//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements routines for translating from LLVM IR into SelectionDAG IR. // //===----------------------------------------------------------------------===// #include "SelectionDAGBuilder.h" #include "SDNodeDbgValue.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CodeGenCommonISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineInstrBundleIterator.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGTargetInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/SwiftErrorValueTracking.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/IntrinsicsWebAssembly.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include using namespace llvm; using namespace PatternMatch; using namespace SwitchCG; #define DEBUG_TYPE "isel" /// LimitFloatPrecision - Generate low-precision inline sequences for /// some float libcalls (6, 8 or 12 bits). static unsigned LimitFloatPrecision; static cl::opt InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden); static cl::opt LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0)); static cl::opt SwitchPeelThreshold( "switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization")); // Limit the width of DAG chains. This is important in general to prevent // DAG-based analysis from blowing up. For example, alias analysis and // load clustering may not complete in reasonable time. It is difficult to // recognize and avoid this situation within each individual analysis, and // future analyses are likely to have the same behavior. Limiting DAG width is // the safe approach and will be especially important with global DAGs. // // MaxParallelChains default is arbitrarily high to avoid affecting // optimization, but could be lowered to improve compile time. Any ld-ld-st-st // sequence over this should have been converted to llvm.memcpy by the // frontend. It is easy to induce this behavior with .ll code such as: // %buffer = alloca [4096 x i8] // %data = load [4096 x i8]* %argPtr // store [4096 x i8] %data, [4096 x i8]* %buffer static const unsigned MaxParallelChains = 64; static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, Optional CC); /// getCopyFromParts - Create a value that contains the specified legal parts /// combined into the value they represent. If the parts combine to a type /// larger than ValueVT then AssertOp can be used to specify whether the extra /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT /// (ISD::AssertSext). static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, Optional CC = None, Optional AssertOp = None) { // Let the target assemble the parts if it wants to const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, PartVT, ValueVT, CC)) return Val; if (ValueVT.isVector()) return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, CC); assert(NumParts > 0 && "No parts to assemble!"); SDValue Val = Parts[0]; if (NumParts > 1) { // Assemble the value from multiple parts. if (ValueVT.isInteger()) { unsigned PartBits = PartVT.getSizeInBits(); unsigned ValueBits = ValueVT.getSizeInBits(); // Assemble the power of 2 part. unsigned RoundParts = (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; unsigned RoundBits = PartBits * RoundParts; EVT RoundVT = RoundBits == ValueBits ? ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); SDValue Lo, Hi; EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); if (RoundParts > 2) { Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V); Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, PartVT, HalfVT, V); } else { Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); } if (DAG.getDataLayout().isBigEndian()) std::swap(Lo, Hi); Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); if (RoundParts < NumParts) { // Assemble the trailing non-power-of-2 part. unsigned OddParts = NumParts - RoundParts; EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, OddVT, V, CC); // Combine the round and odd parts. Lo = Val; if (DAG.getDataLayout().isBigEndian()) std::swap(Lo, Hi); EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, DAG.getConstant(Lo.getValueSizeInBits(), DL, TLI.getShiftAmountTy( TotalVT, DAG.getDataLayout()))); Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); } } else if (PartVT.isFloatingPoint()) { // FP split into multiple FP parts (for ppcf128) assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && "Unexpected split"); SDValue Lo, Hi; Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) std::swap(Lo, Hi); Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); } else { // FP split into integer parts (soft fp) assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && "Unexpected split"); EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); } } // There is now one part, held in Val. Correct it to match ValueVT. // PartEVT is the type of the register class that holds the value. // ValueVT is the type of the inline asm operation. EVT PartEVT = Val.getValueType(); if (PartEVT == ValueVT) return Val; if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && ValueVT.bitsLT(PartEVT)) { // For an FP value in an integer part, we need to truncate to the right // width first. PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); } // Handle types that have the same size. if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); // Handle types with different sizes. if (PartEVT.isInteger() && ValueVT.isInteger()) { if (ValueVT.bitsLT(PartEVT)) { // For a truncate, see if we have any information to // indicate whether the truncated bits will always be // zero or sign-extension. if (AssertOp) Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, DAG.getValueType(ValueVT)); return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); } return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); } if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { // FP_ROUND's are always exact here. if (ValueVT.bitsLT(Val.getValueType())) return DAG.getNode( ISD::FP_ROUND, DL, ValueVT, Val, DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); } // Handle MMX to a narrower integer type by bitcasting MMX to integer and // then truncating. if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && ValueVT.bitsLT(PartEVT)) { Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); } report_fatal_error("Unknown mismatch in getCopyFromParts!"); } static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg) { const Instruction *I = dyn_cast_or_null(V); if (!V) return Ctx.emitError(ErrMsg); const char *AsmError = ", possible invalid constraint for vector type"; if (const CallInst *CI = dyn_cast(I)) if (CI->isInlineAsm()) return Ctx.emitError(I, ErrMsg + AsmError); return Ctx.emitError(I, ErrMsg); } /// getCopyFromPartsVector - Create a value that contains the specified legal /// parts combined into the value they represent. If the parts combine to a /// type larger than ValueVT then AssertOp can be used to specify whether the /// extra bits are known to be zero (ISD::AssertZext) or sign extended from /// ValueVT (ISD::AssertSext). static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, Optional CallConv) { assert(ValueVT.isVector() && "Not a vector value"); assert(NumParts > 0 && "No parts to assemble!"); const bool IsABIRegCopy = CallConv.has_value(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Val = Parts[0]; // Handle a multi-element vector. if (NumParts > 1) { EVT IntermediateVT; MVT RegisterVT; unsigned NumIntermediates; unsigned NumRegs; if (IsABIRegCopy) { NumRegs = TLI.getVectorTypeBreakdownForCallingConv( *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, RegisterVT); } else { NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, RegisterVT); } assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); NumParts = NumRegs; // Silence a compiler warning. assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); assert(RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType().getSizeInBits() && "Part type sizes don't match!"); // Assemble the parts into intermediate operands. SmallVector Ops(NumIntermediates); if (NumIntermediates == NumParts) { // If the register was not expanded, truncate or copy the value, // as appropriate. for (unsigned i = 0; i != NumParts; ++i) Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, V, CallConv); } else if (NumParts > 0) { // If the intermediate type was expanded, build the intermediate // operands from the parts. assert(NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"); unsigned Factor = NumParts / NumIntermediates; for (unsigned i = 0; i != NumIntermediates; ++i) Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, IntermediateVT, V, CallConv); } // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the // intermediate operands. EVT BuiltVectorTy = IntermediateVT.isVector() ? EVT::getVectorVT( *DAG.getContext(), IntermediateVT.getScalarType(), IntermediateVT.getVectorElementCount() * NumParts) : EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), NumIntermediates); Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, BuiltVectorTy, Ops); } // There is now one part, held in Val. Correct it to match ValueVT. EVT PartEVT = Val.getValueType(); if (PartEVT == ValueVT) return Val; if (PartEVT.isVector()) { // Vector/Vector bitcast. if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); // If the element type of the source/dest vectors are the same, but the // parts vector has more elements than the value vector, then we have a // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the // elements we want. if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { assert((PartEVT.getVectorElementCount().getKnownMinValue() > ValueVT.getVectorElementCount().getKnownMinValue()) && (PartEVT.getVectorElementCount().isScalable() == ValueVT.getVectorElementCount().isScalable()) && "Cannot narrow, it would be a lossy transformation"); PartEVT = EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), ValueVT.getVectorElementCount()); Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, DAG.getVectorIdxConstant(0, DL)); if (PartEVT == ValueVT) return Val; } // Promoted vector extract return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); } // Trivial bitcast if the types are the same size and the destination // vector type is legal. if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && TLI.isTypeLegal(ValueVT)) return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); if (ValueVT.getVectorNumElements() != 1) { // Certain ABIs require that vectors are passed as integers. For vectors // are the same size, this is an obvious bitcast. if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); } else if (ValueVT.bitsLT(PartEVT)) { const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); // Drop the extra bits. Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); return DAG.getBitcast(ValueVT, Val); } diagnosePossiblyInvalidConstraint( *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); return DAG.getUNDEF(ValueVT); } // Handle cases such as i8 -> <1 x i1> EVT ValueSVT = ValueVT.getVectorElementType(); if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); else Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); } return DAG.getBuildVector(ValueVT, DL, Val); } static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, Optional CallConv); /// getCopyToParts - Create a series of nodes that contain the specified value /// split into legal parts. If the parts contain more bits than Val, then, for /// integers, ExtendKind can be used to specify how to generate the extra bits. static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, Optional CallConv = None, ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { // Let the target split the parts if it wants to const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, CallConv)) return; EVT ValueVT = Val.getValueType(); // Handle the vector case separately. if (ValueVT.isVector()) return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, CallConv); unsigned PartBits = PartVT.getSizeInBits(); unsigned OrigNumParts = NumParts; assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && "Copying to an illegal type!"); if (NumParts == 0) return; assert(!ValueVT.isVector() && "Vector case handled elsewhere"); EVT PartEVT = PartVT; if (PartEVT == ValueVT) { assert(NumParts == 1 && "No-op copy with multiple parts!"); Parts[0] = Val; return; } if (NumParts * PartBits > ValueVT.getSizeInBits()) { // If the parts cover more bits than the value has, promote the value. if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { assert(NumParts == 1 && "Do not know what to promote to!"); Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); } else { if (ValueVT.isFloatingPoint()) { // FP values need to be bitcast, then extended if they are being put // into a larger container. ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); } assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!"); ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); if (PartVT == MVT::x86mmx) Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } } else if (PartBits == ValueVT.getSizeInBits()) { // Different types of the same size. assert(NumParts == 1 && PartEVT != ValueVT); Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { // If the parts cover less bits than value has, truncate the value. assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && "Unknown mismatch!"); ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); if (PartVT == MVT::x86mmx) Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } // The value may have changed - recompute ValueVT. ValueVT = Val.getValueType(); assert(NumParts * PartBits == ValueVT.getSizeInBits() && "Failed to tile the value with PartVT!"); if (NumParts == 1) { if (PartEVT != ValueVT) { diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, "scalar-to-vector conversion failed"); Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } Parts[0] = Val; return; } // Expand the value into multiple parts. if (NumParts & (NumParts - 1)) { // The number of parts is not a power of 2. Split off and copy the tail. assert(PartVT.isInteger() && ValueVT.isInteger() && "Do not know what to expand to!"); unsigned RoundParts = 1 << Log2_32(NumParts); unsigned RoundBits = RoundParts * PartBits; unsigned OddParts = NumParts - RoundParts; SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, CallConv); if (DAG.getDataLayout().isBigEndian()) // The odd parts were reversed by getCopyToParts - unreverse them. std::reverse(Parts + RoundParts, Parts + NumParts); NumParts = RoundParts; ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); } // The number of parts is a power of 2. Repeatedly bisect the value using // EXTRACT_ELEMENT. Parts[0] = DAG.getNode(ISD::BITCAST, DL, EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), Val); for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { for (unsigned i = 0; i < NumParts; i += StepSize) { unsigned ThisBits = StepSize * PartBits / 2; EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); SDValue &Part0 = Parts[i]; SDValue &Part1 = Parts[i+StepSize/2]; Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); if (ThisBits == PartBits && ThisVT != PartVT) { Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); } } } if (DAG.getDataLayout().isBigEndian()) std::reverse(Parts, Parts + OrigNumParts); } static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT) { if (!PartVT.isVector()) return SDValue(); EVT ValueVT = Val.getValueType(); ElementCount PartNumElts = PartVT.getVectorElementCount(); ElementCount ValueNumElts = ValueVT.getVectorElementCount(); // We only support widening vectors with equivalent element types and // fixed/scalable properties. If a target needs to widen a fixed-length type // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || PartNumElts.isScalable() != ValueNumElts.isScalable() || PartVT.getVectorElementType() != ValueVT.getVectorElementType()) return SDValue(); // Widening a scalable vector to another scalable vector is done by inserting // the vector into a larger undef one. if (PartNumElts.isScalable()) return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), Val, DAG.getVectorIdxConstant(0, DL)); EVT ElementVT = PartVT.getVectorElementType(); // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in // undef elements. SmallVector Ops; DAG.ExtractVectorElements(Val, Ops); SDValue EltUndef = DAG.getUNDEF(ElementVT); Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); // FIXME: Use CONCAT for 2x -> 4x. return DAG.getBuildVector(PartVT, DL, Ops); } /// getCopyToPartsVector - Create a series of nodes that contain the specified /// value split into legal parts. static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, Optional CallConv) { EVT ValueVT = Val.getValueType(); assert(ValueVT.isVector() && "Not a vector"); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const bool IsABIRegCopy = CallConv.has_value(); if (NumParts == 1) { EVT PartEVT = PartVT; if (PartEVT == ValueVT) { // Nothing to do. } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { // Bitconvert vector->vector case. Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { Val = Widened; } else if (PartVT.isVector() && PartEVT.getVectorElementType().bitsGE( ValueVT.getVectorElementType()) && PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount()) { // Promoted vector extract Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); } else if (PartEVT.isVector() && PartEVT.getVectorElementType() != ValueVT.getVectorElementType() && TLI.getTypeAction(*DAG.getContext(), ValueVT) == TargetLowering::TypeWidenVector) { // Combination of widening and promotion. EVT WidenVT = EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), PartVT.getVectorElementCount()); SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); } else { if (ValueVT.getVectorElementCount().isScalar()) { Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, DAG.getVectorIdxConstant(0, DL)); } else { uint64_t ValueSize = ValueVT.getFixedSizeInBits(); assert(PartVT.getFixedSizeInBits() > ValueSize && "lossy conversion of vector to scalar type"); EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); Val = DAG.getBitcast(IntermediateType, Val); Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); } } assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); Parts[0] = Val; return; } // Handle a multi-element vector. EVT IntermediateVT; MVT RegisterVT; unsigned NumIntermediates; unsigned NumRegs; if (IsABIRegCopy) { NumRegs = TLI.getVectorTypeBreakdownForCallingConv( *DAG.getContext(), CallConv.value(), ValueVT, IntermediateVT, NumIntermediates, RegisterVT); } else { NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, RegisterVT); } assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); NumParts = NumRegs; // Silence a compiler warning. assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && "Mixing scalable and fixed vectors when copying in parts"); Optional DestEltCnt; if (IntermediateVT.isVector()) DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; else DestEltCnt = ElementCount::getFixed(NumIntermediates); EVT BuiltVectorTy = EVT::getVectorVT( *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); if (ValueVT == BuiltVectorTy) { // Nothing to do. } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { // Bitconvert vector->vector case. Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); } else { if (BuiltVectorTy.getVectorElementType().bitsGT( ValueVT.getVectorElementType())) { // Integer promotion. ValueVT = EVT::getVectorVT(*DAG.getContext(), BuiltVectorTy.getVectorElementType(), ValueVT.getVectorElementCount()); Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); } if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { Val = Widened; } } assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); // Split the vector into intermediate operands. SmallVector Ops(NumIntermediates); for (unsigned i = 0; i != NumIntermediates; ++i) { if (IntermediateVT.isVector()) { // This does something sensible for scalable vectors - see the // definition of EXTRACT_SUBVECTOR for further details. unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); } else { Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, DAG.getVectorIdxConstant(i, DL)); } } // Split the intermediate operands into legal parts. if (NumParts == NumIntermediates) { // If the register was not expanded, promote or copy the value, // as appropriate. for (unsigned i = 0; i != NumParts; ++i) getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); } else if (NumParts > 0) { // If the intermediate type was expanded, split each the value into // legal parts. assert(NumIntermediates != 0 && "division by zero"); assert(NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"); unsigned Factor = NumParts / NumIntermediates; for (unsigned i = 0; i != NumIntermediates; ++i) getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, CallConv); } } RegsForValue::RegsForValue(const SmallVector ®s, MVT regvt, EVT valuevt, Optional CC) : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), RegCount(1, regs.size()), CallConv(CC) {} RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, const DataLayout &DL, unsigned Reg, Type *Ty, Optional CC) { ComputeValueVTs(TLI, DL, Ty, ValueVTs); CallConv = CC; for (EVT ValueVT : ValueVTs) { unsigned NumRegs = isABIMangled() ? TLI.getNumRegistersForCallingConv(Context, CC.value(), ValueVT) : TLI.getNumRegisters(Context, ValueVT); MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(Context, CC.value(), ValueVT) : TLI.getRegisterType(Context, ValueVT); for (unsigned i = 0; i != NumRegs; ++i) Regs.push_back(Reg + i); RegVTs.push_back(RegisterVT); RegCount.push_back(NumRegs); Reg += NumRegs; } } SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Flag, const Value *V) const { // A Value with type {} or [0 x %t] needs no registers. if (ValueVTs.empty()) return SDValue(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Assemble the legal parts into the final values. SmallVector Values(ValueVTs.size()); SmallVector Parts; for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { // Copy the legal parts from the registers. EVT ValueVT = ValueVTs[Value]; unsigned NumRegs = RegCount[Value]; MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( *DAG.getContext(), CallConv.value(), RegVTs[Value]) : RegVTs[Value]; Parts.resize(NumRegs); for (unsigned i = 0; i != NumRegs; ++i) { SDValue P; if (!Flag) { P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); } else { P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); *Flag = P.getValue(2); } Chain = P.getValue(1); Parts[i] = P; // If the source register was virtual and if we know something about it, // add an assert node. if (!Register::isVirtualRegister(Regs[Part + i]) || !RegisterVT.isInteger()) continue; const FunctionLoweringInfo::LiveOutInfo *LOI = FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); if (!LOI) continue; unsigned RegSize = RegisterVT.getScalarSizeInBits(); unsigned NumSignBits = LOI->NumSignBits; unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); if (NumZeroBits == RegSize) { // The current value is a zero. // Explicitly express that as it would be easier for // optimizations to kick in. Parts[i] = DAG.getConstant(0, dl, RegisterVT); continue; } // FIXME: We capture more information than the dag can represent. For // now, just use the tightest assertzext/assertsext possible. bool isSExt; EVT FromVT(MVT::Other); if (NumZeroBits) { FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); isSExt = false; } else if (NumSignBits > 1) { FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); isSExt = true; } else { continue; } // Add an assertion node. assert(FromVT != MVT::Other); Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, RegisterVT, P, DAG.getValueType(FromVT)); } Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, RegisterVT, ValueVT, V, CallConv); Part += NumRegs; Parts.clear(); } return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); } void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Flag, const Value *V, ISD::NodeType PreferredExtendType) const { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); ISD::NodeType ExtendKind = PreferredExtendType; // Get the list of the values's legal parts. unsigned NumRegs = Regs.size(); SmallVector Parts(NumRegs); for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { unsigned NumParts = RegCount[Value]; MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( *DAG.getContext(), CallConv.value(), RegVTs[Value]) : RegVTs[Value]; if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) ExtendKind = ISD::ZERO_EXTEND; getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], NumParts, RegisterVT, V, CallConv, ExtendKind); Part += NumParts; } // Copy the parts into the registers. SmallVector Chains(NumRegs); for (unsigned i = 0; i != NumRegs; ++i) { SDValue Part; if (!Flag) { Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); } else { Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); *Flag = Part.getValue(1); } Chains[i] = Part.getValue(0); } if (NumRegs == 1 || Flag) // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is // flagged to it. That is the CopyToReg nodes and the user are considered // a single scheduling unit. If we create a TokenFactor and return it as // chain, then the TokenFactor is both a predecessor (operand) of the // user as well as a successor (the TF operands are flagged to the user). // c1, f1 = CopyToReg // c2, f2 = CopyToReg // c3 = TokenFactor c1, c2 // ... // = op c3, ..., f2 Chain = Chains[NumRegs-1]; else Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); } void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector &Ops) const { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); if (HasMatching) Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { // Put the register class of the virtual registers in the flag word. That // way, later passes can recompute register class constraints for inline // assembly as well as normal instructions. // Don't do this for tied operands that can use the regclass information // from the def. const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); } SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); Ops.push_back(Res); if (Code == InlineAsm::Kind_Clobber) { // Clobbers should always have a 1:1 mapping with registers, and may // reference registers that have illegal (e.g. vector) types. Hence, we // shouldn't try to apply any sort of splitting logic to them. assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && "No 1:1 mapping from clobbers to regs?"); Register SP = TLI.getStackPointerRegisterToSaveRestore(); (void)SP; for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); assert( (Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && "If we clobbered the stack pointer, MFI should know about it."); } return; } for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { MVT RegisterVT = RegVTs[Value]; unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], RegisterVT); for (unsigned i = 0; i != NumRegs; ++i) { assert(Reg < Regs.size() && "Mismatch in # registers expected"); unsigned TheReg = Regs[Reg++]; Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); } } } SmallVector, 4> RegsForValue::getRegsAndSizes() const { SmallVector, 4> OutVec; unsigned I = 0; for (auto CountAndVT : zip_first(RegCount, RegVTs)) { unsigned RegCount = std::get<0>(CountAndVT); MVT RegisterVT = std::get<1>(CountAndVT); TypeSize RegisterSize = RegisterVT.getSizeInBits(); for (unsigned E = I + RegCount; I != E; ++I) OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); } return OutVec; } void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, const TargetLibraryInfo *li) { AA = aa; GFI = gfi; LibInfo = li; Context = DAG.getContext(); LPadToCallSiteMap.clear(); SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); } void SelectionDAGBuilder::clear() { NodeMap.clear(); UnusedArgNodeMap.clear(); PendingLoads.clear(); PendingExports.clear(); PendingConstrainedFP.clear(); PendingConstrainedFPStrict.clear(); CurInst = nullptr; HasTailCall = false; SDNodeOrder = LowestSDNodeOrder; StatepointLowering.clear(); } void SelectionDAGBuilder::clearDanglingDebugInfo() { DanglingDebugInfoMap.clear(); } // Update DAG root to include dependencies on Pending chains. SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl &Pending) { SDValue Root = DAG.getRoot(); if (Pending.empty()) return Root; // Add current root to PendingChains, unless we already indirectly // depend on it. if (Root.getOpcode() != ISD::EntryToken) { unsigned i = 0, e = Pending.size(); for (; i != e; ++i) { assert(Pending[i].getNode()->getNumOperands() > 1); if (Pending[i].getNode()->getOperand(0) == Root) break; // Don't add the root if we already indirectly depend on it. } if (i == e) Pending.push_back(Root); } if (Pending.size() == 1) Root = Pending[0]; else Root = DAG.getTokenFactor(getCurSDLoc(), Pending); DAG.setRoot(Root); Pending.clear(); return Root; } SDValue SelectionDAGBuilder::getMemoryRoot() { return updateRoot(PendingLoads); } SDValue SelectionDAGBuilder::getRoot() { // Chain up all pending constrained intrinsics together with all // pending loads, by simply appending them to PendingLoads and // then calling getMemoryRoot(). PendingLoads.reserve(PendingLoads.size() + PendingConstrainedFP.size() + PendingConstrainedFPStrict.size()); PendingLoads.append(PendingConstrainedFP.begin(), PendingConstrainedFP.end()); PendingLoads.append(PendingConstrainedFPStrict.begin(), PendingConstrainedFPStrict.end()); PendingConstrainedFP.clear(); PendingConstrainedFPStrict.clear(); return getMemoryRoot(); } SDValue SelectionDAGBuilder::getControlRoot() { // We need to emit pending fpexcept.strict constrained intrinsics, // so append them to the PendingExports list. PendingExports.append(PendingConstrainedFPStrict.begin(), PendingConstrainedFPStrict.end()); PendingConstrainedFPStrict.clear(); return updateRoot(PendingExports); } void SelectionDAGBuilder::visit(const Instruction &I) { // Set up outgoing PHI node register values before emitting the terminator. if (I.isTerminator()) { HandlePHINodesInSuccessorBlocks(I.getParent()); } // Increase the SDNodeOrder if dealing with a non-debug instruction. if (!isa(I)) ++SDNodeOrder; CurInst = &I; visit(I.getOpcode(), I); if (!I.isTerminator() && !HasTailCall && !isa(I)) // statepoints handle their exports internally CopyToExportRegsIfNeeded(&I); CurInst = nullptr; } void SelectionDAGBuilder::visitPHI(const PHINode &) { llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); } void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { // Note: this doesn't use InstVisitor, because it has to work with // ConstantExpr's in addition to instructions. switch (Opcode) { default: llvm_unreachable("Unknown instruction type encountered!"); // Build the switch statement using the Instruction.def file. #define HANDLE_INST(NUM, OPCODE, CLASS) \ case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; #include "llvm/IR/Instruction.def" } } void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, DebugLoc DL, unsigned Order) { // We treat variadic dbg_values differently at this stage. if (DI->hasArgList()) { // For variadic dbg_values we will now insert an undef. // FIXME: We can potentially recover these! SmallVector Locs; for (const Value *V : DI->getValues()) { auto Undef = UndefValue::get(V->getType()); Locs.push_back(SDDbgOperand::fromConst(Undef)); } SDDbgValue *SDV = DAG.getDbgValueList( DI->getVariable(), DI->getExpression(), Locs, {}, /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); DAG.AddDbgValue(SDV, /*isParameter=*/false); } else { // TODO: Dangling debug info will eventually either be resolved or produce // an Undef DBG_VALUE. However in