::numeric_limits<int>::max()) { 6069 if (Intrinsic == Intrinsic::dbg_addr) { 6070 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6071 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6072 dl, SDNodeOrder); 6073 DAG.AddDbgValue(SDV, isParameter); 6074 } else { 6075 LLVM_DEBUG(dbgs() << "Skipping " << DI 6076 << " (variable info stashed in MF side table)\n"); 6077 } 6078 return; 6079 } 6080 6081 SDValue &N = NodeMap[Address]; 6082 if (!N.getNode() && isa<Argument>(Address)) 6083 // Check unused arguments map. 6084 N = UnusedArgNodeMap[Address]; 6085 SDDbgValue *SDV; 6086 if (N.getNode()) { 6087 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6088 Address = BCI->getOperand(0); 6089 // Parameters are handled specially. 6090 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6091 if (isParameter && FINode) { 6092 // Byval parameter. We have a frame index at this point. 6093 SDV = 6094 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6095 /*IsIndirect*/ true, dl, SDNodeOrder); 6096 } else if (isa<Argument>(Address)) { 6097 // Address is an argument, so try to emit its dbg value using 6098 // virtual register info from the FuncInfo.ValueMap. 6099 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6100 FuncArgumentDbgValueKind::Declare, N); 6101 return; 6102 } else { 6103 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6104 true, dl, SDNodeOrder); 6105 } 6106 DAG.AddDbgValue(SDV, isParameter); 6107 } else { 6108 // If Address is an argument then try to emit its dbg value using 6109 // virtual register info from the FuncInfo.ValueMap. 6110 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6111 FuncArgumentDbgValueKind::Declare, N)) { 6112 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6113 << " (could not emit func-arg dbg_value)\n"); 6114 } 6115 } 6116 return; 6117 } 6118 case Intrinsic::dbg_label: { 6119 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6120 DILabel *Label = DI.getLabel(); 6121 assert(Label && "Missing label"); 6122 6123 SDDbgLabel *SDV; 6124 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6125 DAG.AddDbgLabel(SDV); 6126 return; 6127 } 6128 case Intrinsic::dbg_value: { 6129 const DbgValueInst &DI = cast<DbgValueInst>(I); 6130 assert(DI.getVariable() && "Missing variable"); 6131 6132 DILocalVariable *Variable = DI.getVariable(); 6133 DIExpression *Expression = DI.getExpression(); 6134 dropDanglingDebugInfo(Variable, Expression); 6135 SmallVector<Value *, 4> Values(DI.getValues()); 6136 if (Values.empty()) 6137 return; 6138 6139 if (llvm::is_contained(Values, nullptr)) 6140 return; 6141 6142 bool IsVariadic = DI.hasArgList(); 6143 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6144 SDNodeOrder, IsVariadic)) 6145 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6146 return; 6147 } 6148 6149 case Intrinsic::eh_typeid_for: { 6150 // Find the type id for the given typeinfo. 6151 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6152 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6153 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6154 setValue(&I, Res); 6155 return; 6156 } 6157 6158 case Intrinsic::eh_return_i32: 6159 case Intrinsic::eh_return_i64: 6160 DAG.getMachineFunction().setCallsEHReturn(true); 6161 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6162 MVT::Other, 6163 getControlRoot(), 6164 getValue(I.getArgOperand(0)), 6165 getValue(I.getArgOperand(1)))); 6166 return; 6167 case Intrinsic::eh_unwind_init: 6168 DAG.getMachineFunction().setCallsUnwindInit(true); 6169 return; 6170 case Intrinsic::eh_dwarf_cfa: 6171 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6172 TLI.getPointerTy(DAG.getDataLayout()), 6173 getValue(I.getArgOperand(0)))); 6174 return; 6175 case Intrinsic::eh_sjlj_callsite: { 6176 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6177 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6178 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6179 6180 MMI.setCurrentCallSite(CI->getZExtValue()); 6181 return; 6182 } 6183 case Intrinsic::eh_sjlj_functioncontext: { 6184 // Get and store the index of the function context. 6185 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6186 AllocaInst *FnCtx = 6187 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6188 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6189 MFI.setFunctionContextIndex(FI); 6190 return; 6191 } 6192 case Intrinsic::eh_sjlj_setjmp: { 6193 SDValue Ops[2]; 6194 Ops[0] = getRoot(); 6195 Ops[1] = getValue(I.getArgOperand(0)); 6196 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6197 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6198 setValue(&I, Op.getValue(0)); 6199 DAG.setRoot(Op.getValue(1)); 6200 return; 6201 } 6202 case Intrinsic::eh_sjlj_longjmp: 6203 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6204 getRoot(), getValue(I.getArgOperand(0)))); 6205 return; 6206 case Intrinsic::eh_sjlj_setup_dispatch: 6207 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6208 getRoot())); 6209 return; 6210 case Intrinsic::masked_gather: 6211 visitMaskedGather(I); 6212 return; 6213 case Intrinsic::masked_load: 6214 visitMaskedLoad(I); 6215 return; 6216 case Intrinsic::masked_scatter: 6217 visitMaskedScatter(I); 6218 return; 6219 case Intrinsic::masked_store: 6220 visitMaskedStore(I); 6221 return; 6222 case Intrinsic::masked_expandload: 6223 visitMaskedLoad(I, true /* IsExpanding */); 6224 return; 6225 case Intrinsic::masked_compressstore: 6226 visitMaskedStore(I, true /* IsCompressing */); 6227 return; 6228 case Intrinsic::powi: 6229 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6230 getValue(I.getArgOperand(1)), DAG)); 6231 return; 6232 case Intrinsic::log: 6233 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6234 return; 6235 case Intrinsic::log2: 6236 setValue(&I, 6237 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6238 return; 6239 case Intrinsic::log10: 6240 setValue(&I, 6241 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6242 return; 6243 case Intrinsic::exp: 6244 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6245 return; 6246 case Intrinsic::exp2: 6247 setValue(&I, 6248 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6249 return; 6250 case Intrinsic::pow: 6251 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6252 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6253 return; 6254 case Intrinsic::sqrt: 6255 case Intrinsic::fabs: 6256 case Intrinsic::sin: 6257 case Intrinsic::cos: 6258 case Intrinsic::floor: 6259 case Intrinsic::ceil: 6260 case Intrinsic::trunc: 6261 case Intrinsic::rint: 6262 case Intrinsic::nearbyint: 6263 case Intrinsic::round: 6264 case Intrinsic::roundeven: 6265 case Intrinsic::canonicalize: { 6266 unsigned Opcode; 6267 switch (Intrinsic) { 6268 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6269 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6270 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6271 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6272 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6273 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6274 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6275 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6276 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6277 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6278 case Intrinsic::round: Opcode = ISD::FROUND; break; 6279 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6280 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6281 } 6282 6283 setValue(&I, DAG.getNode(Opcode, sdl, 6284 getValue(I.getArgOperand(0)).getValueType(), 6285 getValue(I.getArgOperand(0)), Flags)); 6286 return; 6287 } 6288 case Intrinsic::lround: 6289 case Intrinsic::llround: 6290 case Intrinsic::lrint: 6291 case Intrinsic::llrint: { 6292 unsigned Opcode; 6293 switch (Intrinsic) { 6294 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6295 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6296 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6297 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6298 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6299 } 6300 6301 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6302 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6303 getValue(I.getArgOperand(0)))); 6304 return; 6305 } 6306 case Intrinsic::minnum: 6307 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6308 getValue(I.getArgOperand(0)).getValueType(), 6309 getValue(I.getArgOperand(0)), 6310 getValue(I.getArgOperand(1)), Flags)); 6311 return; 6312 case Intrinsic::maxnum: 6313 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6314 getValue(I.getArgOperand(0)).getValueType(), 6315 getValue(I.getArgOperand(0)), 6316 getValue(I.getArgOperand(1)), Flags)); 6317 return; 6318 case Intrinsic::minimum: 6319 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6320 getValue(I.getArgOperand(0)).getValueType(), 6321 getValue(I.getArgOperand(0)), 6322 getValue(I.getArgOperand(1)), Flags)); 6323 return; 6324 case Intrinsic::maximum: 6325 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6326 getValue(I.getArgOperand(0)).getValueType(), 6327 getValue(I.getArgOperand(0)), 6328 getValue(I.getArgOperand(1)), Flags)); 6329 return; 6330 case Intrinsic::copysign: 6331 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6332 getValue(I.getArgOperand(0)).getValueType(), 6333 getValue(I.getArgOperand(0)), 6334 getValue(I.getArgOperand(1)), Flags)); 6335 return; 6336 case Intrinsic::arithmetic_fence: { 6337 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6338 getValue(I.getArgOperand(0)).getValueType(), 6339 getValue(I.getArgOperand(0)), Flags)); 6340 return; 6341 } 6342 case Intrinsic::fma: 6343 setValue(&I, DAG.getNode( 6344 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6345 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6346 getValue(I.getArgOperand(2)), Flags)); 6347 return; 6348 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6349 case Intrinsic::INTRINSIC: 6350 #include "llvm/IR/ConstrainedOps.def" 6351 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6352 return; 6353 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6354 #include "llvm/IR/VPIntrinsics.def" 6355 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6356 return; 6357 case Intrinsic::fptrunc_round: { 6358 // Get the last argument, the metadata and convert it to an integer in the 6359 // call 6360 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6361 Optional<RoundingMode> RoundMode = 6362 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6363 6364 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6365 6366 // Propagate fast-math-flags from IR to node(s). 6367 SDNodeFlags Flags; 6368 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6369 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6370 6371 SDValue Result; 6372 Result = DAG.getNode( 6373 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6374 DAG.getTargetConstant((int)*RoundMode, sdl, 6375 TLI.getPointerTy(DAG.getDataLayout()))); 6376 setValue(&I, Result); 6377 6378 return; 6379 } 6380 case Intrinsic::fmuladd: { 6381 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6382 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6383 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6384 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6385 getValue(I.getArgOperand(0)).getValueType(), 6386 getValue(I.getArgOperand(0)), 6387 getValue(I.getArgOperand(1)), 6388 getValue(I.getArgOperand(2)), Flags)); 6389 } else { 6390 // TODO: Intrinsic calls should have fast-math-flags. 6391 SDValue Mul = DAG.getNode( 6392 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6393 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6394 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6395 getValue(I.getArgOperand(0)).getValueType(), 6396 Mul, getValue(I.getArgOperand(2)), Flags); 6397 setValue(&I, Add); 6398 } 6399 return; 6400 } 6401 case Intrinsic::convert_to_fp16: 6402 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6403 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6404 getValue(I.getArgOperand(0)), 6405 DAG.getTargetConstant(0, sdl, 6406 MVT::i32)))); 6407 return; 6408 case Intrinsic::convert_from_fp16: 6409 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6410 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6411 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6412 getValue(I.getArgOperand(0))))); 6413 return; 6414 case Intrinsic::fptosi_sat: { 6415 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6416 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6417 getValue(I.getArgOperand(0)), 6418 DAG.getValueType(VT.getScalarType()))); 6419 return; 6420 } 6421 case Intrinsic::fptoui_sat: { 6422 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6423 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6424 getValue(I.getArgOperand(0)), 6425 DAG.getValueType(VT.getScalarType()))); 6426 return; 6427 } 6428 case Intrinsic::set_rounding: 6429 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6430 {getRoot(), getValue(I.getArgOperand(0))}); 6431 setValue(&I, Res); 6432 DAG.setRoot(Res.getValue(0)); 6433 return; 6434 case Intrinsic::is_fpclass: { 6435 const DataLayout DLayout = DAG.getDataLayout(); 6436 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6437 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6438 unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6439 MachineFunction &MF = DAG.getMachineFunction(); 6440 const Function &F = MF.getFunction(); 6441 SDValue Op = getValue(I.getArgOperand(0)); 6442 SDNodeFlags Flags; 6443 Flags.setNoFPExcept( 6444 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6445 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6446 // expansion can use illegal types. Making expansion early allows 6447 // legalizing these types prior to selection. 6448 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6449 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6450 setValue(&I, Result); 6451 return; 6452 } 6453 6454 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6455 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6456 setValue(&I, V); 6457 return; 6458 } 6459 case Intrinsic::pcmarker: { 6460 SDValue Tmp = getValue(I.getArgOperand(0)); 6461 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6462 return; 6463 } 6464 case Intrinsic::readcyclecounter: { 6465 SDValue Op = getRoot(); 6466 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6467 DAG.getVTList(MVT::i64, MVT::Other), Op); 6468 setValue(&I, Res); 6469 DAG.setRoot(Res.getValue(1)); 6470 return; 6471 } 6472 case Intrinsic::bitreverse: 6473 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6474 getValue(I.getArgOperand(0)).getValueType(), 6475 getValue(I.getArgOperand(0)))); 6476 return; 6477 case Intrinsic::bswap: 6478 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6479 getValue(I.getArgOperand(0)).getValueType(), 6480 getValue(I.getArgOperand(0)))); 6481 return; 6482 case Intrinsic::cttz: { 6483 SDValue Arg = getValue(I.getArgOperand(0)); 6484 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6485 EVT Ty = Arg.getValueType(); 6486 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6487 sdl, Ty, Arg)); 6488 return; 6489 } 6490 case Intrinsic::ctlz: { 6491 SDValue Arg = getValue(I.getArgOperand(0)); 6492 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6493 EVT Ty = Arg.getValueType(); 6494 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6495 sdl, Ty, Arg)); 6496 return; 6497 } 6498 case Intrinsic::ctpop: { 6499 SDValue Arg = getValue(I.getArgOperand(0)); 6500 EVT Ty = Arg.getValueType(); 6501 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6502 return; 6503 } 6504 case Intrinsic::fshl: 6505 case Intrinsic::fshr: { 6506 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6507 SDValue X = getValue(I.getArgOperand(0)); 6508 SDValue Y = getValue(I.getArgOperand(1)); 6509 SDValue Z = getValue(I.getArgOperand(2)); 6510 EVT VT = X.getValueType(); 6511 6512 if (X == Y) { 6513 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6514 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6515 } else { 6516 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6517 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6518 } 6519 return; 6520 } 6521 case Intrinsic::sadd_sat: { 6522 SDValue Op1 = getValue(I.getArgOperand(0)); 6523 SDValue Op2 = getValue(I.getArgOperand(1)); 6524 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6525 return; 6526 } 6527 case Intrinsic::uadd_sat: { 6528 SDValue Op1 = getValue(I.getArgOperand(0)); 6529 SDValue Op2 = getValue(I.getArgOperand(1)); 6530 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6531 return; 6532 } 6533 case Intrinsic::ssub_sat: { 6534 SDValue Op1 = getValue(I.getArgOperand(0)); 6535 SDValue Op2 = getValue(I.getArgOperand(1)); 6536 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6537 return; 6538 } 6539 case Intrinsic::usub_sat: { 6540 SDValue Op1 = getValue(I.getArgOperand(0)); 6541 SDValue Op2 = getValue(I.getArgOperand(1)); 6542 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6543 return; 6544 } 6545 case Intrinsic::sshl_sat: { 6546 SDValue Op1 = getValue(I.getArgOperand(0)); 6547 SDValue Op2 = getValue(I.getArgOperand(1)); 6548 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6549 return; 6550 } 6551 case Intrinsic::ushl_sat: { 6552 SDValue Op1 = getValue(I.getArgOperand(0)); 6553 SDValue Op2 = getValue(I.getArgOperand(1)); 6554 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6555 return; 6556 } 6557 case Intrinsic::smul_fix: 6558 case Intrinsic::umul_fix: 6559 case Intrinsic::smul_fix_sat: 6560 case Intrinsic::umul_fix_sat: { 6561 SDValue Op1 = getValue(I.getArgOperand(0)); 6562 SDValue Op2 = getValue(I.getArgOperand(1)); 6563 SDValue Op3 = getValue(I.getArgOperand(2)); 6564 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6565 Op1.getValueType(), Op1, Op2, Op3)); 6566 return; 6567 } 6568 case Intrinsic::sdiv_fix: 6569 case Intrinsic::udiv_fix: 6570 case Intrinsic::sdiv_fix_sat: 6571 case Intrinsic::udiv_fix_sat: { 6572 SDValue Op1 = getValue(I.getArgOperand(0)); 6573 SDValue Op2 = getValue(I.getArgOperand(1)); 6574 SDValue Op3 = getValue(I.getArgOperand(2)); 6575 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6576 Op1, Op2, Op3, DAG, TLI)); 6577 return; 6578 } 6579 case Intrinsic::smax: { 6580 SDValue Op1 = getValue(I.getArgOperand(0)); 6581 SDValue Op2 = getValue(I.getArgOperand(1)); 6582 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6583 return; 6584 } 6585 case Intrinsic::smin: { 6586 SDValue Op1 = getValue(I.getArgOperand(0)); 6587 SDValue Op2 = getValue(I.getArgOperand(1)); 6588 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6589 return; 6590 } 6591 case Intrinsic::umax: { 6592 SDValue Op1 = getValue(I.getArgOperand(0)); 6593 SDValue Op2 = getValue(I.getArgOperand(1)); 6594 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6595 return; 6596 } 6597 case Intrinsic::umin: { 6598 SDValue Op1 = getValue(I.getArgOperand(0)); 6599 SDValue Op2 = getValue(I.getArgOperand(1)); 6600 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6601 return; 6602 } 6603 case Intrinsic::abs: { 6604 // TODO: Preserve "int min is poison" arg in SDAG? 6605 SDValue Op1 = getValue(I.getArgOperand(0)); 6606 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6607 return; 6608 } 6609 case Intrinsic::stacksave: { 6610 SDValue Op = getRoot(); 6611 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6612 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6613 setValue(&I, Res); 6614 DAG.setRoot(Res.getValue(1)); 6615 return; 6616 } 6617 case Intrinsic::stackrestore: 6618 Res = getValue(I.getArgOperand(0)); 6619 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6620 return; 6621 case Intrinsic::get_dynamic_area_offset: { 6622 SDValue Op = getRoot(); 6623 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6624 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6625 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6626 // target. 6627 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6628 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6629 " intrinsic!"); 6630 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6631 Op); 6632 DAG.setRoot(Op); 6633 setValue(&I, Res); 6634 return; 6635 } 6636 case Intrinsic::stackguard: { 6637 MachineFunction &MF = DAG.getMachineFunction(); 6638 const Module &M = *MF.getFunction().getParent(); 6639 SDValue Chain = getRoot(); 6640 if (TLI.useLoadStackGuardNode()) { 6641 Res = getLoadStackGuard(DAG, sdl, Chain); 6642 } else { 6643 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6644 const Value *Global = TLI.getSDagStackGuard(M); 6645 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6646 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6647 MachinePointerInfo(Global, 0), Align, 6648 MachineMemOperand::MOVolatile); 6649 } 6650 if (TLI.useStackGuardXorFP()) 6651 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6652 DAG.setRoot(Chain); 6653 setValue(&I, Res); 6654 return; 6655 } 6656 case Intrinsic::stackprotector: { 6657 // Emit code into the DAG to store the stack guard onto the stack. 6658 MachineFunction &MF = DAG.getMachineFunction(); 6659 MachineFrameInfo &MFI = MF.getFrameInfo(); 6660 SDValue Src, Chain = getRoot(); 6661 6662 if (TLI.useLoadStackGuardNode()) 6663 Src = getLoadStackGuard(DAG, sdl, Chain); 6664 else 6665 Src = getValue(I.getArgOperand(0)); // The guard's value. 6666 6667 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6668 6669 int FI = FuncInfo.StaticAllocaMap[Slot]; 6670 MFI.setStackProtectorIndex(FI); 6671 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6672 6673 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6674 6675 // Store the stack protector onto the stack. 6676 Res = DAG.getStore( 6677 Chain, sdl, Src, FIN, 6678 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6679 MaybeAlign(), MachineMemOperand::MOVolatile); 6680 setValue(&I, Res); 6681 DAG.setRoot(Res); 6682 return; 6683 } 6684 case Intrinsic::objectsize: 6685 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6686 6687 case Intrinsic::is_constant: 6688 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6689 6690 case Intrinsic::annotation: 6691 case Intrinsic::ptr_annotation: 6692 case Intrinsic::launder_invariant_group: 6693 case Intrinsic::strip_invariant_group: 6694 // Drop the intrinsic, but forward the value 6695 setValue(&I, getValue(I.getOperand(0))); 6696 return; 6697 6698 case Intrinsic::assume: 6699 case Intrinsic::experimental_noalias_scope_decl: 6700 case Intrinsic::var_annotation: 6701 case Intrinsic::sideeffect: 6702 // Discard annotate attributes, noalias scope declarations, assumptions, and 6703 // artificial side-effects. 6704 return; 6705 6706 case Intrinsic::codeview_annotation: { 6707 // Emit a label associated with this metadata. 