the resolution case, a gap may appear // between the original dbg.value location and its resolved DBG_VALUE, // which we should ideally fill with an extra Undef DBG_VALUE. assert(DI->getNumVariableLocationOps() == 1 && "DbgValueInst without an ArgList should have a single location " "operand."); DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); } } void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr) { auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { const DbgValueInst *DI = DDI.getDI(); DIVariable *DanglingVariable = DI->getVariable(); DIExpression *DanglingExpr = DI->getExpression(); if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); return true; } return false; }; for (auto &DDIMI : DanglingDebugInfoMap) { DanglingDebugInfoVector &DDIV = DDIMI.second; // If debug info is to be dropped, run it through final checks to see // whether it can be salvaged. for (auto &DDI : DDIV) if (isMatchingDbgValue(DDI)) salvageUnresolvedDbgValue(DDI); erase_if(DDIV, isMatchingDbgValue); } } // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, // generate the debug data structures now that we've seen its definition. void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, SDValue Val) { auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) return; DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; for (auto &DDI : DDIV) { const DbgValueInst *DI = DDI.getDI(); assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); assert(DI && "Ill-formed DanglingDebugInfo"); DebugLoc dl = DDI.getdl(); unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); DILocalVariable *Variable = DI->getVariable(); DIExpression *Expr = DI->getExpression(); assert(Variable->isValidLocationForIntrinsic(dl) && "Expected inlined-at fields to agree"); SDDbgValue *SDV; if (Val.getNode()) { // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a // FuncArgumentDbgValue (it would be hoisted to the function entry, and if // we couldn't resolve it directly when examining the DbgValue intrinsic // in the first place we should not be more successful here). Unless we // have some test case that prove this to be correct we should avoid // calling EmitFuncArgumentDbgValue here. if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, FuncArgumentDbgValueKind::Value, Val)) { LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); // Increase the SDNodeOrder for the DbgValue here to make sure it is // inserted after the definition of Val when emitting the instructions // after ISel. An alternative could be to teach // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " << ValSDNodeOrder << "\n"); SDV = getDbgValue(Val, Variable, Expr, dl, std::max(DbgSDNodeOrder, ValSDNodeOrder)); DAG.AddDbgValue(SDV, false); } else LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI << "in EmitFuncArgumentDbgValue\n"); } else { LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); auto SDV = DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); DAG.AddDbgValue(SDV, false); } } DDIV.clear(); } void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { // TODO: For the variadic implementation, instead of only checking the fail // state of `handleDebugValue`, we need know specifically which values were // invalid, so that we attempt to salvage only those values when processing // a DIArgList. assert(!DDI.getDI()->hasArgList() && "Not implemented for variadic dbg_values"); Value *V = DDI.getDI()->getValue(0); DILocalVariable *Var = DDI.getDI()->getVariable(); DIExpression *Expr = DDI.getDI()->getExpression(); DebugLoc DL = DDI.getdl(); DebugLoc InstDL = DDI.getDI()->getDebugLoc(); unsigned SDOrder = DDI.getSDNodeOrder(); // Currently we consider only dbg.value intrinsics -- we tell the salvager // that DW_OP_stack_value is desired. assert(isa(DDI.getDI())); bool StackValue = true; // Can this Value can be encoded without any further work? if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) return; // Attempt to salvage back through as many instructions as possible. Bail if // a non-instruction is seen, such as a constant expression or global // variable. FIXME: Further work could recover those too. while (isa(V)) { Instruction &VAsInst = *cast(V); // Temporary "0", awaiting real implementation. SmallVector Ops; SmallVector AdditionalValues; V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, AdditionalValues); // If we cannot salvage any further, and haven't yet found a suitable debug // expression, bail out. if (!V) break; // TODO: If AdditionalValues isn't empty, then the salvage can only be // represented with a DBG_VALUE_LIST, so we give up. When we have support // here for variadic dbg_values, remove that condition. if (!AdditionalValues.empty()) break; // New value and expr now represent this debuginfo. Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); // Some kind of simplification occurred: check whether the operand of the // salvaged debug expression can be encoded in this DAG. if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) { LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " << *DDI.getDI() << "\nBy stripping back to:\n " << *V); return; } } // This was the final opportunity to salvage this debug information, and it // couldn't be done. Place an undef DBG_VALUE at this location to terminate // any earlier variable location. auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); DAG.AddDbgValue(SDV, false); LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << *DDI.getDI() << "\n"); LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) << "\n"); } bool SelectionDAGBuilder::handleDebugValue(ArrayRef Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc dl, DebugLoc InstDL, unsigned Order, bool IsVariadic) { if (Values.empty()) return true; SmallVector LocationOps; SmallVector Dependencies; for (const Value *V : Values) { // Constant value. if (isa(V) || isa(V) || isa(V) || isa(V)) { LocationOps.emplace_back(SDDbgOperand::fromConst(V)); continue; } // If the Value is a frame index, we can create a FrameIndex debug value // without relying on the DAG at all. if (const AllocaInst *AI = dyn_cast(V)) { auto SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); continue; } } // Do not use getValue() in here; we don't want to generate code at // this point if it hasn't been done yet. SDValue N = NodeMap[V]; if (!N.getNode() && isa(V)) // Check unused arguments map. N = UnusedArgNodeMap[V]; if (N.getNode()) { // Only emit func arg dbg value for non-variadic dbg.values for now. if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, FuncArgumentDbgValueKind::Value, N)) return true; if (auto *FISDN = dyn_cast(N.getNode())) { // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can // describe stack slot locations. // // Consider "int x = 0; int *px = &x;". There are two kinds of // interesting debug values here after optimization: // // dbg.value(i32* %px, !"int *px", !DIExpression()), and // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) // // Both describe the direct values of their associated variables. Dependencies.push_back(N.getNode()); LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); continue; } LocationOps.emplace_back( SDDbgOperand::fromNode(N.getNode(), N.getResNo())); continue; } const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // Special rules apply for the first dbg.values of parameter variables in a // function. Identify them by the fact they reference Argument Values, that // they're parameters, and they are parameters of the current function. We // need to let them dangle until they get an SDNode. bool IsParamOfFunc = isa(V) && Var->isParameter() && !InstDL.getInlinedAt(); if (IsParamOfFunc) return false; // The value is not used in this block yet (or it would have an SDNode). // We still want the value to appear for the user if possible -- if it has // an associated VReg, we can refer to that instead. auto VMI = FuncInfo.ValueMap.find(V); if (VMI != FuncInfo.ValueMap.end()) { unsigned Reg = VMI->second; // If this is a PHI node, it may be split up into several MI PHI nodes // (in FunctionLoweringInfo::set). RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), None); if (RFV.occupiesMultipleRegs()) { // FIXME: We could potentially support variadic dbg_values here. if (IsVariadic) return false; unsigned Offset = 0; unsigned BitsToDescribe = 0; if (auto VarSize = Var->getSizeInBits()) BitsToDescribe = *VarSize; if (auto Fragment = Expr->getFragmentInfo()) BitsToDescribe = Fragment->SizeInBits; for (const auto &RegAndSize : RFV.getRegsAndSizes()) { // Bail out if all bits are described already. if (Offset >= BitsToDescribe) break; // TODO: handle scalable vectors. unsigned RegisterSize = RegAndSize.second; unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) ? BitsToDescribe - Offset : RegisterSize; auto FragmentExpr = DIExpression::createFragmentExpression( Expr, Offset, FragmentSize); if (!FragmentExpr) continue; SDDbgValue *SDV = DAG.getVRegDbgValue( Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); DAG.AddDbgValue(SDV, false); Offset += RegisterSize; } return true; } // We can use simple vreg locations for variadic dbg_values as well. LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); continue; } // We failed to create a SDDbgOperand for V. return false; } // We have created a SDDbgOperand for each Value in Values. // Should use Order instead of SDNodeOrder? assert(!LocationOps.empty()); SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); DAG.AddDbgValue(SDV, /*isParameter=*/false); return true; } void SelectionDAGBuilder::resolveOrClearDbgInfo() { // Try to fixup any remaining dangling debug info -- and drop it if we can't. for (auto &Pair : DanglingDebugInfoMap) for (auto &DDI : Pair.second) salvageUnresolvedDbgValue(DDI); clearDanglingDebugInfo(); } /// getCopyFromRegs - If there was virtual register allocated for the value V /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { DenseMap::iterator It = FuncInfo.ValueMap.find(V); SDValue Result; if (It != FuncInfo.ValueMap.end()) { Register InReg = It->second; RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), DAG.getDataLayout(), InReg, Ty, None); // This is not an ABI copy. SDValue Chain = DAG.getEntryNode(); Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); resolveDanglingDebugInfo(V, Result); } return Result; } /// getValue - Return an SDValue for the given Value. SDValue SelectionDAGBuilder::getValue(const Value *V) { // If we already have an SDValue for this value, use it. It's important // to do this first, so that we don't create a CopyFromReg if we already // have a regular SDValue. SDValue &N = NodeMap[V]; if (N.getNode()) return N; // If there's a virtual register allocated and initialized for this // value, use it. if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) return copyFromReg; // Otherwise create a new SDValue and remember it. SDValue Val = getValueImpl(V); NodeMap[V] = Val; resolveDanglingDebugInfo(V, Val); return Val; } /// getNonRegisterValue - Return an SDValue for the given Value, but /// don't look in FuncInfo.ValueMap for a virtual register. SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { // If we already have an SDValue for this value, use it. SDValue &N = NodeMap[V]; if (N.getNode()) { if (isa(N) || isa(N)) { // Remove the debug location from the node as the node is about to be used // in a location which may differ from the original debug location. This // is relevant to Constant and ConstantFP nodes because they can appear // as constant expressions inside PHI nodes. N->setDebugLoc(DebugLoc()); } return N; } // Otherwise create a new SDValue and remember it. SDValue Val = getValueImpl(V); NodeMap[V] = Val; resolveDanglingDebugInfo(V, Val); return Val; } /// getValueImpl - Helper function for getValue and getNonRegisterValue. /// Create an SDValue for the given value. SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (const Constant *C = dyn_cast(V)) { EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); if (const ConstantInt *CI = dyn_cast(C)) return DAG.getConstant(*CI, getCurSDLoc(), VT); if (const GlobalValue *GV = dyn_cast(C)) return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); if (isa(C)) { unsigned AS = V->getType()->getPointerAddressSpace(); return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout(), AS)); } if (match(C, m_VScale(DAG.getDataLayout()))) return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); if (const ConstantFP *CFP = dyn_cast(C)) return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); if (isa(C) && !V->getType()->isAggregateType()) return DAG.getUNDEF(VT); if (const ConstantExpr *CE = dyn_cast(C)) { visit(CE->getOpcode(), *CE); SDValue N1 = NodeMap[V]; assert(N1.getNode() && "visit didn't populate the NodeMap!"); return N1; } if (isa(C) || isa(C)) { SmallVector Constants; for (const Use &U : C->operands()) { SDNode *Val = getValue(U).getNode(); // If the operand is an empty aggregate, there are no values. if (!Val) continue; // Add each leaf value from the operand to the Constants list // to form a flattened list of all the values. for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) Constants.push_back(SDValue(Val, i)); } return DAG.getMergeValues(Constants, getCurSDLoc()); } if (const ConstantDataSequential *CDS = dyn_cast(C)) { SmallVector Ops; for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); // Add each leaf value from the operand to the Constants list // to form a flattened list of all the values. for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) Ops.push_back(SDValue(Val, i)); } if (isa(CDS->getType())) return DAG.getMergeValues(Ops, getCurSDLoc()); return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); } if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { assert((isa(C) || isa(C)) && "Unknown struct or array constant!"); SmallVector ValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); unsigned NumElts = ValueVTs.size(); if (NumElts == 0) return SDValue(); // empty struct SmallVector Constants(NumElts); for (unsigned i = 0; i != NumElts; ++i) { EVT EltVT = ValueVTs[i]; if (isa(C)) Constants[i] = DAG.getUNDEF(EltVT); else if (EltVT.isFloatingPoint()) Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); else Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); } return DAG.getMergeValues(Constants, getCurSDLoc()); } if (const BlockAddress *BA = dyn_cast(C)) return DAG.getBlockAddress(BA, VT); if (const auto *Equiv = dyn_cast(C)) return getValue(Equiv->getGlobalValue()); if (const auto *NC = dyn_cast(C)) return getValue(NC->getGlobalValue()); VectorType *VecTy = cast(V->getType()); // Now that we know the number and type of the elements, get that number of // elements into the Ops array based on what kind of constant it is. if (const ConstantVector *CV = dyn_cast(C)) { SmallVector Ops; unsigned NumElements = cast(VecTy)->getNumElements(); for (unsigned i = 0; i != NumElements; ++i) Ops.push_back(getValue(CV->getOperand(i))); return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); } if (isa(C)) { EVT EltVT = TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); SDValue Op; if (EltVT.isFloatingPoint()) Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); else Op = DAG.getConstant(0, getCurSDLoc(), EltVT); if (isa(VecTy)) return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); SmallVector Ops; Ops.assign(cast(VecTy)->getNumElements(), Op); return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); } llvm_unreachable("Unknown vector constant"); } // If this is a static alloca, generate it as the frameindex instead of // computation. if (const AllocaInst *AI = dyn_cast(V)) { DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) return DAG.getFrameIndex(SI->second, TLI.getFrameIndexTy(DAG.getDataLayout())); } // If this is an instruction which fast-isel has deferred, select it now. if (const Instruction *Inst = dyn_cast(V)) { unsigned InReg = FuncInfo.InitializeRegForValue(Inst); RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, Inst->getType(), None); SDValue Chain = DAG.getEntryNode(); return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); } if (const MetadataAsValue *MD = dyn_cast(V)) return DAG.getMDNode(cast(MD->getMetadata())); if (const auto *BB = dyn_cast(V)) return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); llvm_unreachable("Can't get register for value!"); } void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; bool IsCoreCLR = Pers == EHPersonality::CoreCLR; bool IsSEH = isAsynchronousEHPersonality(Pers); MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; if (!IsSEH) CatchPadMBB->setIsEHScopeEntry(); // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. if (IsMSVCCXX || IsCoreCLR) CatchPadMBB->setIsEHFuncletEntry(); } void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { // Update machine-CFG edge. MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; FuncInfo.MBB->addSuccessor(TargetMBB); TargetMBB->setIsEHCatchretTarget(true); DAG.getMachineFunction().setHasEHCatchret(true); auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); bool IsSEH = isAsynchronousEHPersonality(Pers); if (IsSEH) { // If this is not a fall-through branch or optimizations are switched off, // emit the branch. if (TargetMBB != NextBlock(FuncInfo.MBB) || TM.getOptLevel() == CodeGenOpt::None) DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(TargetMBB))); return; } // Figure out the funclet membership for the catchret's successor. // This will be used by the FuncletLayout pass to determine how to order the // BB's. // A 'catchret' returns to the outer scope's color. Value *ParentPad = I.getCatchSwitchParentPad(); const BasicBlock *SuccessorColor; if (isa(ParentPad)) SuccessorColor = &FuncInfo.Fn->getEntryBlock(); else SuccessorColor = cast(ParentPad)->getParent(); assert(SuccessorColor && "No parent funclet for catchret!"); MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); // Create the terminator node. SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(TargetMBB), DAG.getBasicBlock(SuccessorColorMBB)); DAG.setRoot(Ret); } void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { // Don't emit any special code for the cleanuppad instruction. It just marks // the start of an EH scope/funclet. FuncInfo.MBB->setIsEHScopeEntry(); auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); if (Pers != EHPersonality::Wasm_CXX) { FuncInfo.MBB->setIsEHFuncletEntry(); FuncInfo.MBB->setIsCleanupFuncletEntry(); } } // In wasm EH, even though a catchpad may not catch an exception if a tag does // not match, it is OK to add only the first unwind destination catchpad to the // successors, because there will be at least one invoke instruction within the // catch scope that points to the next unwind destination, if one exists, so // CFGSort cannot mess up with BB sorting order. // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic // call within them, and catchpads only consisting of 'catch (...)' have a // '__cxa_end_catch' call within them, both of which generate invokes in case // the next unwind destination exists, i.e., the next unwind destination is not // the caller.) // // Having at most one EH pad successor is also simpler and helps later // transformations. // // For example, // current: // invoke void @foo to ... unwind label %catch.dispatch // catch.dispatch: // %0 = catchswitch within ... [label %catch.start] unwind label %next // catch.start: // ... // ... in this BB or some other child BB dominated by this BB there will be an // invoke that points to 'next' BB as an unwind destination // // next: ; We don't need to add this to 'current' BB's successor // ... static void findWasmUnwindDestinations( FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl> &UnwindDests) { while (EHPadBB) { const Instruction *Pad = EHPadBB->getFirstNonPHI(); if (isa(Pad)) { // Stop on cleanup pads. UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); UnwindDests.back().first->setIsEHScopeEntry(); break; } else if (const auto *CatchSwitch = dyn_cast(Pad)) { // Add the catchpad handlers to the possible destinations. We don't // continue to the unwind destination of the catchswitch for wasm. for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); UnwindDests.back().first->setIsEHScopeEntry(); } break; } else { continue; } } } /// When an invoke or a cleanupret unwinds to the next EH pad, there are /// many places it could ultimately go. In the IR, we have a single unwind /// destination, but in the machine CFG, we enumerate all the possible blocks. /// This function skips over imaginary basic blocks that hold catchswitch /// instructions, and finds all the "real" machine /// basic block destinations. As those destinations may not be successors of /// EHPadBB, here we also calculate the edge probability to those destinations. /// The passed-in Prob is the edge probability to EHPadBB. static void findUnwindDestinations( FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl> &UnwindDests) { EHPersonality Personality = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; bool IsCoreCLR = Personality == EHPersonality::CoreCLR; bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; bool IsSEH = isAsynchronousEHPersonality(Personality); if (IsWasmCXX) { findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); assert(UnwindDests.size() <= 1 && "There should be at most one unwind destination for wasm"); return; } while (EHPadBB) { const Instruction *Pad = EHPadBB->getFirstNonPHI(); BasicBlock *NewEHPadBB = nullptr; if (isa(Pad)) { // Stop on landingpads. They are not funclets. UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); break; } else if (isa(Pad)) { // Stop on cleanup pads. Cleanups are always funclet entries for all known // personalities. UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); UnwindDests.back().first->setIsEHScopeEntry(); UnwindDests.back().first->setIsEHFuncletEntry(); break; } else if (const auto *CatchSwitch = dyn_cast(Pad)) { // Add the catchpad handlers to the possible destinations. for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); // For MSVC++ and the CLR, catchblocks are funclets and need prologues. if (IsMSVCCXX || IsCoreCLR) UnwindDests.back().first->setIsEHFuncletEntry(); if (!IsSEH) UnwindDests.back().first->setIsEHScopeEntry(); } NewEHPadBB = CatchSwitch->getUnwindDest(); } else { continue; } BranchProbabilityInfo *BPI = FuncInfo.BPI; if (BPI && NewEHPadBB) Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); EHPadBB = NewEHPadBB; } } void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { // Update successor info. SmallVector, 1> UnwindDests; auto UnwindDest = I.getUnwindDest(); BranchProbabilityInfo *BPI = FuncInfo.BPI; BranchProbability UnwindDestProb = (BPI && UnwindDest) ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) : BranchProbability::getZero(); findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); for (auto &UnwindDest : UnwindDests) { UnwindDest.first->setIsEHPad(); addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); } FuncInfo.MBB->normalizeSuccProbs(); // Create the terminator node. SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); DAG.setRoot(Ret); } void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { report_fatal_error("visitCatchSwitch not yet implemented!"); } void SelectionDAGBuilder::visitRet(const ReturnInst &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); auto &DL = DAG.getDataLayout(); SDValue Chain = getControlRoot(); SmallVector Outs; SmallVector OutVals; // Calls to @llvm.experimental.deoptimize don't generate a return value, so // lower // // %val = call @llvm.experimental.deoptimize() // ret %val // // differently. if (I.getParent()->getTerminatingDeoptimizeCall()) { LowerDeoptimizingReturn(); return; } if (!FuncInfo.CanLowerReturn) { unsigned DemoteReg = FuncInfo.DemoteRegister; const Function *F = I.getParent()->getParent(); // Emit a store of the return value through the virtual register. // Leave Outs empty so that LowerReturn won't try to load return // registers the usual way. SmallVector PtrValueVTs; ComputeValueVTs(TLI, DL, F->getReturnType()->getPointerTo( DAG.getDataLayout().getAllocaAddrSpace()), PtrValueVTs); SDValue RetPtr = DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); SDValue RetOp = getValue(I.getOperand(0)); SmallVector ValueVTs, MemVTs; SmallVector Offsets; ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, &Offsets); unsigned NumValues = ValueVTs.size(); SmallVector Chains(NumValues); Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); for (unsigned i = 0; i != NumValues; ++i) { // An aggregate return value cannot wrap around the address space, so // offsets to its parts don't wrap either. SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, TypeSize::Fixed(Offsets[i])); SDValue Val = RetOp.getValue(RetOp.getResNo() + i); if (MemVTs[i] != ValueVTs[i]) Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); Chains[i] = DAG.getStore( Chain, getCurSDLoc(), Val, // FIXME: better loc info would be nice. Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), commonAlignment(BaseAlign, Offsets[i])); } Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, Chains); } else if (I.getNumOperands() != 0) { SmallVector ValueVTs; ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues) { SDValue RetOp = getValue(I.getOperand(0)); const Function *F = I.getParent()->getParent(); bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( I.getOperand(0)->getType(), F->getCallingConv(), /*IsVarArg*/ false, DL); ISD::NodeType ExtendKind = ISD::ANY_EXTEND; if (F->getAttributes().hasRetAttr(Attribute::SExt)) ExtendKind = ISD::SIGN_EXTEND; else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) ExtendKind = ISD::ZERO_EXTEND; LLVMContext &Context = F->getContext(); bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); for (unsigned j = 0; j != NumValues; ++j) { EVT VT = ValueVTs[j]; if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); CallingConv::ID CC = F->getCallingConv(); unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); SmallVector Parts(NumParts); getCopyToParts(DAG, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + j), &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); // 'inreg' on function refers to return value ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); if (RetInReg) Flags.setInReg(); if (I.getOperand(0)->getType()->isPointerTy()) { Flags.setPointer(); Flags.setPointerAddrSpace( cast(I.getOperand(0)->getType())->getAddressSpace()); } if (NeedsRegBlock) { Flags.setInConsecutiveRegs(); if (j == NumValues - 1) Flags.setInConsecutiveRegsLast(); } // Propagate extension type if any if (ExtendKind == ISD::SIGN_EXTEND) Flags.setSExt(); else if (ExtendKind == ISD::ZERO_EXTEND) Flags.setZExt(); for (unsigned i = 0; i < NumParts; ++i) { Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType().getSimpleVT(), VT, /*isfixed=*/true, 0, 0)); OutVals.push_back(Parts[i]); } } } } // Push in swifterror virtual register as the last element of Outs. This makes // sure swifterror virtual register will be returned in the swifterror // physical register. const Function *F = I.getParent()->getParent(); if (TLI.supportSwiftError() && F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { assert(SwiftError.getFunctionArg() && "Need a swift error argument"); ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); Flags.setSwiftError(); Outs.push_back(ISD::OutputArg( Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); // Create SDNode for the swifterror virtual register. OutVals.push_back( DAG.getRegister(SwiftError.getOrCreateVRegUseAt( &I, FuncInfo.MBB, SwiftError.getFunctionArg()), EVT(TLI.getPointerTy(DL)))); } bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); CallingConv::ID CallConv = DAG.getMachineFunction().getFunction().getCallingConv(); Chain = DAG.getTargetLoweringInfo().LowerReturn( Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); // Verify that the target's LowerReturn behaved as expected. assert(Chain.getNode() && Chain.getValueType() == MVT::Other && "LowerReturn didn't return a valid chain!"); // Update the DAG with the new chain value resulting from return lowering. DAG.setRoot(Chain); } /// CopyToExportRegsIfNeeded - If the given value has virtual registers /// created for it, emit nodes to copy the value into the virtual /// registers. void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { // Skip empty types if (V->getType()->isEmptyTy()) return; DenseMap::iterator VMI = FuncInfo.ValueMap.find(V); if (VMI != FuncInfo.ValueMap.end()) { assert(!V->use_empty() && "Unused value assigned virtual registers!"); CopyValueToVirtualRegister(V, VMI->second); } } /// ExportFromCurrentBlock - If this condition isn't known to be exported from /// the current basic block, add it to ValueMap now so that we'll get a /// CopyTo/FromReg. void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { // No need to export constants. if (!isa(V) && !isa(V)) return; // Already exported? if (FuncInfo.isExportedInst(V)) return; unsigned Reg = FuncInfo.InitializeRegForValue(V); CopyValueToVirtualRegister(V, Reg); } bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB) { // The operands of the setcc have to be in this block. We don't know // how to export them from some other block. if (const Instruction *VI = dyn_cast(V)) { // Can export from current BB. if (VI->getParent() == FromBB) return true; // Is already exported, noop. return FuncInfo.isExportedInst(V); } // If this is an argument, we can export it if the BB is the entry block or // if it is already exported. if (isa(V)) { if (FromBB->isEntryBlock()) return true; // Otherwise, can only export this if it is already exported. return FuncInfo.isExportedInst(V); } // Otherwise, constants can always be exported. return true; } /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. BranchProbability SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const { BranchProbabilityInfo *BPI = FuncInfo.BPI; const BasicBlock *SrcBB = Src->getBasicBlock(); const BasicBlock *DstBB = Dst->getBasicBlock(); if (!BPI) { // If BPI is not available, set the default probability as 1 / N, where N is // the number of successors. auto SuccSize = std::max(succ_size(SrcBB), 1); return BranchProbability(1, SuccSize); } return BPI->getEdgeProbability(SrcBB, DstBB); } void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, MachineBasicBlock *Dst, BranchProbability Prob) { if (!FuncInfo.BPI) Src->addSuccessorWithoutProb(Dst); else { if (Prob.isUnknown()) Prob = getEdgeProbability(Src, Dst); Src->addSuccessor(Dst, Prob); } } static bool InBlock(const Value *V, const BasicBlock *BB) { if (const Instruction *I = dyn_cast(V)) return I->getParent() == BB; return true; } /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. /// This function emits a branch and is used at the leaves of an OR or an /// AND operator tree. void SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond) { const BasicBlock *BB = CurBB->getBasicBlock(); // If the leaf of the tree is a comparison, merge the condition into // the caseblock. if (const CmpInst *BOp = dyn_cast(Cond)) { // The operands of the cmp have to be in this block. We don't know // how to export them from some other block. If this is the first block // of the sequence, no exporting is needed. if (CurBB == SwitchBB || (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { ISD::CondCode Condition; if (const ICmpInst *IC = dyn_cast(Cond)) { ICmpInst::Predicate Pred = InvertCond ? IC->getInversePredicate() : IC->getPredicate(); Condition = getICmpCondCode(Pred); } else { const FCmpInst *FC = cast(Cond); FCmpInst::Predicate Pred = InvertCond ? FC->getInversePredicate() : FC->getPredicate(); Condition = getFCmpCondCode(Pred); if (TM.Options.NoNaNsFPMath) Condition = getFCmpCodeWithoutNaN(Condition); } CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); SL->SwitchCases.push_back(CB); return; } } // Create a CaseBlock record representing this branch. ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); SL->SwitchCases.push_back(CB); } void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond) { // Skip over not part of the tree and remember to invert op and operands at // next level. Value *NotCond; if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && InBlock(NotCond, CurBB->getBasicBlock())) { FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, !InvertCond); return; } const Instruction *BOp = dyn_cast(Cond); const Value *BOpOp0, *BOpOp1; // Compute the effective opcode for Cond, taking into account whether it needs // to be inverted, e.g. // and (not (or A, B)), C // gets lowered as // and (and (not A, not B), C) Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; if (BOp) { BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) ? Instruction::And : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) ? Instruction::Or : (Instruction::BinaryOps)0); if (InvertCond) { if (BOpc == Instruction::And) BOpc = Instruction::Or; else if (BOpc == Instruction::Or) BOpc = Instruction::And; } } // If this node is not part of the or/and tree, emit it as a branch. // Note that all nodes in the tree should have same opcode. bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || !InBlock(BOpOp0, CurBB->getBasicBlock()) || !InBlock(BOpOp1, CurBB->getBasicBlock())) { EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb, InvertCond); return; } // Create TmpBB after CurBB. MachineFunction::iterator BBI(CurBB); MachineFunction &MF = DAG.getMachineFunction(); MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); CurBB->getParent()->insert(++BBI, TmpBB); if (Opc == Instruction::Or) { // Codegen X | Y as: // BB1: // jmp_if_X TBB // jmp TmpBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // We have flexibility in setting Prob for BB1 and Prob for TmpBB. // The requirement is that // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) // = TrueProb for original BB. // Assuming the original probabilities are A and B, one choice is to set // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to // A/(1+B) and 2B/(1+B). This choice assumes that // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. // Another choice is to assume TrueProb for BB1 equals to TrueProb for // TmpBB, but the math is more complicated. auto NewTrueProb = TProb / 2; auto NewFalseProb = TProb / 2 + FProb; // Emit the LHS condition. FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, NewFalseProb, InvertCond); // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). SmallVector Probs{TProb / 2, FProb}; BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); // Emit the RHS condition into TmpBB. FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], Probs[1], InvertCond); } else { assert(Opc == Instruction::And && "Unknown merge op!"); // Codegen X & Y as: // BB1: // jmp_if_X TmpBB // jmp FBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // This requires creation of TmpBB after CurBB. // We have flexibility in setting Prob for BB1 and Prob for TmpBB. // The requirement is that // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) // = FalseProb for original BB. // Assuming the original probabilities are A and B, one choice is to set // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == // TrueProb for BB1 * FalseProb for TmpBB. auto NewTrueProb = TProb + FProb / 2; auto NewFalseProb = FProb / 2; // Emit the LHS condition. FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, NewFalseProb, InvertCond); // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). SmallVector Probs{TProb, FProb / 2}; BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); // Emit the RHS condition into TmpBB. FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], Probs[1], InvertCond); } } /// If the set of cases should be emitted as a series of branches, return true. /// If we should emit this as a bunch of and/or'd together conditions, return /// false. bool SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector &Cases) { if (Cases.size() != 2) return true; // If this is two comparisons of the same values or'd or and'd together, they // will get folded into a single comparison, so don't emit two blocks. if ((Cases[0].CmpLHS == Cases[1].CmpLHS && Cases[0].CmpRHS == Cases[1].CmpRHS) || (Cases[0].CmpRHS == Cases[1].CmpLHS && Cases[0].CmpLHS == Cases[1].CmpRHS)) { return false; } // Handle: (X != null) | (Y != null) --> (X|Y) != 0 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 if (Cases[0].CmpRHS == Cases[1].CmpRHS && Cases[0].CC == Cases[1].CC && isa(Cases[0].CmpRHS) && cast(Cases[0].CmpRHS)->isNullValue()) { if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) return false; if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) return false; } return true; } void SelectionDAGBuilder::visitBr(const BranchInst &I) { MachineBasicBlock *BrMBB = FuncInfo.MBB; // Update machine-CFG edges. MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; if (I.isUnconditional()) { // Update machine-CFG edges. BrMBB->addSuccessor(Succ0MBB); // If this is not a fall-through branch or optimizations are switched off, // emit the branch. if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(Succ0MBB))); return; } // If this condition is one of the special cases we handle, do special stuff // now. const Value *CondVal = I.getCondition(); MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; // If this is a series of conditions that are or'd or and'd together, emit // this as a sequence of branches instead of setcc's with and/or operations. // As long as jumps are not expensive (exceptions for multi-use logic ops, // unpredictable branches, and vector extracts because those jumps are likely // expensive for any target), this should improve performance. // For example, instead of something like: // cmp A, B // C = seteq // cmp D, E // F = setle // or C, F // jnz foo // Emit: // cmp A, B // je foo // cmp D, E // jle foo const Instruction *BOp = dyn_cast(CondVal); if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { Value *Vec; const Value *BOp0, *BOp1; Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) Opcode = Instruction::And; else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) Opcode = Instruction::Or; if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, getEdgeProbability(BrMBB, Succ0MBB), getEdgeProbability(BrMBB, Succ1MBB), /*InvertCond=*/false); // If the compares in later blocks need to use values not currently // exported from this block, export them now. This block should always // be the first entry. assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); // Allow some cases to be rejected. if (ShouldEmitAsBranches(SL->SwitchCases)) { for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); } // Emit the branch for this block. visitSwitchCase(SL->SwitchCases[0], BrMBB); SL->SwitchCases.erase(SL->SwitchCases.begin()); return; } // Okay, we decided not to do this, remove any inserted MBB's and clear // SwitchCases. for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); SL->SwitchCases.clear(); } } // Create a CaseBlock record representing this branch. CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); // Use visitSwitchCase to actually insert the fast branch sequence for this // cond branch. visitSwitchCase(CB, BrMBB); } /// visitSwitchCase - Emits the necessary code to represent a single node in /// the binary search tree resulting from lowering a switch instruction. void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, MachineBasicBlock *SwitchBB) { SDValue Cond; SDValue CondLHS = getValue(CB.CmpLHS); SDLoc dl = CB.DL; if (CB.CC == ISD::SETTRUE) { // Branch or fall through to TrueBB. addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); SwitchBB->normalizeSuccProbs(); if (CB.TrueBB != NextBlock(SwitchBB)) { DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), DAG.getBasicBlock(CB.TrueBB))); } return; } auto &TLI = DAG.getTargetLoweringInfo(); EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); // Build the setcc now. if (!CB.CmpMHS) { // Fold "(X == true)" to X and "(X == false)" to !X to // handle common cases produced by branch lowering. if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && CB.CC == ISD::SETEQ) Cond = CondLHS; else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && CB.CC == ISD::SETEQ) { SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); } else { SDValue CondRHS = getValue(CB.CmpRHS); // If a pointer's DAG type is larger than its memory type then the DAG // values are zero-extended. This breaks signed comparisons so truncate // back to the underlying type before doing the compare. if (CondLHS.getValueType() != MemVT) { CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); } Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); } } else { assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); const APInt& Low = cast(CB.CmpLHS)->getValue(); const APInt& High = cast(CB.CmpRHS)->getValue(); SDValue CmpOp = getValue(CB.CmpMHS); EVT VT = CmpOp.getValueType(); if (cast(CB.CmpLHS)->isMinValue(true)) { Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), ISD::SETLE); } else { SDValue SUB = DAG.getNode(ISD::SUB, dl, VT, CmpOp, DAG.getConstant(Low, dl, VT)); Cond = DAG.getSetCC(dl, MVT::i1, SUB, DAG.getConstant(High-Low, dl, VT), ISD::SETULE); } } // Update successor info addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); // TrueBB and FalseBB are always different unless the incoming IR is // degenerate. This only happens when running llc on weird IR. if (CB.TrueBB != CB.FalseBB) addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); SwitchBB->normalizeSuccProbs(); // If the lhs block is the next block, invert the condition so that we can // fall through to the lhs instead of the rhs block. if (CB.TrueBB == NextBlock(SwitchBB)) { std::swap(CB.TrueBB, CB.FalseBB); SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); } SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), Cond, DAG.getBasicBlock(CB.TrueBB)); // Insert the false branch. Do this even if it's a fall through branch, // this makes it easier to do DAG optimizations which require inverting // the branch condition. BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, DAG.getBasicBlock(CB.FalseBB)); DAG.setRoot(BrCond); } /// visitJumpTable - Emit JumpTable node in the current MBB void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { // Emit the code for the jump table assert(JT.Reg != -1U && "Should lower JT Header first!"); EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), JT.Reg, PTy); SDValue Table = DAG.getJumpTable(JT.JTI, PTy); SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), MVT::Other, Index.getValue(1), Table, Index); DAG.setRoot(BrJumpTable); } /// visitJumpTableHeader - This function emits necessary code to produce index /// in the JumpTable from switch case. void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, JumpTableHeader &JTH, MachineBasicBlock *SwitchBB) { SDLoc dl = getCurSDLoc(); // Subtract the lowest switch case value from the value being switched on. SDValue SwitchOp = getValue(JTH.SValue); EVT VT = SwitchOp.getValueType(); SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(JTH.First, dl, VT)); // The SDNode we just created, which holds the value being switched on minus // the smallest case value, needs to be copied to a virtual register so it // can be used as an index into the jump table in a subsequent basic block. // This value may be smaller or larger than the target's pointer type, and // therefore require extension or truncating. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp); JT.Reg = JumpTableReg; if (!JTH.FallthroughUnreachable) { // Emit the range check for the jump table, and branch to the default block // for the switch statement if the value being switched on exceeds the // largest case in the switch. SDValue CMP = DAG.getSetCC( dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), Sub.getValueType()), Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, CopyTo, CMP, DAG.getBasicBlock(JT.Default)); // Avoid emitting unnecessary branches to the next block. if (JT.MBB != NextBlock(SwitchBB)) BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, DAG.getBasicBlock(JT.MBB)); DAG.setRoot(BrCond); } else { // Avoid emitting unnecessary branches to the next block. if (JT.MBB != NextBlock(SwitchBB)) DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, DAG.getBasicBlock(JT.MBB))); else DAG.setRoot(CopyTo); } } /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global /// variable if there exists one. static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); MachineFunction &MF = DAG.getMachineFunction(); Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); if (Global) { MachinePointerInfo MPInfo(Global); auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable; MachineMemOperand *MemRef = MF.getMachineMemOperand( MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); DAG.setNodeMemRefs(Node, {MemRef}); } if (PtrTy != PtrMemTy) return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); return SDValue(Node, 0); } /// Codegen a new tail for a stack protector check ParentMBB which has had its /// tail spliced into a stack protector check success bb. /// /// For a high level explanation of how this fits into the stack protector /// generation see the comment on the declaration of class /// StackProtectorDescriptor. void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB) { // First create the loads to the guard/stack slot for the comparison. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); int FI = MFI.getStackProtectorIndex(); SDValue Guard; SDLoc dl = getCurSDLoc(); SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); const Module &M = *ParentBB->getParent()->getFunction().getParent(); Align Align = DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); // Generate code to load the content of the guard slot. SDValue GuardVal = DAG.getLoad( PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, MachineMemOperand::MOVolatile); if (TLI.useStackGuardXorFP()) GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); // Retrieve guard check function, nullptr if instrumentation is inlined. if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { // The target provides a guard check function to validate the guard value. // Generate a call to that function with the content of the guard slot as // argument. FunctionType *FnTy = GuardCheckFn->getFunctionType(); assert(FnTy->getNumParams() == 1 && "Invalid function signature"); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Node = GuardVal; Entry.Ty = FnTy->getParamType(0); if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) Entry.IsInReg = true; Args.push_back(Entry); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(getCurSDLoc()) .setChain(DAG.getEntryNode()) .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), getValue(GuardCheckFn), std::move(Args)); std::pair Result = TLI.LowerCallTo(CLI); DAG.setRoot(Result.second); return; } // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. // Otherwise, emit a volatile load to retrieve the stack guard value. SDValue Chain = DAG.getEntryNode(); if (TLI.useLoadStackGuardNode()) { Guard = getLoadStackGuard(DAG, dl, Chain); } else { const Value *IRGuard = TLI.getSDagStackGuard(M); SDValue GuardPtr = getValue(IRGuard); Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), Align, MachineMemOperand::MOVolatile); } // Perform the comparison via a getsetcc. SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), Guard.getValueType()), Guard, GuardVal, ISD::SETNE); // If the guard/stackslot do not equal, branch to failure MBB. SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, GuardVal.getOperand(0), Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); // Otherwise branch to success MBB. SDValue Br = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, DAG.getBasicBlock(SPD.getSuccessMBB())); DAG.setRoot(Br); } /// Codegen the failure basic block for a stack protector check. /// /// A failure stack protector machine basic block consists simply of a call to /// __stack_chk_fail(). /// /// For a high level explanation of how this fits into the stack protector /// generation see the comment on the declaration of class /// StackProtectorDescriptor. void SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); TargetLowering::MakeLibCallOptions CallOptions; CallOptions.setDiscardResult(true); SDValue Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, None, CallOptions, getCurSDLoc()).second; // On PS4/PS5, the "return address" must still be within the calling // function, even if it's at the very end, so emit an explicit TRAP here. // Passing 'true' for doesNotReturn above won't generate the trap for us. if (TM.getTargetTriple().isPS()) Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); // WebAssembly needs an unreachable instruction after a non-returning call, // because the function return type can be different from __stack_chk_fail's // return type (void). if (TM.getTargetTriple().isWasm()) Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); DAG.setRoot(Chain); } /// visitBitTestHeader - This function emits necessary code to produce value /// suitable for "bit tests" void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB) { SDLoc dl = getCurSDLoc(); // Subtract the minimum value. SDValue SwitchOp = getValue(B.SValue); EVT VT = SwitchOp.getValueType(); SDValue RangeSub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); // Determine the type of the test operands. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); bool UsePtrType = false; if (!TLI.isTypeLegal(VT)) { UsePtrType = true; } else { for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { // Switch table case range are encoded into series of masks. // Just use pointer type, it's guaranteed to fit. UsePtrType = true; break; } } SDValue Sub = RangeSub; if (UsePtrType) { VT = TLI.getPointerTy(DAG.getDataLayout()); Sub = DAG.getZExtOrTrunc(Sub, dl, VT); } B.RegVT = VT.getSimpleVT(); B.Reg = FuncInfo.CreateReg(B.RegVT); SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); MachineBasicBlock* MBB = B.Cases[0].ThisBB; if (!B.FallthroughUnreachable) addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); addSuccessorWithProb(SwitchBB, MBB, B.Prob); SwitchBB->normalizeSuccProbs(); SDValue Root = CopyTo; if (!B.FallthroughUnreachable) { // Conditional branch to the default block. SDValue RangeCmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RangeSub.getValueType()), RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), ISD::SETUGT); Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, DAG.getBasicBlock(B.Default)); } // Avoid emitting unnecessary branches to the next block. if (MBB != NextBlock(SwitchBB)) Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); DAG.setRoot(Root); } /// visitBitTestCase - this function produces one "bit test" void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, MachineBasicBlock* NextMBB, BranchProbability BranchProbToNext, unsigned Reg, BitTestCase &B, MachineBasicBlock *SwitchBB) { SDLoc dl = getCurSDLoc(); MVT VT = BB.RegVT; SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); SDValue Cmp; unsigned PopCount = countPopulation(B.Mask); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (PopCount == 1) { // Testing for a single bit; just compare the shift count with what it // would need to be to shift a 1 bit in that position. Cmp = DAG.getSetCC( dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); } else if (PopCount == BB.Range) { // There is only one zero bit in the range, test for it directly. Cmp = DAG.getSetCC( dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); } else { // Make desired shift SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, DAG.getConstant(1, dl, VT), ShiftOp); // Emit bit tests and jumps SDValue AndOp = DAG.getNode(ISD::AND, dl, VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); Cmp = DAG.getSetCC( dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); } // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); // The branch probability from SwitchBB to NextMBB is BranchProbToNext. addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is // one as they are relative probabilities (and thus work more like weights), // and hence we need to normalize them to let the sum of them become one. SwitchBB->normalizeSuccProbs(); SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(), Cmp, DAG.getBasicBlock(B.TargetBB)); // Avoid emitting unnecessary branches to the next block. if (NextMBB != NextBlock(SwitchBB)) BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, DAG.getBasicBlock(NextMBB)); DAG.setRoot(BrAnd); } void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { MachineBasicBlock *InvokeMBB = FuncInfo.MBB; // Retrieve successors. Look through artificial IR level blocks like // catchswitch for successors. MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; const BasicBlock *EHPadBB = I.getSuccessor(1); // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't // have to do anything here to lower funclet bundles. assert(!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, LLVMContext::OB_gc_live, LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext::OB_clang_arc_attachedcall}) && "Cannot lower invokes with arbitrary operand bundles yet!"); const Value *Callee(I.getCalledOperand()); const Function *Fn = dyn_cast(Callee); if (isa(Callee)) visitInlineAsm(I, EHPadBB); else if (Fn && Fn->isIntrinsic()) { switch (Fn->getIntrinsicID()) { default: llvm_unreachable("Cannot invoke this intrinsic"); case Intrinsic::donothing: // Ignore invokes to @llvm.donothing: jump directly to the next BB. case Intrinsic::seh_try_begin: case Intrinsic::seh_scope_begin: case Intrinsic::seh_try_end: case Intrinsic::seh_scope_end: break; case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint_i64: visitPatchpoint(I, EHPadBB); break; case Intrinsic::experimental_gc_statepoint: LowerStatepoint(cast(I), EHPadBB); break; case Intrinsic::wasm_rethrow: { // This is usually done in visitTargetIntrinsic, but this intrinsic is // special because it can be invoked, so we manually lower it to a DAG // node here. SmallVector Ops; Ops.push_back(getRoot()); // inchain const TargetLowering &TLI = DAG.getTargetLoweringInfo(); Ops.push_back( DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); SDVTList VTs = DAG.getVTList(ArrayRef({MVT::Other})); // outchain DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); break; } } } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { // Currently we do not lower any intrinsic calls with deopt operand bundles. // Eventually we will support lowering the @llvm.experimental.deoptimize // intrinsic, and right now there are no plans to support other intrinsics // with deopt state. LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); } else { LowerCallTo(I, getValue(Callee), false, false, EHPadBB); } // If the value of the invoke is used outside of its defining block, make it // available as a virtual register. // We already took care of the exported value for the statepoint instruction // during call to the LowerStatepoint. if (!isa(I)) { CopyToExportRegsIfNeeded(&I); } SmallVector, 1> UnwindDests; BranchProbabilityInfo *BPI = FuncInfo.BPI; BranchProbability EHPadBBProb = BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) : BranchProbability::getZero(); findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); // Update successor info. addSuccessorWithProb(InvokeMBB, Return); for (auto &UnwindDest : UnwindDests) { UnwindDest.first->setIsEHPad(); addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); } InvokeMBB->normalizeSuccProbs(); // Drop into normal successor. DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(Return))); } void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { MachineBasicBlock *CallBrMBB = FuncInfo.MBB; // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't // have to do anything here to lower funclet bundles. assert(!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && "Cannot lower callbrs with arbitrary operand bundles yet!"); assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); visitInlineAsm(I); CopyToExportRegsIfNeeded(&I); // Retrieve successors. SmallPtrSet Dests; Dests.insert(I.getDefaultDest()); MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; // Update successor info. addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { BasicBlock *Dest = I.getIndirectDest(i); MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; Target->setIsInlineAsmBrIndirectTarget(); Target->setHasAddressTaken(); // Don't add duplicate machine successors. if (Dests.insert(Dest).second) addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); } CallBrMBB->normalizeSuccProbs(); // Drop into default successor. DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(Return))); } void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); } void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { assert(FuncInfo.MBB->isEHPad() && "Call to landingpad not in landing pad!"); // If there aren't registers to copy the values into (e.g., during SjLj // exceptions), then don't bother to create these DAG nodes. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && TLI.getExceptionSelectorRegister(PersonalityFn) == 0) return; // If landingpad's return type is token type, we don't create DAG nodes // for its exception pointer and selector value. The extraction of exception // pointer or selector value from token type landingpads is not currently // supported. if (LP.getType()->isTokenTy()) return; SmallVector ValueVTs; SDLoc dl = getCurSDLoc(); ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); // Get the two live-in registers as SDValues. The physregs have already been // copied into virtual registers. SDValue Ops[2]; if (FuncInfo.ExceptionPointerVirtReg) { Ops[0] = DAG.getZExtOrTrunc( DAG.getCopyFromReg(DAG.getEntryNode(), dl, FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy(DAG.getDataLayout())), dl, ValueVTs[0]); } else { Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); } Ops[1] = DAG.getZExtOrTrunc( DAG.getCopyFromReg(DAG.getEntryNode(), dl, FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy(DAG.getDataLayout())), dl, ValueVTs[1]); // Merge into one. SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Ops); setValue(&LP, Res); } void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last) { // Update JTCases. for (JumpTableBlock &JTB : SL->JTCases) if (JTB.first.HeaderBB == First) JTB.first.HeaderBB = Last; // Update BitTestCases. for (BitTestBlock &BTB : SL->BitTestCases) if (BTB.Parent == First) BTB.Parent = Last; } void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; // Update machine-CFG edges with unique successors. SmallSet Done; for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { BasicBlock *BB = I.getSuccessor(i); bool Inserted = Done.insert(BB).second; if (!Inserted) continue; MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; addSuccessorWithProb(IndirectBrMBB, Succ); } IndirectBrMBB->normalizeSuccProbs(); DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), MVT::Other, getControlRoot(), getValue(I.getAddress()))); } void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { if (!DAG.getTarget().Options.TrapUnreachable) return; // We may be able to ignore unreachable behind a noreturn call. if (DAG.getTarget().Options.NoTrapAfterNoreturn) { const BasicBlock &BB = *I.getParent(); if (&I != &BB.front()) { BasicBlock::const_iterator PredI = std::prev(BasicBlock::const_iterator(&I)); if (const CallInst *Call = dyn_cast(&*PredI)) { if (Call->doesNotReturn()) return; } } } DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); } void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { SDNodeFlags Flags; if (auto *FPOp = dyn_cast(&I)) Flags.copyFMF(*FPOp); SDValue Op = getValue(I.getOperand(0)); SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), Op, Flags); setValue(&I, UnNodeValue); } void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { SDNodeFlags Flags; if (auto *OFBinOp = dyn_cast(&I)) { Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); } if (auto *ExactOp = dyn_cast(&I)) Flags.setExact(ExactOp->isExact()); if (auto *FPOp = dyn_cast(&I)) Flags.copyFMF(*FPOp); SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, Flags); setValue(&I, BinNodeValue); } void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( Op1.getValueType(), DAG.getDataLayout()); // Coerce the shift amount to the right type if we can. This exposes the // truncate or zext to optimization early. if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && "Unexpected shift type"); Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); } bool nuw = false; bool nsw = false; bool exact = false; if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { if (const OverflowingBinaryOperator *OFBinOp = dyn_cast(&I)) { nuw = OFBinOp->hasNoUnsignedWrap(); nsw = OFBinOp->hasNoSignedWrap(); } if (const PossiblyExactOperator *ExactOp = dyn_cast(&I)) exact = ExactOp->isExact(); } SDNodeFlags Flags; Flags.setExact(exact); Flags.setNoSignedWrap(nsw); Flags.setNoUnsignedWrap(nuw); SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, Flags); setValue(&I, Res); } void SelectionDAGBuilder::visitSDiv(const User &I) { SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); SDNodeFlags Flags; Flags.setExact(isa(&I) && cast(&I)->isExact()); setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, Op2, Flags)); } void SelectionDAGBuilder::visitICmp(const User &I) { ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; if (const ICmpInst *IC = dyn_cast(&I)) predicate = IC->getPredicate(); else if (const ConstantExpr *IC = dyn_cast(&I)) predicate = ICmpInst::Predicate(IC->getPredicate()); SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); ISD::CondCode Opcode = getICmpCondCode(predicate); auto &TLI = DAG.getTargetLoweringInfo(); EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); // If a pointer's DAG type is larger than its memory type then the DAG values // are zero-extended. This breaks signed comparisons so truncate back to the // underlying type before doing the compare. if (Op1.getValueType() != MemVT) { Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); } EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); } void SelectionDAGBuilder::visitFCmp(const User &I) { FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; if (const FCmpInst *FC = dyn_cast(&I)) predicate = FC->getPredicate(); else if (const ConstantExpr *FC = dyn_cast(&I)) predicate = FCmpInst::Predicate(FC->getPredicate()); SDValue Op1 = getValue(I.getOperand(0)); SDValue Op2 = getValue(I.getOperand(1)); ISD::CondCode Condition = getFCmpCondCode(predicate); auto *FPMO = cast(&I); if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) Condition = getFCmpCodeWithoutNaN(Condition); SDNodeFlags Flags; Flags.copyFMF(*FPMO); SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); } // Check if the condition of the select has one use or two users that are both // selects with the same condition. static bool hasOnlySelectUsers(const Value *Cond) { return llvm::all_of(Cond->users(), [](const Value *V) { return isa(V); }); } void SelectionDAGBuilder::visitSelect(const User &I) { SmallVector ValueVTs; ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; SmallVector Values(NumValues); SDValue Cond = getValue(I.getOperand(0)); SDValue LHSVal = getValue(I.getOperand(1)); SDValue RHSVal = getValue(I.getOperand(2)); SmallVector BaseOps(1, Cond); ISD::NodeType OpCode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; bool IsUnaryAbs = false; bool Negate = false; SDNodeFlags Flags; if (auto *FPOp = dyn_cast(&I)) Flags.copyFMF(*FPOp); // Min/max matching is only viable if all output VTs are the same. if (is_splat(ValueVTs)) { EVT VT = ValueVTs[0]; LLVMContext &Ctx = *DAG.getContext(); auto &TLI = DAG.getTargetLoweringInfo(); // We care about the legality of the operation after it has been type // legalized. while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) VT = TLI.getTypeToTransformTo(Ctx, VT); // If the vselect is legal, assume we want to leave this as a vector setcc + // vselect. Otherwise, if this is going to be scalarized, we want to see if // min/max is legal on the scalar type. bool UseScalarMinMax = VT.isVector() && !