6708 MachineFunction &MF = DAG.getMachineFunction(); 6709 MCSymbol *Label = 6710 MF.getMMI().getContext().createTempSymbol("annotation", true); 6711 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6712 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6713 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6714 DAG.setRoot(Res); 6715 return; 6716 } 6717 6718 case Intrinsic::init_trampoline: { 6719 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6720 6721 SDValue Ops[6]; 6722 Ops[0] = getRoot(); 6723 Ops[1] = getValue(I.getArgOperand(0)); 6724 Ops[2] = getValue(I.getArgOperand(1)); 6725 Ops[3] = getValue(I.getArgOperand(2)); 6726 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6727 Ops[5] = DAG.getSrcValue(F); 6728 6729 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6730 6731 DAG.setRoot(Res); 6732 return; 6733 } 6734 case Intrinsic::adjust_trampoline: 6735 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6736 TLI.getPointerTy(DAG.getDataLayout()), 6737 getValue(I.getArgOperand(0)))); 6738 return; 6739 case Intrinsic::gcroot: { 6740 assert(DAG.getMachineFunction().getFunction().hasGC() && 6741 "only valid in functions with gc specified, enforced by Verifier"); 6742 assert(GFI && "implied by previous"); 6743 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6744 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6745 6746 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6747 GFI->addStackRoot(FI->getIndex(), TypeMap); 6748 return; 6749 } 6750 case Intrinsic::gcread: 6751 case Intrinsic::gcwrite: 6752 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6753 case Intrinsic::flt_rounds: 6754 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6755 setValue(&I, Res); 6756 DAG.setRoot(Res.getValue(1)); 6757 return; 6758 6759 case Intrinsic::expect: 6760 // Just replace __builtin_expect(exp, c) with EXP. 6761 setValue(&I, getValue(I.getArgOperand(0))); 6762 return; 6763 6764 case Intrinsic::ubsantrap: 6765 case Intrinsic::debugtrap: 6766 case Intrinsic::trap: { 6767 StringRef TrapFuncName = 6768 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6769 if (TrapFuncName.empty()) { 6770 switch (Intrinsic) { 6771 case Intrinsic::trap: 6772 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6773 break; 6774 case Intrinsic::debugtrap: 6775 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6776 break; 6777 case Intrinsic::ubsantrap: 6778 DAG.setRoot(DAG.getNode( 6779 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6780 DAG.getTargetConstant( 6781 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6782 MVT::i32))); 6783 break; 6784 default: llvm_unreachable("unknown trap intrinsic"); 6785 } 6786 return; 6787 } 6788 TargetLowering::ArgListTy Args; 6789 if (Intrinsic == Intrinsic::ubsantrap) { 6790 Args.push_back(TargetLoweringBase::ArgListEntry()); 6791 Args[0].Val = I.getArgOperand(0); 6792 Args[0].Node = getValue(Args[0].Val); 6793 Args[0].Ty = Args[0].Val->getType(); 6794 } 6795 6796 TargetLowering::CallLoweringInfo CLI(DAG); 6797 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6798 CallingConv::C, I.getType(), 6799 DAG.getExternalSymbol(TrapFuncName.data(), 6800 TLI.getPointerTy(DAG.getDataLayout())), 6801 std::move(Args)); 6802 6803 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6804 DAG.setRoot(Result.second); 6805 return; 6806 } 6807 6808 case Intrinsic::uadd_with_overflow: 6809 case Intrinsic::sadd_with_overflow: 6810 case Intrinsic::usub_with_overflow: 6811 case Intrinsic::ssub_with_overflow: 6812 case Intrinsic::umul_with_overflow: 6813 case Intrinsic::smul_with_overflow: { 6814 ISD::NodeType Op; 6815 switch (Intrinsic) { 6816 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6817 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6818 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6819 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6820 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6821 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6822 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6823 } 6824 SDValue Op1 = getValue(I.getArgOperand(0)); 6825 SDValue Op2 = getValue(I.getArgOperand(1)); 6826 6827 EVT ResultVT = Op1.getValueType(); 6828 EVT OverflowVT = MVT::i1; 6829 if (ResultVT.isVector()) 6830 OverflowVT = EVT::getVectorVT( 6831 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6832 6833 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6834 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6835 return; 6836 } 6837 case Intrinsic::prefetch: { 6838 SDValue Ops[5]; 6839 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6840 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6841 Ops[0] = DAG.getRoot(); 6842 Ops[1] = getValue(I.getArgOperand(0)); 6843 Ops[2] = getValue(I.getArgOperand(1)); 6844 Ops[3] = getValue(I.getArgOperand(2)); 6845 Ops[4] = getValue(I.getArgOperand(3)); 6846 SDValue Result = DAG.getMemIntrinsicNode( 6847 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6848 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6849 /* align */ None, Flags); 6850 6851 // Chain the prefetch in parallell with any pending loads, to stay out of 6852 // the way of later optimizations. 6853 PendingLoads.push_back(Result); 6854 Result = getRoot(); 6855 DAG.setRoot(Result); 6856 return; 6857 } 6858 case Intrinsic::lifetime_start: 6859 case Intrinsic::lifetime_end: { 6860 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6861 // Stack coloring is not enabled in O0, discard region information. 6862 if (TM.getOptLevel() == CodeGenOpt::None) 6863 return; 6864 6865 const int64_t ObjectSize = 6866 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6867 Value *const ObjectPtr = I.getArgOperand(1); 6868 SmallVector<const Value *, 4> Allocas; 6869 getUnderlyingObjects(ObjectPtr, Allocas); 6870 6871 for (const Value *Alloca : Allocas) { 6872 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6873 6874 // Could not find an Alloca. 6875 if (!LifetimeObject) 6876 continue; 6877 6878 // First check that the Alloca is static, otherwise it won't have a 6879 // valid frame index. 6880 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6881 if (SI == FuncInfo.StaticAllocaMap.end()) 6882 return; 6883 6884 const int FrameIndex = SI->second; 6885 int64_t Offset; 6886 if (GetPointerBaseWithConstantOffset( 6887 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6888 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6889 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6890 Offset); 6891 DAG.setRoot(Res); 6892 } 6893 return; 6894 } 6895 case Intrinsic::pseudoprobe: { 6896 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6897 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6898 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6899 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6900 DAG.setRoot(Res); 6901 return; 6902 } 6903 case Intrinsic::invariant_start: 6904 // Discard region information. 6905 setValue(&I, 6906 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6907 return; 6908 case Intrinsic::invariant_end: 6909 // Discard region information. 6910 return; 6911 case Intrinsic::clear_cache: 6912 /// FunctionName may be null. 6913 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6914 lowerCallToExternalSymbol(I, FunctionName); 6915 return; 6916 case Intrinsic::donothing: 6917 case Intrinsic::seh_try_begin: 6918 case Intrinsic::seh_scope_begin: 6919 case Intrinsic::seh_try_end: 6920 case Intrinsic::seh_scope_end: 6921 // ignore 6922 return; 6923 case Intrinsic::experimental_stackmap: 6924 visitStackmap(I); 6925 return; 6926 case Intrinsic::experimental_patchpoint_void: 6927 case Intrinsic::experimental_patchpoint_i64: 6928 visitPatchpoint(I); 6929 return; 6930 case Intrinsic::experimental_gc_statepoint: 6931 LowerStatepoint(cast<GCStatepointInst>(I)); 6932 return; 6933 case Intrinsic::experimental_gc_result: 6934 visitGCResult(cast<GCResultInst>(I)); 6935 return; 6936 case Intrinsic::experimental_gc_relocate: 6937 visitGCRelocate(cast<GCRelocateInst>(I)); 6938 return; 6939 case Intrinsic::instrprof_cover: 6940 llvm_unreachable("instrprof failed to lower a cover"); 6941 case Intrinsic::instrprof_increment: 6942 llvm_unreachable("instrprof failed to lower an increment"); 6943 case Intrinsic::instrprof_value_profile: 6944 llvm_unreachable("instrprof failed to lower a value profiling call"); 6945 case Intrinsic::localescape: { 6946 MachineFunction &MF = DAG.getMachineFunction(); 6947 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6948 6949 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6950 // is the same on all targets. 6951 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6952 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6953 if (isa<ConstantPointerNull>(Arg)) 6954 continue; // Skip null pointers. They represent a hole in index space. 6955 AllocaInst *Slot = cast<AllocaInst>(Arg); 6956 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6957 "can only escape static allocas"); 6958 int FI = FuncInfo.StaticAllocaMap[Slot]; 6959 MCSymbol *FrameAllocSym = 6960 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6961 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6963 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6964 .addSym(FrameAllocSym) 6965 .addFrameIndex(FI); 6966 } 6967 6968 return; 6969 } 6970 6971 case Intrinsic::localrecover: { 6972 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6973 MachineFunction &MF = DAG.getMachineFunction(); 6974 6975 // Get the symbol that defines the frame offset. 6976 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6977 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6978 unsigned IdxVal = 6979 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6980 MCSymbol *FrameAllocSym = 6981 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6982 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6983 6984 Value *FP = I.getArgOperand(1); 6985 SDValue FPVal = getValue(FP); 6986 EVT PtrVT = FPVal.getValueType(); 6987 6988 // Create a MCSymbol for the label to avoid any target lowering 6989 // that would make this PC relative. 6990 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6991 SDValue OffsetVal = 6992 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6993 6994 // Add the offset to the FP. 6995 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6996 setValue(&I, Add); 6997 6998 return; 6999 } 7000 7001 case Intrinsic::eh_exceptionpointer: 7002 case Intrinsic::eh_exceptioncode: { 7003 // Get the exception pointer vreg, copy from it, and resize it to fit. 7004 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7005 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7006 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7007 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7008 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7009 if (Intrinsic == Intrinsic::eh_exceptioncode) 7010 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7011 setValue(&I, N); 7012 return; 7013 } 7014 case Intrinsic::xray_customevent: { 7015 // Here we want to make sure that the intrinsic behaves as if it has a 7016 // specific calling convention, and only for x86_64. 7017 // FIXME: Support other platforms later. 7018 const auto &Triple = DAG.getTarget().getTargetTriple(); 7019 if (Triple.getArch() != Triple::x86_64) 7020 return; 7021 7022 SmallVector<SDValue, 8> Ops; 7023 7024 // We want to say that we always want the arguments in registers. 7025 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7026 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7027 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7028 SDValue Chain = getRoot(); 7029 Ops.push_back(LogEntryVal); 7030 Ops.push_back(StrSizeVal); 7031 Ops.push_back(Chain); 7032 7033 // We need to enforce the calling convention for the callsite, so that 7034 // argument ordering is enforced correctly, and that register allocation can 7035 // see that some registers may be assumed clobbered and have to preserve 7036 // them across calls to the intrinsic. 7037 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7038 sdl, NodeTys, Ops); 7039 SDValue patchableNode = SDValue(MN, 0); 7040 DAG.setRoot(patchableNode); 7041 setValue(&I, patchableNode); 7042 return; 7043 } 7044 case Intrinsic::xray_typedevent: { 7045 // Here we want to make sure that the intrinsic behaves as if it has a 7046 // specific calling convention, and only for x86_64. 7047 // FIXME: Support other platforms later. 7048 const auto &Triple = DAG.getTarget().getTargetTriple(); 7049 if (Triple.getArch() != Triple::x86_64) 7050 return; 7051 7052 SmallVector<SDValue, 8> Ops; 7053 7054 // We want to say that we always want the arguments in registers. 7055 // It's unclear to me how manipulating the selection DAG here forces callers 7056 // to provide arguments in registers instead of on the stack. 7057 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7058 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7059 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7060 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7061 SDValue Chain = getRoot(); 7062 Ops.push_back(LogTypeId); 7063 Ops.push_back(LogEntryVal); 7064 Ops.push_back(StrSizeVal); 7065 Ops.push_back(Chain); 7066 7067 // We need to enforce the calling convention for the callsite, so that 7068 // argument ordering is enforced correctly, and that register allocation can 7069 // see that some registers may be assumed clobbered and have to preserve 7070 // them across calls to the intrinsic. 7071 MachineSDNode *MN = DAG.getMachineNode( 7072 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7073 SDValue patchableNode = SDValue(MN, 0); 7074 DAG.setRoot(patchableNode); 7075 setValue(&I, patchableNode); 7076 return; 7077 } 7078 case Intrinsic::experimental_deoptimize: 7079 LowerDeoptimizeCall(&I); 7080 return; 7081 case Intrinsic::experimental_stepvector: 7082 visitStepVector(I); 7083 return; 7084 case Intrinsic::vector_reduce_fadd: 7085 case Intrinsic::vector_reduce_fmul: 7086 case Intrinsic::vector_reduce_add: 7087 case Intrinsic::vector_reduce_mul: 7088 case Intrinsic::vector_reduce_and: 7089 case Intrinsic::vector_reduce_or: 7090 case Intrinsic::vector_reduce_xor: 7091 case Intrinsic::vector_reduce_smax: 7092 case Intrinsic::vector_reduce_smin: 7093 case Intrinsic::vector_reduce_umax: 7094 case Intrinsic::vector_reduce_umin: 7095 case Intrinsic::vector_reduce_fmax: 7096 case Intrinsic::vector_reduce_fmin: 7097 visitVectorReduce(I, Intrinsic); 7098 return; 7099 7100 case Intrinsic::icall_branch_funnel: { 7101 SmallVector<SDValue, 16> Ops; 7102 Ops.push_back(getValue(I.getArgOperand(0))); 7103 7104 int64_t Offset; 7105 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7106 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7107 if (!Base) 7108 report_fatal_error( 7109 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7110 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7111 7112 struct BranchFunnelTarget { 7113 int64_t Offset; 7114 SDValue Target; 7115 }; 7116 SmallVector<BranchFunnelTarget, 8> Targets; 7117 7118 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7119 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7120 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7121 if (ElemBase != Base) 7122 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7123 "to the same GlobalValue"); 7124 7125 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7126 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7127 if (!GA) 7128 report_fatal_error( 7129 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7130 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7131 GA->getGlobal(), sdl, Val.getValueType(), 7132 GA->getOffset())}); 7133 } 7134 llvm::sort(Targets, 7135 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7136 return T1.Offset < T2.Offset; 7137 }); 7138 7139 for (auto &T : Targets) { 7140 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7141 Ops.push_back(T.Target); 7142 } 7143 7144 Ops.push_back(DAG.getRoot()); // Chain 7145 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7146 MVT::Other, Ops), 7147 0); 7148 DAG.setRoot(N); 7149 setValue(&I, N); 7150 HasTailCall = true; 7151 return; 7152 } 7153 7154 case Intrinsic::wasm_landingpad_index: 7155 // Information this intrinsic contained has been transferred to 7156 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7157 // delete it now. 7158 return; 7159 7160 case Intrinsic::aarch64_settag: 7161 case Intrinsic::aarch64_settag_zero: { 7162 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7163 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7164 SDValue Val = TSI.EmitTargetCodeForSetTag( 7165 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7166 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7167 ZeroMemory); 7168 DAG.setRoot(Val); 7169 setValue(&I, Val); 7170 return; 7171 } 7172 case Intrinsic::ptrmask: { 7173 SDValue Ptr = getValue(I.getOperand(0)); 7174 SDValue Const = getValue(I.getOperand(1)); 7175 7176 EVT PtrVT = Ptr.getValueType(); 7177 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7178 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7179 return; 7180 } 7181 case Intrinsic::get_active_lane_mask: { 7182 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7183 SDValue Index = getValue(I.getOperand(0)); 7184 EVT ElementVT = Index.getValueType(); 7185 7186 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7187 visitTargetIntrinsic(I, Intrinsic); 7188 return; 7189 } 7190 7191 SDValue TripCount = getValue(I.getOperand(1)); 7192 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7193 7194 SDValue VectorIndex, VectorTripCount; 7195 if (VecTy.isScalableVector()) { 7196 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7197 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7198 } else { 7199 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7200 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7201 } 7202 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7203 SDValue VectorInduction = DAG.getNode( 7204 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7205 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7206 VectorTripCount, ISD::CondCode::SETULT); 7207 setValue(&I, SetCC); 7208 return; 7209 } 7210 case Intrinsic::vector_insert: { 7211 SDValue Vec = getValue(I.getOperand(0)); 7212 SDValue SubVec = getValue(I.getOperand(1)); 7213 SDValue Index = getValue(I.getOperand(2)); 7214 7215 // The intrinsic's index type is i64, but the SDNode requires an index type 7216 // suitable for the target. Convert the index as required. 7217 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7218 if (Index.getValueType() != VectorIdxTy) 7219 Index = DAG.getVectorIdxConstant( 7220 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7221 7222 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7223 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7224 Index)); 7225 return; 7226 } 7227 case Intrinsic::vector_extract: { 7228 SDValue Vec = getValue(I.getOperand(0)); 7229 SDValue Index = getValue(I.getOperand(1)); 7230 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7231 7232 // The intrinsic's index type is i64, but the SDNode requires an index type 7233 // suitable for the target. Convert the index as required. 7234 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7235 if (Index.getValueType() != VectorIdxTy) 7236 Index = DAG.getVectorIdxConstant( 7237 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7238 7239 setValue(&I, 7240 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7241 return; 7242 } 7243 case Intrinsic::experimental_vector_reverse: 7244 visitVectorReverse(I); 7245 return; 7246 case Intrinsic::experimental_vector_splice: 7247 visitVectorSplice(I); 7248 return; 7249 } 7250 } 7251 7252 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7253 const ConstrainedFPIntrinsic &FPI) { 7254 SDLoc sdl = getCurSDLoc(); 7255 7256 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7257 SmallVector<EVT, 4> ValueVTs; 7258 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7259 ValueVTs.push_back(MVT::Other); // Out chain 7260 7261 // We do not need to serialize constrained FP intrinsics against 7262 // each other or against (nonvolatile) loads, so they can be 7263 // chained like loads. 7264 SDValue Chain = DAG.getRoot(); 7265 SmallVector<SDValue, 4> Opers; 7266 Opers.push_back(Chain); 7267 if (FPI.isUnaryOp()) { 7268 Opers.push_back(getValue(FPI.getArgOperand(0))); 7269 } else if (FPI.isTernaryOp()) { 7270 Opers.push_back(getValue(FPI.getArgOperand(0))); 7271 Opers.push_back(getValue(FPI.getArgOperand(1))); 7272 Opers.push_back(getValue(FPI.getArgOperand(2))); 7273 } else { 7274 Opers.push_back(getValue(FPI.getArgOperand(0))); 7275 Opers.push_back(getValue(FPI.getArgOperand(1))); 7276 } 7277 7278 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7279 assert(Result.getNode()->getNumValues() == 2); 7280 7281 // Push node to the appropriate list so that future instructions can be 7282 // chained up correctly. 7283 SDValue OutChain = Result.getValue(1); 7284 switch (EB) { 7285 case fp::ExceptionBehavior::ebIgnore: 7286 // The only reason why ebIgnore nodes still need to be chained is that 7287 // they might depend on the current rounding mode, and therefore must 7288 // not be moved across instruction that may change that mode. 7289 LLVM_FALLTHROUGH; 7290 case fp::ExceptionBehavior::ebMayTrap: 7291 // These must not be moved across calls or instructions that may change 7292 // floating-point exception masks. 7293 PendingConstrainedFP.push_back(OutChain); 7294 break; 7295 case fp::ExceptionBehavior::ebStrict: 7296 // These must not be moved across calls or instructions that may change 7297 // floating-point exception masks or read floating-point exception flags. 7298 // In addition, they cannot be optimized out even if unused. 7299 PendingConstrainedFPStrict.push_back(OutChain); 7300 break; 7301 } 7302 }; 7303 7304 SDVTList VTs = DAG.getVTList(ValueVTs); 7305 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7306 7307 SDNodeFlags Flags; 7308 if (EB == fp::ExceptionBehavior::ebIgnore) 7309 Flags.setNoFPExcept(true); 7310 7311 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7312 Flags.copyFMF(*FPOp); 7313 7314 unsigned Opcode; 7315 switch (FPI.getIntrinsicID()) { 7316 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7317 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7318 case Intrinsic::INTRINSIC: \ 7319 Opcode = ISD::STRICT_##DAGN; \ 7320 break; 7321 #include "llvm/IR/ConstrainedOps.def" 7322 case Intrinsic::experimental_constrained_fmuladd: { 7323 Opcode = ISD::STRICT_FMA; 7324 // Break fmuladd into fmul and fadd. 7325 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7326 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7327 ValueVTs[0])) { 7328 Opers.pop_back(); 7329 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7330 pushOutChain(Mul, EB); 7331 Opcode = ISD::STRICT_FADD; 7332 Opers.clear(); 7333 Opers.push_back(Mul.getValue(1)); 7334 Opers.push_back(Mul.getValue(0)); 7335 Opers.push_back(getValue(FPI.getArgOperand(2))); 7336 } 7337 break; 7338 } 7339 } 7340 7341 // A few strict DAG nodes carry additional operands that are not 7342 // set up by the default code above. 7343 switch (Opcode) { 7344 default: break; 7345 case ISD::STRICT_FP_ROUND: 7346 Opers.push_back( 7347 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7348 break; 7349 case ISD::STRICT_FSETCC: 7350 case ISD::STRICT_FSETCCS: { 7351 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7352 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7353 if (TM.Options.NoNaNsFPMath) 7354 Condition = getFCmpCodeWithoutNaN(Condition); 7355 Opers.push_back(DAG.getCondCode(Condition)); 7356 break; 7357 } 7358 } 7359 7360 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7361 pushOutChain(Result, EB); 7362 7363 SDValue FPResult = Result.getValue(0); 7364 setValue(&FPI, FPResult); 7365 } 7366 7367 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7368 Optional<unsigned> ResOPC; 7369 switch (VPIntrin.getIntrinsicID()) { 7370 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7371 case Intrinsic::VPID: \ 7372 ResOPC = ISD::VPSD; \ 7373 break; 7374 #include "llvm/IR/VPIntrinsics.def" 7375 } 7376 7377 if (!ResOPC) 7378 llvm_unreachable( 7379 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7380 7381 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7382 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7383 if (VPIntrin.getFastMathFlags().allowReassoc()) 7384 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7385 : ISD::VP_REDUCE_FMUL; 7386 } 7387 7388 return *ResOPC; 7389 } 7390 7391 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7392 SmallVector<SDValue, 7> &OpValues, 7393 bool IsGather) { 7394 SDLoc DL = getCurSDLoc(); 7395 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7396 Value *PtrOperand = VPIntrin.getArgOperand(0); 7397 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7398 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7399 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7400 SDValue LD; 7401 bool AddToChain = true; 7402 if (!IsGather) { 7403 // Do not serialize variable-length loads of constant memory with 7404 // anything. 7405 if (!Alignment) 7406 Alignment = DAG.getEVTAlign(VT); 7407 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7408 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7409 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7410 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7411 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7412 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7413 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7414 MMO, false /*IsExpanding */); 7415 } else { 7416 if (!Alignment) 7417 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7418 unsigned AS = 7419 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7420 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7421 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7422 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7423 SDValue Base, Index, Scale; 7424 ISD::MemIndexType IndexType; 7425 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7426 this, VPIntrin.getParent(), 7427 VT.getScalarStoreSize()); 7428 if (!UniformBase) { 7429 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7430 Index = getValue(PtrOperand); 7431 IndexType = ISD::SIGNED_SCALED; 7432 Scale = 7433 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7434 } 7435 EVT IdxVT = Index.getValueType(); 7436 EVT EltTy = IdxVT.getVectorElementType(); 7437 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7438 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7439 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7440 } 7441 LD = DAG.getGatherVP( 7442 DAG.getVTList(VT, MVT::Other), VT, DL, 7443 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7444 IndexType); 7445 } 7446 if (AddToChain) 7447 PendingLoads.push_back(LD.getValue(1)); 7448 setValue(&VPIntrin, LD); 7449 } 7450 7451 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7452 SmallVector<SDValue, 7> &OpValues, 7453 bool IsScatter) { 7454 SDLoc DL = getCurSDLoc(); 7455 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7456 Value *PtrOperand = VPIntrin.getArgOperand(1); 7457 EVT VT = OpValues[0].getValueType(); 7458 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7459 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7460 SDValue ST; 7461 if (!IsScatter) { 7462 if (!Alignment) 7463 Alignment = DAG.getEVTAlign(VT); 7464 SDValue Ptr = OpValues[1]; 7465 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7466 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7467 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7468 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7469 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7470 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7471 /* IsTruncating */ false, /*IsCompressing*/ false); 7472 } else { 7473 if (!Alignment) 7474 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7475 unsigned AS = 7476 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7477 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7478 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7479 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7480 SDValue Base, Index, Scale; 7481 ISD::MemIndexType IndexType; 7482 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7483 this, VPIntrin.getParent(), 7484 VT.getScalarStoreSize()); 7485 if (!UniformBase) { 7486 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7487 Index = getValue(PtrOperand); 7488 IndexType = ISD::SIGNED_SCALED; 7489 Scale = 7490 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7491 } 7492 EVT IdxVT = Index.getValueType(); 7493 EVT EltTy = IdxVT.getVectorElementType(); 7494 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7495 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7496 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7497 } 7498 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7499 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7500 OpValues[2], OpValues[3]}, 7501 MMO, IndexType); 7502 } 7503 DAG.setRoot(ST); 7504 setValue(&VPIntrin, ST); 7505 } 7506 7507 void SelectionDAGBuilder::visitVPStridedLoad( 7508 const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) { 7509 SDLoc DL = getCurSDLoc(); 7510 Value *PtrOperand = VPIntrin.getArgOperand(0); 7511 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7512 if (!Alignment) 7513 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7514 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7515 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7516 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7517 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7518 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7519 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7520 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7521 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7522 7523 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7524 OpValues[2], OpValues[3], MMO, 7525 false /*IsExpanding*/); 7526 7527 if (AddToChain) 7528 PendingLoads.push_back(LD.getValue(1)); 7529 setValue(&VPIntrin, LD); 7530 } 7531 7532 void SelectionDAGBuilder::visitVPStridedStore( 7533 const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) { 7534 SDLoc DL = getCurSDLoc(); 7535 Value *PtrOperand = VPIntrin.getArgOperand(1); 7536 EVT VT = OpValues[0].getValueType(); 7537 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7538 if (!Alignment) 7539 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7540 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7541 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7542 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7543 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7544 7545 SDValue ST = DAG.getStridedStoreVP( 7546 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7547 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7548 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7549 /*IsCompressing*/ false); 7550 7551 DAG.setRoot(ST); 7552 setValue(&VPIntrin, ST); 7553 } 7554 7555 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7557 SDLoc DL = getCurSDLoc(); 7558 7559 ISD::CondCode Condition; 7560 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7561 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7562 if (IsFP) { 7563 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7564 // flags, but calls that don't return floating-point types can't be 7565 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7566 Condition = getFCmpCondCode(CondCode); 7567 if (TM.Options.NoNaNsFPMath) 7568 Condition = getFCmpCodeWithoutNaN(Condition); 7569 } else { 7570 Condition = getICmpCondCode(CondCode); 7571 } 7572 7573 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7574 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7575 // #2 is the condition code 7576 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7577 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7578 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7579 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7580 "Unexpected target EVL type"); 7581 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7582 7583 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7584 VPIntrin.getType()); 7585 setValue(&VPIntrin, 7586 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7587 } 7588 7589 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7590 const VPIntrinsic &VPIntrin) { 7591 SDLoc DL = getCurSDLoc(); 7592 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7593 7594 auto IID = VPIntrin.getIntrinsicID(); 7595 7596 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7597 return visitVPCmp(*CmpI); 7598 7599 SmallVector<EVT, 4> ValueVTs; 7600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7601 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7602 SDVTList VTs = DAG.getVTList(ValueVTs); 7603 7604 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7605 7606 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7607 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7608 "Unexpected target EVL type"); 7609 7610 // Request operands. 7611 SmallVector<SDValue, 7> OpValues; 7612 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7613 auto Op = getValue(VPIntrin.getArgOperand(I)); 7614 if (I == EVLParamPos) 7615 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7616 OpValues.push_back(Op); 7617 } 7618 7619 switch (Opcode) { 7620 default: { 7621 SDNodeFlags SDFlags; 7622 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7623 SDFlags.copyFMF(*FPMO); 7624 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7625 setValue(&VPIntrin, Result); 7626 break; 7627 } 7628 case ISD::VP_LOAD: 7629 case ISD::VP_GATHER: 7630 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7631 Opcode == ISD::VP_GATHER); 7632 break; 7633 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7634 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7635 break; 7636 case ISD::VP_STORE: 7637 case ISD::VP_SCATTER: 7638 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7639 break; 7640 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7641 visitVPStridedStore(VPIntrin, OpValues); 7642 break; 7643 } 7644 } 7645 7646 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7647 const BasicBlock *EHPadBB, 7648 MCSymbol *&BeginLabel) { 7649 MachineFunction &MF = DAG.getMachineFunction(); 7650 MachineModuleInfo &MMI = MF.getMMI(); 7651 7652 // Insert a label before the invoke call to mark the try range. This can be 7653 // used to detect deletion of the invoke via the MachineModuleInfo. 7654 BeginLabel = MMI.getContext().createTempSymbol(); 7655 7656 // For SjLj, keep track of which landing pads go with which invokes 7657 // so as to maintain the ordering of pads in the LSDA. 7658 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7659 if (CallSiteIndex) { 7660 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7661 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7662 7663 // Now that the call site is handled, stop tracking it. 7664 MMI.setCurrentCallSite(0); 7665 } 7666 7667 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7668 } 7669 7670 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7671 const BasicBlock *EHPadBB, 7672 MCSymbol *BeginLabel) { 7673 assert(BeginLabel && "BeginLabel should've been set"); 7674 7675 MachineFunction &MF = DAG.getMachineFunction(); 7676 MachineModuleInfo &MMI = MF.getMMI(); 7677 7678 // Insert a label at the end of the invoke call to mark the try range. This 7679 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7680 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7681 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7682 7683 // Inform MachineModuleInfo of range. 7684 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7685 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7686 // actually use outlined funclets and their LSDA info style. 7687 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7688 assert(II && "II should've been set"); 7689 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7690 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7691 } else if (!isScopedEHPersonality(Pers)) { 7692 assert(EHPadBB); 7693 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7694 } 7695 7696 return Chain; 7697 } 7698 7699 std::pair<SDValue, SDValue> 7700 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7701 const BasicBlock *EHPadBB) { 7702 MCSymbol *BeginLabel = nullptr; 7703 7704 if (EHPadBB) { 7705 // Both PendingLoads and PendingExports must be flushed here; 7706 // this call might not return. 7707 (void)getRoot(); 7708 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7709 CLI.setChain(getRoot()); 7710 } 7711 7712 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7713 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7714 7715 assert((CLI.IsTailCall || Result.second.getNode()) && 7716 "Non-null chain expected with non-tail call!"); 7717 assert((Result.second.getNode() || !Result.first.getNode()) && 7718 "Null value expected with tail call!"); 7719 7720 if (!Result.second.getNode()) { 7721 // As a special case, a null chain means that a tail call has been emitted 7722 // and the DAG root is already updated. 7723 HasTailCall = true; 7724 7725 // Since there's no actual continuation from this block, nothing can be 7726 // relying on us setting vregs for them. 7727 PendingExports.clear(); 7728 } else { 7729 DAG.setRoot(Result.second); 7730 } 7731 7732 if (EHPadBB) { 7733 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7734 BeginLabel)); 7735 } 7736 7737 return Result; 7738 } 7739 7740 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7741 bool isTailCall, 7742 bool isMustTailCall, 7743 const BasicBlock *EHPadBB) { 7744 auto &DL = DAG.getDataLayout(); 7745 FunctionType *FTy = CB.getFunctionType(); 7746 Type *RetTy = CB.getType(); 7747 7748 TargetLowering::ArgListTy Args; 7749 Args.reserve(CB.arg_size()); 7750 7751 const Value *SwiftErrorVal = nullptr; 7752 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7753 7754 if (isTailCall) { 7755 // Avoid emitting tail calls in functions with the disable-tail-calls 7756 // attribute. 7757 auto *Caller = CB.getParent()->getParent(); 7758 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7759 "true" && !isMustTailCall) 7760 isTailCall = false; 7761 7762 // We can't tail call inside a function with a swifterror argument. Lowering 7763 // does not support this yet. It would have to move into the swifterror 7764 // register before the call. 7765 if (TLI.supportSwiftError() && 7766 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7767 isTailCall = false; 7768 } 7769 7770 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7771 TargetLowering::ArgListEntry Entry; 7772 const Value *V = *I; 7773 7774 // Skip empty types 7775 if (V->getType()->isEmptyTy()) 7776 continue; 7777 7778 SDValue ArgNode = getValue(V); 7779 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7780 7781 Entry.setAttributes(&CB, I - CB.arg_begin()); 7782 7783 // Use swifterror virtual register as input to the call. 7784 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7785 SwiftErrorVal = V; 7786 // We find the virtual register for the actual swifterror argument. 7787 // Instead of using the Value, we use the virtual register instead. 7788 Entry.Node = 7789 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7790 EVT(TLI.getPointerTy(DL))); 7791 } 7792 7793 Args.push_back(Entry); 7794 7795 // If we have an explicit sret argument that is an Instruction, (i.e., it 7796 // might point to function-local memory), we can't meaningfully tail-call. 7797 if (Entry.IsSRet && isa<Instruction>(V)) 7798 isTailCall = false; 7799 } 7800 7801 // If call site has a cfguardtarget operand bundle, create and add an 7802 // additional ArgListEntry. 7803 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7804 TargetLowering::ArgListEntry Entry; 7805 Value *V = Bundle->Inputs[0]; 7806 SDValue ArgNode = getValue(V); 7807 Entry.Node = ArgNode; 7808 Entry.Ty = V->getType(); 7809 Entry.IsCFGuardTarget = true; 7810 Args.push_back(Entry); 7811 } 7812 7813 // Check if target-independent constraints permit a tail call here. 7814 // Target-dependent constraints are checked within TLI->LowerCallTo. 7815 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7816 isTailCall = false; 7817 7818 // Disable tail calls if there is an swifterror argument. Targets have not 7819 // been updated to support tail calls. 7820 if (TLI.supportSwiftError() && SwiftErrorVal) 7821 isTailCall = false; 7822 7823 TargetLowering::CallLoweringInfo CLI(DAG); 7824 CLI.setDebugLoc(getCurSDLoc()) 7825 .setChain(getRoot()) 7826 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7827 .setTailCall(isTailCall) 7828 .setConvergent(CB.isConvergent()) 7829 .setIsPreallocated( 7830 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7831 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7832 7833 if (Result.first.getNode()) { 7834 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7835 setValue(&CB, Result.first); 7836 } 7837 7838 // The last element of CLI.InVals has the SDValue for swifterror return. 7839 // Here we copy it to a virtual register and update SwiftErrorMap for 7840 // book-keeping. 7841 if (SwiftErrorVal && TLI.supportSwiftError()) { 7842 // Get the last element of InVals. 7843 SDValue Src = CLI.InVals.back(); 7844 Register VReg = 7845 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7846 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7847 DAG.setRoot(CopyNode); 7848 } 7849 } 7850 7851 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7852 SelectionDAGBuilder &Builder) { 7853 // Check to see if this load can be trivially constant folded, e.g. if the 7854 // input is from a string literal. 7855 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7856 // Cast pointer to the type we really want to load. 7857 Type *LoadTy = 7858 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7859 if (LoadVT.isVector()) 7860 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7861 7862 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7863 PointerType::getUnqual(LoadTy)); 7864 7865 if (const Constant *LoadCst = 7866 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7867 LoadTy, Builder.DAG.getDataLayout())) 7868 return Builder.getValue(LoadCst); 7869 } 7870 7871 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7872 // still constant memory, the input chain can be the entry node. 7873 SDValue Root; 7874 bool ConstantMemory = false; 7875 7876 // Do not serialize (non-volatile) loads of constant memory with anything. 7877 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7878 Root = Builder.DAG.getEntryNode(); 7879 ConstantMemory = true; 7880 } else { 7881 // Do not serialize non-volatile loads against each other. 7882 Root = Builder.DAG.getRoot(); 7883 } 7884 7885 SDValue Ptr = Builder.getValue(PtrVal); 7886 SDValue LoadVal = 7887 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7888 MachinePointerInfo(PtrVal), Align(1)); 7889 7890 if (!ConstantMemory) 7891 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7892 return LoadVal; 7893 } 7894 7895 /// Record the value for an instruction that produces an integer result, 7896 /// converting the type where necessary. 7897 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7898 SDValue Value, 7899 bool IsSigned) { 7900 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7901 I.getType(), true); 7902 if (IsSigned) 7903 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7904 else 7905 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7906 setValue(&I, Value); 7907 } 7908 7909 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7910 /// true and lower it. Otherwise return false, and it will be lowered like a 7911 /// normal call. 7912 /// The caller already checked that \p I calls the appropriate LibFunc with a 7913 /// correct prototype. 7914 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7915 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7916 const Value *Size = I.getArgOperand(2); 7917 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 7918 if (CSize && CSize->getZExtValue() == 0) { 7919 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7920 I.getType(), true); 7921 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7922 return true; 7923 } 7924 7925 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7926 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7927 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7928 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7929 if (Res.first.getNode()) { 7930 processIntegerCallValue(I, Res.first, true); 7931 PendingLoads.push_back(Res.second); 7932 return true; 7933 } 7934 7935 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7936 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7937 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7938 return false; 7939 7940 // If the target has a fast compare for the given size, it will return a 7941 // preferred load type for that size. Require that the load VT is legal and 7942 // that the target supports unaligned loads of that type. Otherwise, return 7943 // INVALID. 7944 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7945 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7946 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7947 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7948 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7949 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7950 // TODO: Check alignment of src and dest ptrs. 7951 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7952 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7953 if (!TLI.isTypeLegal(LVT) || 7954 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7955 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7956 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7957 } 7958 7959 return LVT; 7960 }; 7961 7962 // This turns into unaligned loads. We only do this if the target natively 7963 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7964 // we'll only produce a small number of byte loads. 7965 MVT LoadVT; 7966 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7967 switch (NumBitsToCompare) { 7968 default: 7969 return false; 7970 case 16: 7971 LoadVT = MVT::i16; 7972 break; 7973 case 32: 7974 LoadVT = MVT::i32; 7975 break; 7976 case 64: 7977 case 128: 7978 case 256: 7979 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7980 break; 7981 } 7982 7983 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7984 return false; 7985 7986 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7987 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7988 7989 // Bitcast to a wide integer type if the loads are vectors. 7990 if (LoadVT.isVector()) { 7991 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7992 LoadL = DAG.getBitcast(CmpVT, LoadL); 7993 LoadR = DAG.getBitcast(CmpVT, LoadR); 7994 } 7995 7996 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7997 processIntegerCallValue(I, Cmp, false); 7998 return true; 7999 } 8000 8001 /// See if we can lower a memchr call into an optimized form. If so, return 8002 /// true and lower it. Otherwise return false, and it will be lowered like a 8003 /// normal call. 8004 /// The caller already checked that \p I calls the appropriate LibFunc with a 8005 /// correct prototype. 8006 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8007 const Value *Src = I.getArgOperand(0); 8008 const Value *Char = I.getArgOperand(1); 8009 const Value *Length = I.getArgOperand(2); 8010 8011 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8012 std::pair<SDValue, SDValue> Res = 8013 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8014 getValue(Src), getValue(Char), getValue(Length), 8015 MachinePointerInfo(Src)); 8016 if (Res.first.getNode()) { 8017 setValue(&I, Res.first); 8018 PendingLoads.push_back(Res.second); 8019 return true; 8020 } 8021 8022 return false; 8023 } 8024 8025 /// See if we can lower a mempcpy call into an optimized form. If so, return 8026 /// true and lower it. Otherwise return false, and it will be lowered like a 8027 /// normal call. 8028 /// The caller already checked that \p I calls the appropriate LibFunc with a 8029 /// correct prototype. 8030 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8031 SDValue Dst = getValue(I.getArgOperand(0)); 8032 SDValue Src = getValue(I.getArgOperand(1)); 8033 SDValue Size = getValue(I.getArgOperand(2)); 8034 8035 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8036 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8037 // DAG::getMemcpy needs Alignment to be defined. 8038 Align Alignment = std::min(DstAlign, SrcAlign); 8039 8040 bool isVol = false; 8041 SDLoc sdl = getCurSDLoc(); 8042 8043 // In the mempcpy context we need to pass in a false value for isTailCall 8044 // because the return pointer needs to be adjusted by the size of 8045 // the copied memory. 8046 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 8047 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 8048 /*isTailCall=*/false, 8049 MachinePointerInfo(I.getArgOperand(0)), 8050 MachinePointerInfo(I.getArgOperand(1)), 8051 I.getAAMetadata()); 8052 assert(MC.getNode() != nullptr && 8053 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8054 DAG.setRoot(MC); 8055 8056 // Check if Size needs to be truncated or extended. 8057 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8058 8059 // Adjust return pointer to point just past the last dst byte. 8060 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8061 Dst, Size); 8062 setValue(&I, DstPlusSize); 8063 return true; 8064 } 8065 8066 /// See if we can lower a strcpy call into an optimized form. If so, return 8067 /// true and lower it, otherwise return false and it will be lowered like a 8068 /// normal call. 8069 /// The caller already checked that \p I calls the appropriate LibFunc with a 8070 /// correct prototype. 8071 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8072 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8073 8074 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8075 std::pair<SDValue, SDValue> Res = 8076 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8077 getValue(Arg0), getValue(Arg1), 8078 MachinePointerInfo(Arg0), 8079 MachinePointerInfo(Arg1), isStpcpy); 8080 if (Res.first.getNode()) { 8081 setValue(&I, Res.first); 8082 DAG.setRoot(Res.second); 8083 return true; 8084 } 8085 8086 return false; 8087 } 8088 8089 /// See if we can lower a strcmp call into an optimized form. If so, return 8090 /// true and lower it, otherwise return false and it will be lowered like a 8091 /// normal call. 8092 /// The caller already checked that \p I calls the appropriate LibFunc with a 8093 /// correct prototype. 