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); Value *LHS, *RHS; auto SPR = matchSelectPattern(const_cast(&I), LHS, RHS); ISD::NodeType Opc = ISD::DELETED_NODE; switch (SPR.Flavor) { case SPF_UMAX: Opc = ISD::UMAX; break; case SPF_UMIN: Opc = ISD::UMIN; break; case SPF_SMAX: Opc = ISD::SMAX; break; case SPF_SMIN: Opc = ISD::SMIN; break; case SPF_FMINNUM: switch (SPR.NaNBehavior) { case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; case SPNB_RETURNS_ANY: { if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) Opc = ISD::FMINNUM; else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) Opc = ISD::FMINIMUM; else if (UseScalarMinMax) Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? ISD::FMINNUM : ISD::FMINIMUM; break; } } break; case SPF_FMAXNUM: switch (SPR.NaNBehavior) { case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; case SPNB_RETURNS_ANY: if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) Opc = ISD::FMAXNUM; else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) Opc = ISD::FMAXIMUM; else if (UseScalarMinMax) Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? ISD::FMAXNUM : ISD::FMAXIMUM; break; } break; case SPF_NABS: Negate = true; LLVM_FALLTHROUGH; case SPF_ABS: IsUnaryAbs = true; Opc = ISD::ABS; break; default: break; } if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && (TLI.isOperationLegalOrCustom(Opc, VT) || (UseScalarMinMax && TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && // If the underlying comparison instruction is used by any other // instruction, the consumed instructions won't be destroyed, so it is // not profitable to convert to a min/max. hasOnlySelectUsers(cast(I).getCondition())) { OpCode = Opc; LHSVal = getValue(LHS); RHSVal = getValue(RHS); BaseOps.clear(); } if (IsUnaryAbs) { OpCode = Opc; LHSVal = getValue(LHS); BaseOps.clear(); } } if (IsUnaryAbs) { for (unsigned i = 0; i != NumValues; ++i) { SDLoc dl = getCurSDLoc(); EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); Values[i] = DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); if (Negate) Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Values[i]); } } else { for (unsigned i = 0; i != NumValues; ++i) { SmallVector Ops(BaseOps.begin(), BaseOps.end()); Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); Values[i] = DAG.getNode( OpCode, getCurSDLoc(), LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); } } setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(ValueVTs), Values)); } void SelectionDAGBuilder::visitTrunc(const User &I) { // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). SDValue N = getValue(I.getOperand(0)); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitZExt(const User &I) { // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). // ZExt also can't be a cast to bool for same reason. So, nothing much to do SDValue N = getValue(I.getOperand(0)); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitSExt(const User &I) { // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). // SExt also can't be a cast to bool for same reason. So, nothing much to do SDValue N = getValue(I.getOperand(0)); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitFPTrunc(const User &I) { // FPTrunc is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); SDLoc dl = getCurSDLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, DAG.getTargetConstant( 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); } void SelectionDAGBuilder::visitFPExt(const User &I) { // FPExt is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitFPToUI(const User &I) { // FPToUI is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitFPToSI(const User &I) { // FPToSI is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitUIToFP(const User &I) { // UIToFP is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitSIToFP(const User &I) { // SIToFP is never a no-op cast, no need to check SDValue N = getValue(I.getOperand(0)); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); } void SelectionDAGBuilder::visitPtrToInt(const User &I) { // What to do depends on the size of the integer and the size of the pointer. // We can either truncate, zero extend, or no-op, accordingly. SDValue N = getValue(I.getOperand(0)); auto &TLI = DAG.getTargetLoweringInfo(); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); setValue(&I, N); } void SelectionDAGBuilder::visitIntToPtr(const User &I) { // What to do depends on the size of the integer and the size of the pointer. // We can either truncate, zero extend, or no-op, accordingly. SDValue N = getValue(I.getOperand(0)); auto &TLI = DAG.getTargetLoweringInfo(); EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); setValue(&I, N); } void SelectionDAGBuilder::visitBitCast(const User &I) { SDValue N = getValue(I.getOperand(0)); SDLoc dl = getCurSDLoc(); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType()); // BitCast assures us that source and destination are the same size so this is // either a BITCAST or a no-op. if (DestVT != N.getValueType()) setValue(&I, DAG.getNode(ISD::BITCAST, dl, DestVT, N)); // convert types. // Check if the original LLVM IR Operand was a ConstantInt, because getValue() // might fold any kind of constant expression to an integer constant and that // is not what we are looking for. Only recognize a bitcast of a genuine // constant integer as an opaque constant. else if(ConstantInt *C = dyn_cast(I.getOperand(0))) setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, /*isOpaque*/true)); else setValue(&I, N); // noop cast. } void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const Value *SV = I.getOperand(0); SDValue N = getValue(SV); EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); unsigned SrcAS = SV->getType()->getPointerAddressSpace(); unsigned DestAS = I.getType()->getPointerAddressSpace(); if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); setValue(&I, N); } void SelectionDAGBuilder::visitInsertElement(const User &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue InVec = getValue(I.getOperand(0)); SDValue InVal = getValue(I.getOperand(1)); SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), TLI.getVectorIdxTy(DAG.getDataLayout())); setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()), InVec, InVal, InIdx)); } void SelectionDAGBuilder::visitExtractElement(const User &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue InVec = getValue(I.getOperand(0)); SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), TLI.getVectorIdxTy(DAG.getDataLayout())); setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()), InVec, InIdx)); } void SelectionDAGBuilder::visitShuffleVector(const User &I) { SDValue Src1 = getValue(I.getOperand(0)); SDValue Src2 = getValue(I.getOperand(1)); ArrayRef Mask; if (auto *SVI = dyn_cast(&I)) Mask = SVI->getShuffleMask(); else Mask = cast(I).getShuffleMask(); SDLoc DL = getCurSDLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); EVT SrcVT = Src1.getValueType(); if (all_of(Mask, [](int Elem) { return Elem == 0; }) && VT.isScalableVector()) { // Canonical splat form of first element of first input vector. SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, DAG.getVectorIdxConstant(0, DL)); setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); return; } // For now, we only handle splats for scalable vectors. // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation // for targets that support a SPLAT_VECTOR for non-scalable vector types. assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); unsigned SrcNumElts = SrcVT.getVectorNumElements(); unsigned MaskNumElts = Mask.size(); if (SrcNumElts == MaskNumElts) { setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); return; } // Normalize the shuffle vector since mask and vector length don't match. if (SrcNumElts < MaskNumElts) { // Mask is longer than the source vectors. We can use concatenate vector to // make the mask and vectors lengths match. if (MaskNumElts % SrcNumElts == 0) { // Mask length is a multiple of the source vector length. // Check if the shuffle is some kind of concatenation of the input // vectors. unsigned NumConcat = MaskNumElts / SrcNumElts; bool IsConcat = true; SmallVector ConcatSrcs(NumConcat, -1); for (unsigned i = 0; i != MaskNumElts; ++i) { int Idx = Mask[i]; if (Idx < 0) continue; // Ensure the indices in each SrcVT sized piece are sequential and that // the same source is used for the whole piece. if ((Idx % SrcNumElts != (i % SrcNumElts)) || (ConcatSrcs[i / SrcNumElts] >= 0 && ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { IsConcat = false; break; } // Remember which source this index came from. ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; } // The shuffle is concatenating multiple vectors together. Just emit // a CONCAT_VECTORS operation. if (IsConcat) { SmallVector ConcatOps; for (auto Src : ConcatSrcs) { if (Src < 0) ConcatOps.push_back(DAG.getUNDEF(SrcVT)); else if (Src == 0) ConcatOps.push_back(Src1); else ConcatOps.push_back(Src2); } setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); return; } } unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), PaddedMaskNumElts); // Pad both vectors with undefs to make them the same length as the mask. SDValue UndefVal = DAG.getUNDEF(SrcVT); SmallVector MOps1(NumConcat, UndefVal); SmallVector MOps2(NumConcat, UndefVal); MOps1[0] = Src1; MOps2[0] = Src2; Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); // Readjust mask for new input vector length. SmallVector MappedOps(PaddedMaskNumElts, -1); for (unsigned i = 0; i != MaskNumElts; ++i) { int Idx = Mask[i]; if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts - PaddedMaskNumElts; MappedOps[i] = Idx; } SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); // If the concatenated vector was padded, extract a subvector with the // correct number of elements. if (MaskNumElts != PaddedMaskNumElts) Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, DAG.getVectorIdxConstant(0, DL)); setValue(&I, Result); return; } if (SrcNumElts > MaskNumElts) { // Analyze the access pattern of the vector to see if we can extract // two subvectors and do the shuffle. int StartIdx[2] = { -1, -1 }; // StartIdx to extract from bool CanExtract = true; for (int Idx : Mask) { unsigned Input = 0; if (Idx < 0) continue; if (Idx >= (int)SrcNumElts) { Input = 1; Idx -= SrcNumElts; } // If all the indices come from the same MaskNumElts sized portion of // the sources we can use extract. Also make sure the extract wouldn't // extract past the end of the source. int NewStartIdx = alignDown(Idx, MaskNumElts); if (NewStartIdx + MaskNumElts > SrcNumElts || (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) CanExtract = false; // Make sure we always update StartIdx as we use it to track if all // elements are undef. StartIdx[Input] = NewStartIdx; } if (StartIdx[0] < 0 && StartIdx[1] < 0) { setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. return; } if (CanExtract) { // Extract appropriate subvector and generate a vector shuffle for (unsigned Input = 0; Input < 2; ++Input) { SDValue &Src = Input == 0 ? Src1 : Src2; if (StartIdx[Input] < 0) Src = DAG.getUNDEF(VT); else { Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, DAG.getVectorIdxConstant(StartIdx[Input], DL)); } } // Calculate new mask. SmallVector MappedOps(Mask.begin(), Mask.end()); for (int &Idx : MappedOps) { if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; else if (Idx >= 0) Idx -= StartIdx[0]; } setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); return; } } // We can't use either concat vectors or extract subvectors so fall back to // replacing the shuffle with extract and build vector. // to insert and build vector. EVT EltVT = VT.getVectorElementType(); SmallVector Ops; for (int Idx : Mask) { SDValue Res; if (Idx < 0) { Res = DAG.getUNDEF(EltVT); } else { SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, DAG.getVectorIdxConstant(Idx, DL)); } Ops.push_back(Res); } setValue(&I, DAG.getBuildVector(VT, DL, Ops)); } void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { ArrayRef Indices = I.getIndices(); const Value *Op0 = I.getOperand(0); const Value *Op1 = I.getOperand(1); Type *AggTy = I.getType(); Type *ValTy = Op1->getType(); bool IntoUndef = isa(Op0); bool FromUndef = isa(Op1); unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SmallVector AggValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); SmallVector ValValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); unsigned NumAggValues = AggValueVTs.size(); unsigned NumValValues = ValValueVTs.size(); SmallVector Values(NumAggValues); // Ignore an insertvalue that produces an empty object if (!NumAggValues) { setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); return; } SDValue Agg = getValue(Op0); unsigned i = 0; // Copy the beginning value(s) from the original aggregate. for (; i != LinearIndex; ++i) Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : SDValue(Agg.getNode(), Agg.getResNo() + i); // Copy values from the inserted value(s). if (NumValValues) { SDValue Val = getValue(Op1); for (; i != LinearIndex + NumValValues; ++i) Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); } // Copy remaining value(s) from the original aggregate. for (; i != NumAggValues; ++i) Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : SDValue(Agg.getNode(), Agg.getResNo() + i); setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(AggValueVTs), Values)); } void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { ArrayRef Indices = I.getIndices(); const Value *Op0 = I.getOperand(0); Type *AggTy = Op0->getType(); Type *ValTy = I.getType(); bool OutOfUndef = isa(Op0); unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SmallVector ValValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); unsigned NumValValues = ValValueVTs.size(); // Ignore a extractvalue that produces an empty object if (!NumValValues) { setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); return; } SmallVector Values(NumValValues); SDValue Agg = getValue(Op0); // Copy out the selected value(s). for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) Values[i - LinearIndex] = OutOfUndef ? DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : SDValue(Agg.getNode(), Agg.getResNo() + i); setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(ValValueVTs), Values)); } void SelectionDAGBuilder::visitGetElementPtr(const User &I) { Value *Op0 = I.getOperand(0); // Note that the pointer operand may be a vector of pointers. Take the scalar // element which holds a pointer. unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); SDValue N = getValue(Op0); SDLoc dl = getCurSDLoc(); auto &TLI = DAG.getTargetLoweringInfo(); // Normalize Vector GEP - all scalar operands should be converted to the // splat vector. bool IsVectorGEP = I.getType()->isVectorTy(); ElementCount VectorElementCount = IsVectorGEP ? cast(I.getType())->getElementCount() : ElementCount::getFixed(0); if (IsVectorGEP && !N.getValueType().isVector()) { LLVMContext &Context = *DAG.getContext(); EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); if (VectorElementCount.isScalable()) N = DAG.getSplatVector(VT, dl, N); else N = DAG.getSplatBuildVector(VT, dl, N); } for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); GTI != E; ++GTI) { const Value *Idx = GTI.getOperand(); if (StructType *StTy = GTI.getStructTypeOrNull()) { unsigned Field = cast(Idx)->getUniqueInteger().getZExtValue(); if (Field) { // N = N + Offset uint64_t Offset = DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); // In an inbounds GEP with an offset that is nonnegative even when // interpreted as signed, assume there is no unsigned overflow. SDNodeFlags Flags; if (int64_t(Offset) >= 0 && cast(I).isInBounds()) Flags.setNoUnsignedWrap(true); N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, DAG.getConstant(Offset, dl, N.getValueType()), Flags); } } else { // IdxSize is the width of the arithmetic according to IR semantics. // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth // (and fix up the result later). unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); MVT IdxTy = MVT::getIntegerVT(IdxSize); TypeSize ElementSize = DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); // We intentionally mask away the high bits here; ElementSize may not // fit in IdxTy. APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); bool ElementScalable = ElementSize.isScalable(); // If this is a scalar constant or a splat vector of constants, // handle it quickly. const auto *C = dyn_cast(Idx); if (C && isa(C->getType())) C = C->getSplatValue(); const auto *CI = dyn_cast_or_null(C); if (CI && CI->isZero()) continue; if (CI && !ElementScalable) { APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); LLVMContext &Context = *DAG.getContext(); SDValue OffsVal; if (IsVectorGEP) OffsVal = DAG.getConstant( Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); else OffsVal = DAG.getConstant(Offs, dl, IdxTy); // In an inbounds GEP with an offset that is nonnegative even when // interpreted as signed, assume there is no unsigned overflow. SDNodeFlags Flags; if (Offs.isNonNegative() && cast(I).isInBounds()) Flags.setNoUnsignedWrap(true); OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); continue; } // N = N + Idx * ElementMul; SDValue IdxN = getValue(Idx); if (!IdxN.getValueType().isVector() && IsVectorGEP) { EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorElementCount); if (VectorElementCount.isScalable()) IdxN = DAG.getSplatVector(VT, dl, IdxN); else IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); } // If the index is smaller or larger than intptr_t, truncate or extend // it. IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); if (ElementScalable) { EVT VScaleTy = N.getValueType().getScalarType(); SDValue VScale = DAG.getNode( ISD::VSCALE, dl, VScaleTy, DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); if (IsVectorGEP) VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); } else { // If this is a multiply by a power of two, turn it into a shl // immediately. This is a very common case. if (ElementMul != 1) { if (ElementMul.isPowerOf2()) { unsigned Amt = ElementMul.logBase2(); IdxN = DAG.getNode(ISD::SHL, dl, N.getValueType(), IdxN, DAG.getConstant(Amt, dl, IdxN.getValueType())); } else { SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, IdxN.getValueType()); IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale); } } } N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, IdxN); } } MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); if (IsVectorGEP) { PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); } if (PtrMemTy != PtrTy && !cast(I).isInBounds()) N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); setValue(&I, N); } void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { // If this is a fixed sized alloca in the entry block of the function, // allocate it statically on the stack. if (FuncInfo.StaticAllocaMap.count(&I)) return; // getValue will auto-populate this. SDLoc dl = getCurSDLoc(); Type *Ty = I.getAllocatedType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); auto &DL = DAG.getDataLayout(); TypeSize TySize = DL.getTypeAllocSize(Ty); MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); SDValue AllocSize = getValue(I.getArraySize()); EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); if (AllocSize.getValueType() != IntPtr) AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); if (TySize.isScalable()) AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, DAG.getVScale(dl, IntPtr, APInt(IntPtr.getScalarSizeInBits(), TySize.getKnownMinValue()))); else AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); // Handle alignment. If the requested alignment is less than or equal to // the stack alignment, ignore it. If the size is greater than or equal to // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); if (*Alignment <= StackAlign) Alignment = None; const uint64_t StackAlignMask = StackAlign.value() - 1U; // Round the size of the allocation up to the stack alignment size // by add SA-1 to the size. This doesn't overflow because we're computing // an address inside an alloca. SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); // Mask out the low bits for alignment purposes. AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, DAG.getConstant(~StackAlignMask, dl, IntPtr)); SDValue Ops[] = { getRoot(), AllocSize, DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); setValue(&I, DSA); DAG.setRoot(DSA.getValue(1)); assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); } void SelectionDAGBuilder::visitLoad(const LoadInst &I) { if (I.isAtomic()) return visitAtomicLoad(I); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const Value *SV = I.getOperand(0); if (TLI.supportSwiftError()) { // Swifterror values can come from either a function parameter with // swifterror attribute or an alloca with swifterror attribute. if (const Argument *Arg = dyn_cast(SV)) { if (Arg->hasSwiftErrorAttr()) return visitLoadFromSwiftError(I); } if (const AllocaInst *Alloca = dyn_cast(SV)) { if (Alloca->isSwiftError()) return visitLoadFromSwiftError(I); } } SDValue Ptr = getValue(SV); Type *Ty = I.getType(); Align Alignment = I.getAlign(); AAMDNodes AAInfo = I.getAAMetadata(); const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); SmallVector ValueVTs, MemVTs; SmallVector Offsets; ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; bool isVolatile = I.isVolatile(); MachineMemOperand::Flags MMOFlags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); SDValue Root; bool ConstantMemory = false; if (isVolatile) // Serialize volatile loads with other side effects. Root = getRoot(); else if (NumValues > MaxParallelChains) Root = getMemoryRoot(); else if (AA && AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))) { // Do not serialize (non-volatile) loads of constant memory with anything. Root = DAG.getEntryNode(); ConstantMemory = true; MMOFlags |= MachineMemOperand::MOInvariant; // FIXME: pointsToConstantMemory probably does not imply dereferenceable, // but the previous usage implied it did. Probably should check // isDereferenceableAndAlignedPointer. MMOFlags |= MachineMemOperand::MODereferenceable; } else { // Do not serialize non-volatile loads against each other. Root = DAG.getRoot(); } SDLoc dl = getCurSDLoc(); if (isVolatile) Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); // An aggregate load cannot wrap around the address space, so offsets to its // parts don't wrap either. SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); SmallVector Values(NumValues); SmallVector Chains(std::min(MaxParallelChains, NumValues)); EVT PtrVT = Ptr.getValueType(); unsigned ChainI = 0; for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { // Serializing loads here may result in excessive register pressure, and // TokenFactor places arbitrary choke points on the scheduler. SD scheduling // could recover a bit by hoisting nodes upward in the chain by recognizing // they are side-effect free or do not alias. The optimizer should really // avoid this case by converting large object/array copies to llvm.memcpy // (MaxParallelChains should always remain as failsafe). if (ChainI == MaxParallelChains) { assert(PendingLoads.empty() && "PendingLoads must be serialized first"); SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, makeArrayRef(Chains.data(), ChainI)); Root = Chain; ChainI = 0; } SDValue A = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, DAG.getConstant(Offsets[i], dl, PtrVT), Flags); SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, MachinePointerInfo(SV, Offsets[i]), Alignment, MMOFlags, AAInfo, Ranges); Chains[ChainI] = L.getValue(1); if (MemVTs[i] != ValueVTs[i]) L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); Values[i] = L; } if (!ConstantMemory) { SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, makeArrayRef(Chains.data(), ChainI)); if (isVolatile) DAG.setRoot(Chain); else PendingLoads.push_back(Chain); } setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values)); } void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { assert(DAG.getTargetLoweringInfo().supportSwiftError() && "call visitStoreToSwiftError when backend supports swifterror"); SmallVector ValueVTs; SmallVector Offsets; const Value *SrcV = I.getOperand(0); ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), SrcV->getType(), ValueVTs, &Offsets); assert(ValueVTs.size() == 1 && Offsets[0] == 0 && "expect a single EVT for swifterror"); SDValue Src = getValue(SrcV); // Create a virtual register, then update the virtual register. Register VReg = SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue // Chain can be getRoot or getControlRoot. SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, SDValue(Src.getNode(), Src.getResNo())); DAG.setRoot(CopyNode); } void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { assert(DAG.getTargetLoweringInfo().supportSwiftError() && "call visitLoadFromSwiftError when backend supports swifterror"); assert(!I.isVolatile() && !I.hasMetadata(LLVMContext::MD_nontemporal) && !I.hasMetadata(LLVMContext::MD_invariant_load) && "Support volatile, non temporal, invariant for load_from_swift_error"); const Value *SV = I.getOperand(0); Type *Ty = I.getType(); assert( (!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), I.getAAMetadata()))) && "load_from_swift_error should not be constant memory"); SmallVector ValueVTs; SmallVector Offsets; ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, ValueVTs, &Offsets); assert(ValueVTs.size() == 1 && Offsets[0] == 0 && "expect a single EVT for swifterror"); // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT SDValue L = DAG.getCopyFromReg( getRoot(), getCurSDLoc(), SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); setValue(&I, L); } void SelectionDAGBuilder::visitStore(const StoreInst &I) { if (I.isAtomic()) return visitAtomicStore(I); const Value *SrcV = I.getOperand(0); const Value *PtrV = I.getOperand(1); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (TLI.supportSwiftError()) { // Swifterror values can come from either a function parameter with // swifterror attribute or an alloca with swifterror attribute. if (const Argument *Arg = dyn_cast(PtrV)) { if (Arg->hasSwiftErrorAttr()) return visitStoreToSwiftError(I); } if (const AllocaInst *Alloca = dyn_cast(PtrV)) { if (Alloca->isSwiftError()) return visitStoreToSwiftError(I); } } SmallVector ValueVTs, MemVTs; SmallVector Offsets; ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), SrcV->getType(), ValueVTs, &MemVTs, &Offsets); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; // Get the lowered operands. Note that we do this after // checking if NumResults is zero, because with zero results // the operands won't have values in the map. SDValue Src = getValue(SrcV); SDValue Ptr = getValue(PtrV); SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); SmallVector Chains(std::min(MaxParallelChains, NumValues)); SDLoc dl = getCurSDLoc(); Align Alignment = I.getAlign(); AAMDNodes AAInfo = I.getAAMetadata(); auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); // An aggregate load cannot wrap around the address space, so offsets to its // parts don't wrap either. SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); unsigned ChainI = 0; for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { // See visitLoad comments. if (ChainI == MaxParallelChains) { SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, makeArrayRef(Chains.data(), ChainI)); Root = Chain; ChainI = 0; } SDValue Add = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); if (MemVTs[i] != ValueVTs[i]) Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); SDValue St = DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); Chains[ChainI] = St; } SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, makeArrayRef(Chains.data(), ChainI)); DAG.setRoot(StoreNode); } void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, bool IsCompressing) { SDLoc sdl = getCurSDLoc(); auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, MaybeAlign &Alignment) { // llvm.masked.store.*(Src0, Ptr, alignment, Mask) Src0 = I.getArgOperand(0); Ptr = I.getArgOperand(1); Alignment = cast(I.getArgOperand(2))->getMaybeAlignValue(); Mask = I.getArgOperand(3); }; auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, MaybeAlign &Alignment) { // llvm.masked.compressstore.*(Src0, Ptr, Mask) Src0 = I.getArgOperand(0); Ptr = I.getArgOperand(1); Mask = I.getArgOperand(2); Alignment = None; }; Value *PtrOperand, *MaskOperand, *Src0Operand; MaybeAlign Alignment; if (IsCompressing) getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); else getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); SDValue Ptr = getValue(PtrOperand); SDValue Src0 = getValue(Src0Operand); SDValue Mask = getValue(MaskOperand); SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); EVT VT = Src0.getValueType(); if (!Alignment) Alignment = DAG.getEVTAlign(VT); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); SDValue StoreNode = DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, ISD::UNINDEXED, false /* Truncating */, IsCompressing); DAG.setRoot(StoreNode); setValue(&I, StoreNode); } // Get a uniform base for the Gather/Scatter intrinsic. // The first argument of the Gather/Scatter intrinsic is a vector of pointers. // We try to represent it as a base pointer + vector of indices. // Usually, the vector of pointers comes from a 'getelementptr' instruction. // The first operand of the GEP may be a single pointer or a vector of pointers // Example: // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind // or // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. // // When the first GEP operand is a single pointer - it is the uniform base we // are looking for. If first operand of the GEP is a splat vector - we // extract the splat value and use it as a uniform base. // In all other cases the function returns 'false'. static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, ISD::MemIndexType &IndexType, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize) { SelectionDAG& DAG = SDB->DAG; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const DataLayout &DL = DAG.getDataLayout(); assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); // Handle splat constant pointer. if (auto *C = dyn_cast(Ptr)) { C = C->getSplatValue(); if (!C) return false; Base = SDB->getValue(C); ElementCount NumElts = cast(Ptr->getType())->getElementCount(); EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); IndexType = ISD::SIGNED_SCALED; Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); return true; } const GetElementPtrInst *GEP = dyn_cast(Ptr); if (!GEP || GEP->getParent() != CurBB) return false; if (GEP->getNumOperands() != 2) return false; const Value *BasePtr = GEP->getPointerOperand(); const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); // Make sure the base is scalar and the index is a vector. if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) return false; Base = SDB->getValue(BasePtr); Index = SDB->getValue(IndexVal); IndexType = ISD::SIGNED_SCALED; // MGATHER/MSCATTER are only required to support scaling by one or by the // element size. Other scales may be produced using target-specific DAG // combines. uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); if (ScaleVal != ElemSize && ScaleVal != 1) return false; Scale = DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); return true; } void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { SDLoc sdl = getCurSDLoc(); // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) const Value *Ptr = I.getArgOperand(1); SDValue Src0 = getValue(I.getArgOperand(0)); SDValue Mask = getValue(I.getArgOperand(3)); EVT VT = Src0.getValueType(); Align Alignment = cast(I.getArgOperand(2)) ->getMaybeAlignValue() .value_or(DAG.getEVTAlign(VT.getScalarType())); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Base; SDValue Index; ISD::MemIndexType IndexType; SDValue Scale; bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, I.getParent(), VT.getScalarStoreSize()); unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(AS), MachineMemOperand::MOStore, // TODO: Make MachineMemOperands aware of scalable // vectors. MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); if (!UniformBase) { Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); Index = getValue(Ptr); IndexType = ISD::SIGNED_SCALED; Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); } EVT IdxVT = Index.getValueType(); EVT EltTy = IdxVT.getVectorElementType(); if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); } SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, Ops, MMO, IndexType, false); DAG.setRoot(Scatter); setValue(&I, Scatter); } void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { SDLoc sdl = getCurSDLoc(); auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, MaybeAlign &Alignment) { // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) Ptr = I.getArgOperand(0); Alignment = cast(I.getArgOperand(1))->getMaybeAlignValue(); Mask = I.getArgOperand(2); Src0 = I.getArgOperand(3); }; auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, MaybeAlign &Alignment) { // @llvm.masked.expandload.