8094 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8095 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8096 8097 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8098 std::pair<SDValue, SDValue> Res = 8099 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8100 getValue(Arg0), getValue(Arg1), 8101 MachinePointerInfo(Arg0), 8102 MachinePointerInfo(Arg1)); 8103 if (Res.first.getNode()) { 8104 processIntegerCallValue(I, Res.first, true); 8105 PendingLoads.push_back(Res.second); 8106 return true; 8107 } 8108 8109 return false; 8110 } 8111 8112 /// See if we can lower a strlen call into an optimized form. If so, return 8113 /// true and lower it, otherwise return false and it will be lowered like a 8114 /// normal call. 8115 /// The caller already checked that \p I calls the appropriate LibFunc with a 8116 /// correct prototype. 8117 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8118 const Value *Arg0 = I.getArgOperand(0); 8119 8120 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8121 std::pair<SDValue, SDValue> Res = 8122 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8123 getValue(Arg0), MachinePointerInfo(Arg0)); 8124 if (Res.first.getNode()) { 8125 processIntegerCallValue(I, Res.first, false); 8126 PendingLoads.push_back(Res.second); 8127 return true; 8128 } 8129 8130 return false; 8131 } 8132 8133 /// See if we can lower a strnlen call into an optimized form. If so, return 8134 /// true and lower it, otherwise return false and it will be lowered like a 8135 /// normal call. 8136 /// The caller already checked that \p I calls the appropriate LibFunc with a 8137 /// correct prototype. 8138 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8139 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8140 8141 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8142 std::pair<SDValue, SDValue> Res = 8143 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8144 getValue(Arg0), getValue(Arg1), 8145 MachinePointerInfo(Arg0)); 8146 if (Res.first.getNode()) { 8147 processIntegerCallValue(I, Res.first, false); 8148 PendingLoads.push_back(Res.second); 8149 return true; 8150 } 8151 8152 return false; 8153 } 8154 8155 /// See if we can lower a unary floating-point operation into an SDNode with 8156 /// the specified Opcode. If so, return true and lower it, otherwise return 8157 /// false and it will be lowered like a normal call. 8158 /// The caller already checked that \p I calls the appropriate LibFunc with a 8159 /// correct prototype. 8160 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8161 unsigned Opcode) { 8162 // We already checked this call's prototype; verify it doesn't modify errno. 8163 if (!I.onlyReadsMemory()) 8164 return false; 8165 8166 SDNodeFlags Flags; 8167 Flags.copyFMF(cast<FPMathOperator>(I)); 8168 8169 SDValue Tmp = getValue(I.getArgOperand(0)); 8170 setValue(&I, 8171 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8172 return true; 8173 } 8174 8175 /// See if we can lower a binary floating-point operation into an SDNode with 8176 /// the specified Opcode. If so, return true and lower it. Otherwise return 8177 /// false, and it will be lowered like a normal call. 8178 /// The caller already checked that \p I calls the appropriate LibFunc with a 8179 /// correct prototype. 8180 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8181 unsigned Opcode) { 8182 // We already checked this call's prototype; verify it doesn't modify errno. 8183 if (!I.onlyReadsMemory()) 8184 return false; 8185 8186 SDNodeFlags Flags; 8187 Flags.copyFMF(cast<FPMathOperator>(I)); 8188 8189 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8190 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8191 EVT VT = Tmp0.getValueType(); 8192 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8193 return true; 8194 } 8195 8196 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8197 // Handle inline assembly differently. 8198 if (I.isInlineAsm()) { 8199 visitInlineAsm(I); 8200 return; 8201 } 8202 8203 if (Function *F = I.getCalledFunction()) { 8204 diagnoseDontCall(I); 8205 8206 if (F->isDeclaration()) { 8207 // Is this an LLVM intrinsic or a target-specific intrinsic? 8208 unsigned IID = F->getIntrinsicID(); 8209 if (!IID) 8210 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8211 IID = II->getIntrinsicID(F); 8212 8213 if (IID) { 8214 visitIntrinsicCall(I, IID); 8215 return; 8216 } 8217 } 8218 8219 // Check for well-known libc/libm calls. If the function is internal, it 8220 // can't be a library call. Don't do the check if marked as nobuiltin for 8221 // some reason or the call site requires strict floating point semantics. 8222 LibFunc Func; 8223 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8224 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8225 LibInfo->hasOptimizedCodeGen(Func)) { 8226 switch (Func) { 8227 default: break; 8228 case LibFunc_bcmp: 8229 if (visitMemCmpBCmpCall(I)) 8230 return; 8231 break; 8232 case LibFunc_copysign: 8233 case LibFunc_copysignf: 8234 case LibFunc_copysignl: 8235 // We already checked this call's prototype; verify it doesn't modify 8236 // errno. 8237 if (I.onlyReadsMemory()) { 8238 SDValue LHS = getValue(I.getArgOperand(0)); 8239 SDValue RHS = getValue(I.getArgOperand(1)); 8240 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8241 LHS.getValueType(), LHS, RHS)); 8242 return; 8243 } 8244 break; 8245 case LibFunc_fabs: 8246 case LibFunc_fabsf: 8247 case LibFunc_fabsl: 8248 if (visitUnaryFloatCall(I, ISD::FABS)) 8249 return; 8250 break; 8251 case LibFunc_fmin: 8252 case LibFunc_fminf: 8253 case LibFunc_fminl: 8254 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8255 return; 8256 break; 8257 case LibFunc_fmax: 8258 case LibFunc_fmaxf: 8259 case LibFunc_fmaxl: 8260 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8261 return; 8262 break; 8263 case LibFunc_sin: 8264 case LibFunc_sinf: 8265 case LibFunc_sinl: 8266 if (visitUnaryFloatCall(I, ISD::FSIN)) 8267 return; 8268 break; 8269 case LibFunc_cos: 8270 case LibFunc_cosf: 8271 case LibFunc_cosl: 8272 if (visitUnaryFloatCall(I, ISD::FCOS)) 8273 return; 8274 break; 8275 case LibFunc_sqrt: 8276 case LibFunc_sqrtf: 8277 case LibFunc_sqrtl: 8278 case LibFunc_sqrt_finite: 8279 case LibFunc_sqrtf_finite: 8280 case LibFunc_sqrtl_finite: 8281 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8282 return; 8283 break; 8284 case LibFunc_floor: 8285 case LibFunc_floorf: 8286 case LibFunc_floorl: 8287 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8288 return; 8289 break; 8290 case LibFunc_nearbyint: 8291 case LibFunc_nearbyintf: 8292 case LibFunc_nearbyintl: 8293 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8294 return; 8295 break; 8296 case LibFunc_ceil: 8297 case LibFunc_ceilf: 8298 case LibFunc_ceill: 8299 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8300 return; 8301 break; 8302 case LibFunc_rint: 8303 case LibFunc_rintf: 8304 case LibFunc_rintl: 8305 if (visitUnaryFloatCall(I, ISD::FRINT)) 8306 return; 8307 break; 8308 case LibFunc_round: 8309 case LibFunc_roundf: 8310 case LibFunc_roundl: 8311 if (visitUnaryFloatCall(I, ISD::FROUND)) 8312 return; 8313 break; 8314 case LibFunc_trunc: 8315 case LibFunc_truncf: 8316 case LibFunc_truncl: 8317 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8318 return; 8319 break; 8320 case LibFunc_log2: 8321 case LibFunc_log2f: 8322 case LibFunc_log2l: 8323 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8324 return; 8325 break; 8326 case LibFunc_exp2: 8327 case LibFunc_exp2f: 8328 case LibFunc_exp2l: 8329 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8330 return; 8331 break; 8332 case LibFunc_memcmp: 8333 if (visitMemCmpBCmpCall(I)) 8334 return; 8335 break; 8336 case LibFunc_mempcpy: 8337 if (visitMemPCpyCall(I)) 8338 return; 8339 break; 8340 case LibFunc_memchr: 8341 if (visitMemChrCall(I)) 8342 return; 8343 break; 8344 case LibFunc_strcpy: 8345 if (visitStrCpyCall(I, false)) 8346 return; 8347 break; 8348 case LibFunc_stpcpy: 8349 if (visitStrCpyCall(I, true)) 8350 return; 8351 break; 8352 case LibFunc_strcmp: 8353 if (visitStrCmpCall(I)) 8354 return; 8355 break; 8356 case LibFunc_strlen: 8357 if (visitStrLenCall(I)) 8358 return; 8359 break; 8360 case LibFunc_strnlen: 8361 if (visitStrNLenCall(I)) 8362 return; 8363 break; 8364 } 8365 } 8366 } 8367 8368 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8369 // have to do anything here to lower funclet bundles. 8370 // CFGuardTarget bundles are lowered in LowerCallTo. 8371 assert(!I.hasOperandBundlesOtherThan( 8372 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8373 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8374 LLVMContext::OB_clang_arc_attachedcall}) && 8375 "Cannot lower calls with arbitrary operand bundles!"); 8376 8377 SDValue Callee = getValue(I.getCalledOperand()); 8378 8379 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8380 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8381 else 8382 // Check if we can potentially perform a tail call. More detailed checking 8383 // is be done within LowerCallTo, after more information about the call is 8384 // known. 8385 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8386 } 8387 8388 namespace { 8389 8390 /// AsmOperandInfo - This contains information for each constraint that we are 8391 /// lowering. 8392 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8393 public: 8394 /// CallOperand - If this is the result output operand or a clobber 8395 /// this is null, otherwise it is the incoming operand to the CallInst. 8396 /// This gets modified as the asm is processed. 8397 SDValue CallOperand; 8398 8399 /// AssignedRegs - If this is a register or register class operand, this 8400 /// contains the set of register corresponding to the operand. 8401 RegsForValue AssignedRegs; 8402 8403 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8404 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8405 } 8406 8407 /// Whether or not this operand accesses memory 8408 bool hasMemory(const TargetLowering &TLI) const { 8409 // Indirect operand accesses access memory. 8410 if (isIndirect) 8411 return true; 8412 8413 for (const auto &Code : Codes) 8414 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8415 return true; 8416 8417 return false; 8418 } 8419 }; 8420 8421 8422 } // end anonymous namespace 8423 8424 /// Make sure that the output operand \p OpInfo and its corresponding input 8425 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8426 /// out). 8427 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8428 SDISelAsmOperandInfo &MatchingOpInfo, 8429 SelectionDAG &DAG) { 8430 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8431 return; 8432 8433 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8434 const auto &TLI = DAG.getTargetLoweringInfo(); 8435 8436 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8437 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8438 OpInfo.ConstraintVT); 8439 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8440 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8441 MatchingOpInfo.ConstraintVT); 8442 if ((OpInfo.ConstraintVT.isInteger() != 8443 MatchingOpInfo.ConstraintVT.isInteger()) || 8444 (MatchRC.second != InputRC.second)) { 8445 // FIXME: error out in a more elegant fashion 8446 report_fatal_error("Unsupported asm: input constraint" 8447 " with a matching output constraint of" 8448 " incompatible type!"); 8449 } 8450 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8451 } 8452 8453 /// Get a direct memory input to behave well as an indirect operand. 8454 /// This may introduce stores, hence the need for a \p Chain. 8455 /// \return The (possibly updated) chain. 8456 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8457 SDISelAsmOperandInfo &OpInfo, 8458 SelectionDAG &DAG) { 8459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8460 8461 // If we don't have an indirect input, put it in the constpool if we can, 8462 // otherwise spill it to a stack slot. 8463 // TODO: This isn't quite right. We need to handle these according to 8464 // the addressing mode that the constraint wants. Also, this may take 8465 // an additional register for the computation and we don't want that 8466 // either. 8467 8468 // If the operand is a float, integer, or vector constant, spill to a 8469 // constant pool entry to get its address. 8470 const Value *OpVal = OpInfo.CallOperandVal; 8471 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8472 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8473 OpInfo.CallOperand = DAG.getConstantPool( 8474 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8475 return Chain; 8476 } 8477 8478 // Otherwise, create a stack slot and emit a store to it before the asm. 8479 Type *Ty = OpVal->getType(); 8480 auto &DL = DAG.getDataLayout(); 8481 uint64_t TySize = DL.getTypeAllocSize(Ty); 8482 MachineFunction &MF = DAG.getMachineFunction(); 8483 int SSFI = MF.getFrameInfo().CreateStackObject( 8484 TySize, DL.getPrefTypeAlign(Ty), false); 8485 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8486 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8487 MachinePointerInfo::getFixedStack(MF, SSFI), 8488 TLI.getMemValueType(DL, Ty)); 8489 OpInfo.CallOperand = StackSlot; 8490 8491 return Chain; 8492 } 8493 8494 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8495 /// specified operand. We prefer to assign virtual registers, to allow the 8496 /// register allocator to handle the assignment process. However, if the asm 8497 /// uses features that we can't model on machineinstrs, we have SDISel do the 8498 /// allocation. This produces generally horrible, but correct, code. 8499 /// 8500 /// OpInfo describes the operand 8501 /// RefOpInfo describes the matching operand if any, the operand otherwise 8502 static llvm::Optional<unsigned> 8503 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8504 SDISelAsmOperandInfo &OpInfo, 8505 SDISelAsmOperandInfo &RefOpInfo) { 8506 LLVMContext &Context = *DAG.getContext(); 8507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8508 8509 MachineFunction &MF = DAG.getMachineFunction(); 8510 SmallVector<unsigned, 4> Regs; 8511 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8512 8513 // No work to do for memory/address operands. 8514 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8515 OpInfo.ConstraintType == TargetLowering::C_Address) 8516 return None; 8517 8518 // If this is a constraint for a single physreg, or a constraint for a 8519 // register class, find it. 8520 unsigned AssignedReg; 8521 const TargetRegisterClass *RC; 8522 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8523 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8524 // RC is unset only on failure. Return immediately. 8525 if (!RC) 8526 return None; 8527 8528 // Get the actual register value type. This is important, because the user 8529 // may have asked for (e.g.) the AX register in i32 type. We need to 8530 // remember that AX is actually i16 to get the right extension. 8531 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8532 8533 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8534 // If this is an FP operand in an integer register (or visa versa), or more 8535 // generally if the operand value disagrees with the register class we plan 8536 // to stick it in, fix the operand type. 8537 // 8538 // If this is an input value, the bitcast to the new type is done now. 8539 // Bitcast for output value is done at the end of visitInlineAsm(). 8540 if ((OpInfo.Type == InlineAsm::isOutput || 8541 OpInfo.Type == InlineAsm::isInput) && 8542 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8543 // Try to convert to the first EVT that the reg class contains. If the 8544 // types are identical size, use a bitcast to convert (e.g. two differing 8545 // vector types). Note: output bitcast is done at the end of 8546 // visitInlineAsm(). 8547 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8548 // Exclude indirect inputs while they are unsupported because the code 8549 // to perform the load is missing and thus OpInfo.CallOperand still 8550 // refers to the input address rather than the pointed-to value. 8551 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8552 OpInfo.CallOperand = 8553 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8554 OpInfo.ConstraintVT = RegVT; 8555 // If the operand is an FP value and we want it in integer registers, 8556 // use the corresponding integer type. This turns an f64 value into 8557 // i64, which can be passed with two i32 values on a 32-bit machine. 8558 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8559 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8560 if (OpInfo.Type == InlineAsm::isInput) 8561 OpInfo.CallOperand = 8562 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8563 OpInfo.ConstraintVT = VT; 8564 } 8565 } 8566 } 8567 8568 // No need to allocate a matching input constraint since the constraint it's 8569 // matching to has already been allocated. 8570 if (OpInfo.isMatchingInputConstraint()) 8571 return None; 8572 8573 EVT ValueVT = OpInfo.ConstraintVT; 8574 if (OpInfo.ConstraintVT == MVT::Other) 8575 ValueVT = RegVT; 8576 8577 // Initialize NumRegs. 8578 unsigned NumRegs = 1; 8579 if (OpInfo.ConstraintVT != MVT::Other) 8580 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8581 8582 // If this is a constraint for a specific physical register, like {r17}, 8583 // assign it now. 8584 8585 // If this associated to a specific register, initialize iterator to correct 8586 // place. If virtual, make sure we have enough registers 8587 8588 // Initialize iterator if necessary 8589 TargetRegisterClass::iterator I = RC->begin(); 8590 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8591 8592 // Do not check for single registers. 8593 if (AssignedReg) { 8594 I = std::find(I, RC->end(), AssignedReg); 8595 if (I == RC->end()) { 8596 // RC does not contain the selected register, which indicates a 8597 // mismatch between the register and the required type/bitwidth. 8598 return {AssignedReg}; 8599 } 8600 } 8601 8602 for (; NumRegs; --NumRegs, ++I) { 8603 assert(I != RC->end() && "Ran out of registers to allocate!"); 8604 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8605 Regs.push_back(R); 8606 } 8607 8608 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8609 return None; 8610 } 8611 8612 static unsigned 8613 findMatchingInlineAsmOperand(unsigned OperandNo, 8614 const std::vector<SDValue> &AsmNodeOperands) { 8615 // Scan until we find the definition we already emitted of this operand. 8616 unsigned CurOp = InlineAsm::Op_FirstOperand; 8617 for (; OperandNo; --OperandNo) { 8618 // Advance to the next operand. 8619 unsigned OpFlag = 8620 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8621 assert((InlineAsm::isRegDefKind(OpFlag) || 8622 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8623 InlineAsm::isMemKind(OpFlag)) && 8624 "Skipped past definitions?"); 8625 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8626 } 8627 return CurOp; 8628 } 8629 8630 namespace { 8631 8632 class ExtraFlags { 8633 unsigned Flags = 0; 8634 8635 public: 8636 explicit ExtraFlags(const CallBase &Call) { 8637 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8638 if (IA->hasSideEffects()) 8639 Flags |= InlineAsm::Extra_HasSideEffects; 8640 if (IA->isAlignStack()) 8641 Flags |= InlineAsm::Extra_IsAlignStack; 8642 if (Call.isConvergent()) 8643 Flags |= InlineAsm::Extra_IsConvergent; 8644 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8645 } 8646 8647 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8648 // Ideally, we would only check against memory constraints. However, the 8649 // meaning of an Other constraint can be target-specific and we can't easily 8650 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8651 // for Other constraints as well. 8652 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8653 OpInfo.ConstraintType == TargetLowering::C_Other) { 8654 if (OpInfo.Type == InlineAsm::isInput) 8655 Flags |= InlineAsm::Extra_MayLoad; 8656 else if (OpInfo.Type == InlineAsm::isOutput) 8657 Flags |= InlineAsm::Extra_MayStore; 8658 else if (OpInfo.Type == InlineAsm::isClobber) 8659 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8660 } 8661 } 8662 8663 unsigned get() const { return Flags; } 8664 }; 8665 8666 } // end anonymous namespace 8667 8668 /// visitInlineAsm - Handle a call to an InlineAsm object. 8669 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8670 const BasicBlock *EHPadBB) { 8671 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8672 8673 /// ConstraintOperands - Information about all of the constraints. 8674 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8675 8676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8677 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8678 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8679 8680 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8681 // AsmDialect, MayLoad, MayStore). 8682 bool HasSideEffect = IA->hasSideEffects(); 8683 ExtraFlags ExtraInfo(Call); 8684 8685 for (auto &T : TargetConstraints) { 8686 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8687 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8688 8689 if (OpInfo.CallOperandVal) 8690 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8691 8692 if (!HasSideEffect) 8693 HasSideEffect = OpInfo.hasMemory(TLI); 8694 8695 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8696 // FIXME: Could we compute this on OpInfo rather than T? 8697 8698 // Compute the constraint code and ConstraintType to use. 8699 TLI.ComputeConstraintToUse(T, SDValue()); 8700 8701 if (T.ConstraintType == TargetLowering::C_Immediate && 8702 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8703 // We've delayed emitting a diagnostic like the "n" constraint because 8704 // inlining could cause an integer showing up. 8705 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8706 "' expects an integer constant " 8707 "expression"); 8708 8709 ExtraInfo.update(T); 8710 } 8711 8712 // We won't need to flush pending loads if this asm doesn't touch 8713 // memory and is nonvolatile. 8714 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8715 8716 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8717 if (EmitEHLabels) { 8718 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8719 } 8720 bool IsCallBr = isa<CallBrInst>(Call); 8721 8722 if (IsCallBr || EmitEHLabels) { 8723 // If this is a callbr or invoke we need to flush pending exports since 8724 // inlineasm_br and invoke are terminators. 8725 // We need to do this before nodes are glued to the inlineasm_br node. 8726 Chain = getControlRoot(); 8727 } 8728 8729 MCSymbol *BeginLabel = nullptr; 8730 if (EmitEHLabels) { 8731 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8732 } 8733 8734 // Second pass over the constraints: compute which constraint option to use. 8735 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8736 // If this is an output operand with a matching input operand, look up the 8737 // matching input. If their types mismatch, e.g. one is an integer, the 8738 // other is floating point, or their sizes are different, flag it as an 8739 // error. 8740 if (OpInfo.hasMatchingInput()) { 8741 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8742 patchMatchingInput(OpInfo, Input, DAG); 8743 } 8744 8745 // Compute the constraint code and ConstraintType to use. 8746 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8747 8748 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 8749 OpInfo.Type == InlineAsm::isClobber) || 8750 OpInfo.ConstraintType == TargetLowering::C_Address) 8751 continue; 8752 8753 // If this is a memory input, and if the operand is not indirect, do what we 8754 // need to provide an address for the memory input. 8755 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8756 !OpInfo.isIndirect) { 8757 assert((OpInfo.isMultipleAlternative || 8758 (OpInfo.Type == InlineAsm::isInput)) && 8759 "Can only indirectify direct input operands!"); 8760 8761 // Memory operands really want the address of the value. 8762 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8763 8764 // There is no longer a Value* corresponding to this operand. 8765 OpInfo.CallOperandVal = nullptr; 8766 8767 // It is now an indirect operand. 8768 OpInfo.isIndirect = true; 8769 } 8770 8771 } 8772 8773 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8774 std::vector<SDValue> AsmNodeOperands; 8775 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8776 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8777 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8778 8779 // If we have a !srcloc metadata node associated with it, we want to attach 8780 // this to the ultimately generated inline asm machineinstr. To do this, we 8781 // pass in the third operand as this (potentially null) inline asm MDNode. 8782 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8783 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8784 8785 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8786 // bits as operand 3. 8787 AsmNodeOperands.push_back(DAG.getTargetConstant( 8788 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8789 8790 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8791 // this, assign virtual and physical registers for inputs and otput. 8792 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8793 // Assign Registers. 8794 SDISelAsmOperandInfo &RefOpInfo = 8795 OpInfo.isMatchingInputConstraint() 8796 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8797 : OpInfo; 8798 const auto RegError = 8799 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8800 if (RegError) { 8801 const MachineFunction &MF = DAG.getMachineFunction(); 8802 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8803 const char *RegName = TRI.getName(RegError.value()); 8804 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8805 "' allocated for constraint '" + 8806 Twine(OpInfo.ConstraintCode) + 8807 "' does not match required type"); 8808 return; 8809 } 8810 8811 auto DetectWriteToReservedRegister = [&]() { 8812 const MachineFunction &MF = DAG.getMachineFunction(); 8813 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8814 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8815 if (Register::isPhysicalRegister(Reg) && 8816 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8817 const char *RegName = TRI.getName(Reg); 8818 emitInlineAsmError(Call, "write to reserved register '" + 8819 Twine(RegName) + "'"); 8820 return true; 8821 } 8822 } 8823 return false; 8824 }; 8825 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 8826 (OpInfo.Type == InlineAsm::isInput && 8827 !OpInfo.isMatchingInputConstraint())) && 8828 "Only address as input operand is allowed."); 8829 8830 switch (OpInfo.Type) { 8831 case InlineAsm::isOutput: 8832 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8833 unsigned ConstraintID = 8834 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8835 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8836 "Failed to convert memory constraint code to constraint id."); 8837 8838 // Add information to the INLINEASM node to know about this output. 8839 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8840 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8841 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8842 MVT::i32)); 8843 AsmNodeOperands.push_back(OpInfo.CallOperand); 8844 } else { 8845 // Otherwise, this outputs to a register (directly for C_Register / 8846 // C_RegisterClass, and a target-defined fashion for 8847 // C_Immediate/C_Other). Find a register that we can use. 8848 if (OpInfo.AssignedRegs.Regs.empty()) { 8849 emitInlineAsmError( 8850 Call, "couldn't allocate output register for constraint '" + 8851 Twine(OpInfo.ConstraintCode) + "'"); 8852 return; 8853 } 8854 8855 if (DetectWriteToReservedRegister()) 8856 return; 8857 8858 // Add information to the INLINEASM node to know that this register is 8859 // set. 8860 OpInfo.AssignedRegs.AddInlineAsmOperands( 8861 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8862 : InlineAsm::Kind_RegDef, 8863 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8864 } 8865 break; 8866 8867 case InlineAsm::isInput: 8868 case InlineAsm::isLabel: { 8869 SDValue InOperandVal = OpInfo.CallOperand; 8870 8871 if (OpInfo.isMatchingInputConstraint()) { 8872 // If this is required to match an output register we have already set, 8873 // just use its register. 8874 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8875 AsmNodeOperands); 8876 unsigned OpFlag = 8877 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8878 if (InlineAsm::isRegDefKind(OpFlag) || 8879 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8880 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8881 if (OpInfo.isIndirect) { 8882 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8883 emitInlineAsmError(Call, "inline asm not supported yet: " 8884 "don't know how to handle tied " 8885 "indirect register inputs"); 8886 return; 8887 } 8888 8889 SmallVector<unsigned, 4> Regs; 8890 MachineFunction &MF = DAG.getMachineFunction(); 8891 MachineRegisterInfo &MRI = MF.getRegInfo(); 8892 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8893 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8894 Register TiedReg = R->getReg(); 8895 MVT RegVT = R->getSimpleValueType(0); 8896 const TargetRegisterClass *RC = 8897 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8898 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8899 : TRI.getMinimalPhysRegClass(TiedReg); 8900 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8901 for (unsigned i = 0; i != NumRegs; ++i) 8902 Regs.push_back(MRI.createVirtualRegister(RC)); 8903 8904 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8905 8906 SDLoc dl = getCurSDLoc(); 8907 // Use the produced MatchedRegs object to 8908 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8909 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8910 true, OpInfo.getMatchedOperand(), dl, 8911 DAG, AsmNodeOperands); 8912 break; 8913 } 8914 8915 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8916 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8917 "Unexpected number of operands"); 8918 // Add information to the INLINEASM node to know about this input. 8919 // See InlineAsm.h isUseOperandTiedToDef. 8920 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8921 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8922 OpInfo.getMatchedOperand()); 8923 AsmNodeOperands.push_back(DAG.getTargetConstant( 8924 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8925 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8926 break; 8927 } 8928 8929 // Treat indirect 'X' constraint as memory. 8930 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8931 OpInfo.isIndirect) 8932 OpInfo.ConstraintType = TargetLowering::C_Memory; 8933 8934 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8935 OpInfo.ConstraintType == TargetLowering::C_Other) { 8936 std::vector<SDValue> Ops; 8937 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8938 Ops, DAG); 8939 if (Ops.empty()) { 8940 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8941 if (isa<ConstantSDNode>(InOperandVal)) { 8942 emitInlineAsmError(Call, "value out of range for constraint '" + 8943 Twine(OpInfo.ConstraintCode) + "'"); 8944 return; 8945 } 8946 8947 emitInlineAsmError(Call, 8948 "invalid operand for inline asm constraint '" + 8949 Twine(OpInfo.ConstraintCode) + "'"); 8950 return; 8951 } 8952 8953 // Add information to the INLINEASM node to know about this input. 8954 unsigned ResOpType = 8955 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8956 AsmNodeOperands.push_back(DAG.getTargetConstant( 8957 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8958 llvm::append_range(AsmNodeOperands, Ops); 8959 break; 8960 } 8961 8962 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8963 OpInfo.ConstraintType == TargetLowering::C_Address) { 8964 assert((OpInfo.isIndirect || 8965 OpInfo.ConstraintType != TargetLowering::C_Memory) && 8966 "Operand must be indirect to be a mem!"); 8967 assert(InOperandVal.getValueType() == 8968 TLI.getPointerTy(DAG.getDataLayout()) && 8969 "Memory operands expect pointer values"); 8970 8971 unsigned ConstraintID = 8972 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8973 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8974 "Failed to convert memory constraint code to constraint id."); 8975 8976 // Add information to the INLINEASM node to know about this input. 8977 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8978 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8979 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8980 getCurSDLoc(), 8981 MVT::i32)); 8982 AsmNodeOperands.push_back(InOperandVal); 8983 break; 8984 } 8985 8986 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8987 OpInfo.ConstraintType == TargetLowering::C_Register) && 8988 "Unknown constraint type!"); 8989 8990 // TODO: Support this. 8991 if (OpInfo.isIndirect) { 8992 emitInlineAsmError( 8993 Call, "Don't know how to handle indirect register inputs yet " 8994 "for constraint '" + 8995 Twine(OpInfo.ConstraintCode) + "'"); 8996 return; 8997 } 8998 8999 // Copy the input into the appropriate registers. 9000 if (OpInfo.AssignedRegs.Regs.empty()) { 9001 emitInlineAsmError(Call, 9002 "couldn't allocate input reg for constraint '" + 9003 Twine(OpInfo.ConstraintCode) + "'"); 9004 return; 9005 } 9006 9007 if (DetectWriteToReservedRegister()) 9008 return; 9009 9010 SDLoc dl = getCurSDLoc(); 9011 9012 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 9013 &Call); 9014 9015 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 9016 dl, DAG, AsmNodeOperands); 9017 break; 9018 } 9019 case InlineAsm::isClobber: 9020 // Add the clobbered value to the operand list, so that the register 9021 // allocator is aware that the physreg got clobbered. 9022 if (!OpInfo.AssignedRegs.Regs.empty()) 9023 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 9024 false, 0, getCurSDLoc(), DAG, 9025 AsmNodeOperands); 9026 break; 9027 } 9028 } 9029 9030 // Finish up input operands. Set the input chain and add the flag last. 9031 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9032 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 9033 9034 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9035 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9036 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9037 Flag = Chain.getValue(1); 9038 9039 // Do additional work to generate outputs. 9040 9041 SmallVector<EVT, 1> ResultVTs; 9042 SmallVector<SDValue, 1> ResultValues; 9043 SmallVector<SDValue, 8> OutChains; 9044 9045 llvm::Type *CallResultType = Call.getType(); 9046 ArrayRef<Type *> ResultTypes; 9047 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9048 ResultTypes = StructResult->elements(); 9049 else if (!CallResultType->isVoidTy()) 9050 ResultTypes = makeArrayRef(CallResultType); 9051 9052 auto CurResultType = ResultTypes.begin(); 9053 auto handleRegAssign = [&](SDValue V) { 9054 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9055 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9056 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9057 ++CurResultType; 9058 // If the type of the inline asm call site return value is different but has 9059 // same size as the type of the asm output bitcast it. One example of this 9060 // is for vectors with different width / number of elements. This can 9061 // happen for register classes that can contain multiple different value 9062 // types. The preg or vreg allocated may not have the same VT as was 9063 // expected. 9064 // 9065 // This can also happen for a return value that disagrees with the register 9066 // class it is put in, eg. a double in a general-purpose register on a 9067 // 32-bit machine. 9068 if (ResultVT != V.getValueType() && 9069 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9070 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9071 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9072 V.getValueType().isInteger()) { 9073 // If a result value was tied to an input value, the computed result 9074 // may have a wider width than the expected result. Extract the 9075 // relevant portion. 9076 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9077 } 9078 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9079 ResultVTs.push_back(ResultVT); 9080 ResultValues.push_back(V); 9081 }; 9082 9083 // Deal with output operands. 9084 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9085 if (OpInfo.Type == InlineAsm::isOutput) { 9086 SDValue Val; 9087 // Skip trivial output operands. 9088 if (OpInfo.AssignedRegs.Regs.empty()) 9089 continue; 9090 9091 switch (OpInfo.ConstraintType) { 9092 case TargetLowering::C_Register: 9093 case TargetLowering::C_RegisterClass: 9094 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9095 Chain, &Flag, &Call); 9096 break; 9097 case TargetLowering::C_Immediate: 9098 case TargetLowering::C_Other: 9099 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 9100 OpInfo, DAG); 9101 break; 9102 case TargetLowering::C_Memory: 9103 break; // Already handled. 9104 case TargetLowering::C_Address: 9105 break; // Silence warning. 9106 case TargetLowering::C_Unknown: 9107 assert(false && "Unexpected unknown constraint"); 9108 } 9109 9110 // Indirect output manifest as stores. Record output chains. 9111 if (OpInfo.isIndirect) { 9112 const Value *Ptr = OpInfo.CallOperandVal; 9113 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9114 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9115 MachinePointerInfo(Ptr)); 9116 OutChains.push_back(Store); 9117 } else { 9118 // generate CopyFromRegs to associated registers. 9119 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9120 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9121 for (const SDValue &V : Val->op_values()) 9122 handleRegAssign(V); 9123 } else 9124 handleRegAssign(Val); 9125 } 9126 } 9127 } 9128 9129 // Set results. 9130 if (!ResultValues.empty()) { 9131 assert(CurResultType == ResultTypes.end() && 9132 "Mismatch in number of ResultTypes"); 9133 assert(ResultValues.size() == ResultTypes.size() && 9134 "Mismatch in number of output operands in asm result"); 9135 9136 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9137 DAG.getVTList(ResultVTs), ResultValues); 9138 setValue(&Call, V); 9139 } 9140 9141 // Collect store chains. 9142 if (!OutChains.empty()) 9143 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9144 9145 if (EmitEHLabels) { 9146 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9147 } 9148 9149 // Only Update Root if inline assembly has a memory effect. 9150 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9151 EmitEHLabels) 9152 DAG.setRoot(Chain); 9153 } 9154 9155 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9156 const Twine &Message) { 9157 LLVMContext &Ctx = *DAG.getContext(); 9158 Ctx.emitError(&Call, Message); 9159 9160 // Make sure we leave the DAG in a valid state 9161 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9162 SmallVector<EVT, 1> ValueVTs; 9163 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9164 9165 if (ValueVTs.empty()) 9166 return; 9167 9168 SmallVector<SDValue, 1> Ops; 9169 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9170 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9171 9172 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9173 } 9174 9175 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9176 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9177 MVT::Other, getRoot(), 9178 getValue(I.getArgOperand(0)), 9179 DAG.getSrcValue(I.getArgOperand(0)))); 9180 } 9181 9182 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9184 const DataLayout &DL = DAG.getDataLayout(); 9185 SDValue V = DAG.getVAArg( 9186 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9187 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9188 DL.getABITypeAlign(I.getType()).value()); 9189 DAG.setRoot(V.getValue(1)); 9190 9191 if (I.getType()->isPointerTy()) 9192 V = DAG.getPtrExtOrTrunc( 9193 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9194 setValue(&I, V); 9195 } 9196 9197 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9198 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9199 MVT::Other, getRoot(), 9200 getValue(I.getArgOperand(0)), 9201 DAG.getSrcValue(I.getArgOperand(0)))); 9202 } 9203 9204 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9205 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9206 MVT::Other, getRoot(), 9207 getValue(I.getArgOperand(0)), 9208 getValue(I.getArgOperand(1)), 9209 DAG.getSrcValue(I.getArgOperand(0)), 9210 DAG.getSrcValue(I.getArgOperand(1)))); 9211 } 9212 9213 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9214 const Instruction &I, 9215 SDValue Op) { 9216 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9217 if (!Range) 9218 return Op; 9219 9220 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9221 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9222 return Op; 9223 9224 APInt Lo = CR.getUnsignedMin(); 9225 if (!Lo.isMinValue()) 9226 return Op; 9227 9228 APInt Hi = CR.getUnsignedMax(); 9229 unsigned Bits = std::max(Hi.getActiveBits(), 9230 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9231 9232 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9233 9234 SDLoc SL = getCurSDLoc(); 9235 9236 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9237 DAG.getValueType(SmallVT)); 9238 unsigned NumVals = Op.getNode()->getNumValues(); 9239 if (NumVals == 1) 9240 return ZExt; 9241 9242 SmallVector<SDValue, 4> Ops; 9243 9244 Ops.push_back(ZExt); 9245 for (unsigned I = 1; I != NumVals; ++I) 9246 Ops.push_back(Op.getValue(I)); 9247 9248 return DAG.getMergeValues(Ops, SL); 9249 } 9250 9251 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9252 /// the call being lowered. 9253 /// 9254 /// This is a helper for lowering intrinsics that follow a target calling 9255 /// convention or require stack pointer adjustment. Only a subset of the 9256 /// intrinsic's operands need to participate in the calling convention. 9257 void SelectionDAGBuilder::populateCallLoweringInfo( 9258 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9259 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9260 bool IsPatchPoint) { 9261 TargetLowering::ArgListTy Args; 9262 Args.reserve(NumArgs); 9263 9264 // Populate the argument list. 9265 // Attributes for args start at offset 1, after the return attribute. 9266 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9267 ArgI != ArgE; ++ArgI) { 9268 const Value *V = Call->getOperand(ArgI); 9269 9270 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9271 9272 TargetLowering::ArgListEntry Entry; 9273 Entry.Node = getValue(V); 9274 Entry.Ty = V->getType(); 9275 Entry.setAttributes(Call, ArgI); 9276 Args.push_back(Entry); 9277 } 9278 9279 CLI.setDebugLoc(getCurSDLoc()) 9280 .setChain(getRoot()) 9281 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9282 .setDiscardResult(Call->use_empty()) 9283 .setIsPatchPoint(IsPatchPoint) 9284 .setIsPreallocated( 9285 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9286 } 9287 9288 /// Add a stack map intrinsic call's live variable operands to a stackmap 9289 /// or patchpoint target node's operand list. 9290 /// 9291 /// Constants are converted to TargetConstants purely as an optimization to 9292 /// avoid constant materialization and register allocation. 9293 /// 9294 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9295 /// generate addess computation nodes, and so FinalizeISel can convert the 9296 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9297 /// address materialization and register allocation, but may also be required 9298 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9299 /// alloca in the entry block, then the runtime may assume that the alloca's 9300 /// StackMap location can be read immediately after compilation and that the 9301 /// location is valid at any point during execution (this is similar to the 9302 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9303 /// only available in a register, then the runtime would need to trap when 9304 /// execution reaches the StackMap in order to read the alloca's location. 9305 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9306 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9307 SelectionDAGBuilder &Builder) { 9308 SelectionDAG &DAG = Builder.DAG; 9309 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9310 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9311 9312 // Things on the stack are pointer-typed, meaning that they are already 9313 // legal and can be emitted directly to target nodes. 9314 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9315 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9316 } else { 9317 // Otherwise emit a target independent node to be legalised. 9318 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9319 } 9320 } 9321 } 9322 9323 /// Lower llvm.experimental.stackmap. 9324 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9325 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9326 // [live variables...]) 9327 9328 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9329 9330 SDValue Chain, InFlag, Callee, NullPtr; 9331 SmallVector<SDValue, 32> Ops; 9332 9333 SDLoc DL = getCurSDLoc(); 9334 Callee = getValue(CI.getCalledOperand()); 9335 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9336 9337 // The stackmap intrinsic only records the live variables (the arguments 9338 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9339 // intrinsic, this won't be lowered to a function call. This means we don't 9340 // have to worry about calling conventions and target specific lowering code. 9341 // Instead we perform the call lowering right here. 9342 // 9343 // chain, flag = CALLSEQ_START(chain, 0, 0) 9344 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9345 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9346 // 9347 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9348 InFlag = Chain.getValue(1); 9349 9350 // Add the STACKMAP operands, starting with DAG house-keeping. 9351 Ops.push_back(Chain); 9352 Ops.push_back(InFlag); 9353 9354 // Add the <id>, <numShadowBytes> operands. 9355 // 9356 // These do not require legalisation, and can be emitted directly to target 9357 // constant nodes. 9358 SDValue ID = getValue(CI.getArgOperand(0)); 9359 assert(ID.getValueType() == MVT::i64); 9360 SDValue IDConst = DAG.getTargetConstant( 9361 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9362 Ops.push_back(IDConst); 9363 9364 SDValue Shad = getValue(CI.getArgOperand(1)); 9365 assert(Shad.getValueType() == MVT::i32); 9366 SDValue ShadConst = DAG.getTargetConstant( 9367 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9368 Ops.push_back(ShadConst); 9369 9370 // Add the live variables. 9371 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9372 9373 // Create the STACKMAP node. 9374 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9375 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9376 InFlag = Chain.getValue(1); 9377 9378 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9379 9380 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9381 9382 // Set the root to the target-lowered call chain. 9383 DAG.setRoot(Chain); 9384 9385 // Inform the Frame Information that we have a stackmap in this function. 9386 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9387 } 9388 9389 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9390 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9391 const BasicBlock *EHPadBB) { 9392 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9393 // i32 <numBytes>, 9394 // i8* <target>, 9395 // i32 <numArgs>, 9396 // [Args...], 9397 // [live variables...]) 9398 9399 CallingConv::ID CC = CB.getCallingConv(); 9400 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9401 bool HasDef = !CB.getType()->isVoidTy(); 9402 SDLoc dl = getCurSDLoc(); 9403 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9404 9405 // Handle immediate and symbolic callees. 9406 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9407 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9408 /*isTarget=*/true); 9409 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9410 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9411 SDLoc(SymbolicCallee), 9412 SymbolicCallee->getValueType(0)); 9413 9414 // Get the real number of arguments participating in the call <numArgs> 9415 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9416 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9417 9418 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9419 // Intrinsics include all meta-operands up to but not including CC. 9420 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9421 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9422 "Not enough arguments provided to the patchpoint intrinsic"); 9423 9424 // For AnyRegCC the arguments are lowered later on manually. 