*(Ptr, Mask, Src0) Ptr = I.getArgOperand(0); Alignment = None; Mask = I.getArgOperand(1); Src0 = I.getArgOperand(2); }; Value *PtrOperand, *MaskOperand, *Src0Operand; MaybeAlign Alignment; if (IsExpanding) getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); else getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); SDValue Ptr = getValue(PtrOperand); SDValue Src0 = getValue(Src0Operand); SDValue Mask = getValue(MaskOperand); SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); EVT VT = Src0.getValueType(); if (!Alignment) Alignment = DAG.getEVTAlign(VT); AAMDNodes AAInfo = I.getAAMetadata(); const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); // Do not serialize masked loads of constant memory with anything. MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); if (AddToChain) PendingLoads.push_back(Load.getValue(1)); setValue(&I, Load); } void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { SDLoc sdl = getCurSDLoc(); // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) const Value *Ptr = I.getArgOperand(0); SDValue Src0 = getValue(I.getArgOperand(3)); SDValue Mask = getValue(I.getArgOperand(2)); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); Align Alignment = cast(I.getArgOperand(1)) ->getMaybeAlignValue() .value_or(DAG.getEVTAlign(VT.getScalarType())); const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); SDValue Root = DAG.getRoot(); SDValue Base; SDValue Index; ISD::MemIndexType IndexType; SDValue Scale; bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, I.getParent(), VT.getScalarStoreSize()); unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(AS), MachineMemOperand::MOLoad, // TODO: Make MachineMemOperands aware of scalable // vectors. MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); if (!UniformBase) { Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); Index = getValue(Ptr); IndexType = ISD::SIGNED_SCALED; Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); } EVT IdxVT = Index.getValueType(); EVT EltTy = IdxVT.getVectorElementType(); if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); } SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, Ops, MMO, IndexType, ISD::NON_EXTLOAD); PendingLoads.push_back(Gather.getValue(1)); setValue(&I, Gather); } void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { SDLoc dl = getCurSDLoc(); AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); AtomicOrdering FailureOrdering = I.getFailureOrdering(); SyncScope::ID SSID = I.getSyncScopeID(); SDValue InChain = getRoot(); MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), getValue(I.getNewValOperand()), MMO); SDValue OutChain = L.getValue(2); setValue(&I, L); DAG.setRoot(OutChain); } void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { SDLoc dl = getCurSDLoc(); ISD::NodeType NT; switch (I.getOperation()) { default: llvm_unreachable("Unknown atomicrmw operation"); case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; } AtomicOrdering Ordering = I.getOrdering(); SyncScope::ID SSID = I.getSyncScopeID(); SDValue InChain = getRoot(); auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); SDValue L = DAG.getAtomic(NT, dl, MemVT, InChain, getValue(I.getPointerOperand()), getValue(I.getValOperand()), MMO); SDValue OutChain = L.getValue(1); setValue(&I, L); DAG.setRoot(OutChain); } void SelectionDAGBuilder::visitFence(const FenceInst &I) { SDLoc dl = getCurSDLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Ops[3]; Ops[0] = getRoot(); Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, TLI.getFenceOperandTy(DAG.getDataLayout())); Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, TLI.getFenceOperandTy(DAG.getDataLayout())); DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); } void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { SDLoc dl = getCurSDLoc(); AtomicOrdering Order = I.getOrdering(); SyncScope::ID SSID = I.getSyncScopeID(); SDValue InChain = getRoot(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); if (!TLI.supportsUnalignedAtomics() && I.getAlign().value() < MemVT.getSizeInBits() / 8) report_fatal_error("Cannot generate unaligned atomic load"); auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), I.getAlign(), AAMDNodes(), nullptr, SSID, Order); InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); SDValue Ptr = getValue(I.getPointerOperand()); if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { // TODO: Once this is better exercised by tests, it should be merged with // the normal path for loads to prevent future divergence. SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); if (MemVT != VT) L = DAG.getPtrExtOrTrunc(L, dl, VT); setValue(&I, L); SDValue OutChain = L.getValue(1); if (!I.isUnordered()) DAG.setRoot(OutChain); else PendingLoads.push_back(OutChain); return; } SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, Ptr, MMO); SDValue OutChain = L.getValue(1); if (MemVT != VT) L = DAG.getPtrExtOrTrunc(L, dl, VT); setValue(&I, L); DAG.setRoot(OutChain); } void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { SDLoc dl = getCurSDLoc(); AtomicOrdering Ordering = I.getOrdering(); SyncScope::ID SSID = I.getSyncScopeID(); SDValue InChain = getRoot(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); if (I.getAlign().value() < MemVT.getSizeInBits() / 8) report_fatal_error("Cannot generate unaligned atomic store"); auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); SDValue Val = getValue(I.getValueOperand()); if (Val.getValueType() != MemVT) Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); SDValue Ptr = getValue(I.getPointerOperand()); if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { // TODO: Once this is better exercised by tests, it should be merged with // the normal path for stores to prevent future divergence. SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); DAG.setRoot(S); return; } SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Ptr, Val, MMO); DAG.setRoot(OutChain); } /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC /// node. void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic) { // Ignore the callsite's attributes. A specific call site may be marked with // readnone, but the lowering code will expect the chain based on the // definition. const Function *F = I.getCalledFunction(); bool HasChain = !F->doesNotAccessMemory(); bool OnlyLoad = HasChain && F->onlyReadsMemory(); // Build the operand list. SmallVector Ops; if (HasChain) { // If this intrinsic has side-effects, chainify it. if (OnlyLoad) { // We don't need to serialize loads against other loads. Ops.push_back(DAG.getRoot()); } else { Ops.push_back(getRoot()); } } // Info is set by getTgtMemIntrinsic TargetLowering::IntrinsicInfo Info; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, DAG.getMachineFunction(), Intrinsic); // Add the intrinsic ID as an integer operand if it's not a target intrinsic. if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || Info.opc == ISD::INTRINSIC_W_CHAIN) Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); // Add all operands of the call to the operand list. for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { const Value *Arg = I.getArgOperand(i); if (!I.paramHasAttr(i, Attribute::ImmArg)) { Ops.push_back(getValue(Arg)); continue; } // Use TargetConstant instead of a regular constant for immarg. EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); if (const ConstantInt *CI = dyn_cast(Arg)) { assert(CI->getBitWidth() <= 64 && "large intrinsic immediates not handled"); Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); } else { Ops.push_back( DAG.getTargetConstantFP(*cast(Arg), SDLoc(), VT)); } } SmallVector ValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); if (HasChain) ValueVTs.push_back(MVT::Other); SDVTList VTs = DAG.getVTList(ValueVTs); // Propagate fast-math-flags from IR to node(s). SDNodeFlags Flags; if (auto *FPMO = dyn_cast(&I)) Flags.copyFMF(*FPMO); SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); // Create the node. SDValue Result; if (IsTgtIntrinsic) { // This is target intrinsic that touches memory Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, Info.flags, Info.size, I.getAAMetadata()); } else if (!HasChain) { Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); } else if (!I.getType()->isVoidTy()) { Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); } else { Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); } if (HasChain) { SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); if (OnlyLoad) PendingLoads.push_back(Chain); else DAG.setRoot(Chain); } if (!I.getType()->isVoidTy()) { if (!isa(I.getType())) Result = lowerRangeToAssertZExt(DAG, I, Result); MaybeAlign Alignment = I.getRetAlign(); if (!Alignment) Alignment = F->getAttributes().getRetAlignment(); // Insert `assertalign` node if there's an alignment. if (InsertAssertAlign && Alignment) { Result = DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); } setValue(&I, Result); } } /// GetSignificand - Get the significand and build it into a floating-point /// number with exponent of 1: /// /// Op = (Op & 0x007fffff) | 0x3f800000; /// /// where Op is the hexadecimal representation of floating point value. static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, DAG.getConstant(0x007fffff, dl, MVT::i32)); SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, DAG.getConstant(0x3f800000, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); } /// GetExponent - Get the exponent: /// /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); /// /// where Op is the hexadecimal representation of floating point value. static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl) { SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, DAG.getConstant(0x7f800000, dl, MVT::i32)); SDValue t1 = DAG.getNode( ISD::SRL, dl, MVT::i32, t0, DAG.getConstant(23, dl, TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, DAG.getConstant(127, dl, MVT::i32)); return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); } /// getF32Constant - Get 32-bit floating point constant. static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl) { return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, MVT::f32); } static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG) { // TODO: What fast-math-flags should be set on the floating-point nodes? // IntegerPartOfX = ((int32_t)(t0); SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); // FractionalPartOfX = t0 - (float)IntegerPartOfX; SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); // IntegerPartOfX <<= 23; IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getShiftAmountTy( MVT::i32, DAG.getDataLayout()))); SDValue TwoToFractionalPartOfX; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // TwoToFractionalPartOfX = // 0.997535578f + // (0.735607626f + 0.252464424f * x) * x; // // error 0.0144103317, which is 6 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3e814304, dl)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f3c50c8, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f7f5e7e, dl)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // TwoToFractionalPartOfX = // 0.999892986f + // (0.696457318f + // (0.224338339f + 0.792043434e-1f * x) * x) * x; // // error 0.000107046256, which is 13 to 14 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3da235e3, dl)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3e65b8f3, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f324b07, dl)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3f7ff8fd, dl)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // TwoToFractionalPartOfX = // 0.999999982f + // (0.693148872f + // (0.240227044f + // (0.554906021e-1f + // (0.961591928e-2f + // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; // error 2.47208000*10^(-7), which is better than 18 bits SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3924b03e, dl)); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3ab24b87, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x3c1d8c17, dl)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3d634a1d, dl)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, getF32Constant(DAG, 0x3e75fe14, dl)); SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, getF32Constant(DAG, 0x3f317234, dl)); SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, getF32Constant(DAG, 0x3f800000, dl)); } // Add the exponent into the result in integer domain. SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); return DAG.getNode(ISD::BITCAST, dl, MVT::f32, DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); } /// expandExp - Lower an exp intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags) { if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { // Put the exponent in the right bit position for later addition to the // final result: // // t0 = Op * log2(e) // TODO: What fast-math-flags should be set here? SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); return getLimitedPrecisionExp2(t0, dl, DAG); } // No special expansion. return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); } /// expandLog - Lower a log intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags) { // TODO: What fast-math-flags should be set on the floating-point nodes? if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); // Scale the exponent by log(2). SDValue Exp = GetExponent(DAG, Op1, TLI, dl); SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); // Get the significand and build it into a floating-point number with // exponent of 1. SDValue X = GetSignificand(DAG, Op1, dl); SDValue LogOfMantissa; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // LogofMantissa = // -1.1609546f + // (1.4034025f - 0.23903021f * x) * x; // // error 0.0034276066, which is better than 8 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbe74c456, dl)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3fb3a2b1, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f949a29, dl)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // LogOfMantissa = // -1.7417939f + // (2.8212026f + // (-1.4699568f + // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; // // error 0.000061011436, which is 14 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbd67b6d6, dl)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3ee4f4b8, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3fbc278b, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x40348e95, dl)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, getF32Constant(DAG, 0x3fdef31a, dl)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // LogOfMantissa = // -2.1072184f + // (4.2372794f + // (-3.7029485f + // (2.2781945f + // (-0.87823314f + // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; // // error 0.0000023660568, which is better than 18 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbc91e5ac, dl)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3e4350aa, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f60d3e3, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x4011cdf0, dl)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, getF32Constant(DAG, 0x406cfd1c, dl)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, getF32Constant(DAG, 0x408797cb, dl)); SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, getF32Constant(DAG, 0x4006dcab, dl)); } return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); } // No special expansion. return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); } /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags) { // TODO: What fast-math-flags should be set on the floating-point nodes? if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); // Get the exponent. SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); // Get the significand and build it into a floating-point number with // exponent of 1. SDValue X = GetSignificand(DAG, Op1, dl); // Different possible minimax approximations of significand in // floating-point for various degrees of accuracy over [1,2]. SDValue Log2ofMantissa; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; // // error 0.0049451742, which is more than 7 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbeb08fe0, dl)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x40019463, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3fd6633d, dl)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // Log2ofMantissa = // -2.51285454f + // (4.07009056f + // (-2.12067489f + // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; // // error 0.0000876136000, which is better than 13 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbda7262e, dl)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3f25280b, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x4007b923, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x40823e2f, dl)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, getF32Constant(DAG, 0x4020d29c, dl)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // Log2ofMantissa = // -3.0400495f + // (6.1129976f + // (-5.3420409f + // (3.2865683f + // (-1.2669343f + // (0.27515199f - // 0.25691327e-1f * x) * x) * x) * x) * x) * x; // // error 0.0000018516, which is better than 18 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbcd2769e, dl)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3e8ce0b9, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3fa22ae7, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, getF32Constant(DAG, 0x40525723, dl)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, getF32Constant(DAG, 0x40aaf200, dl)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, getF32Constant(DAG, 0x40c39dad, dl)); SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, getF32Constant(DAG, 0x4042902c, dl)); } return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); } // No special expansion. return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); } /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags) { // TODO: What fast-math-flags should be set on the floating-point nodes? if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); // Scale the exponent by log10(2) [0.30102999f]. SDValue Exp = GetExponent(DAG, Op1, TLI, dl); SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, getF32Constant(DAG, 0x3e9a209a, dl)); // Get the significand and build it into a floating-point number with // exponent of 1. SDValue X = GetSignificand(DAG, Op1, dl); SDValue Log10ofMantissa; if (LimitFloatPrecision <= 6) { // For floating-point precision of 6: // // Log10ofMantissa = // -0.50419619f + // (0.60948995f - 0.10380950f * x) * x; // // error 0.0014886165, which is 6 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0xbdd49a13, dl)); SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, getF32Constant(DAG, 0x3f1c0789, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f011300, dl)); } else if (LimitFloatPrecision <= 12) { // For floating-point precision of 12: // // Log10ofMantissa = // -0.64831180f + // (0.91751397f + // (-0.31664806f + 0.47637168e-1f * x) * x) * x; // // error 0.00019228036, which is better than 12 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3d431f31, dl)); SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, getF32Constant(DAG, 0x3ea21fb2, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3f6ae232, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f25f7c3, dl)); } else { // LimitFloatPrecision <= 18 // For floating-point precision of 18: // // Log10ofMantissa = // -0.84299375f + // (1.5327582f + // (-1.0688956f + // (0.49102474f + // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; // // error 0.0000037995730, which is better than 18 bits SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, getF32Constant(DAG, 0x3c5d51ce, dl)); SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, getF32Constant(DAG, 0x3e00685a, dl)); SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, getF32Constant(DAG, 0x3efb6798, dl)); SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, getF32Constant(DAG, 0x3f88d192, dl)); SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, getF32Constant(DAG, 0x3fc4316c, dl)); SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, getF32Constant(DAG, 0x3f57ce70, dl)); } return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); } // No special expansion. return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); } /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for /// limited-precision mode. static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags) { if (Op.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) return getLimitedPrecisionExp2(Op, dl, DAG); // No special expansion. return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); } /// visitPow - Lower a pow intrinsic. Handles the special sequences for /// limited-precision mode with x == 10.0f. static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags) { bool IsExp10 = false; if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { if (ConstantFPSDNode *LHSC = dyn_cast(LHS)) { APFloat Ten(10.0f); IsExp10 = LHSC->isExactlyValue(Ten); } } // TODO: What fast-math-flags should be set on the FMUL node? if (IsExp10) { // Put the exponent in the right bit position for later addition to the // final result: // // #define LOG2OF10 3.3219281f // t0 = Op * LOG2OF10; SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, getF32Constant(DAG, 0x40549a78, dl)); return getLimitedPrecisionExp2(t0, dl, DAG); } // No special expansion. return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); } /// ExpandPowI - Expand a llvm.powi intrinsic. static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG) { // If RHS is a constant, we can expand this out to a multiplication tree if // it's beneficial on the target, otherwise we end up lowering to a call to // __powidf2 (for example). if (ConstantSDNode *RHSC = dyn_cast(RHS)) { unsigned Val = RHSC->getSExtValue(); // powi(x, 0) -> 1.0 if (Val == 0) return DAG.getConstantFP(1.0, DL, LHS.getValueType()); if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( Val, DAG.shouldOptForSize())) { // Get the exponent as a positive value. if ((int)Val < 0) Val = -Val; // We use the simple binary decomposition method to generate the multiply // sequence. There are more optimal ways to do this (for example, // powi(x,15) generates one more multiply than it should), but this has // the benefit of being both really simple and much better than a libcall. SDValue Res; // Logically starts equal to 1.0 SDValue CurSquare = LHS; // TODO: Intrinsics should have fast-math-flags that propagate to these // nodes. while (Val) { if (Val & 1) { if (Res.getNode()) Res = DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); else Res = CurSquare; // 1.0*CurSquare. } CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), CurSquare, CurSquare); Val >>= 1; } // If the original was negative, invert the result, producing 1/(x*x*x). if (RHSC->getSExtValue() < 0) Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); return Res; } } // Otherwise, expand to a libcall. return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); } static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI) { EVT VT = LHS.getValueType(); bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; LLVMContext &Ctx = *DAG.getContext(); // If the type is legal but the operation isn't, this node might survive all // the way to operation legalization. If we end up there and we do not have // the ability to widen the type (if VT*2 is not legal), we cannot expand the // node. // Coax the legalizer into expanding the node during type legalization instead // by bumping the size by one bit. This will force it to Promote, enabling the // early expansion and avoiding the need to expand later. // We don't have to do this if Scale is 0; that can always be expanded, unless // it's a saturating signed operation. Those can experience true integer // division overflow, a case which we must avoid. // FIXME: We wouldn't have to do this (or any of the early // expansion/promotion) if it was possible to expand a libcall of an // illegal type during operation legalization. But it's not, so things // get a bit hacky. unsigned ScaleInt = cast(Scale)->getZExtValue(); if ((ScaleInt > 0 || (Saturating && Signed)) && (TLI.isTypeLegal(VT) || (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( Opcode, VT, ScaleInt); if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { EVT PromVT; if (VT.isScalarInteger()) PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); else if (VT.isVector()) { PromVT = VT.getVectorElementType(); PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); } else llvm_unreachable("Wrong VT for DIVFIX?"); if (Signed) { LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); } else { LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); } EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); // For saturating operations, we need to shift up the LHS to get the // proper saturation width, and then shift down again afterwards. if (Saturating) LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, DAG.getConstant(1, DL, ShiftTy)); SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); if (Saturating) Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, DAG.getConstant(1, DL, ShiftTy)); return DAG.getZExtOrTrunc(Res, DL, VT); } } return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); } // getUnderlyingArgRegs - Find underlying registers used for a truncated, // bitcasted, or split argument. Returns a list of static void getUnderlyingArgRegs(SmallVectorImpl> &Regs, const SDValue &N) { switch (N.getOpcode()) { case ISD::CopyFromReg: { SDValue Op = N.getOperand(1); Regs.emplace_back(cast(Op)->getReg(), Op.getValueType().getSizeInBits()); return; } case ISD::BITCAST: case ISD::AssertZext: case ISD::AssertSext: case ISD::TRUNCATE: getUnderlyingArgRegs(Regs, N.getOperand(0)); return; case ISD::BUILD_PAIR: case ISD::BUILD_VECTOR: case ISD::CONCAT_VECTORS: for (SDValue Op : N->op_values()) getUnderlyingArgRegs(Regs, Op); return; default: return; } } /// If the DbgValueInst is a dbg_value of a function argument, create the /// corresponding DBG_VALUE machine instruction for it now. At the end of /// instruction selection, they will be inserted to the entry BB. /// We don't currently support this for variadic dbg_values, as they shouldn't /// appear for function arguments or in the prologue. bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( const Value *V, DILocalVariable *Variable, DIExpression *Expr, DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { const Argument *Arg = dyn_cast(V); if (!Arg) return false; MachineFunction &MF = DAG.getMachineFunction(); const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind // we've been asked to pursue. auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, bool Indirect) { if (Reg.isVirtual() && MF.useDebugInstrRef()) { // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF // pointing at the VReg, which will be patched up later. auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); auto MIB = BuildMI(MF, DL, Inst); MIB.addReg(Reg); MIB.addImm(0); MIB.addMetadata(Variable); auto *NewDIExpr = FragExpr; // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into // the DIExpression. if (Indirect) NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); MIB.addMetadata(NewDIExpr); return MIB; } else { // Create a completely standard DBG_VALUE. auto &Inst = TII->get(TargetOpcode::DBG_VALUE); return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); } }; if (Kind == FuncArgumentDbgValueKind::Value) { // ArgDbgValues are hoisted to the beginning of the entry block. So we // should only emit as ArgDbgValue if the dbg.value intrinsic is found in // the entry block. bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); if (!IsInEntryBlock) return false; // ArgDbgValues are hoisted to the beginning of the entry block. So we // should only emit as ArgDbgValue if the dbg.value intrinsic describes a // variable that also is a param. // // Although, if we are at the top of the entry block already, we can still // emit using ArgDbgValue. This might catch some situations when the // dbg.value refers to an argument that isn't used in the entry block, so // any CopyToReg node would be optimized out and the only way to express // this DBG_VALUE is by using the physical reg (or FI) as done in this // method. ArgDbgValues are hoisted to the beginning of the entry block. So // we should only emit as ArgDbgValue if the Variable is an argument to the // current function, and the dbg.value intrinsic is found in the entry // block. bool VariableIsFunctionInputArg = Variable->isParameter() && !DL->getInlinedAt(); bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; if (!IsInPrologue && !VariableIsFunctionInputArg) return false; // Here we assume that a function argument on IR level only can be used to // describe one input parameter on source level. If we for example have // source code like this // // struct A { long x, y; }; // void foo(struct A a, long b) { // ... // b = a.x; // ... // } // // and IR like this // // define void @foo(i32 %a1, i32 %a2, i32 %b) { // entry: // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment // call void @llvm.dbg.value(metadata i32 %b, "b", // ... // call void @llvm.dbg.value(metadata i32 %a1, "b" // ... // // then the last dbg.value is describing a parameter "b" using a value that // is an argument. But since we already has used %a1 to describe a parameter // we should not handle that last dbg.value here (that would result in an // incorrect hoisting of the DBG_VALUE to the function entry). // Notice that we allow one dbg.value per IR level argument, to accommodate // for the situation with fragments above. if (VariableIsFunctionInputArg) { unsigned ArgNo = Arg->getArgNo(); if (ArgNo >= FuncInfo.DescribedArgs.size()) FuncInfo.DescribedArgs.resize(ArgNo + 1, false); else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) return false; FuncInfo.DescribedArgs.set(ArgNo); } } bool IsIndirect = false; Optional Op; // Some arguments' frame index is recorded during argument lowering. int FI = FuncInfo.getArgumentFrameIndex(Arg); if (FI != std::numeric_limits::max()) Op = MachineOperand::CreateFI(FI); SmallVector, 8> ArgRegsAndSizes; if (!Op && N.getNode()) { getUnderlyingArgRegs(ArgRegsAndSizes, N); Register Reg; if (ArgRegsAndSizes.size() == 1) Reg = ArgRegsAndSizes.front().first; if (Reg && Reg.isVirtual()) { MachineRegisterInfo &RegInfo = MF.getRegInfo(); Register PR = RegInfo.getLiveInPhysReg(Reg); if (PR) Reg = PR; } if (Reg) { Op = MachineOperand::CreateReg(Reg, false); IsIndirect = Kind != FuncArgumentDbgValueKind::Value; } } if (!Op && N.getNode()) { // Check if frame index is available. SDValue LCandidate = peekThroughBitcasts(N); if (LoadSDNode *LNode = dyn_cast(LCandidate.getNode())) if (FrameIndexSDNode *FINode = dyn_cast(LNode->getBasePtr().getNode())) Op = MachineOperand::CreateFI(FINode->getIndex()); } if (!Op) { // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg auto splitMultiRegDbgValue = [&](ArrayRef> SplitRegs) { unsigned Offset = 0; for (const auto &RegAndSize : SplitRegs) { // If the expression is already a fragment, the current register // offset+size might extend beyond the fragment. In this case, only // the register bits that are inside the fragment are relevant. int RegFragmentSizeInBits = RegAndSize.second; if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; // The register is entirely outside the expression fragment, // so is irrelevant for debug info. if (Offset >= ExprFragmentSizeInBits) break; // The register is partially outside the expression fragment, only // the low bits within the fragment are relevant for debug info. if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; } } auto FragmentExpr = DIExpression::createFragmentExpression( Expr, Offset, RegFragmentSizeInBits); Offset += RegAndSize.second; // If a valid fragment expression cannot be created, the variable's // correct value cannot be determined and so it is set as Undef. if (!FragmentExpr) { SDDbgValue *SDV = DAG.getConstantDbgValue( Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); DAG.AddDbgValue(SDV, false); continue; } MachineInstr *NewMI = MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, Kind != FuncArgumentDbgValueKind::Value); FuncInfo.ArgDbgValues.push_back(NewMI); } }; // Check if ValueMap has reg number. DenseMap::const_iterator VMI = FuncInfo.ValueMap.find(V); if (VMI != FuncInfo.ValueMap.end()) { const auto &TLI = DAG.getTargetLoweringInfo(); RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, V->getType(), None); if (RFV.occupiesMultipleRegs()) { splitMultiRegDbgValue(RFV.getRegsAndSizes()); return true; } Op = MachineOperand::CreateReg(VMI->second, false); IsIndirect = Kind != FuncArgumentDbgValueKind::Value; } else if (ArgRegsAndSizes.size() > 1) { // This was split due to the calling convention, and no virtual register // mapping exists for the value. splitMultiRegDbgValue(ArgRegsAndSizes); return true; } } if (!Op) return false; assert(Variable->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"); MachineInstr *NewMI = nullptr; if (Op->isReg()) NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); else NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, Variable, Expr); // Otherwise, use ArgDbgValues. FuncInfo.ArgDbgValues.push_back(NewMI); return true; } /// Return the appropriate SDDbgValue based on N. SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, DILocalVariable *Variable, DIExpression *Expr, const DebugLoc &dl, unsigned DbgSDNodeOrder) { if (auto *FISDN = dyn_cast(N.getNode())) { // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe // stack slot locations. // // Consider "int x = 0; int *px = &x;". There are two kinds of interesting // debug values here after optimization: // // dbg.value(i32* %px, !"int *px", !DIExpression()), and // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) // // Both describe the direct values of their associated variables. return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), /*IsIndirect*/ false, dl, DbgSDNodeOrder); } return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), /*IsIndirect*/ false, dl, DbgSDNodeOrder); } static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { switch (Intrinsic) { case Intrinsic::smul_fix: return ISD::SMULFIX; case Intrinsic::umul_fix: return ISD::UMULFIX; case Intrinsic::smul_fix_sat: return ISD::SMULFIXSAT; case Intrinsic::umul_fix_sat: return ISD::UMULFIXSAT; case Intrinsic::sdiv_fix: return ISD::SDIVFIX; case Intrinsic::udiv_fix: return ISD::UDIVFIX; case Intrinsic::sdiv_fix_sat: return ISD::SDIVFIXSAT; case Intrinsic::udiv_fix_sat: return ISD::UDIVFIXSAT; default: llvm_unreachable("Unhandled fixed point intrinsic"); } } void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, const char *FunctionName) { assert(FunctionName && "FunctionName must not be nullptr"); SDValue Callee = DAG.getExternalSymbol( FunctionName, DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); } /// Given a @llvm.call.preallocated.setup, return the corresponding /// preallocated call. static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { assert(cast(PreallocatedSetup) ->getCalledFunction() ->getIntrinsicID() == Intrinsic::call_preallocated_setup && "expected call_preallocated_setup Value"); for (const auto *U : PreallocatedSetup->users()) { auto *UseCall = cast(U); const Function *Fn = UseCall->getCalledFunction(); if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { return UseCall; } } llvm_unreachable("expected corresponding call to preallocated setup/arg"); } /// Lower the call to the specified intrinsic function. void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc sdl = getCurSDLoc(); DebugLoc dl = getCurDebugLoc(); SDValue Res; SDNodeFlags Flags; if (auto *FPOp = dyn_cast(&I)) Flags.copyFMF(*FPOp); switch (Intrinsic) { default: // By default, turn this into a target intrinsic node. visitTargetIntrinsic(I, Intrinsic); return; case Intrinsic::vscale: { match(&I, m_VScale(DAG.getDataLayout())); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); return; } case Intrinsic::vastart: visitVAStart(I); return; case Intrinsic::vaend: visitVAEnd(I); return; case Intrinsic::vacopy: visitVACopy(I); return; case Intrinsic::returnaddress: setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getValueType(DAG.getDataLayout(), I.getType()), getValue(I.getArgOperand(0)))); return; case Intrinsic::addressofreturnaddress: setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, TLI.getValueType(DAG.getDataLayout(), I.getType()))); return; case Intrinsic::sponentry: setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, TLI.getValueType(DAG.getDataLayout(), I.getType()))); return; case Intrinsic::frameaddress: setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getFrameIndexTy(DAG.getDataLayout()), getValue(I.getArgOperand(0)))); return; case Intrinsic::read_volatile_register: case Intrinsic::read_register: { Value *Reg = I.getArgOperand(0); SDValue Chain = getRoot(); SDValue RegName = DAG.getMDNode(cast(cast(Reg)->getMetadata())); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); Res = DAG.getNode(ISD::READ_REGISTER, sdl, DAG.getVTList(VT, MVT::Other), Chain, RegName); setValue(&I, Res); DAG.setRoot(Res.getValue(1)); return; } case Intrinsic::write_register: { Value *Reg = I.getArgOperand(0); Value *RegValue = I.getArgOperand(1); SDValue Chain = getRoot(); SDValue RegName = DAG.getMDNode(cast(cast(Reg)->getMetadata())); DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, RegName, getValue(RegValue))); return; } case Intrinsic::memcpy: { const auto &MCI = cast(I); SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDValue Op3 = getValue(I.getArgOperand(2)); // @llvm.memcpy defines 0 and 1 to both mean no alignment. Align DstAlign = MCI.getDestAlign().valueOrOne(); Align SrcAlign = MCI.getSourceAlign().valueOrOne(); Align Alignment = std::min(DstAlign, SrcAlign); bool isVol = MCI.isVolatile(); bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); // FIXME: Support passing different dest/src alignments to the memcpy DAG // node. SDValue Root = isVol ? getRoot() : getMemoryRoot(); SDValue MC = DAG.getMemcpy( Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); updateDAGForMaybeTailCall(MC); return; } case Intrinsic::memcpy_inline: { const auto &MCI = cast(I); SDValue Dst = getValue(I.getArgOperand(0)); SDValue Src = getValue(I.getArgOperand(1)); SDValue Size = getValue(I.getArgOperand(2)); assert(isa(Size) && "memcpy_inline needs constant size"); // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. Align DstAlign = MCI.getDestAlign().valueOrOne(); Align SrcAlign = MCI.getSourceAlign().valueOrOne(); Align Alignment = std::min(DstAlign, SrcAlign); bool isVol = MCI.isVolatile(); bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); // FIXME: Support passing different dest/src alignments to the memcpy DAG // node. SDValue MC = DAG.getMemcpy( getRoot(), sdl, Dst, Src, Size, Alignment, isVol, /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); updateDAGForMaybeTailCall(MC); return; } case Intrinsic::memset: { const auto &MSI = cast(I); SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDValue Op3 = getValue(I.getArgOperand(2)); // @llvm.memset defines 0 and 1 to both mean no alignment. Align Alignment = MSI.getDestAlign().valueOrOne(); bool isVol = MSI.isVolatile(); bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); SDValue Root = isVol ? getRoot() : getMemoryRoot(); SDValue MS = DAG.getMemset( Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); updateDAGForMaybeTailCall(MS); return; } case Intrinsic::memset_inline: { const auto &MSII = cast(I); SDValue Dst = getValue(I.getArgOperand(0)); SDValue Value = getValue(I.getArgOperand(1)); SDValue Size = getValue(I.getArgOperand(2)); assert(isa(Size) && "memset_inline needs constant size"); // @llvm.memset defines 0 and 1 to both mean no alignment. Align DstAlign = MSII.getDestAlign().valueOrOne(); bool isVol = MSII.isVolatile(); bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); SDValue Root = isVol ? getRoot() : getMemoryRoot(); SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); updateDAGForMaybeTailCall(MC); return; } case Intrinsic::memmove: { const auto &MMI = cast(I); SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDValue Op3 = getValue(I.getArgOperand(2)); // @llvm.memmove defines 0 and 1 to both mean no alignment. Align DstAlign = MMI.getDestAlign().valueOrOne(); Align SrcAlign = MMI.getSourceAlign().valueOrOne(); Align Alignment = std::min(DstAlign, SrcAlign); bool isVol = MMI.isVolatile(); bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); // FIXME: Support passing different dest/src alignments to the memmove DAG // node. SDValue Root = isVol ? getRoot() : getMemoryRoot(); SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, MachinePointerInfo(I.getArgOperand(0)), MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); updateDAGForMaybeTailCall(MM); return; } case Intrinsic::memcpy_element_unordered_atomic: { const AtomicMemCpyInst &MI = cast(I); SDValue Dst = getValue(MI.getRawDest()); SDValue Src = getValue(MI.getRawSource()); SDValue Length = getValue(MI.getLength()); Type *LengthTy = MI.getLength()->getType(); unsigned ElemSz = MI.getElementSizeInBytes(); bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, isTC, MachinePointerInfo(MI.getRawDest()), MachinePointerInfo(MI.getRawSource())); updateDAGForMaybeTailCall(MC); return; } case Intrinsic::memmove_element_unordered_atomic: { auto &MI = cast(I); SDValue Dst = getValue(MI.getRawDest()); SDValue Src = getValue(MI.getRawSource()); SDValue Length = getValue(MI.getLength()); Type *LengthTy = MI.getLength()->getType(); unsigned ElemSz = MI.getElementSizeInBytes(); bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, isTC, MachinePointerInfo(MI.getRawDest()), MachinePointerInfo(MI.getRawSource())); updateDAGForMaybeTailCall(MC); return; } case Intrinsic::memset_element_unordered_atomic: { auto &MI = cast(I); SDValue Dst = getValue(MI.getRawDest()); SDValue Val = getValue(MI.getValue()); SDValue Length = getValue(MI.getLength()); Type *LengthTy = MI.getLength()->getType(); unsigned ElemSz = MI.getElementSizeInBytes(); bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, isTC, MachinePointerInfo(MI.getRawDest())); updateDAGForMaybeTailCall(MC); return; } case Intrinsic::call_preallocated_setup: { const CallBase *PreallocatedCall = FindPreallocatedCall(&I); SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, getRoot(), SrcValue); setValue(&I, Res); DAG.setRoot(Res); return; } case Intrinsic::call_preallocated_arg: { const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); SDValue Ops[3]; Ops[0] = getRoot(); Ops[1] = SrcValue; Ops[2] = DAG.getTargetConstant(*cast(I.getArgOperand(1)), sdl, MVT::i32); // arg index SDValue Res = DAG.getNode( ISD::PREALLOCATED_ARG, sdl, DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); setValue(&I, Res); DAG.setRoot(Res.getValue(1)); return; } case Intrinsic::dbg_addr: case Intrinsic::dbg_declare: { // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. // they are non-variadic. const auto &DI = cast(I); assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); DILocalVariable *Variable = DI.getVariable(); DIExpression *Expression = DI.getExpression(); dropDanglingDebugInfo(Variable, Expression); assert(Variable && "Missing variable"); LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI << "\n"); // Check if address has undef value. const Value *Address = DI.getVariableLocationOp(0); if (!Address || isa(Address) || (Address->use_empty() && !isa(Address))) { LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << " (bad/undef/unused-arg address)\n"); return; } bool isParameter = Variable->isParameter() || isa(Address); // Check if this variable can be described by a frame index, typically // either as a static alloca or a byval parameter. int FI = std::numeric_limits::max(); if (const auto *AI = dyn_cast(Address->stripInBoundsConstantOffsets())) { if (AI->isStaticAlloca()) { auto I = FuncInfo.StaticAllocaMap.find(AI); if (I != FuncInfo.StaticAllocaMap.end()) FI = I->second; } } else if (const auto *Arg = dyn_cast( Address->stripInBoundsConstantOffsets())) { FI = FuncInfo.getArgumentFrameIndex(Arg); } // llvm.dbg.addr is control dependent and always generates indirect // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in // the MachineFunction variable table. if (FI != std::numeric_limits::max()) { if (Intrinsic == Intrinsic::dbg_addr) { SDDbgValue *SDV = DAG.getFrameIndexDbgValue( Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, dl, SDNodeOrder); DAG.AddDbgValue(SDV, isParameter); } else { LLVM_DEBUG(dbgs() << "Skipping " << DI << " (variable info stashed in MF side table)\n"); } return; } SDValue &N = NodeMap[Address]; if (!N.getNode() && isa(Address)) // Check unused arguments map. N = UnusedArgNodeMap[Address]; SDDbgValue *SDV; if (N.getNode()) { if (const BitCastInst *BCI = dyn_cast(Address)) Address = BCI->getOperand(0); // Parameters are handled specially. auto FINode = dyn_cast(N.getNode()); if (isParameter && FINode) { // Byval parameter. We have a frame index at this point. SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), /*IsIndirect*/ true, dl, SDNodeOrder); } else if (isa(Address)) { // Address is an argument, so try to emit its dbg value using // virtual register info from the FuncInfo.ValueMap. EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, FuncArgumentDbgValueKind::Declare, N); return; } else { SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), true, dl, SDNodeOrder); } DAG.AddDbgValue(SDV, isParameter); } else { // If Address is an argument then try to emit its dbg value using // virtual register info from the FuncInfo.ValueMap. if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, FuncArgumentDbgValueKind::Declare, N)) { LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << " (could not emit func-arg dbg_value)\n"); } } return; } case Intrinsic::dbg_label: { const DbgLabelInst &DI = cast(I); DILabel *Label = DI.getLabel(); assert(Label && "Missing label"); SDDbgLabel *SDV; SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); DAG.AddDbgLabel(SDV); return; } case Intrinsic::dbg_value: { const DbgValueInst &DI = cast(I); assert(DI.getVariable() && "Missing variable"); DILocalVariable *Variable = DI.getVariable(); DIExpression *Expression = DI.getExpression(); dropDanglingDebugInfo(Variable, Expression); SmallVector Values(DI.getValues()); if (Values.empty()) return; if (llvm::is_contained(Values, nullptr)) return; bool IsVariadic = DI.hasArgList(); if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), SDNodeOrder, IsVariadic)) addDanglingDebugInfo(&DI, dl, SDNodeOrder); return; } case Intrinsic::eh_typeid_for: { // Find the type id for the given typeinfo. GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); Res = DAG.getConstant(TypeID, sdl, MVT::i32); setValue(&I, Res); return; } case Intrinsic::eh_return_i32: case Intrinsic::eh_return_i64: DAG.getMachineFunction().setCallsEHReturn(true); DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, MVT::Other, getControlRoot(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)))); return; case Intrinsic::eh_unwind_init: DAG.getMachineFunction().setCallsUnwindInit(true); return; case Intrinsic::eh_dwarf_cfa: setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, TLI.getPointerTy(DAG.getDataLayout()), getValue(I.getArgOperand(0)))); return; case Intrinsic::eh_sjlj_callsite: { MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); ConstantInt *CI = cast(I.getArgOperand(0)); assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); MMI.setCurrentCallSite(CI->getZExtValue()); return; } case Intrinsic::eh_sjlj_functioncontext: { // Get and store the index of the function context. MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); AllocaInst *FnCtx = cast(I.getArgOperand(0)->stripPointerCasts()); int FI = FuncInfo.StaticAllocaMap[FnCtx]; MFI.setFunctionContextIndex(FI); return; } case Intrinsic::eh_sjlj_setjmp: { SDValue Ops[2]; Ops[0] = getRoot(); Ops[1] = getValue(I.getArgOperand(0)); SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, DAG.getVTList(MVT::i32, MVT::Other), Ops); setValue(&I, Op.getValue(0)); DAG.setRoot(Op.getValue(1)); return; } case Intrinsic::eh_sjlj_longjmp: DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, getRoot(), getValue(I.getArgOperand(0)))); return; case Intrinsic::eh_sjlj_setup_dispatch: DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, getRoot())); return; case Intrinsic::masked_gather: visitMaskedGather(I); return; case Intrinsic::masked_load: visitMaskedLoad(I); return; case Intrinsic::masked_scatter: visitMaskedScatter(I); return; case Intrinsic::masked_store: visitMaskedStore(I); return; case Intrinsic::masked_expandload: visitMaskedLoad(I, true /* IsExpanding */); return; case Intrinsic::masked_compressstore: visitMaskedStore(I, true /* IsCompressing */); return; case Intrinsic::powi: setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), DAG)); return; case Intrinsic::log: setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); return; case Intrinsic::log2: setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); return; case Intrinsic::log10: setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); return; case Intrinsic::exp: setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); return; case Intrinsic::exp2: setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); return; case Intrinsic::pow: setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), DAG, TLI, Flags)); return; case Intrinsic::sqrt: case Intrinsic::fabs: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: case Intrinsic::roundeven: case Intrinsic::canonicalize: { unsigned Opcode; switch (Intrinsic) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; case Intrinsic::fabs: Opcode = ISD::FABS; break; case Intrinsic::sin: Opcode = ISD::FSIN; break; case Intrinsic::cos: Opcode = ISD::FCOS; break; case Intrinsic::floor: Opcode = ISD::FFLOOR; break; case Intrinsic::ceil: Opcode = ISD::FCEIL; break; case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; case Intrinsic::rint: Opcode = ISD::FRINT; break; case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; case Intrinsic::round: Opcode = ISD::FROUND; break; case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; } setValue(&I, DAG.getNode(Opcode, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), Flags)); return; } case Intrinsic::lround: case Intrinsic::llround: case Intrinsic::lrint: case Intrinsic::llrint: { unsigned Opcode; switch (Intrinsic) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::lround: Opcode = ISD::LROUND; break; case Intrinsic::llround: Opcode = ISD::LLROUND; break; case Intrinsic::lrint: Opcode = ISD::LRINT; break; case Intrinsic::llrint: Opcode = ISD::LLRINT; break; } EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(Opcode, sdl, RetVT, getValue(I.getArgOperand(0)))); return; } case Intrinsic::minnum: setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags)); return; case Intrinsic::maxnum: setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags)); return; case Intrinsic::minimum: setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags)); return; case Intrinsic::maximum: setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags)); return; case Intrinsic::copysign: setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags)); return; case Intrinsic::arithmetic_fence: { setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), Flags)); return; } case Intrinsic::fma: setValue(&I, DAG.getNode( ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), getValue(I.getArgOperand(2)), Flags)); return; #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ case Intrinsic::INTRINSIC: #include "llvm/IR/ConstrainedOps.def" visitConstrainedFPIntrinsic(cast(I)); return; #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: #include "llvm/IR/VPIntrinsics.def" visitVectorPredicationIntrinsic(cast(I)); return; case Intrinsic::fptrunc_round: { // Get the last argument, the metadata and convert it to an integer in the // call Metadata *MD = cast(I.getArgOperand(1))->getMetadata(); Optional RoundMode = convertStrToRoundingMode(cast(MD)->getString()); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); // Propagate fast-math-flags from IR to node(s). SDNodeFlags Flags; Flags.copyFMF(*cast(&I)); SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); SDValue Result; Result = DAG.getNode( ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), DAG.getTargetConstant((int)*RoundMode, sdl, TLI.getPointerTy(DAG.getDataLayout()))); setValue(&I, Result); return; } case Intrinsic::fmuladd: { EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { setValue(&I, DAG.getNode(ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), getValue(I.getArgOperand(2)), Flags)); } else { // TODO: Intrinsic calls should have fast-math-flags. SDValue Mul = DAG.getNode( ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); SDValue Add = DAG.getNode(ISD::FADD, sdl, getValue(I.getArgOperand(0)).getValueType(), Mul, getValue(I.getArgOperand(2)), Flags); setValue(&I, Add); } return; } case Intrinsic::convert_to_fp16: setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, getValue(I.getArgOperand(0)), DAG.getTargetConstant(0, sdl, MVT::i32)))); return; case Intrinsic::convert_from_fp16: setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(DAG.getDataLayout(), I.getType()), DAG.getNode(ISD::BITCAST, sdl, MVT::f16, getValue(I.getArgOperand(0))))); return; case Intrinsic::fptosi_sat: { EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, getValue(I.getArgOperand(0)), DAG.getValueType(VT.getScalarType()))); return; } case Intrinsic::fptoui_sat: { EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, getValue(I.getArgOperand(0)), DAG.getValueType(VT.getScalarType()))); return; } case Intrinsic::set_rounding: Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, {getRoot(), getValue(I.getArgOperand(0))}); setValue(&I, Res); DAG.setRoot(Res.getValue(0)); return; case Intrinsic::is_fpclass: { const DataLayout DLayout = DAG.getDataLayout(); EVT DestVT = TLI.getValueType(DLayout, I.getType()); EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); unsigned Test = cast(I.getArgOperand(1))->getZExtValue(); MachineFunction &MF = DAG.getMachineFunction(); const Function &F = MF.getFunction(); SDValue Op = getValue(I.getArgOperand(0)); SDNodeFlags Flags; Flags.setNoFPExcept( !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); // If ISD::IS_FPCLASS should be expanded, do it right now, because the // expansion can use illegal types. Making expansion early allows // legalizing these types prior to selection. if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); setValue(&I, Result); return; } SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); setValue(&I, V); return; } case Intrinsic::pcmarker: { SDValue Tmp = getValue(I.getArgOperand(0)); DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); return; } case Intrinsic::readcyclecounter: { SDValue Op = getRoot(); Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, DAG.getVTList(MVT::i64, MVT::Other), Op); setValue(&I, Res); DAG.setRoot(Res.getValue(1)); return; } case Intrinsic::bitreverse: setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)))); return; case Intrinsic::bswap: setValue(&I, DAG.getNode(ISD::BSWAP, sdl, getValue(I.getArgOperand(0)).getValueType(), getValue(I.getArgOperand(0)))); return; case Intrinsic::cttz: { SDValue Arg = getValue(I.getArgOperand(0)); ConstantInt *CI = cast(I.getArgOperand(1)); EVT Ty = Arg.getValueType(); setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, sdl, Ty, Arg)); return; } case Intrinsic::ctlz: { SDValue Arg = getValue(I.getArgOperand(0)); ConstantInt *CI = cast(I.getArgOperand(1)); EVT Ty = Arg.getValueType(); setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, sdl, Ty, Arg)); return; } case Intrinsic::ctpop: { SDValue Arg = getValue(I.getArgOperand(0)); EVT Ty = Arg.getValueType(); setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); return; } case Intrinsic::fshl: case Intrinsic::fshr: { bool IsFSHL = Intrinsic == Intrinsic::fshl; SDValue X = getValue(I.getArgOperand(0)); SDValue Y = getValue(I.getArgOperand(1)); SDValue Z = getValue(I.getArgOperand(2)); EVT VT = X.getValueType(); if (X == Y) { auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); } else { auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); } return; } case Intrinsic::sadd_sat: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::uadd_sat: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::ssub_sat: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::usub_sat: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::sshl_sat: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::ushl_sat: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::smul_fix: case Intrinsic::umul_fix: case Intrinsic::smul_fix_sat: case Intrinsic::umul_fix_sat: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDValue Op3 = getValue(I.getArgOperand(2)); setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, Op1.getValueType(), Op1, Op2, Op3)); return; } case Intrinsic::sdiv_fix: case Intrinsic::udiv_fix: case Intrinsic::sdiv_fix_sat: case Intrinsic::udiv_fix_sat: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); SDValue Op3 = getValue(I.getArgOperand(2)); setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, Op1, Op2, Op3, DAG, TLI)); return; } case Intrinsic::smax: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::smin: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::umax: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::umin: { SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); return; } case Intrinsic::abs: { // TODO: Preserve "int min is poison" arg in SDAG? SDValue Op1 = getValue(I.getArgOperand(0)); setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); return; } case Intrinsic::stacksave: { SDValue Op = getRoot(); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); setValue(&I, Res); DAG.setRoot(Res.getValue(1)); return; } case Intrinsic::stackrestore: Res = getValue(I.getArgOperand(0)); DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); return; case Intrinsic::get_dynamic_area_offset: { SDValue Op = getRoot(); EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); // Result type for @llvm.get.dynamic.area.offset should match PtrTy for // target. if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" " intrinsic!"); Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), Op); DAG.setRoot(Op); setValue(&I, Res); return; } case Intrinsic::stackguard: { MachineFunction &MF = DAG.getMachineFunction(); const Module &M = *MF.getFunction().getParent(); SDValue Chain = getRoot(); if (TLI.useLoadStackGuardNode()) { Res = getLoadStackGuard(DAG, sdl, Chain); } else { EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); const Value *Global = TLI.getSDagStackGuard(M); Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), MachinePointerInfo(Global, 0), Align, MachineMemOperand::MOVolatile); } if (TLI.useStackGuardXorFP()) Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); DAG.setRoot(Chain); setValue(&I, Res); return; } case Intrinsic::stackprotector: { // Emit code into the DAG to store the stack guard onto the stack. MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); SDValue Src, Chain = getRoot(); if (TLI.useLoadStackGuardNode()) Src = getLoadStackGuard(DAG, sdl, Chain); else Src = getValue(I.getArgOperand(0)); // The guard's value. AllocaInst *Slot = cast(I.getArgOperand(1)); int FI = FuncInfo.StaticAllocaMap[Slot]; MFI.setStackProtectorIndex(FI); EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); SDValue FIN = DAG.getFrameIndex(FI, PtrTy); // Store the stack protector onto the stack. Res = DAG.getStore( Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), MaybeAlign(), MachineMemOperand::MOVolatile); setValue(&I, Res); DAG.setRoot(Res); return; } case Intrinsic::objectsize: llvm_unreachable("llvm.objectsize.* should have been lowered already"); case Intrinsic::is_constant: llvm_unreachable("llvm.is.constant.