9425 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9426 Type *ReturnTy = 9427 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9428 9429 TargetLowering::CallLoweringInfo CLI(DAG); 9430 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9431 ReturnTy, true); 9432 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9433 9434 SDNode *CallEnd = Result.second.getNode(); 9435 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9436 CallEnd = CallEnd->getOperand(0).getNode(); 9437 9438 /// Get a call instruction from the call sequence chain. 9439 /// Tail calls are not allowed. 9440 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9441 "Expected a callseq node."); 9442 SDNode *Call = CallEnd->getOperand(0).getNode(); 9443 bool HasGlue = Call->getGluedNode(); 9444 9445 // Replace the target specific call node with the patchable intrinsic. 9446 SmallVector<SDValue, 8> Ops; 9447 9448 // Push the chain. 9449 Ops.push_back(*(Call->op_begin())); 9450 9451 // Optionally, push the glue (if any). 9452 if (HasGlue) 9453 Ops.push_back(*(Call->op_end() - 1)); 9454 9455 // Push the register mask info. 9456 if (HasGlue) 9457 Ops.push_back(*(Call->op_end() - 2)); 9458 else 9459 Ops.push_back(*(Call->op_end() - 1)); 9460 9461 // Add the <id> and <numBytes> constants. 9462 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9463 Ops.push_back(DAG.getTargetConstant( 9464 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9465 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9466 Ops.push_back(DAG.getTargetConstant( 9467 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9468 MVT::i32)); 9469 9470 // Add the callee. 9471 Ops.push_back(Callee); 9472 9473 // Adjust <numArgs> to account for any arguments that have been passed on the 9474 // stack instead. 9475 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9476 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9477 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9478 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9479 9480 // Add the calling convention 9481 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9482 9483 // Add the arguments we omitted previously. The register allocator should 9484 // place these in any free register. 9485 if (IsAnyRegCC) 9486 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9487 Ops.push_back(getValue(CB.getArgOperand(i))); 9488 9489 // Push the arguments from the call instruction. 9490 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9491 Ops.append(Call->op_begin() + 2, e); 9492 9493 // Push live variables for the stack map. 9494 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9495 9496 SDVTList NodeTys; 9497 if (IsAnyRegCC && HasDef) { 9498 // Create the return types based on the intrinsic definition 9499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9500 SmallVector<EVT, 3> ValueVTs; 9501 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9502 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9503 9504 // There is always a chain and a glue type at the end 9505 ValueVTs.push_back(MVT::Other); 9506 ValueVTs.push_back(MVT::Glue); 9507 NodeTys = DAG.getVTList(ValueVTs); 9508 } else 9509 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9510 9511 // Replace the target specific call node with a PATCHPOINT node. 9512 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9513 9514 // Update the NodeMap. 9515 if (HasDef) { 9516 if (IsAnyRegCC) 9517 setValue(&CB, SDValue(PPV.getNode(), 0)); 9518 else 9519 setValue(&CB, Result.first); 9520 } 9521 9522 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9523 // call sequence. Furthermore the location of the chain and glue can change 9524 // when the AnyReg calling convention is used and the intrinsic returns a 9525 // value. 9526 if (IsAnyRegCC && HasDef) { 9527 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9528 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 9529 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9530 } else 9531 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 9532 DAG.DeleteNode(Call); 9533 9534 // Inform the Frame Information that we have a patchpoint in this function. 9535 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9536 } 9537 9538 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9539 unsigned Intrinsic) { 9540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9541 SDValue Op1 = getValue(I.getArgOperand(0)); 9542 SDValue Op2; 9543 if (I.arg_size() > 1) 9544 Op2 = getValue(I.getArgOperand(1)); 9545 SDLoc dl = getCurSDLoc(); 9546 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9547 SDValue Res; 9548 SDNodeFlags SDFlags; 9549 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9550 SDFlags.copyFMF(*FPMO); 9551 9552 switch (Intrinsic) { 9553 case Intrinsic::vector_reduce_fadd: 9554 if (SDFlags.hasAllowReassociation()) 9555 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9556 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9557 SDFlags); 9558 else 9559 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9560 break; 9561 case Intrinsic::vector_reduce_fmul: 9562 if (SDFlags.hasAllowReassociation()) 9563 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9564 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9565 SDFlags); 9566 else 9567 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9568 break; 9569 case Intrinsic::vector_reduce_add: 9570 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9571 break; 9572 case Intrinsic::vector_reduce_mul: 9573 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9574 break; 9575 case Intrinsic::vector_reduce_and: 9576 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9577 break; 9578 case Intrinsic::vector_reduce_or: 9579 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9580 break; 9581 case Intrinsic::vector_reduce_xor: 9582 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9583 break; 9584 case Intrinsic::vector_reduce_smax: 9585 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9586 break; 9587 case Intrinsic::vector_reduce_smin: 9588 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9589 break; 9590 case Intrinsic::vector_reduce_umax: 9591 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9592 break; 9593 case Intrinsic::vector_reduce_umin: 9594 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9595 break; 9596 case Intrinsic::vector_reduce_fmax: 9597 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9598 break; 9599 case Intrinsic::vector_reduce_fmin: 9600 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9601 break; 9602 default: 9603 llvm_unreachable("Unhandled vector reduce intrinsic"); 9604 } 9605 setValue(&I, Res); 9606 } 9607 9608 /// Returns an AttributeList representing the attributes applied to the return 9609 /// value of the given call. 9610 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9611 SmallVector<Attribute::AttrKind, 2> Attrs; 9612 if (CLI.RetSExt) 9613 Attrs.push_back(Attribute::SExt); 9614 if (CLI.RetZExt) 9615 Attrs.push_back(Attribute::ZExt); 9616 if (CLI.IsInReg) 9617 Attrs.push_back(Attribute::InReg); 9618 9619 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9620 Attrs); 9621 } 9622 9623 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9624 /// implementation, which just calls LowerCall. 9625 /// FIXME: When all targets are 9626 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9627 std::pair<SDValue, SDValue> 9628 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9629 // Handle the incoming return values from the call. 9630 CLI.Ins.clear(); 9631 Type *OrigRetTy = CLI.RetTy; 9632 SmallVector<EVT, 4> RetTys; 9633 SmallVector<uint64_t, 4> Offsets; 9634 auto &DL = CLI.DAG.getDataLayout(); 9635 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9636 9637 if (CLI.IsPostTypeLegalization) { 9638 // If we are lowering a libcall after legalization, split the return type. 9639 SmallVector<EVT, 4> OldRetTys; 9640 SmallVector<uint64_t, 4> OldOffsets; 9641 RetTys.swap(OldRetTys); 9642 Offsets.swap(OldOffsets); 9643 9644 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9645 EVT RetVT = OldRetTys[i]; 9646 uint64_t Offset = OldOffsets[i]; 9647 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9648 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9649 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9650 RetTys.append(NumRegs, RegisterVT); 9651 for (unsigned j = 0; j != NumRegs; ++j) 9652 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9653 } 9654 } 9655 9656 SmallVector<ISD::OutputArg, 4> Outs; 9657 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9658 9659 bool CanLowerReturn = 9660 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9661 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9662 9663 SDValue DemoteStackSlot; 9664 int DemoteStackIdx = -100; 9665 if (!CanLowerReturn) { 9666 // FIXME: equivalent assert? 9667 // assert(!CS.hasInAllocaArgument() && 9668 // "sret demotion is incompatible with inalloca"); 9669 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9670 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9671 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9672 DemoteStackIdx = 9673 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9674 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9675 DL.getAllocaAddrSpace()); 9676 9677 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9678 ArgListEntry Entry; 9679 Entry.Node = DemoteStackSlot; 9680 Entry.Ty = StackSlotPtrType; 9681 Entry.IsSExt = false; 9682 Entry.IsZExt = false; 9683 Entry.IsInReg = false; 9684 Entry.IsSRet = true; 9685 Entry.IsNest = false; 9686 Entry.IsByVal = false; 9687 Entry.IsByRef = false; 9688 Entry.IsReturned = false; 9689 Entry.IsSwiftSelf = false; 9690 Entry.IsSwiftAsync = false; 9691 Entry.IsSwiftError = false; 9692 Entry.IsCFGuardTarget = false; 9693 Entry.Alignment = Alignment; 9694 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9695 CLI.NumFixedArgs += 1; 9696 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9697 9698 // sret demotion isn't compatible with tail-calls, since the sret argument 9699 // points into the callers stack frame. 9700 CLI.IsTailCall = false; 9701 } else { 9702 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9703 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9704 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9705 ISD::ArgFlagsTy Flags; 9706 if (NeedsRegBlock) { 9707 Flags.setInConsecutiveRegs(); 9708 if (I == RetTys.size() - 1) 9709 Flags.setInConsecutiveRegsLast(); 9710 } 9711 EVT VT = RetTys[I]; 9712 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9713 CLI.CallConv, VT); 9714 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9715 CLI.CallConv, VT); 9716 for (unsigned i = 0; i != NumRegs; ++i) { 9717 ISD::InputArg MyFlags; 9718 MyFlags.Flags = Flags; 9719 MyFlags.VT = RegisterVT; 9720 MyFlags.ArgVT = VT; 9721 MyFlags.Used = CLI.IsReturnValueUsed; 9722 if (CLI.RetTy->isPointerTy()) { 9723 MyFlags.Flags.setPointer(); 9724 MyFlags.Flags.setPointerAddrSpace( 9725 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9726 } 9727 if (CLI.RetSExt) 9728 MyFlags.Flags.setSExt(); 9729 if (CLI.RetZExt) 9730 MyFlags.Flags.setZExt(); 9731 if (CLI.IsInReg) 9732 MyFlags.Flags.setInReg(); 9733 CLI.Ins.push_back(MyFlags); 9734 } 9735 } 9736 } 9737 9738 // We push in swifterror return as the last element of CLI.Ins. 9739 ArgListTy &Args = CLI.getArgs(); 9740 if (supportSwiftError()) { 9741 for (const ArgListEntry &Arg : Args) { 9742 if (Arg.IsSwiftError) { 9743 ISD::InputArg MyFlags; 9744 MyFlags.VT = getPointerTy(DL); 9745 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9746 MyFlags.Flags.setSwiftError(); 9747 CLI.Ins.push_back(MyFlags); 9748 } 9749 } 9750 } 9751 9752 // Handle all of the outgoing arguments. 9753 CLI.Outs.clear(); 9754 CLI.OutVals.clear(); 9755 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9756 SmallVector<EVT, 4> ValueVTs; 9757 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9758 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9759 Type *FinalType = Args[i].Ty; 9760 if (Args[i].IsByVal) 9761 FinalType = Args[i].IndirectType; 9762 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9763 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9764 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9765 ++Value) { 9766 EVT VT = ValueVTs[Value]; 9767 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9768 SDValue Op = SDValue(Args[i].Node.getNode(), 9769 Args[i].Node.getResNo() + Value); 9770 ISD::ArgFlagsTy Flags; 9771 9772 // Certain targets (such as MIPS), may have a different ABI alignment 9773 // for a type depending on the context. Give the target a chance to 9774 // specify the alignment it wants. 9775 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9776 Flags.setOrigAlign(OriginalAlignment); 9777 9778 if (Args[i].Ty->isPointerTy()) { 9779 Flags.setPointer(); 9780 Flags.setPointerAddrSpace( 9781 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9782 } 9783 if (Args[i].IsZExt) 9784 Flags.setZExt(); 9785 if (Args[i].IsSExt) 9786 Flags.setSExt(); 9787 if (Args[i].IsInReg) { 9788 // If we are using vectorcall calling convention, a structure that is 9789 // passed InReg - is surely an HVA 9790 if (CLI.CallConv == CallingConv::X86_VectorCall && 9791 isa<StructType>(FinalType)) { 9792 // The first value of a structure is marked 9793 if (0 == Value) 9794 Flags.setHvaStart(); 9795 Flags.setHva(); 9796 } 9797 // Set InReg Flag 9798 Flags.setInReg(); 9799 } 9800 if (Args[i].IsSRet) 9801 Flags.setSRet(); 9802 if (Args[i].IsSwiftSelf) 9803 Flags.setSwiftSelf(); 9804 if (Args[i].IsSwiftAsync) 9805 Flags.setSwiftAsync(); 9806 if (Args[i].IsSwiftError) 9807 Flags.setSwiftError(); 9808 if (Args[i].IsCFGuardTarget) 9809 Flags.setCFGuardTarget(); 9810 if (Args[i].IsByVal) 9811 Flags.setByVal(); 9812 if (Args[i].IsByRef) 9813 Flags.setByRef(); 9814 if (Args[i].IsPreallocated) { 9815 Flags.setPreallocated(); 9816 // Set the byval flag for CCAssignFn callbacks that don't know about 9817 // preallocated. This way we can know how many bytes we should've 9818 // allocated and how many bytes a callee cleanup function will pop. If 9819 // we port preallocated to more targets, we'll have to add custom 9820 // preallocated handling in the various CC lowering callbacks. 9821 Flags.setByVal(); 9822 } 9823 if (Args[i].IsInAlloca) { 9824 Flags.setInAlloca(); 9825 // Set the byval flag for CCAssignFn callbacks that don't know about 9826 // inalloca. This way we can know how many bytes we should've allocated 9827 // and how many bytes a callee cleanup function will pop. If we port 9828 // inalloca to more targets, we'll have to add custom inalloca handling 9829 // in the various CC lowering callbacks. 9830 Flags.setByVal(); 9831 } 9832 Align MemAlign; 9833 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9834 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9835 Flags.setByValSize(FrameSize); 9836 9837 // info is not there but there are cases it cannot get right. 9838 if (auto MA = Args[i].Alignment) 9839 MemAlign = *MA; 9840 else 9841 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9842 } else if (auto MA = Args[i].Alignment) { 9843 MemAlign = *MA; 9844 } else { 9845 MemAlign = OriginalAlignment; 9846 } 9847 Flags.setMemAlign(MemAlign); 9848 if (Args[i].IsNest) 9849 Flags.setNest(); 9850 if (NeedsRegBlock) 9851 Flags.setInConsecutiveRegs(); 9852 9853 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9854 CLI.CallConv, VT); 9855 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9856 CLI.CallConv, VT); 9857 SmallVector<SDValue, 4> Parts(NumParts); 9858 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9859 9860 if (Args[i].IsSExt) 9861 ExtendKind = ISD::SIGN_EXTEND; 9862 else if (Args[i].IsZExt) 9863 ExtendKind = ISD::ZERO_EXTEND; 9864 9865 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9866 // for now. 9867 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9868 CanLowerReturn) { 9869 assert((CLI.RetTy == Args[i].Ty || 9870 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9871 CLI.RetTy->getPointerAddressSpace() == 9872 Args[i].Ty->getPointerAddressSpace())) && 9873 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9874 // Before passing 'returned' to the target lowering code, ensure that 9875 // either the register MVT and the actual EVT are the same size or that 9876 // the return value and argument are extended in the same way; in these 9877 // cases it's safe to pass the argument register value unchanged as the 9878 // return register value (although it's at the target's option whether 9879 // to do so) 9880 // TODO: allow code generation to take advantage of partially preserved 9881 // registers rather than clobbering the entire register when the 9882 // parameter extension method is not compatible with the return 9883 // extension method 9884 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9885 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9886 CLI.RetZExt == Args[i].IsZExt)) 9887 Flags.setReturned(); 9888 } 9889 9890 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9891 CLI.CallConv, ExtendKind); 9892 9893 for (unsigned j = 0; j != NumParts; ++j) { 9894 // if it isn't first piece, alignment must be 1 9895 // For scalable vectors the scalable part is currently handled 9896 // by individual targets, so we just use the known minimum size here. 9897 ISD::OutputArg MyFlags( 9898 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9899 i < CLI.NumFixedArgs, i, 9900 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9901 if (NumParts > 1 && j == 0) 9902 MyFlags.Flags.setSplit(); 9903 else if (j != 0) { 9904 MyFlags.Flags.setOrigAlign(Align(1)); 9905 if (j == NumParts - 1) 9906 MyFlags.Flags.setSplitEnd(); 9907 } 9908 9909 CLI.Outs.push_back(MyFlags); 9910 CLI.OutVals.push_back(Parts[j]); 9911 } 9912 9913 if (NeedsRegBlock && Value == NumValues - 1) 9914 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9915 } 9916 } 9917 9918 SmallVector<SDValue, 4> InVals; 9919 CLI.Chain = LowerCall(CLI, InVals); 9920 9921 // Update CLI.InVals to use outside of this function. 9922 CLI.InVals = InVals; 9923 9924 // Verify that the target's LowerCall behaved as expected. 9925 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9926 "LowerCall didn't return a valid chain!"); 9927 assert((!CLI.IsTailCall || InVals.empty()) && 9928 "LowerCall emitted a return value for a tail call!"); 9929 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9930 "LowerCall didn't emit the correct number of values!"); 9931 9932 // For a tail call, the return value is merely live-out and there aren't 9933 // any nodes in the DAG representing it. Return a special value to 9934 // indicate that a tail call has been emitted and no more Instructions 9935 // should be processed in the current block. 9936 if (CLI.IsTailCall) { 9937 CLI.DAG.setRoot(CLI.Chain); 9938 return std::make_pair(SDValue(), SDValue()); 9939 } 9940 9941 #ifndef NDEBUG 9942 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9943 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9944 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9945 "LowerCall emitted a value with the wrong type!"); 9946 } 9947 #endif 9948 9949 SmallVector<SDValue, 4> ReturnValues; 9950 if (!CanLowerReturn) { 9951 // The instruction result is the result of loading from the 9952 // hidden sret parameter. 9953 SmallVector<EVT, 1> PVTs; 9954 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9955 9956 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9957 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9958 EVT PtrVT = PVTs[0]; 9959 9960 unsigned NumValues = RetTys.size(); 9961 ReturnValues.resize(NumValues); 9962 SmallVector<SDValue, 4> Chains(NumValues); 9963 9964 // An aggregate return value cannot wrap around the address space, so 9965 // offsets to its parts don't wrap either. 9966 SDNodeFlags Flags; 9967 Flags.setNoUnsignedWrap(true); 9968 9969 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9970 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9971 for (unsigned i = 0; i < NumValues; ++i) { 9972 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9973 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9974 PtrVT), Flags); 9975 SDValue L = CLI.DAG.getLoad( 9976 RetTys[i], CLI.DL, CLI.Chain, Add, 9977 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9978 DemoteStackIdx, Offsets[i]), 9979 HiddenSRetAlign); 9980 ReturnValues[i] = L; 9981 Chains[i] = L.getValue(1); 9982 } 9983 9984 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9985 } else { 9986 // Collect the legal value parts into potentially illegal values 9987 // that correspond to the original function's return values. 9988 Optional<ISD::NodeType> AssertOp; 9989 if (CLI.RetSExt) 9990 AssertOp = ISD::AssertSext; 9991 else if (CLI.RetZExt) 9992 AssertOp = ISD::AssertZext; 9993 unsigned CurReg = 0; 9994 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9995 EVT VT = RetTys[I]; 9996 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9997 CLI.CallConv, VT); 9998 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9999 CLI.CallConv, VT); 10000 10001 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10002 NumRegs, RegisterVT, VT, nullptr, 10003 CLI.CallConv, AssertOp)); 10004 CurReg += NumRegs; 10005 } 10006 10007 // For a function returning void, there is no return value. We can't create 10008 // such a node, so we just return a null return value in that case. In 10009 // that case, nothing will actually look at the value. 10010 if (ReturnValues.empty()) 10011 return std::make_pair(SDValue(), CLI.Chain); 10012 } 10013 10014 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10015 CLI.DAG.getVTList(RetTys), ReturnValues); 10016 return std::make_pair(Res, CLI.Chain); 10017 } 10018 10019 /// Places new result values for the node in Results (their number 10020 /// and types must exactly match those of the original return values of 10021 /// the node), or leaves Results empty, which indicates that the node is not 10022 /// to be custom lowered after all. 10023 void TargetLowering::LowerOperationWrapper(SDNode *N, 10024 SmallVectorImpl<SDValue> &Results, 10025 SelectionDAG &DAG) const { 10026 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10027 10028 if (!Res.getNode()) 10029 return; 10030 10031 // If the original node has one result, take the return value from 10032 // LowerOperation as is. It might not be result number 0. 10033 if (N->getNumValues() == 1) { 10034 Results.push_back(Res); 10035 return; 10036 } 10037 10038 // If the original node has multiple results, then the return node should 10039 // have the same number of results. 10040 assert((N->getNumValues() == Res->getNumValues()) && 10041 "Lowering returned the wrong number of results!"); 10042 10043 // Places new result values base on N result number. 10044 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10045 Results.push_back(Res.getValue(I)); 10046 } 10047 10048 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10049 llvm_unreachable("LowerOperation not implemented for this target!"); 10050 } 10051 10052 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10053 unsigned Reg, 10054 ISD::NodeType ExtendType) { 10055 SDValue Op = getNonRegisterValue(V); 10056 assert((Op.getOpcode() != ISD::CopyFromReg || 10057 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10058 "Copy from a reg to the same reg!"); 10059 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10060 10061 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10062 // If this is an InlineAsm we have to match the registers required, not the 10063 // notional registers required by the type. 10064 10065 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10066 None); // This is not an ABI copy. 10067 SDValue Chain = DAG.getEntryNode(); 10068 10069 if (ExtendType == ISD::ANY_EXTEND) { 10070 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10071 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10072 ExtendType = PreferredExtendIt->second; 10073 } 10074 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10075 PendingExports.push_back(Chain); 10076 } 10077 10078 #include "llvm/CodeGen/SelectionDAGISel.h" 10079 10080 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10081 /// entry block, return true. This includes arguments used by switches, since 10082 /// the switch may expand into multiple basic blocks. 