* should have been lowered already"); case Intrinsic::annotation: case Intrinsic::ptr_annotation: case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: // Drop the intrinsic, but forward the value setValue(&I, getValue(I.getOperand(0))); return; case Intrinsic::assume: case Intrinsic::experimental_noalias_scope_decl: case Intrinsic::var_annotation: case Intrinsic::sideeffect: // Discard annotate attributes, noalias scope declarations, assumptions, and // artificial side-effects. return; case Intrinsic::codeview_annotation: { // Emit a label associated with this metadata. MachineFunction &MF = DAG.getMachineFunction(); MCSymbol *Label = MF.getMMI().getContext().createTempSymbol("annotation", true); Metadata *MD = cast(I.getArgOperand(0))->getMetadata(); MF.addCodeViewAnnotation(Label, cast(MD)); Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); DAG.setRoot(Res); return; } case Intrinsic::init_trampoline: { const Function *F = cast(I.getArgOperand(1)->stripPointerCasts()); SDValue Ops[6]; Ops[0] = getRoot(); Ops[1] = getValue(I.getArgOperand(0)); Ops[2] = getValue(I.getArgOperand(1)); Ops[3] = getValue(I.getArgOperand(2)); Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); Ops[5] = DAG.getSrcValue(F); Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); DAG.setRoot(Res); return; } case Intrinsic::adjust_trampoline: setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, TLI.getPointerTy(DAG.getDataLayout()), getValue(I.getArgOperand(0)))); return; case Intrinsic::gcroot: { assert(DAG.getMachineFunction().getFunction().hasGC() && "only valid in functions with gc specified, enforced by Verifier"); assert(GFI && "implied by previous"); const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); const Constant *TypeMap = cast(I.getArgOperand(1)); FrameIndexSDNode *FI = cast(getValue(Alloca).getNode()); GFI->addStackRoot(FI->getIndex(), TypeMap); return; } case Intrinsic::gcread: case Intrinsic::gcwrite: llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); case Intrinsic::flt_rounds: Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); setValue(&I, Res); DAG.setRoot(Res.getValue(1)); return; case Intrinsic::expect: // Just replace __builtin_expect(exp, c) with EXP. setValue(&I, getValue(I.getArgOperand(0))); return; case Intrinsic::ubsantrap: case Intrinsic::debugtrap: case Intrinsic::trap: { StringRef TrapFuncName = I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); if (TrapFuncName.empty()) { switch (Intrinsic) { case Intrinsic::trap: DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); break; case Intrinsic::debugtrap: DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); break; case Intrinsic::ubsantrap: DAG.setRoot(DAG.getNode( ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), DAG.getTargetConstant( cast(I.getArgOperand(0))->getZExtValue(), sdl, MVT::i32))); break; default: llvm_unreachable("unknown trap intrinsic"); } return; } TargetLowering::ArgListTy Args; if (Intrinsic == Intrinsic::ubsantrap) { Args.push_back(TargetLoweringBase::ArgListEntry()); Args[0].Val = I.getArgOperand(0); Args[0].Node = getValue(Args[0].Val); Args[0].Ty = Args[0].Val->getType(); } TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( CallingConv::C, I.getType(), DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy(DAG.getDataLayout())), std::move(Args)); std::pair Result = TLI.LowerCallTo(CLI); DAG.setRoot(Result.second); return; } case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: { ISD::NodeType Op; switch (Intrinsic) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; } SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2 = getValue(I.getArgOperand(1)); EVT ResultVT = Op1.getValueType(); EVT OverflowVT = MVT::i1; if (ResultVT.isVector()) OverflowVT = EVT::getVectorVT( *Context, OverflowVT, ResultVT.getVectorElementCount()); SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); return; } case Intrinsic::prefetch: { SDValue Ops[5]; unsigned rw = cast(I.getArgOperand(1))->getZExtValue(); auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; Ops[0] = DAG.getRoot(); Ops[1] = getValue(I.getArgOperand(0)); Ops[2] = getValue(I.getArgOperand(1)); Ops[3] = getValue(I.getArgOperand(2)); Ops[4] = getValue(I.getArgOperand(3)); SDValue Result = DAG.getMemIntrinsicNode( ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), /* align */ None, Flags); // Chain the prefetch in parallell with any pending loads, to stay out of // the way of later optimizations. PendingLoads.push_back(Result); Result = getRoot(); DAG.setRoot(Result); return; } case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: { bool IsStart = (Intrinsic == Intrinsic::lifetime_start); // Stack coloring is not enabled in O0, discard region information. if (TM.getOptLevel() == CodeGenOpt::None) return; const int64_t ObjectSize = cast(I.getArgOperand(0))->getSExtValue(); Value *const ObjectPtr = I.getArgOperand(1); SmallVector Allocas; getUnderlyingObjects(ObjectPtr, Allocas); for (const Value *Alloca : Allocas) { const AllocaInst *LifetimeObject = dyn_cast_or_null(Alloca); // Could not find an Alloca. if (!LifetimeObject) continue; // First check that the Alloca is static, otherwise it won't have a // valid frame index. auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); if (SI == FuncInfo.StaticAllocaMap.end()) return; const int FrameIndex = SI->second; int64_t Offset; if (GetPointerBaseWithConstantOffset( ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) Offset = -1; // Cannot determine offset from alloca to lifetime object. Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, Offset); DAG.setRoot(Res); } return; } case Intrinsic::pseudoprobe: { auto Guid = cast(I.getArgOperand(0))->getZExtValue(); auto Index = cast(I.getArgOperand(1))->getZExtValue(); auto Attr = cast(I.getArgOperand(2))->getZExtValue(); Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); DAG.setRoot(Res); return; } case Intrinsic::invariant_start: // Discard region information. setValue(&I, DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); return; case Intrinsic::invariant_end: // Discard region information. return; case Intrinsic::clear_cache: /// FunctionName may be null. if (const char *FunctionName = TLI.getClearCacheBuiltinName()) lowerCallToExternalSymbol(I, FunctionName); return; case Intrinsic::donothing: case Intrinsic::seh_try_begin: case Intrinsic::seh_scope_begin: case Intrinsic::seh_try_end: case Intrinsic::seh_scope_end: // ignore return; case Intrinsic::experimental_stackmap: visitStackmap(I); return; case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint_i64: visitPatchpoint(I); return; case Intrinsic::experimental_gc_statepoint: LowerStatepoint(cast(I)); return; case Intrinsic::experimental_gc_result: visitGCResult(cast(I)); return; case Intrinsic::experimental_gc_relocate: visitGCRelocate(cast(I)); return; case Intrinsic::instrprof_cover: llvm_unreachable("instrprof failed to lower a cover"); case Intrinsic::instrprof_increment: llvm_unreachable("instrprof failed to lower an increment"); case Intrinsic::instrprof_value_profile: llvm_unreachable("instrprof failed to lower a value profiling call"); case Intrinsic::localescape: { MachineFunction &MF = DAG.getMachineFunction(); const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission // is the same on all targets. for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); if (isa(Arg)) continue; // Skip null pointers. They represent a hole in index space. AllocaInst *Slot = cast(Arg); assert(FuncInfo.StaticAllocaMap.count(Slot) && "can only escape static allocas"); int FI = FuncInfo.StaticAllocaMap[Slot]; MCSymbol *FrameAllocSym = MF.getMMI().getContext().getOrCreateFrameAllocSymbol( GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, TII->get(TargetOpcode::LOCAL_ESCAPE)) .addSym(FrameAllocSym) .addFrameIndex(FI); } return; } case Intrinsic::localrecover: { // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) MachineFunction &MF = DAG.getMachineFunction(); // Get the symbol that defines the frame offset. auto *Fn = cast(I.getArgOperand(0)->stripPointerCasts()); auto *Idx = cast(I.getArgOperand(2)); unsigned IdxVal = unsigned(Idx->getLimitedValue(std::numeric_limits::max())); MCSymbol *FrameAllocSym = MF.getMMI().getContext().getOrCreateFrameAllocSymbol( GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); Value *FP = I.getArgOperand(1); SDValue FPVal = getValue(FP); EVT PtrVT = FPVal.getValueType(); // Create a MCSymbol for the label to avoid any target lowering // that would make this PC relative. SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); SDValue OffsetVal = DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); // Add the offset to the FP. SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); setValue(&I, Add); return; } case Intrinsic::eh_exceptionpointer: case Intrinsic::eh_exceptioncode: { // Get the exception pointer vreg, copy from it, and resize it to fit. const auto *CPI = cast(I.getArgOperand(0)); MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); if (Intrinsic == Intrinsic::eh_exceptioncode) N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); setValue(&I, N); return; } case Intrinsic::xray_customevent: { // Here we want to make sure that the intrinsic behaves as if it has a // specific calling convention, and only for x86_64. // FIXME: Support other platforms later. const auto &Triple = DAG.getTarget().getTargetTriple(); if (Triple.getArch() != Triple::x86_64) return; SmallVector Ops; // We want to say that we always want the arguments in registers. SDValue LogEntryVal = getValue(I.getArgOperand(0)); SDValue StrSizeVal = getValue(I.getArgOperand(1)); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Chain = getRoot(); Ops.push_back(LogEntryVal); Ops.push_back(StrSizeVal); Ops.push_back(Chain); // We need to enforce the calling convention for the callsite, so that // argument ordering is enforced correctly, and that register allocation can // see that some registers may be assumed clobbered and have to preserve // them across calls to the intrinsic. MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, sdl, NodeTys, Ops); SDValue patchableNode = SDValue(MN, 0); DAG.setRoot(patchableNode); setValue(&I, patchableNode); return; } case Intrinsic::xray_typedevent: { // Here we want to make sure that the intrinsic behaves as if it has a // specific calling convention, and only for x86_64. // FIXME: Support other platforms later. const auto &Triple = DAG.getTarget().getTargetTriple(); if (Triple.getArch() != Triple::x86_64) return; SmallVector Ops; // We want to say that we always want the arguments in registers. // It's unclear to me how manipulating the selection DAG here forces callers // to provide arguments in registers instead of on the stack. SDValue LogTypeId = getValue(I.getArgOperand(0)); SDValue LogEntryVal = getValue(I.getArgOperand(1)); SDValue StrSizeVal = getValue(I.getArgOperand(2)); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Chain = getRoot(); Ops.push_back(LogTypeId); Ops.push_back(LogEntryVal); Ops.push_back(StrSizeVal); Ops.push_back(Chain); // We need to enforce the calling convention for the callsite, so that // argument ordering is enforced correctly, and that register allocation can // see that some registers may be assumed clobbered and have to preserve // them across calls to the intrinsic. MachineSDNode *MN = DAG.getMachineNode( TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); SDValue patchableNode = SDValue(MN, 0); DAG.setRoot(patchableNode); setValue(&I, patchableNode); return; } case Intrinsic::experimental_deoptimize: LowerDeoptimizeCall(&I); return; case Intrinsic::experimental_stepvector: visitStepVector(I); return; case Intrinsic::vector_reduce_fadd: case Intrinsic::vector_reduce_fmul: case Intrinsic::vector_reduce_add: case Intrinsic::vector_reduce_mul: case Intrinsic::vector_reduce_and: case Intrinsic::vector_reduce_or: case Intrinsic::vector_reduce_xor: case Intrinsic::vector_reduce_smax: case Intrinsic::vector_reduce_smin: case Intrinsic::vector_reduce_umax: case Intrinsic::vector_reduce_umin: case Intrinsic::vector_reduce_fmax: case Intrinsic::vector_reduce_fmin: visitVectorReduce(I, Intrinsic); return; case Intrinsic::icall_branch_funnel: { SmallVector Ops; Ops.push_back(getValue(I.getArgOperand(0))); int64_t Offset; auto *Base = dyn_cast(GetPointerBaseWithConstantOffset( I.getArgOperand(1), Offset, DAG.getDataLayout())); if (!Base) report_fatal_error( "llvm.icall.branch.funnel operand must be a GlobalValue"); Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); struct BranchFunnelTarget { int64_t Offset; SDValue Target; }; SmallVector Targets; for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { auto *ElemBase = dyn_cast(GetPointerBaseWithConstantOffset( I.getArgOperand(Op), Offset, DAG.getDataLayout())); if (ElemBase != Base) report_fatal_error("all llvm.icall.branch.funnel operands must refer " "to the same GlobalValue"); SDValue Val = getValue(I.getArgOperand(Op + 1)); auto *GA = dyn_cast(Val); if (!GA) report_fatal_error( "llvm.icall.branch.funnel operand must be a GlobalValue"); Targets.push_back({Offset, DAG.getTargetGlobalAddress( GA->getGlobal(), sdl, Val.getValueType(), GA->getOffset())}); } llvm::sort(Targets, [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { return T1.Offset < T2.Offset; }); for (auto &T : Targets) { Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); Ops.push_back(T.Target); } Ops.push_back(DAG.getRoot()); // Chain SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, MVT::Other, Ops), 0); DAG.setRoot(N); setValue(&I, N); HasTailCall = true; return; } case Intrinsic::wasm_landingpad_index: // Information this intrinsic contained has been transferred to // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely // delete it now. return; case Intrinsic::aarch64_settag: case Intrinsic::aarch64_settag_zero: { const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; SDValue Val = TSI.EmitTargetCodeForSetTag( DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), ZeroMemory); DAG.setRoot(Val); setValue(&I, Val); return; } case Intrinsic::ptrmask: { SDValue Ptr = getValue(I.getOperand(0)); SDValue Const = getValue(I.getOperand(1)); EVT PtrVT = Ptr.getValueType(); setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, DAG.getZExtOrTrunc(Const, sdl, PtrVT))); return; } case Intrinsic::get_active_lane_mask: { EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); SDValue Index = getValue(I.getOperand(0)); EVT ElementVT = Index.getValueType(); if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { visitTargetIntrinsic(I, Intrinsic); return; } SDValue TripCount = getValue(I.getOperand(1)); auto VecTy = CCVT.changeVectorElementType(ElementVT); SDValue VectorIndex, VectorTripCount; if (VecTy.isScalableVector()) { VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); } else { VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); } SDValue VectorStep = DAG.getStepVector(sdl, VecTy); SDValue VectorInduction = DAG.getNode( ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, VectorTripCount, ISD::CondCode::SETULT); setValue(&I, SetCC); return; } case Intrinsic::vector_insert: { SDValue Vec = getValue(I.getOperand(0)); SDValue SubVec = getValue(I.getOperand(1)); SDValue Index = getValue(I.getOperand(2)); // The intrinsic's index type is i64, but the SDNode requires an index type // suitable for the target. Convert the index as required. MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); if (Index.getValueType() != VectorIdxTy) Index = DAG.getVectorIdxConstant( cast(Index)->getZExtValue(), sdl); EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, Index)); return; } case Intrinsic::vector_extract: { SDValue Vec = getValue(I.getOperand(0)); SDValue Index = getValue(I.getOperand(1)); EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); // The intrinsic's index type is i64, but the SDNode requires an index type // suitable for the target. Convert the index as required. MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); if (Index.getValueType() != VectorIdxTy) Index = DAG.getVectorIdxConstant( cast(Index)->getZExtValue(), sdl); setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); return; } case Intrinsic::experimental_vector_reverse: visitVectorReverse(I); return; case Intrinsic::experimental_vector_splice: visitVectorSplice(I); return; } } void SelectionDAGBuilder::visitConstrainedFPIntrinsic( const ConstrainedFPIntrinsic &FPI) { SDLoc sdl = getCurSDLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SmallVector ValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); ValueVTs.push_back(MVT::Other); // Out chain // We do not need to serialize constrained FP intrinsics against // each other or against (nonvolatile) loads, so they can be // chained like loads. SDValue Chain = DAG.getRoot(); SmallVector Opers; Opers.push_back(Chain); if (FPI.isUnaryOp()) { Opers.push_back(getValue(FPI.getArgOperand(0))); } else if (FPI.isTernaryOp()) { Opers.push_back(getValue(FPI.getArgOperand(0))); Opers.push_back(getValue(FPI.getArgOperand(1))); Opers.push_back(getValue(FPI.getArgOperand(2))); } else { Opers.push_back(getValue(FPI.getArgOperand(0))); Opers.push_back(getValue(FPI.getArgOperand(1))); } auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { assert(Result.getNode()->getNumValues() == 2); // Push node to the appropriate list so that future instructions can be // chained up correctly. SDValue OutChain = Result.getValue(1); switch (EB) { case fp::ExceptionBehavior::ebIgnore: // The only reason why ebIgnore nodes still need to be chained is that // they might depend on the current rounding mode, and therefore must // not be moved across instruction that may change that mode. LLVM_FALLTHROUGH; case fp::ExceptionBehavior::ebMayTrap: // These must not be moved across calls or instructions that may change // floating-point exception masks. PendingConstrainedFP.push_back(OutChain); break; case fp::ExceptionBehavior::ebStrict: // These must not be moved across calls or instructions that may change // floating-point exception masks or read floating-point exception flags. // In addition, they cannot be optimized out even if unused. PendingConstrainedFPStrict.push_back(OutChain); break; } }; SDVTList VTs = DAG.getVTList(ValueVTs); fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); SDNodeFlags Flags; if (EB == fp::ExceptionBehavior::ebIgnore) Flags.setNoFPExcept(true); if (auto *FPOp = dyn_cast(&FPI)) Flags.copyFMF(*FPOp); unsigned Opcode; switch (FPI.getIntrinsicID()) { default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ case Intrinsic::INTRINSIC: \ Opcode = ISD::STRICT_##DAGN; \ break; #include "llvm/IR/ConstrainedOps.def" case Intrinsic::experimental_constrained_fmuladd: { Opcode = ISD::STRICT_FMA; // Break fmuladd into fmul and fadd. if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { Opers.pop_back(); SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); pushOutChain(Mul, EB); Opcode = ISD::STRICT_FADD; Opers.clear(); Opers.push_back(Mul.getValue(1)); Opers.push_back(Mul.getValue(0)); Opers.push_back(getValue(FPI.getArgOperand(2))); } break; } } // A few strict DAG nodes carry additional operands that are not // set up by the default code above. switch (Opcode) { default: break; case ISD::STRICT_FP_ROUND: Opers.push_back( DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); break; case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: { auto *FPCmp = dyn_cast(&FPI); ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); if (TM.Options.NoNaNsFPMath) Condition = getFCmpCodeWithoutNaN(Condition); Opers.push_back(DAG.getCondCode(Condition)); break; } } SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); pushOutChain(Result, EB); SDValue FPResult = Result.getValue(0); setValue(&FPI, FPResult); } static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { Optional ResOPC; switch (VPIntrin.getIntrinsicID()) { #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ case Intrinsic::VPID: \ ResOPC = ISD::VPSD; \ break; #include "llvm/IR/VPIntrinsics.def" } if (!ResOPC) llvm_unreachable( "Inconsistency: no SDNode available for this VPIntrinsic!"); if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { if (VPIntrin.getFastMathFlags().allowReassoc()) return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD : ISD::VP_REDUCE_FMUL; } return *ResOPC; } void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, SmallVector &OpValues, bool IsGather) { SDLoc DL = getCurSDLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); Value *PtrOperand = VPIntrin.getArgOperand(0); MaybeAlign Alignment = VPIntrin.getPointerAlignment(); AAMDNodes AAInfo = VPIntrin.getAAMetadata(); const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); SDValue LD; bool AddToChain = true; if (!IsGather) { // Do not serialize variable-length loads of constant memory with // anything. if (!Alignment) Alignment = DAG.getEVTAlign(VT); MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); AddToChain = !AA || !AA->pointsToConstantMemory(ML); SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], MMO, false /*IsExpanding */); } else { if (!Alignment) Alignment = DAG.getEVTAlign(VT.getScalarType()); unsigned AS = PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(AS), MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); SDValue Base, Index, Scale; ISD::MemIndexType IndexType; bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, this, VPIntrin.getParent(), VT.getScalarStoreSize()); if (!UniformBase) { Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); Index = getValue(PtrOperand); IndexType = ISD::SIGNED_SCALED; Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); } EVT IdxVT = Index.getValueType(); EVT EltTy = IdxVT.getVectorElementType(); if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); } LD = DAG.getGatherVP( DAG.getVTList(VT, MVT::Other), VT, DL, {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, IndexType); } if (AddToChain) PendingLoads.push_back(LD.getValue(1)); setValue(&VPIntrin, LD); } void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, SmallVector &OpValues, bool IsScatter) { SDLoc DL = getCurSDLoc(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); Value *PtrOperand = VPIntrin.getArgOperand(1); EVT VT = OpValues[0].getValueType(); MaybeAlign Alignment = VPIntrin.getPointerAlignment(); AAMDNodes AAInfo = VPIntrin.getAAMetadata(); SDValue ST; if (!IsScatter) { if (!Alignment) Alignment = DAG.getEVTAlign(VT); SDValue Ptr = OpValues[1]; SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, MemoryLocation::UnknownSize, *Alignment, AAInfo); ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, /* IsTruncating */ false, /*IsCompressing*/ false); } else { if (!Alignment) Alignment = DAG.getEVTAlign(VT.getScalarType()); unsigned AS = PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(AS), MachineMemOperand::MOStore, MemoryLocation::UnknownSize, *Alignment, AAInfo); SDValue Base, Index, Scale; ISD::MemIndexType IndexType; bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, this, VPIntrin.getParent(), VT.getScalarStoreSize()); if (!UniformBase) { Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); Index = getValue(PtrOperand); IndexType = ISD::SIGNED_SCALED; Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); } EVT IdxVT = Index.getValueType(); EVT EltTy = IdxVT.getVectorElementType(); if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); } ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, {getMemoryRoot(), OpValues[0], Base, Index, Scale, OpValues[2], OpValues[3]}, MMO, IndexType); } DAG.setRoot(ST); setValue(&VPIntrin, ST); } void SelectionDAGBuilder::visitVPStridedLoad( const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl &OpValues) { SDLoc DL = getCurSDLoc(); Value *PtrOperand = VPIntrin.getArgOperand(0); MaybeAlign Alignment = VPIntrin.getPointerAlignment(); if (!Alignment) Alignment = DAG.getEVTAlign(VT.getScalarType()); AAMDNodes AAInfo = VPIntrin.getAAMetadata(); const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], OpValues[3], MMO, false /*IsExpanding*/); if (AddToChain) PendingLoads.push_back(LD.getValue(1)); setValue(&VPIntrin, LD); } void SelectionDAGBuilder::visitVPStridedStore( const VPIntrinsic &VPIntrin, SmallVectorImpl &OpValues) { SDLoc DL = getCurSDLoc(); Value *PtrOperand = VPIntrin.getArgOperand(1); EVT VT = OpValues[0].getValueType(); MaybeAlign Alignment = VPIntrin.getPointerAlignment(); if (!Alignment) Alignment = DAG.getEVTAlign(VT.getScalarType()); AAMDNodes AAInfo = VPIntrin.getAAMetadata(); MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, MemoryLocation::UnknownSize, *Alignment, AAInfo); SDValue ST = DAG.getStridedStoreVP( getMemoryRoot(), DL, OpValues[0], OpValues[1], DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, /*IsCompressing*/ false); DAG.setRoot(ST); setValue(&VPIntrin, ST); } void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDLoc DL = getCurSDLoc(); ISD::CondCode Condition; CmpInst::Predicate CondCode = VPIntrin.getPredicate(); bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); if (IsFP) { // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) // flags, but calls that don't return floating-point types can't be // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. Condition = getFCmpCondCode(CondCode); if (TM.Options.NoNaNsFPMath) Condition = getFCmpCodeWithoutNaN(Condition); } else { Condition = getICmpCondCode(CondCode); } SDValue Op1 = getValue(VPIntrin.getOperand(0)); SDValue Op2 = getValue(VPIntrin.getOperand(1)); // #2 is the condition code SDValue MaskOp = getValue(VPIntrin.getOperand(3)); SDValue EVL = getValue(VPIntrin.getOperand(4)); MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && "Unexpected target EVL type"); EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), VPIntrin.getType()); setValue(&VPIntrin, DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); } void SelectionDAGBuilder::visitVectorPredicationIntrinsic( const VPIntrinsic &VPIntrin) { SDLoc DL = getCurSDLoc(); unsigned Opcode = getISDForVPIntrinsic(VPIntrin); auto IID = VPIntrin.getIntrinsicID(); if (const auto *CmpI = dyn_cast(&VPIntrin)) return visitVPCmp(*CmpI); SmallVector ValueVTs; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); SDVTList VTs = DAG.getVTList(ValueVTs); auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && "Unexpected target EVL type"); // Request operands. SmallVector OpValues; for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { auto Op = getValue(VPIntrin.getArgOperand(I)); if (I == EVLParamPos) Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); OpValues.push_back(Op); } switch (Opcode) { default: { SDNodeFlags SDFlags; if (auto *FPMO = dyn_cast(&VPIntrin)) SDFlags.copyFMF(*FPMO); SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); setValue(&VPIntrin, Result); break; } case ISD::VP_LOAD: case ISD::VP_GATHER: visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, Opcode == ISD::VP_GATHER); break; case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); break; case ISD::VP_STORE: case ISD::VP_SCATTER: visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); break; case ISD::EXPERIMENTAL_VP_STRIDED_STORE: visitVPStridedStore(VPIntrin, OpValues); break; } } SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, const BasicBlock *EHPadBB, MCSymbol *&BeginLabel) { MachineFunction &MF = DAG.getMachineFunction(); MachineModuleInfo &MMI = MF.getMMI(); // Insert a label before the invoke call to mark the try range. This can be // used to detect deletion of the invoke via the MachineModuleInfo. BeginLabel = MMI.getContext().createTempSymbol(); // For SjLj, keep track of which landing pads go with which invokes // so as to maintain the ordering of pads in the LSDA. unsigned CallSiteIndex = MMI.getCurrentCallSite(); if (CallSiteIndex) { MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); // Now that the call site is handled, stop tracking it. MMI.setCurrentCallSite(0); } return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); } SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, const BasicBlock *EHPadBB, MCSymbol *BeginLabel) { assert(BeginLabel && "BeginLabel should've been set"); MachineFunction &MF = DAG.getMachineFunction(); MachineModuleInfo &MMI = MF.getMMI(); // Insert a label at the end of the invoke call to mark the try range. This // can be used to detect deletion of the invoke via the MachineModuleInfo. MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); // Inform MachineModuleInfo of range. auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); // There is a platform (e.g. wasm) that uses funclet style IR but does not // actually use outlined funclets and their LSDA info style. if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { assert(II && "II should've been set"); WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); } else if (!isScopedEHPersonality(Pers)) { assert(EHPadBB); MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); } return Chain; } std::pair SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB) { MCSymbol *BeginLabel = nullptr; if (EHPadBB) { // Both PendingLoads and PendingExports must be flushed here; // this call might not return. (void)getRoot(); DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); CLI.setChain(getRoot()); } const TargetLowering &TLI = DAG.getTargetLoweringInfo(); std::pair Result = TLI.LowerCallTo(CLI); assert((CLI.IsTailCall || Result.second.getNode()) && "Non-null chain expected with non-tail call!"); assert((Result.second.getNode() || !Result.first.getNode()) && "Null value expected with tail call!"); if (!Result.second.getNode()) { // As a special case, a null chain means that a tail call has been emitted // and the DAG root is already updated. HasTailCall = true; // Since there's no actual continuation from this block, nothing can be // relying on us setting vregs for them. PendingExports.clear(); } else { DAG.setRoot(Result.second); } if (EHPadBB) { DAG.setRoot(lowerEndEH(getRoot(), cast_or_null(CLI.CB), EHPadBB, BeginLabel)); } return Result; } void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, bool isTailCall, bool isMustTailCall, const BasicBlock *EHPadBB) { auto &DL = DAG.getDataLayout(); FunctionType *FTy = CB.getFunctionType(); Type *RetTy = CB.getType(); TargetLowering::ArgListTy Args; Args.reserve(CB.arg_size()); const Value *SwiftErrorVal = nullptr; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (isTailCall) { // Avoid emitting tail calls in functions with the disable-tail-calls // attribute. auto *Caller = CB.getParent()->getParent(); if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == "true" && !isMustTailCall) isTailCall = false; // We can't tail call inside a function with a swifterror argument. Lowering // does not support this yet. It would have to move into the swifterror // register before the call. if (TLI.supportSwiftError() && Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) isTailCall = false; } for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { TargetLowering::ArgListEntry Entry; const Value *V = *I; // Skip empty types if (V->getType()->isEmptyTy()) continue; SDValue ArgNode = getValue(V); Entry.Node = ArgNode; Entry.Ty = V->getType(); Entry.setAttributes(&CB, I - CB.arg_begin()); // Use swifterror virtual register as input to the call. if (Entry.IsSwiftError && TLI.supportSwiftError()) { SwiftErrorVal = V; // We find the virtual register for the actual swifterror argument. // Instead of using the Value, we use the virtual register instead. Entry.Node = DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), EVT(TLI.getPointerTy(DL))); } Args.push_back(Entry); // If we have an explicit sret argument that is an Instruction, (i.e., it // might point to function-local memory), we can't meaningfully tail-call. if (Entry.IsSRet && isa(V)) isTailCall = false; } // If call site has a cfguardtarget operand bundle, create and add an // additional ArgListEntry. if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { TargetLowering::ArgListEntry Entry; Value *V = Bundle->Inputs[0]; SDValue ArgNode = getValue(V); Entry.Node = ArgNode; Entry.Ty = V->getType(); Entry.IsCFGuardTarget = true; Args.push_back(Entry); } // Check if target-independent constraints permit a tail call here. // Target-dependent constraints are checked within TLI->LowerCallTo. if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) isTailCall = false; // Disable tail calls if there is an swifterror argument. Targets have not // been updated to support tail calls. if (TLI.supportSwiftError() && SwiftErrorVal) isTailCall = false; TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(getCurSDLoc()) .setChain(getRoot()) .setCallee(RetTy, FTy, Callee, std::move(Args), CB) .setTailCall(isTailCall) .setConvergent(CB.isConvergent()) .setIsPreallocated( CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); std::pair Result = lowerInvokable(CLI, EHPadBB); if (Result.first.getNode()) { Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); setValue(&CB, Result.first); } // The last element of CLI.InVals has the SDValue for swifterror return. // Here we copy it to a virtual register and update SwiftErrorMap for // book-keeping. if (SwiftErrorVal && TLI.supportSwiftError()) { // Get the last element of InVals. SDValue Src = CLI.InVals.back(); Register VReg = SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); DAG.setRoot(CopyNode); } } static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder) { // Check to see if this load can be trivially constant folded, e.g. if the // input is from a string literal. if (const Constant *LoadInput = dyn_cast(PtrVal)) { // Cast pointer to the type we really want to load. Type *LoadTy = Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); if (LoadVT.isVector()) LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); LoadInput = ConstantExpr::getBitCast(const_cast(LoadInput), PointerType::getUnqual(LoadTy)); if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(const_cast(LoadInput), LoadTy, Builder.DAG.getDataLayout())) return Builder.getValue(LoadCst); } // Otherwise, we have to emit the load. If the pointer is to unfoldable but // still constant memory, the input chain can be the entry node. SDValue Root; bool ConstantMemory = false; // Do not serialize (non-volatile) loads of constant memory with anything. if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { Root = Builder.DAG.getEntryNode(); ConstantMemory = true; } else { // Do not serialize non-volatile loads against each other. Root = Builder.DAG.getRoot(); } SDValue Ptr = Builder.getValue(PtrVal); SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, MachinePointerInfo(PtrVal), Align(1)); if (!ConstantMemory) Builder.PendingLoads.push_back(LoadVal.getValue(1)); return LoadVal; } /// Record the value for an instruction that produces an integer result, /// converting the type where necessary. void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, SDValue Value, bool IsSigned) { EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType(), true); if (IsSigned) Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); else Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); setValue(&I, Value); } /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return /// true and lower it. Otherwise return false, and it will be lowered like a /// normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); const Value *Size = I.getArgOperand(2); const ConstantSDNode *CSize = dyn_cast(getValue(Size)); if (CSize && CSize->getZExtValue() == 0) { EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), I.getType(), true); setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); return true; } const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForMemcmp( DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); if (Res.first.getNode()) { processIntegerCallValue(I, Res.first, true); PendingLoads.push_back(Res.second); return true; } // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) return false; // If the target has a fast compare for the given size, it will return a // preferred load type for that size. Require that the load VT is legal and // that the target supports unaligned loads of that type. Otherwise, return // INVALID. auto hasFastLoadsAndCompare = [&](unsigned NumBits) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); MVT LVT = TLI.hasFastEqualityCompare(NumBits); if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { // TODO: Handle 5 byte compare as 4-byte + 1 byte. // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. // TODO: Check alignment of src and dest ptrs. unsigned DstAS = LHS->getType()->getPointerAddressSpace(); unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); if (!TLI.isTypeLegal(LVT) || !