10083 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10084 // With FastISel active, we may be splitting blocks, so force creation 10085 // of virtual registers for all non-dead arguments. 10086 if (FastISel) 10087 return A->use_empty(); 10088 10089 const BasicBlock &Entry = A->getParent()->front(); 10090 for (const User *U : A->users()) 10091 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10092 return false; // Use not in entry block. 10093 10094 return true; 10095 } 10096 10097 using ArgCopyElisionMapTy = 10098 DenseMap<const Argument *, 10099 std::pair<const AllocaInst *, const StoreInst *>>; 10100 10101 /// Scan the entry block of the function in FuncInfo for arguments that look 10102 /// like copies into a local alloca. Record any copied arguments in 10103 /// ArgCopyElisionCandidates. 10104 static void 10105 findArgumentCopyElisionCandidates(const DataLayout &DL, 10106 FunctionLoweringInfo *FuncInfo, 10107 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10108 // Record the state of every static alloca used in the entry block. Argument 10109 // allocas are all used in the entry block, so we need approximately as many 10110 // entries as we have arguments. 10111 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10112 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10113 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10114 StaticAllocas.reserve(NumArgs * 2); 10115 10116 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10117 if (!V) 10118 return nullptr; 10119 V = V->stripPointerCasts(); 10120 const auto *AI = dyn_cast<AllocaInst>(V); 10121 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10122 return nullptr; 10123 auto Iter = StaticAllocas.insert({AI, Unknown}); 10124 return &Iter.first->second; 10125 }; 10126 10127 // Look for stores of arguments to static allocas. Look through bitcasts and 10128 // GEPs to handle type coercions, as long as the alloca is fully initialized 10129 // by the store. Any non-store use of an alloca escapes it and any subsequent 10130 // unanalyzed store might write it. 10131 // FIXME: Handle structs initialized with multiple stores. 10132 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10133 // Look for stores, and handle non-store uses conservatively. 10134 const auto *SI = dyn_cast<StoreInst>(&I); 10135 if (!SI) { 10136 // We will look through cast uses, so ignore them completely. 10137 if (I.isCast()) 10138 continue; 10139 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10140 // to allocas. 10141 if (I.isDebugOrPseudoInst()) 10142 continue; 10143 // This is an unknown instruction. Assume it escapes or writes to all 10144 // static alloca operands. 10145 for (const Use &U : I.operands()) { 10146 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10147 *Info = StaticAllocaInfo::Clobbered; 10148 } 10149 continue; 10150 } 10151 10152 // If the stored value is a static alloca, mark it as escaped. 10153 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10154 *Info = StaticAllocaInfo::Clobbered; 10155 10156 // Check if the destination is a static alloca. 10157 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10158 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10159 if (!Info) 10160 continue; 10161 const AllocaInst *AI = cast<AllocaInst>(Dst); 10162 10163 // Skip allocas that have been initialized or clobbered. 10164 if (*Info != StaticAllocaInfo::Unknown) 10165 continue; 10166 10167 // Check if the stored value is an argument, and that this store fully 10168 // initializes the alloca. 10169 // If the argument type has padding bits we can't directly forward a pointer 10170 // as the upper bits may contain garbage. 10171 // Don't elide copies from the same argument twice. 10172 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10173 const auto *Arg = dyn_cast<Argument>(Val); 10174 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10175 Arg->getType()->isEmptyTy() || 10176 DL.getTypeStoreSize(Arg->getType()) != 10177 DL.getTypeAllocSize(AI->getAllocatedType()) || 10178 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10179 ArgCopyElisionCandidates.count(Arg)) { 10180 *Info = StaticAllocaInfo::Clobbered; 10181 continue; 10182 } 10183 10184 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10185 << '\n'); 10186 10187 // Mark this alloca and store for argument copy elision. 10188 *Info = StaticAllocaInfo::Elidable; 10189 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10190 10191 // Stop scanning if we've seen all arguments. This will happen early in -O0 10192 // builds, which is useful, because -O0 builds have large entry blocks and 10193 // many allocas. 10194 if (ArgCopyElisionCandidates.size() == NumArgs) 10195 break; 10196 } 10197 } 10198 10199 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10200 /// ArgVal is a load from a suitable fixed stack object. 10201 static void tryToElideArgumentCopy( 10202 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10203 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10204 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10205 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10206 SDValue ArgVal, bool &ArgHasUses) { 10207 // Check if this is a load from a fixed stack object. 10208 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10209 if (!LNode) 10210 return; 10211 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10212 if (!FINode) 10213 return; 10214 10215 // Check that the fixed stack object is the right size and alignment. 10216 // Look at the alignment that the user wrote on the alloca instead of looking 10217 // at the stack object. 10218 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10219 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10220 const AllocaInst *AI = ArgCopyIter->second.first; 10221 int FixedIndex = FINode->getIndex(); 10222 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10223 int OldIndex = AllocaIndex; 10224 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10225 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10226 LLVM_DEBUG( 10227 dbgs() << " argument copy elision failed due to bad fixed stack " 10228 "object size\n"); 10229 return; 10230 } 10231 Align RequiredAlignment = AI->getAlign(); 10232 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10233 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10234 "greater than stack argument alignment (" 10235 << DebugStr(RequiredAlignment) << " vs " 10236 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10237 return; 10238 } 10239 10240 // Perform the elision. Delete the old stack object and replace its only use 10241 // in the variable info map. Mark the stack object as mutable. 10242 LLVM_DEBUG({ 10243 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10244 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10245 << '\n'; 10246 }); 10247 MFI.RemoveStackObject(OldIndex); 10248 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10249 AllocaIndex = FixedIndex; 10250 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10251 Chains.push_back(ArgVal.getValue(1)); 10252 10253 // Avoid emitting code for the store implementing the copy. 10254 const StoreInst *SI = ArgCopyIter->second.second; 10255 ElidedArgCopyInstrs.insert(SI); 10256 10257 // Check for uses of the argument again so that we can avoid exporting ArgVal 10258 // if it is't used by anything other than the store. 10259 for (const Value *U : Arg.users()) { 10260 if (U != SI) { 10261 ArgHasUses = true; 10262 break; 10263 } 10264 } 10265 } 10266 10267 void SelectionDAGISel::LowerArguments(const Function &F) { 10268 SelectionDAG &DAG = SDB->DAG; 10269 SDLoc dl = SDB->getCurSDLoc(); 10270 const DataLayout &DL = DAG.getDataLayout(); 10271 SmallVector<ISD::InputArg, 16> Ins; 10272 10273 // In Naked functions we aren't going to save any registers. 10274 if (F.hasFnAttribute(Attribute::Naked)) 10275 return; 10276 10277 if (!FuncInfo->CanLowerReturn) { 10278 // Put in an sret pointer parameter before all the other parameters. 10279 SmallVector<EVT, 1> ValueVTs; 10280 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10281 F.getReturnType()->getPointerTo( 10282 DAG.getDataLayout().getAllocaAddrSpace()), 10283 ValueVTs); 10284 10285 // NOTE: Assuming that a pointer will never break down to more than one VT 10286 // or one register. 10287 ISD::ArgFlagsTy Flags; 10288 Flags.setSRet(); 10289 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10290 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10291 ISD::InputArg::NoArgIndex, 0); 10292 Ins.push_back(RetArg); 10293 } 10294 10295 // Look for stores of arguments to static allocas. Mark such arguments with a 10296 // flag to ask the target to give us the memory location of that argument if 10297 // available. 10298 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10299 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10300 ArgCopyElisionCandidates); 10301 10302 // Set up the incoming argument description vector. 10303 for (const Argument &Arg : F.args()) { 10304 unsigned ArgNo = Arg.getArgNo(); 10305 SmallVector<EVT, 4> ValueVTs; 10306 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10307 bool isArgValueUsed = !Arg.use_empty(); 10308 unsigned PartBase = 0; 10309 Type *FinalType = Arg.getType(); 10310 if (Arg.hasAttribute(Attribute::ByVal)) 10311 FinalType = Arg.getParamByValType(); 10312 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10313 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10314 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10315 Value != NumValues; ++Value) { 10316 EVT VT = ValueVTs[Value]; 10317 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10318 ISD::ArgFlagsTy Flags; 10319 10320 10321 if (Arg.getType()->isPointerTy()) { 10322 Flags.setPointer(); 10323 Flags.setPointerAddrSpace( 10324 cast<PointerType>(Arg.getType())->getAddressSpace()); 10325 } 10326 if (Arg.hasAttribute(Attribute::ZExt)) 10327 Flags.setZExt(); 10328 if (Arg.hasAttribute(Attribute::SExt)) 10329 Flags.setSExt(); 10330 if (Arg.hasAttribute(Attribute::InReg)) { 10331 // If we are using vectorcall calling convention, a structure that is 10332 // passed InReg - is surely an HVA 10333 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10334 isa<StructType>(Arg.getType())) { 10335 // The first value of a structure is marked 10336 if (0 == Value) 10337 Flags.setHvaStart(); 10338 Flags.setHva(); 10339 } 10340 // Set InReg Flag 10341 Flags.setInReg(); 10342 } 10343 if (Arg.hasAttribute(Attribute::StructRet)) 10344 Flags.setSRet(); 10345 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10346 Flags.setSwiftSelf(); 10347 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10348 Flags.setSwiftAsync(); 10349 if (Arg.hasAttribute(Attribute::SwiftError)) 10350 Flags.setSwiftError(); 10351 if (Arg.hasAttribute(Attribute::ByVal)) 10352 Flags.setByVal(); 10353 if (Arg.hasAttribute(Attribute::ByRef)) 10354 Flags.setByRef(); 10355 if (Arg.hasAttribute(Attribute::InAlloca)) { 10356 Flags.setInAlloca(); 10357 // Set the byval flag for CCAssignFn callbacks that don't know about 10358 // inalloca. This way we can know how many bytes we should've allocated 10359 // and how many bytes a callee cleanup function will pop. If we port 10360 // inalloca to more targets, we'll have to add custom inalloca handling 10361 // in the various CC lowering callbacks. 10362 Flags.setByVal(); 10363 } 10364 if (Arg.hasAttribute(Attribute::Preallocated)) { 10365 Flags.setPreallocated(); 10366 // Set the byval flag for CCAssignFn callbacks that don't know about 10367 // preallocated. This way we can know how many bytes we should've 10368 // allocated and how many bytes a callee cleanup function will pop. If 10369 // we port preallocated to more targets, we'll have to add custom 10370 // preallocated handling in the various CC lowering callbacks. 10371 Flags.setByVal(); 10372 } 10373 10374 // Certain targets (such as MIPS), may have a different ABI alignment 10375 // for a type depending on the context. Give the target a chance to 10376 // specify the alignment it wants. 10377 const Align OriginalAlignment( 10378 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10379 Flags.setOrigAlign(OriginalAlignment); 10380 10381 Align MemAlign; 10382 Type *ArgMemTy = nullptr; 10383 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10384 Flags.isByRef()) { 10385 if (!ArgMemTy) 10386 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10387 10388 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10389 10390 // For in-memory arguments, size and alignment should be passed from FE. 10391 // BE will guess if this info is not there but there are cases it cannot 10392 // get right. 10393 if (auto ParamAlign = Arg.getParamStackAlign()) 10394 MemAlign = *ParamAlign; 10395 else if ((ParamAlign = Arg.getParamAlign())) 10396 MemAlign = *ParamAlign; 10397 else 10398 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10399 if (Flags.isByRef()) 10400 Flags.setByRefSize(MemSize); 10401 else 10402 Flags.setByValSize(MemSize); 10403 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10404 MemAlign = *ParamAlign; 10405 } else { 10406 MemAlign = OriginalAlignment; 10407 } 10408 Flags.setMemAlign(MemAlign); 10409 10410 if (Arg.hasAttribute(Attribute::Nest)) 10411 Flags.setNest(); 10412 if (NeedsRegBlock) 10413 Flags.setInConsecutiveRegs(); 10414 if (ArgCopyElisionCandidates.count(&Arg)) 10415 Flags.setCopyElisionCandidate(); 10416 if (Arg.hasAttribute(Attribute::Returned)) 10417 Flags.setReturned(); 10418 10419 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10420 *CurDAG->getContext(), F.getCallingConv(), VT); 10421 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10422 *CurDAG->getContext(), F.getCallingConv(), VT); 10423 for (unsigned i = 0; i != NumRegs; ++i) { 10424 // For scalable vectors, use the minimum size; individual targets 10425 // are responsible for handling scalable vector arguments and 10426 // return values. 10427 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10428 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10429 if (NumRegs > 1 && i == 0) 10430 MyFlags.Flags.setSplit(); 10431 // if it isn't first piece, alignment must be 1 10432 else if (i > 0) { 10433 MyFlags.Flags.setOrigAlign(Align(1)); 10434 if (i == NumRegs - 1) 10435 MyFlags.Flags.setSplitEnd(); 10436 } 10437 Ins.push_back(MyFlags); 10438 } 10439 if (NeedsRegBlock && Value == NumValues - 1) 10440 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10441 PartBase += VT.getStoreSize().getKnownMinSize(); 10442 } 10443 } 10444 10445 // Call the target to set up the argument values. 10446 SmallVector<SDValue, 8> InVals; 10447 SDValue NewRoot = TLI->LowerFormalArguments( 10448 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10449 10450 // Verify that the target's LowerFormalArguments behaved as expected. 10451 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10452 "LowerFormalArguments didn't return a valid chain!"); 10453 assert(InVals.size() == Ins.size() && 10454 "LowerFormalArguments didn't emit the correct number of values!"); 10455 LLVM_DEBUG({ 10456 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10457 assert(InVals[i].getNode() && 10458 "LowerFormalArguments emitted a null value!"); 10459 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10460 "LowerFormalArguments emitted a value with the wrong type!"); 10461 } 10462 }); 10463 10464 // Update the DAG with the new chain value resulting from argument lowering. 10465 DAG.setRoot(NewRoot); 10466 10467 // Set up the argument values. 10468 unsigned i = 0; 10469 if (!FuncInfo->CanLowerReturn) { 10470 // Create a virtual register for the sret pointer, and put in a copy 10471 // from the sret argument into it. 10472 SmallVector<EVT, 1> ValueVTs; 10473 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10474 F.getReturnType()->getPointerTo( 10475 DAG.getDataLayout().getAllocaAddrSpace()), 10476 ValueVTs); 10477 MVT VT = ValueVTs[0].getSimpleVT(); 10478 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10479 Optional<ISD::NodeType> AssertOp = None; 10480 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10481 nullptr, F.getCallingConv(), AssertOp); 10482 10483 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10484 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10485 Register SRetReg = 10486 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10487 FuncInfo->DemoteRegister = SRetReg; 10488 NewRoot = 10489 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10490 DAG.setRoot(NewRoot); 10491 10492 // i indexes lowered arguments. Bump it past the hidden sret argument. 10493 ++i; 10494 } 10495 10496 SmallVector<SDValue, 4> Chains; 10497 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10498 for (const Argument &Arg : F.args()) { 10499 SmallVector<SDValue, 4> ArgValues; 10500 SmallVector<EVT, 4> ValueVTs; 10501 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10502 unsigned NumValues = ValueVTs.size(); 10503 if (NumValues == 0) 10504 continue; 10505 10506 bool ArgHasUses = !Arg.use_empty(); 10507 10508 // Elide the copying store if the target loaded this argument from a 10509 // suitable fixed stack object. 10510 if (Ins[i].Flags.isCopyElisionCandidate()) { 10511 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10512 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10513 InVals[i], ArgHasUses); 10514 } 10515 10516 // If this argument is unused then remember its value. It is used to generate 10517 // debugging information. 10518 bool isSwiftErrorArg = 10519 TLI->supportSwiftError() && 10520 Arg.hasAttribute(Attribute::SwiftError); 10521 if (!ArgHasUses && !isSwiftErrorArg) { 10522 SDB->setUnusedArgValue(&Arg, InVals[i]); 10523 10524 // Also remember any frame index for use in FastISel. 10525 if (FrameIndexSDNode *FI = 10526 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10527 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10528 } 10529 10530 for (unsigned Val = 0; Val != NumValues; ++Val) { 10531 EVT VT = ValueVTs[Val]; 10532 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10533 F.getCallingConv(), VT); 10534 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10535 *CurDAG->getContext(), F.getCallingConv(), VT); 10536 10537 // Even an apparent 'unused' swifterror argument needs to be returned. So 10538 // we do generate a copy for it that can be used on return from the 10539 // function. 10540 if (ArgHasUses || isSwiftErrorArg) { 10541 Optional<ISD::NodeType> AssertOp; 10542 if (Arg.hasAttribute(Attribute::SExt)) 10543 AssertOp = ISD::AssertSext; 10544 else if (Arg.hasAttribute(Attribute::ZExt)) 10545 AssertOp = ISD::AssertZext; 10546 10547 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10548 PartVT, VT, nullptr, 10549 F.getCallingConv(), AssertOp)); 10550 } 10551 10552 i += NumParts; 10553 } 10554 10555 // We don't need to do anything else for unused arguments. 10556 if (ArgValues.empty()) 10557 continue; 10558 10559 // Note down frame index. 10560 if (FrameIndexSDNode *FI = 10561 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10562 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10563 10564 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10565 SDB->getCurSDLoc()); 10566 10567 SDB->setValue(&Arg, Res); 10568 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10569 // We want to associate the argument with the frame index, among 10570 // involved operands, that correspond to the lowest address. The 10571 // getCopyFromParts function, called earlier, is swapping the order of 10572 // the operands to BUILD_PAIR depending on endianness. The result of 10573 // that swapping is that the least significant bits of the argument will 10574 // be in the first operand of the BUILD_PAIR node, and the most 10575 // significant bits will be in the second operand. 10576 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10577 if (LoadSDNode *LNode = 10578 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10579 if (FrameIndexSDNode *FI = 10580 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10581 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10582 } 10583 10584 // Analyses past this point are naive and don't expect an assertion. 10585 if (Res.getOpcode() == ISD::AssertZext) 10586 Res = Res.getOperand(0); 10587 10588 // Update the SwiftErrorVRegDefMap. 10589 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10590 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10591 if (Register::isVirtualRegister(Reg)) 10592 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10593 Reg); 10594 } 10595 10596 // If this argument is live outside of the entry block, insert a copy from 10597 // wherever we got it to the vreg that other BB's will reference it as. 10598 if (Res.getOpcode() == ISD::CopyFromReg) { 10599 // If we can, though, try to skip creating an unnecessary vreg. 10600 // FIXME: This isn't very clean... it would be nice to make this more 10601 // general. 10602 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10603 if (Register::isVirtualRegister(Reg)) { 10604 FuncInfo->ValueMap[&Arg] = Reg; 10605 continue; 10606 } 10607 } 10608 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10609 FuncInfo->InitializeRegForValue(&Arg); 10610 SDB->CopyToExportRegsIfNeeded(&Arg); 10611 } 10612 } 10613 10614 if (!Chains.empty()) { 10615 Chains.push_back(NewRoot); 10616 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10617 } 10618 10619 DAG.setRoot(NewRoot); 10620 10621 assert(i == InVals.size() && "Argument register count mismatch!"); 10622 10623 // If any argument copy elisions occurred and we have debug info, update the 10624 // stale frame indices used in the dbg.declare variable info table. 10625 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10626 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10627 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10628 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10629 if (I != ArgCopyElisionFrameIndexMap.end()) 10630 VI.Slot = I->second; 10631 } 10632 } 10633 10634 // Finally, if the target has anything special to do, allow it to do so. 10635 emitFunctionEntryCode(); 10636 } 10637 10638 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10639 /// ensure constants are generated when needed. Remember the virtual registers 10640 /// that need to be added to the Machine PHI nodes as input. We cannot just 10641 /// directly add them, because expansion might result in multiple MBB's for one 10642 /// BB. As such, the start of the BB might correspond to a different MBB than 10643 /// the end. 10644 void 10645 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10646 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10647 const Instruction *TI = LLVMBB->getTerminator(); 10648 10649 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10650 10651 // Check PHI nodes in successors that expect a value to be available from this 10652 // block. 10653 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10654 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10655 if (!isa<PHINode>(SuccBB->begin())) continue; 10656 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10657 10658 // If this terminator has multiple identical successors (common for 10659 // switches), only handle each succ once. 10660 if (!SuccsHandled.insert(SuccMBB).second) 10661 continue; 10662 10663 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10664 10665 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10666 // nodes and Machine PHI nodes, but the incoming operands have not been 10667 // emitted yet. 10668 for (const PHINode &PN : SuccBB->phis()) { 10669 // Ignore dead phi's. 10670 if (PN.use_empty()) 10671 continue; 10672 10673 // Skip empty types 10674 if (PN.getType()->isEmptyTy()) 10675 continue; 10676 10677 unsigned Reg; 10678 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10679 10680 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10681 unsigned &RegOut = ConstantsOut[C]; 10682 if (RegOut == 0) { 10683 RegOut = FuncInfo.CreateRegs(C); 10684 // We need to zero/sign extend ConstantInt phi operands to match 10685 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 10686 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 10687 if (auto *CI = dyn_cast<ConstantInt>(C)) 10688 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 10689 : ISD::ZERO_EXTEND; 10690 CopyValueToVirtualRegister(C, RegOut, ExtendType); 10691 } 10692 Reg = RegOut; 10693 } else { 10694 DenseMap<const Value *, Register>::iterator I = 10695 FuncInfo.ValueMap.find(PHIOp); 10696 if (I != FuncInfo.ValueMap.end()) 10697 Reg = I->second; 10698 else { 10699 assert(isa<AllocaInst>(PHIOp) && 10700 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10701 "Didn't codegen value into a register!??"); 10702 Reg = FuncInfo.CreateRegs(PHIOp); 10703 CopyValueToVirtualRegister(PHIOp, Reg); 10704 } 10705 } 10706 10707 // Remember that this register needs to added to the machine PHI node as 10708 // the input for this MBB. 10709 SmallVector<EVT, 4> ValueVTs; 10710 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10711 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10712 EVT VT = ValueVTs[vti]; 10713 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10714 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10715 FuncInfo.PHINodesToUpdate.push_back( 10716 std::make_pair(&*MBBI++, Reg + i)); 10717 Reg += NumRegisters; 10718 } 10719 } 10720 } 10721 10722 ConstantsOut.clear(); 10723 } 10724 10725 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10726 MachineFunction::iterator I(MBB); 10727 if (++I == FuncInfo.MF->end()) 10728 return nullptr; 10729 return &*I; 10730 } 10731 10732 /// During lowering new call nodes can be created (such as memset, etc.). 10733 /// Those will become new roots of the current DAG, but complications arise 10734 /// when they are tail calls. In such cases, the call lowering will update 10735 /// the root, but the builder still needs to know that a tail call has been 10736 /// lowered in order to avoid generating an additional return. 10737 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10738 // If the node is null, we do have a tail call. 10739 if (MaybeTC.getNode() != nullptr) 10740 DAG.setRoot(MaybeTC); 10741 else 10742 HasTailCall = true; 10743 } 10744 10745 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10746 MachineBasicBlock *SwitchMBB, 10747 MachineBasicBlock *DefaultMBB) { 10748 MachineFunction *CurMF = FuncInfo.MF; 10749 MachineBasicBlock *NextMBB = nullptr; 10750 MachineFunction::iterator BBI(W.MBB); 10751 if (++BBI != FuncInfo.MF->end()) 10752 NextMBB = &*BBI; 10753 10754 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10755 10756 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10757 10758 if (Size == 2 && W.MBB == SwitchMBB) { 10759 // If any two of the cases has the same destination, and if one value 10760 // is the same as the other, but has one bit unset that the other has set, 10761 // use bit manipulation to do two compares at once. For example: 10762 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10763 // TODO: This could be extended to merge any 2 cases in switches with 3 10764 // cases. 10765 // TODO: Handle cases where W.CaseBB != SwitchBB. 10766 CaseCluster &Small = *W.FirstCluster; 10767 CaseCluster &Big = *W.LastCluster; 10768 10769 if (Small.Low == Small.High && Big.Low == Big.High && 10770 Small.MBB == Big.MBB) { 10771 const APInt &SmallValue = Small.Low->getValue(); 10772 const APInt &BigValue = Big.Low->getValue(); 10773 10774 // Check that there is only one bit different. 10775 APInt CommonBit = BigValue ^ SmallValue; 10776 if (CommonBit.isPowerOf2()) { 10777 SDValue CondLHS = getValue(Cond); 10778 EVT VT = CondLHS.getValueType(); 10779 SDLoc DL = getCurSDLoc(); 10780 10781 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10782 DAG.getConstant(CommonBit, DL, VT)); 10783 SDValue Cond = DAG.getSetCC( 10784 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10785 ISD::SETEQ); 10786 10787 // Update successor info. 10788 // Both Small and Big will jump to Small.BB, so we sum up the 10789 // probabilities. 10790 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10791 if (BPI) 10792 addSuccessorWithProb( 10793 SwitchMBB, DefaultMBB, 10794 // The default destination is the first successor in IR. 10795 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10796 else 10797 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10798 10799 // Insert the true branch. 10800 SDValue BrCond = 10801 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10802 DAG.getBasicBlock(Small.MBB)); 10803 // Insert the false branch. 10804 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10805 DAG.getBasicBlock(DefaultMBB)); 10806 10807 DAG.setRoot(BrCond); 10808 return; 10809 } 10810 } 10811 } 10812 10813 if (TM.getOptLevel() != CodeGenOpt::None) { 10814 // Here, we order cases by probability so the most likely case will be 10815 // checked first. However, two clusters can have the same probability in 10816 // which case their relative ordering is non-deterministic. So we use Low 10817 // as a tie-breaker as clusters are guaranteed to never overlap. 10818 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10819 [](const CaseCluster &a, const CaseCluster &b) { 10820 return a.Prob != b.Prob ? 10821 a.Prob > b.Prob : 10822 a.Low->getValue().slt(b.Low->getValue()); 10823 }); 10824 10825 // Rearrange the case blocks so that the last one falls through if possible 10826 // without changing the order of probabilities. 10827 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10828 --I; 10829 if (I->Prob > W.LastCluster->Prob) 10830 break; 10831 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10832 std::swap(*I, *W.LastCluster); 10833 break; 10834 } 10835 } 10836 } 10837 10838 // Compute total probability. 10839 BranchProbability DefaultProb = W.DefaultProb; 10840 BranchProbability UnhandledProbs = DefaultProb; 10841 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10842 UnhandledProbs += I->Prob; 10843 10844 MachineBasicBlock *CurMBB = W.MBB; 10845 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10846 bool FallthroughUnreachable = false; 10847 MachineBasicBlock *Fallthrough; 10848 if (I == W.LastCluster) { 10849 // For the last cluster, fall through to the default destination. 10850 Fallthrough = DefaultMBB; 10851 FallthroughUnreachable = isa<UnreachableInst>( 10852 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10853 } else { 10854 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10855 CurMF->insert(BBI, Fallthrough); 10856 // Put Cond in a virtual register to make it available from the new blocks. 10857 ExportFromCurrentBlock(Cond); 10858 } 10859 UnhandledProbs -= I->Prob; 10860 10861 switch (I->Kind) { 10862 case CC_JumpTable: { 10863 // FIXME: Optimize away range check based on pivot comparisons. 10864 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10865 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10866 10867 // The jump block hasn't been inserted yet; insert it here. 10868 MachineBasicBlock *JumpMBB = JT->MBB; 10869 CurMF->insert(BBI, JumpMBB); 10870 10871 auto JumpProb = I->Prob; 10872 auto FallthroughProb = UnhandledProbs; 10873 10874 // If the default statement is a target of the jump table, we evenly 10875 // distribute the default probability to successors of CurMBB. Also 10876 // update the probability on the edge from JumpMBB to Fallthrough. 10877 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10878 SE = JumpMBB->succ_end(); 10879 SI != SE; ++SI) { 10880 if (*SI == DefaultMBB) { 10881 JumpProb += DefaultProb / 2; 10882 FallthroughProb -= DefaultProb / 2; 10883 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10884 JumpMBB->normalizeSuccProbs(); 10885 break; 10886 } 10887 } 10888 10889 if (FallthroughUnreachable) 10890 JTH->FallthroughUnreachable = true; 10891 10892 if (!JTH->FallthroughUnreachable) 10893 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10894 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10895 CurMBB->normalizeSuccProbs(); 10896 10897 // The jump table header will be inserted in our current block, do the 10898 // range check, and fall through to our fallthrough block. 10899 JTH->HeaderBB = CurMBB; 10900 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10901 10902 // If we're in the right place, emit the jump table header right now. 10903 if (CurMBB == SwitchMBB) { 10904 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10905 JTH->Emitted = true; 10906 } 10907 break; 10908 } 10909 case CC_BitTests: { 10910 // FIXME: Optimize away range check based on pivot comparisons. 10911 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10912 10913 // The bit test blocks haven't been inserted yet; insert them here. 10914 for (BitTestCase &BTC : BTB->Cases) 10915 CurMF->insert(BBI, BTC.ThisBB); 10916 10917 // Fill in fields of the BitTestBlock. 10918 BTB->Parent = CurMBB; 10919 BTB->Default = Fallthrough; 10920 10921 BTB->DefaultProb = UnhandledProbs; 10922 // If the cases in bit test don't form a contiguous range, we evenly 10923 // distribute the probability on the edge to Fallthrough to two 10924 // successors of CurMBB. 10925 if (!BTB->ContiguousRange) { 10926 BTB->Prob += DefaultProb / 2; 10927 BTB->DefaultProb -= DefaultProb / 2; 10928 } 10929 10930 if (FallthroughUnreachable) 10931 BTB->FallthroughUnreachable = true; 10932 10933 // If we're in the right place, emit the bit test header right now. 10934 if (CurMBB == SwitchMBB) { 10935 visitBitTestHeader(*BTB, SwitchMBB); 10936 BTB->Emitted = true; 10937 } 10938 break; 10939 } 10940 case CC_Range: { 10941 const Value *RHS, *LHS, *MHS; 10942 ISD::CondCode CC; 10943 if (I->Low == I->High) { 10944 // Check Cond == I->Low. 10945 CC = ISD::SETEQ; 10946 LHS = Cond; 10947 RHS=I->Low; 10948 MHS = nullptr; 10949 } else { 10950 // Check I->Low <= Cond <= I->High. 10951 CC = ISD::SETLE; 10952 LHS = I->Low; 10953 MHS = Cond; 10954 RHS = I->High; 10955 } 10956 10957 // If Fallthrough is unreachable, fold away the comparison. 10958 if (FallthroughUnreachable) 10959 CC = ISD::SETTRUE; 10960 10961 // The false probability is the sum of all unhandled cases. 10962 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10963 getCurSDLoc(), I->Prob, UnhandledProbs); 10964 10965 if (CurMBB == SwitchMBB) 10966 visitSwitchCase(CB, SwitchMBB); 10967 else 10968 SL->SwitchCases.push_back(CB); 10969 10970 break; 10971 } 10972 } 10973 CurMBB = Fallthrough; 10974 } 10975 } 10976 10977 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10978 CaseClusterIt First, 10979 CaseClusterIt Last) { 10980 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10981 if (X.Prob != CC.Prob) 10982 return X.Prob > CC.Prob; 10983 10984 // Ties are broken by comparing the case value. 10985 return X.Low->getValue().slt(CC.Low->getValue()); 10986 }); 10987 } 10988 10989 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10990 const SwitchWorkListItem &W, 10991 Value *Cond, 10992 MachineBasicBlock *SwitchMBB) { 10993 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10994 "Clusters not sorted?"); 10995 10996 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10997 10998 // Balance the tree based on branch probabilities to create a near-optimal (in 10999 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11000 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11001 CaseClusterIt LastLeft = W.FirstCluster; 11002 CaseClusterIt FirstRight = W.LastCluster; 11003 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11004 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11005 11006 // Move LastLeft and FirstRight towards each other from opposite directions to 11007 // find a partitioning of the clusters which balances the probability on both 11008 // sides. If LeftProb and RightProb are equal, alternate which side is 11009 // taken to ensure 0-probability nodes are distributed evenly. 11010 unsigned I = 0; 11011 while (LastLeft + 1 < FirstRight) { 11012 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11013 LeftProb += (++LastLeft)->Prob; 11014 else 11015 RightProb += (--FirstRight)->Prob; 11016 I++; 11017 } 11018 11019 while (true) { 11020 // Our binary search tree differs from a typical BST in that ours can have up 11021 // to three values in each leaf. The pivot selection above doesn't take that 11022 // into account, which means the tree might require more nodes and be less 11023 // efficient. We compensate for this here. 11024 11025 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11026 unsigned NumRight = W.LastCluster - FirstRight + 1; 11027 11028 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11029 // If one side has less than 3 clusters, and the other has more than 3, 11030 // consider taking a cluster from the other side. 11031 11032 if (NumLeft < NumRight) { 11033 // Consider moving the first cluster on the right to the left side. 11034 CaseCluster &CC = *FirstRight; 11035 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11036 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11037 if (LeftSideRank <= RightSideRank) { 11038 // Moving the cluster to the left does not demote it. 11039 ++LastLeft; 11040 ++FirstRight; 11041 continue; 11042 } 11043 } else { 11044 assert(NumRight < NumLeft); 11045 // Consider moving the last element on the left to the right side. 11046 CaseCluster &CC = *LastLeft; 11047 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11048 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11049 if (RightSideRank <= LeftSideRank) { 11050 // Moving the cluster to the right does not demot it. 11051 --LastLeft; 11052 --FirstRight; 11053 continue; 11054 } 11055 } 11056 } 11057 break; 11058 } 11059 11060 assert(LastLeft + 1 == FirstRight); 11061 assert(LastLeft >= W.FirstCluster); 11062 assert(FirstRight <= W.LastCluster); 11063 11064 // Use the first element on the right as pivot since we will make less-than 11065 // comparisons against it. 11066 CaseClusterIt PivotCluster = FirstRight; 11067 assert(PivotCluster > W.FirstCluster); 11068 assert(PivotCluster <= W.LastCluster); 11069 11070 CaseClusterIt FirstLeft = W.FirstCluster; 11071 CaseClusterIt LastRight = W.LastCluster; 11072 11073 const ConstantInt *Pivot = PivotCluster->Low; 11074 11075 // New blocks will be inserted immediately after the current one. 11076 MachineFunction::iterator BBI(W.MBB); 11077 ++BBI; 11078 11079 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11080 // we can branch to its destination directly if it's squeezed exactly in 11081 // between the known lower bound and Pivot - 1. 11082 MachineBasicBlock *LeftMBB; 11083 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11084 FirstLeft->Low == W.GE && 11085 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11086 LeftMBB = FirstLeft->MBB; 11087 } else { 11088 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11089 FuncInfo.MF->insert(BBI, LeftMBB); 11090 WorkList.push_back( 11091 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11092 // Put Cond in a virtual register to make it available from the new blocks. 11093 ExportFromCurrentBlock(Cond); 11094 } 11095 11096 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11097 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11098 // directly if RHS.High equals the current upper bound. 11099 MachineBasicBlock *RightMBB; 11100 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11101 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11102 RightMBB = FirstRight->MBB; 11103 } else { 11104 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11105 FuncInfo.MF->insert(BBI, RightMBB); 11106 WorkList.push_back( 11107 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11108 // Put Cond in a virtual register to make it available from the new blocks. 11109 ExportFromCurrentBlock(Cond); 11110 } 11111 11112 // Create the CaseBlock record that will be used to lower the branch. 11113 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11114 getCurSDLoc(), LeftProb, RightProb); 11115 11116 if (W.MBB == SwitchMBB) 11117 visitSwitchCase(CB, SwitchMBB); 11118 else 11119 SL->SwitchCases.push_back(CB); 11120 } 11121 11122 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11123 // from the swith statement. 11124 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11125 BranchProbability PeeledCaseProb) { 11126 if (PeeledCaseProb == BranchProbability::getOne()) 11127 return BranchProbability::getZero(); 11128 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11129 11130 uint32_t Numerator = CaseProb.getNumerator(); 11131 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11132 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11133 } 11134 11135 // Try to peel the top probability case if it exceeds the threshold. 11136 // Return current MachineBasicBlock for the switch statement if the peeling 11137 // does not occur. 11138 // If the peeling is performed, return the newly created MachineBasicBlock 11139 // for the peeled switch statement. Also update Clusters to remove the peeled 11140 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11141 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11142 const SwitchInst &SI, CaseClusterVector &Clusters, 11143 BranchProbability &PeeledCaseProb) { 11144 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11145 // Don't perform if there is only one cluster or optimizing for size. 11146 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11147 TM.getOptLevel() == CodeGenOpt::None || 11148 SwitchMBB->getParent()->getFunction().hasMinSize()) 11149 return SwitchMBB; 11150 11151 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11152 unsigned PeeledCaseIndex = 0; 11153 bool SwitchPeeled = false; 11154 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11155 CaseCluster &CC = Clusters[Index]; 11156 if (CC.Prob < TopCaseProb) 11157 continue; 11158 TopCaseProb = CC.Prob; 11159 PeeledCaseIndex = Index; 11160 SwitchPeeled = true; 11161 } 11162 if (!SwitchPeeled) 11163 return SwitchMBB; 11164 11165 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11166 << TopCaseProb << "\n"); 11167 11168 // Record the MBB for the peeled switch statement. 11169 MachineFunction::iterator BBI(SwitchMBB); 11170 ++BBI; 11171 MachineBasicBlock *PeeledSwitchMBB = 11172 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11173 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11174 11175 ExportFromCurrentBlock(SI.getCondition()); 11176 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11177 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11178 nullptr, nullptr, TopCaseProb.getCompl()}; 11179 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11180 11181 Clusters.erase(PeeledCaseIt); 11182 for (CaseCluster &CC : Clusters) { 11183 LLVM_DEBUG( 11184 dbgs() << "Scale the probablity for one cluster, before scaling: " 11185 << CC.Prob << "\n"); 11186 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11187 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11188 } 11189 PeeledCaseProb = TopCaseProb; 11190 return PeeledSwitchMBB; 11191 } 11192 11193 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11194 // Extract cases from the switch. 11195 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11196 CaseClusterVector Clusters; 11197 Clusters.reserve(SI.getNumCases()); 11198 for (auto I : SI.cases()) { 11199 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11200 const ConstantInt *CaseVal = I.getCaseValue(); 11201 BranchProbability Prob = 11202 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11203 : BranchProbability(1, SI.getNumCases() + 1); 11204 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11205 } 11206 11207 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11208 11209 // Cluster adjacent cases with the same destination. We do this at all 11210 // optimization levels because it's cheap to do and will make codegen faster 11211 // if there are many clusters. 11212 sortAndRangeify(Clusters); 11213 11214 // The branch probablity of the peeled case. 11215 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11216 MachineBasicBlock *PeeledSwitchMBB = 11217 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11218 11219 // If there is only the default destination, jump there directly. 11220 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11221 if (Clusters.empty()) { 11222 assert(PeeledSwitchMBB == SwitchMBB); 11223 SwitchMBB->addSuccessor(DefaultMBB); 11224 if (DefaultMBB != NextBlock(SwitchMBB)) { 11225 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11226 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11227 } 11228 return; 11229 } 11230 11231 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11232 SL->findBitTestClusters(Clusters, &SI); 11233 11234 LLVM_DEBUG({ 11235 dbgs() << "Case clusters: "; 11236 for (const CaseCluster &C : Clusters) { 11237 if (C.Kind == CC_JumpTable) 11238 dbgs() << "JT:"; 11239 if (C.Kind == CC_BitTests) 11240 dbgs() << "BT:"; 11241 11242 C.Low->getValue().print(dbgs(), true); 11243 if (C.Low != C.High) { 11244 dbgs() << '-'; 11245 C.High->getValue().print(dbgs(), true); 11246 } 11247 dbgs() << ' '; 11248 } 11249 dbgs() << '\n'; 11250 }); 11251 11252 assert(!Clusters.empty()); 11253 SwitchWorkList WorkList; 11254 CaseClusterIt First = Clusters.begin(); 11255 CaseClusterIt Last = Clusters.end() - 1; 11256 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11257 // Scale the branchprobability for DefaultMBB if the peel occurs and 11258 // DefaultMBB is not replaced. 11259 if (PeeledCaseProb != BranchProbability::getZero() && 11260 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11261 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11262 WorkList.push_back( 11263 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11264 11265 while (!WorkList.empty()) { 11266 SwitchWorkListItem W = WorkList.pop_back_val(); 11267 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11268 11269 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11270 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11271 // For optimized builds, lower large range as a balanced binary tree. 11272 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11273 continue; 11274 } 11275 11276 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11277 } 11278 } 11279 11280 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11282 auto DL = getCurSDLoc(); 11283 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11284 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11285 } 11286 11287 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11288 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11289 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11290 11291 SDLoc DL = getCurSDLoc(); 11292 SDValue V = getValue(I.getOperand(0)); 11293 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11294 11295 if (VT.isScalableVector()) { 11296 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11297 return; 11298 } 11299 11300 // Use VECTOR_SHUFFLE for the fixed-length vector 11301 // to maintain existing behavior. 11302 SmallVector<int, 8> Mask; 11303 unsigned NumElts = VT.getVectorMinNumElements(); 11304 for (unsigned i = 0; i != NumElts; ++i) 11305 Mask.push_back(NumElts - 1 - i); 11306 11307 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11308 } 11309 11310 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11311 SmallVector<EVT, 4> ValueVTs; 11312 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11313 ValueVTs); 11314 unsigned NumValues = ValueVTs.size(); 11315 if (NumValues == 0) return; 11316 11317 SmallVector<SDValue, 4> Values(NumValues); 11318 SDValue Op = getValue(I.getOperand(0)); 11319 11320 for (unsigned i = 0; i != NumValues; ++i) 11321 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11322 SDValue(Op.getNode(), Op.getResNo() + i)); 11323 11324 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11325 DAG.getVTList(ValueVTs), Values)); 11326 } 11327 11328 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11329 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11330 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11331 11332 SDLoc DL = getCurSDLoc(); 11333 SDValue V1 = getValue(I.getOperand(0)); 11334 SDValue V2 = getValue(I.getOperand(1)); 11335 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11336 11337 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11338 if (VT.isScalableVector()) { 11339 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11340 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11341 DAG.getConstant(Imm, DL, IdxVT))); 11342 return; 11343 } 11344 11345 unsigned NumElts = VT.getVectorNumElements(); 11346 11347 uint64_t Idx = (NumElts + Imm) % NumElts; 11348 11349 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11350 SmallVector<int, 8> Mask; 11351 for (unsigned i = 0; i < NumElts; ++i) 11352 Mask.push_back(Idx + i); 11353 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11354 } 11355