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; } return LVT; }; // This turns into unaligned loads. We only do this if the target natively // supports the MVT we'll be loading or if it is small enough (<= 4) that // we'll only produce a small number of byte loads. MVT LoadVT; unsigned NumBitsToCompare = CSize->getZExtValue() * 8; switch (NumBitsToCompare) { default: return false; case 16: LoadVT = MVT::i16; break; case 32: LoadVT = MVT::i32; break; case 64: case 128: case 256: LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); break; } if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) return false; SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); // Bitcast to a wide integer type if the loads are vectors. if (LoadVT.isVector()) { EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); LoadL = DAG.getBitcast(CmpVT, LoadL); LoadR = DAG.getBitcast(CmpVT, LoadR); } SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); processIntegerCallValue(I, Cmp, false); return true; } /// See if we can lower a memchr call into an optimized form. If so, return /// true and lower it. Otherwise return false, and it will be lowered like a /// normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { const Value *Src = I.getArgOperand(0); const Value *Char = I.getArgOperand(1); const Value *Length = I.getArgOperand(2); const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), getValue(Src), getValue(Char), getValue(Length), MachinePointerInfo(Src)); if (Res.first.getNode()) { setValue(&I, Res.first); PendingLoads.push_back(Res.second); return true; } return false; } /// See if we can lower a mempcpy call into an optimized form. If so, return /// true and lower it. Otherwise return false, and it will be lowered like a /// normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { SDValue Dst = getValue(I.getArgOperand(0)); SDValue Src = getValue(I.getArgOperand(1)); SDValue Size = getValue(I.getArgOperand(2)); Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); // DAG::getMemcpy needs Alignment to be defined. Align Alignment = std::min(DstAlign, SrcAlign); bool isVol = false; SDLoc sdl = getCurSDLoc(); // In the mempcpy context we need to pass in a false value for isTailCall // because the return pointer needs to be adjusted by the size of // the copied memory. SDValue Root = isVol ? getRoot() : getMemoryRoot(); SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, /*isTailCall=*/false, MachinePointerInfo(I.getArgOperand(0)), MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata()); assert(MC.getNode() != nullptr && "** memcpy should not be lowered as TailCall in mempcpy context **"); DAG.setRoot(MC); // Check if Size needs to be truncated or extended. Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); // Adjust return pointer to point just past the last dst byte. SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), Dst, Size); setValue(&I, DstPlusSize); return true; } /// See if we can lower a strcpy call into an optimized form. If so, return /// true and lower it, otherwise return false and it will be lowered like a /// normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), getValue(Arg0), getValue(Arg1), MachinePointerInfo(Arg0), MachinePointerInfo(Arg1), isStpcpy); if (Res.first.getNode()) { setValue(&I, Res.first); DAG.setRoot(Res.second); return true; } return false; } /// See if we can lower a strcmp call into an optimized form. If so, return /// true and lower it, otherwise return false and it will be lowered like a /// normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), getValue(Arg1), MachinePointerInfo(Arg0), MachinePointerInfo(Arg1)); if (Res.first.getNode()) { processIntegerCallValue(I, Res.first, true); PendingLoads.push_back(Res.second); return true; } return false; } /// See if we can lower a strlen call into an optimized form. If so, return /// true and lower it, otherwise return false and it will be lowered like a /// normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { const Value *Arg0 = I.getArgOperand(0); const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), MachinePointerInfo(Arg0)); if (Res.first.getNode()) { processIntegerCallValue(I, Res.first, false); PendingLoads.push_back(Res.second); return true; } return false; } /// See if we can lower a strnlen call into an optimized form. If so, return /// true and lower it, otherwise return false and it will be lowered like a /// normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); std::pair Res = TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), getValue(Arg1), MachinePointerInfo(Arg0)); if (Res.first.getNode()) { processIntegerCallValue(I, Res.first, false); PendingLoads.push_back(Res.second); return true; } return false; } /// See if we can lower a unary floating-point operation into an SDNode with /// the specified Opcode. If so, return true and lower it, otherwise return /// false and it will be lowered like a normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, unsigned Opcode) { // We already checked this call's prototype; verify it doesn't modify errno. if (!I.onlyReadsMemory()) return false; SDNodeFlags Flags; Flags.copyFMF(cast(I)); SDValue Tmp = getValue(I.getArgOperand(0)); setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); return true; } /// See if we can lower a binary floating-point operation into an SDNode with /// the specified Opcode. If so, return true and lower it. Otherwise return /// false, and it will be lowered like a normal call. /// The caller already checked that \p I calls the appropriate LibFunc with a /// correct prototype. bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, unsigned Opcode) { // We already checked this call's prototype; verify it doesn't modify errno. if (!I.onlyReadsMemory()) return false; SDNodeFlags Flags; Flags.copyFMF(cast(I)); SDValue Tmp0 = getValue(I.getArgOperand(0)); SDValue Tmp1 = getValue(I.getArgOperand(1)); EVT VT = Tmp0.getValueType(); setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); return true; } void SelectionDAGBuilder::visitCall(const CallInst &I) { // Handle inline assembly differently. if (I.isInlineAsm()) { visitInlineAsm(I); return; } if (Function *F = I.getCalledFunction()) { diagnoseDontCall(I); if (F->isDeclaration()) { // Is this an LLVM intrinsic or a target-specific intrinsic? unsigned IID = F->getIntrinsicID(); if (!IID) if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) IID = II->getIntrinsicID(F); if (IID) { visitIntrinsicCall(I, IID); return; } } // Check for well-known libc/libm calls. If the function is internal, it // can't be a library call. Don't do the check if marked as nobuiltin for // some reason or the call site requires strict floating point semantics. LibFunc Func; if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && F->hasName() && LibInfo->getLibFunc(*F, Func) && LibInfo->hasOptimizedCodeGen(Func)) { switch (Func) { default: break; case LibFunc_bcmp: if (visitMemCmpBCmpCall(I)) return; break; case LibFunc_copysign: case LibFunc_copysignf: case LibFunc_copysignl: // We already checked this call's prototype; verify it doesn't modify // errno. if (I.onlyReadsMemory()) { SDValue LHS = getValue(I.getArgOperand(0)); SDValue RHS = getValue(I.getArgOperand(1)); setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), LHS.getValueType(), LHS, RHS)); return; } break; case LibFunc_fabs: case LibFunc_fabsf: case LibFunc_fabsl: if (visitUnaryFloatCall(I, ISD::FABS)) return; break; case LibFunc_fmin: case LibFunc_fminf: case LibFunc_fminl: if (visitBinaryFloatCall(I, ISD::FMINNUM)) return; break; case LibFunc_fmax: case LibFunc_fmaxf: case LibFunc_fmaxl: if (visitBinaryFloatCall(I, ISD::FMAXNUM)) return; break; case LibFunc_sin: case LibFunc_sinf: case LibFunc_sinl: if (visitUnaryFloatCall(I, ISD::FSIN)) return; break; case LibFunc_cos: case LibFunc_cosf: case LibFunc_cosl: if (visitUnaryFloatCall(I, ISD::FCOS)) return; break; case LibFunc_sqrt: case LibFunc_sqrtf: case LibFunc_sqrtl: case LibFunc_sqrt_finite: case LibFunc_sqrtf_finite: case LibFunc_sqrtl_finite: if (visitUnaryFloatCall(I, ISD::FSQRT)) return; break; case LibFunc_floor: case LibFunc_floorf: case LibFunc_floorl: if (visitUnaryFloatCall(I, ISD::FFLOOR)) return; break; case LibFunc_nearbyint: case LibFunc_nearbyintf: case LibFunc_nearbyintl: if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) return; break; case LibFunc_ceil: case LibFunc_ceilf: case LibFunc_ceill: if (visitUnaryFloatCall(I, ISD::FCEIL)) return; break; case LibFunc_rint: case LibFunc_rintf: case LibFunc_rintl: if (visitUnaryFloatCall(I, ISD::FRINT)) return; break; case LibFunc_round: case LibFunc_roundf: case LibFunc_roundl: if (visitUnaryFloatCall(I, ISD::FROUND)) return; break; case LibFunc_trunc: case LibFunc_truncf: case LibFunc_truncl: if (visitUnaryFloatCall(I, ISD::FTRUNC)) return; break; case LibFunc_log2: case LibFunc_log2f: case LibFunc_log2l: if (visitUnaryFloatCall(I, ISD::FLOG2)) return; break; case LibFunc_exp2: case LibFunc_exp2f: case LibFunc_exp2l: if (visitUnaryFloatCall(I, ISD::FEXP2)) return; break; case LibFunc_memcmp: if (visitMemCmpBCmpCall(I)) return; break; case LibFunc_mempcpy: if (visitMemPCpyCall(I)) return; break; case LibFunc_memchr: if (visitMemChrCall(I)) return; break; case LibFunc_strcpy: if (visitStrCpyCall(I, false)) return; break; case LibFunc_stpcpy: if (visitStrCpyCall(I, true)) return; break; case LibFunc_strcmp: if (visitStrCmpCall(I)) return; break; case LibFunc_strlen: if (visitStrLenCall(I)) return; break; case LibFunc_strnlen: if (visitStrNLenCall(I)) return; break; } } } // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't // have to do anything here to lower funclet bundles. // CFGuardTarget bundles are lowered in LowerCallTo. assert(!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_funclet, LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, LLVMContext::OB_clang_arc_attachedcall}) && "Cannot lower calls with arbitrary operand bundles!"); SDValue Callee = getValue(I.getCalledOperand()); if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); else // Check if we can potentially perform a tail call. More detailed checking // is be done within LowerCallTo, after more information about the call is // known. LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); } namespace { /// AsmOperandInfo - This contains information for each constraint that we are /// lowering. class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { public: /// CallOperand - If this is the result output operand or a clobber /// this is null, otherwise it is the incoming operand to the CallInst. /// This gets modified as the asm is processed. SDValue CallOperand; /// AssignedRegs - If this is a register or register class operand, this /// contains the set of register corresponding to the operand. RegsForValue AssignedRegs; explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { } /// Whether or not this operand accesses memory bool hasMemory(const TargetLowering &TLI) const { // Indirect operand accesses access memory. if (isIndirect) return true; for (const auto &Code : Codes) if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) return true; return false; } }; } // end anonymous namespace /// Make sure that the output operand \p OpInfo and its corresponding input /// operand \p MatchingOpInfo have compatible constraint types (otherwise error /// out). static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG) { if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) return; const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); const auto &TLI = DAG.getTargetLoweringInfo(); std::pair MatchRC = TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, OpInfo.ConstraintVT); std::pair InputRC = TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, MatchingOpInfo.ConstraintVT); if ((OpInfo.ConstraintVT.isInteger() != MatchingOpInfo.ConstraintVT.isInteger()) || (MatchRC.second != InputRC.second)) { // FIXME: error out in a more elegant fashion report_fatal_error("Unsupported asm: input constraint" " with a matching output constraint of" " incompatible type!"); } MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; } /// Get a direct memory input to behave well as an indirect operand. /// This may introduce stores, hence the need for a \p Chain. /// \return The (possibly updated) chain. static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // If we don't have an indirect input, put it in the constpool if we can, // otherwise spill it to a stack slot. // TODO: This isn't quite right. We need to handle these according to // the addressing mode that the constraint wants. Also, this may take // an additional register for the computation and we don't want that // either. // If the operand is a float, integer, or vector constant, spill to a // constant pool entry to get its address. const Value *OpVal = OpInfo.CallOperandVal; if (isa(OpVal) || isa(OpVal) || isa(OpVal) || isa(OpVal)) { OpInfo.CallOperand = DAG.getConstantPool( cast(OpVal), TLI.getPointerTy(DAG.getDataLayout())); return Chain; } // Otherwise, create a stack slot and emit a store to it before the asm. Type *Ty = OpVal->getType(); auto &DL = DAG.getDataLayout(); uint64_t TySize = DL.getTypeAllocSize(Ty); MachineFunction &MF = DAG.getMachineFunction(); int SSFI = MF.getFrameInfo().CreateStackObject( TySize, DL.getPrefTypeAlign(Ty), false); SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, MachinePointerInfo::getFixedStack(MF, SSFI), TLI.getMemValueType(DL, Ty)); OpInfo.CallOperand = StackSlot; return Chain; } /// GetRegistersForValue - Assign registers (virtual or physical) for the /// specified operand. We prefer to assign virtual registers, to allow the /// register allocator to handle the assignment process. However, if the asm /// uses features that we can't model on machineinstrs, we have SDISel do the /// allocation. This produces generally horrible, but correct, code. /// /// OpInfo describes the operand /// RefOpInfo describes the matching operand if any, the operand otherwise static llvm::Optional getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &RefOpInfo) { LLVMContext &Context = *DAG.getContext(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); MachineFunction &MF = DAG.getMachineFunction(); SmallVector Regs; const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); // No work to do for memory/address operands. if (OpInfo.ConstraintType == TargetLowering::C_Memory || OpInfo.ConstraintType == TargetLowering::C_Address) return None; // If this is a constraint for a single physreg, or a constraint for a // register class, find it. unsigned AssignedReg; const TargetRegisterClass *RC; std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); // RC is unset only on failure. Return immediately. if (!RC) return None; // Get the actual register value type. This is important, because the user // may have asked for (e.g.) the AX register in i32 type. We need to // remember that AX is actually i16 to get the right extension. const MVT RegVT = *TRI.legalclasstypes_begin(*RC); if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { // If this is an FP operand in an integer register (or visa versa), or more // generally if the operand value disagrees with the register class we plan // to stick it in, fix the operand type. // // If this is an input value, the bitcast to the new type is done now. // Bitcast for output value is done at the end of visitInlineAsm(). if ((OpInfo.Type == InlineAsm::isOutput || OpInfo.Type == InlineAsm::isInput) && !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { // Try to convert to the first EVT that the reg class contains. If the // types are identical size, use a bitcast to convert (e.g. two differing // vector types). Note: output bitcast is done at the end of // visitInlineAsm(). if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { // Exclude indirect inputs while they are unsupported because the code // to perform the load is missing and thus OpInfo.CallOperand still // refers to the input address rather than the pointed-to value. if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); OpInfo.ConstraintVT = RegVT; // If the operand is an FP value and we want it in integer registers, // use the corresponding integer type. This turns an f64 value into // i64, which can be passed with two i32 values on a 32-bit machine. } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); if (OpInfo.Type == InlineAsm::isInput) OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); OpInfo.ConstraintVT = VT; } } } // No need to allocate a matching input constraint since the constraint it's // matching to has already been allocated. if (OpInfo.isMatchingInputConstraint()) return None; EVT ValueVT = OpInfo.ConstraintVT; if (OpInfo.ConstraintVT == MVT::Other) ValueVT = RegVT; // Initialize NumRegs. unsigned NumRegs = 1; if (OpInfo.ConstraintVT != MVT::Other) NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); // If this is a constraint for a specific physical register, like {r17}, // assign it now. // If this associated to a specific register, initialize iterator to correct // place. If virtual, make sure we have enough registers // Initialize iterator if necessary TargetRegisterClass::iterator I = RC->begin(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); // Do not check for single registers. if (AssignedReg) { I = std::find(I, RC->end(), AssignedReg); if (I == RC->end()) { // RC does not contain the selected register, which indicates a // mismatch between the register and the required type/bitwidth. return {AssignedReg}; } } for (; NumRegs; --NumRegs, ++I) { assert(I != RC->end() && "Ran out of registers to allocate!"); Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); Regs.push_back(R); } OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); return None; } static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector &AsmNodeOperands) { // Scan until we find the definition we already emitted of this operand. unsigned CurOp = InlineAsm::Op_FirstOperand; for (; OperandNo; --OperandNo) { // Advance to the next operand. unsigned OpFlag = cast(AsmNodeOperands[CurOp])->getZExtValue(); assert((InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind(OpFlag) || InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; } return CurOp; } namespace { class ExtraFlags { unsigned Flags = 0; public: explicit ExtraFlags(const CallBase &Call) { const InlineAsm *IA = cast(Call.getCalledOperand()); if (IA->hasSideEffects()) Flags |= InlineAsm::Extra_HasSideEffects; if (IA->isAlignStack()) Flags |= InlineAsm::Extra_IsAlignStack; if (Call.isConvergent()) Flags |= InlineAsm::Extra_IsConvergent; Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; } void update(const TargetLowering::AsmOperandInfo &OpInfo) { // Ideally, we would only check against memory constraints. However, the // meaning of an Other constraint can be target-specific and we can't easily // reason about it. Therefore, be conservative and set MayLoad/MayStore // for Other constraints as well. if (OpInfo.ConstraintType == TargetLowering::C_Memory || OpInfo.ConstraintType == TargetLowering::C_Other) { if (OpInfo.Type == InlineAsm::isInput) Flags |= InlineAsm::Extra_MayLoad; else if (OpInfo.Type == InlineAsm::isOutput) Flags |= InlineAsm::Extra_MayStore; else if (OpInfo.Type == InlineAsm::isClobber) Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); } } unsigned get() const { return Flags; } }; } // end anonymous namespace /// visitInlineAsm - Handle a call to an InlineAsm object. void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, const BasicBlock *EHPadBB) { const InlineAsm *IA = cast(Call.getCalledOperand()); /// ConstraintOperands - Information about all of the constraints. SmallVector ConstraintOperands; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, // AsmDialect, MayLoad, MayStore). bool HasSideEffect = IA->hasSideEffects(); ExtraFlags ExtraInfo(Call); for (auto &T : TargetConstraints) { ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); if (OpInfo.CallOperandVal) OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); if (!HasSideEffect) HasSideEffect = OpInfo.hasMemory(TLI); // Determine if this InlineAsm MayLoad or MayStore based on the constraints. // FIXME: Could we compute this on OpInfo rather than T? // Compute the constraint code and ConstraintType to use. TLI.ComputeConstraintToUse(T, SDValue()); if (T.ConstraintType == TargetLowering::C_Immediate && OpInfo.CallOperand && !isa(OpInfo.CallOperand)) // We've delayed emitting a diagnostic like the "n" constraint because // inlining could cause an integer showing up. return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + "' expects an integer constant " "expression"); ExtraInfo.update(T); } // We won't need to flush pending loads if this asm doesn't touch // memory and is nonvolatile. SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); bool EmitEHLabels = isa(Call) && IA->canThrow(); if (EmitEHLabels) { assert(EHPadBB && "InvokeInst must have an EHPadBB"); } bool IsCallBr = isa(Call); if (IsCallBr || EmitEHLabels) { // If this is a callbr or invoke we need to flush pending exports since // inlineasm_br and invoke are terminators. // We need to do this before nodes are glued to the inlineasm_br node. Chain = getControlRoot(); } MCSymbol *BeginLabel = nullptr; if (EmitEHLabels) { Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); } // Second pass over the constraints: compute which constraint option to use. for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { // If this is an output operand with a matching input operand, look up the // matching input. If their types mismatch, e.g. one is an integer, the // other is floating point, or their sizes are different, flag it as an // error. if (OpInfo.hasMatchingInput()) { SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; patchMatchingInput(OpInfo, Input, DAG); } // Compute the constraint code and ConstraintType to use. TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); if ((OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.Type == InlineAsm::isClobber) || OpInfo.ConstraintType == TargetLowering::C_Address) continue; // If this is a memory input, and if the operand is not indirect, do what we // need to provide an address for the memory input. if (OpInfo.ConstraintType == TargetLowering::C_Memory && !OpInfo.isIndirect) { assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && "Can only indirectify direct input operands!"); // Memory operands really want the address of the value. Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); // There is no longer a Value* corresponding to this operand. OpInfo.CallOperandVal = nullptr; // It is now an indirect operand. OpInfo.isIndirect = true; } } // AsmNodeOperands - The operands for the ISD::INLINEASM node. std::vector AsmNodeOperands; AsmNodeOperands.push_back(SDValue()); // reserve space for input chain AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); // If we have a !srcloc metadata node associated with it, we want to attach // this to the ultimately generated inline asm machineinstr. To do this, we // pass in the third operand as this (potentially null) inline asm MDNode. const MDNode *SrcLoc = Call.getMetadata("srcloc"); AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore // bits as operand 3. AsmNodeOperands.push_back(DAG.getTargetConstant( ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); // Third pass: Loop over operands to prepare DAG-level operands.. As part of // this, assign virtual and physical registers for inputs and otput. for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { // Assign Registers. SDISelAsmOperandInfo &RefOpInfo = OpInfo.isMatchingInputConstraint() ? ConstraintOperands[OpInfo.getMatchedOperand()] : OpInfo; const auto RegError = getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); if (RegError) { const MachineFunction &MF = DAG.getMachineFunction(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const char *RegName = TRI.getName(RegError.value()); emitInlineAsmError(Call, "register '" + Twine(RegName) + "' allocated for constraint '" + Twine(OpInfo.ConstraintCode) + "' does not match required type"); return; } auto DetectWriteToReservedRegister = [&]() { const MachineFunction &MF = DAG.getMachineFunction(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); for (unsigned Reg : OpInfo.AssignedRegs.Regs) { if (Register::isPhysicalRegister(Reg) && TRI.isInlineAsmReadOnlyReg(MF, Reg)) { const char *RegName = TRI.getName(Reg); emitInlineAsmError(Call, "write to reserved register '" + Twine(RegName) + "'"); return true; } } return false; }; assert((OpInfo.ConstraintType != TargetLowering::C_Address || (OpInfo.Type == InlineAsm::isInput && !OpInfo.isMatchingInputConstraint())) && "Only address as input operand is allowed."); switch (OpInfo.Type) { case InlineAsm::isOutput: if (OpInfo.ConstraintType == TargetLowering::C_Memory) { unsigned ConstraintID = TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); assert(ConstraintID != InlineAsm::Constraint_Unknown && "Failed to convert memory constraint code to constraint id."); // Add information to the INLINEASM node to know about this output. unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), MVT::i32)); AsmNodeOperands.push_back(OpInfo.CallOperand); } else { // Otherwise, this outputs to a register (directly for C_Register / // C_RegisterClass, and a target-defined fashion for // C_Immediate/C_Other). Find a register that we can use. if (OpInfo.AssignedRegs.Regs.empty()) { emitInlineAsmError( Call, "couldn't allocate output register for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } if (DetectWriteToReservedRegister()) return; // Add information to the INLINEASM node to know that this register is // set. OpInfo.AssignedRegs.AddInlineAsmOperands( OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber : InlineAsm::Kind_RegDef, false, 0, getCurSDLoc(), DAG, AsmNodeOperands); } break; case InlineAsm::isInput: case InlineAsm::isLabel: { SDValue InOperandVal = OpInfo.CallOperand; if (OpInfo.isMatchingInputConstraint()) { // If this is required to match an output register we have already set, // just use its register. auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), AsmNodeOperands); unsigned OpFlag = cast(AsmNodeOperands[CurOp])->getZExtValue(); if (InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. if (OpInfo.isIndirect) { // This happens on gcc/testsuite/gcc.dg/pr8788-1.c emitInlineAsmError(Call, "inline asm not supported yet: " "don't know how to handle tied " "indirect register inputs"); return; } SmallVector Regs; MachineFunction &MF = DAG.getMachineFunction(); MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); auto *R = cast(AsmNodeOperands[CurOp+1]); Register TiedReg = R->getReg(); MVT RegVT = R->getSimpleValueType(0); const TargetRegisterClass *RC = TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) : TRI.getMinimalPhysRegClass(TiedReg); unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); for (unsigned i = 0; i != NumRegs; ++i) Regs.push_back(MRI.createVirtualRegister(RC)); RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); SDLoc dl = getCurSDLoc(); // Use the produced MatchedRegs object to MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, true, OpInfo.getMatchedOperand(), dl, DAG, AsmNodeOperands); break; } assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && "Unexpected number of operands"); // Add information to the INLINEASM node to know about this input. // See InlineAsm.h isUseOperandTiedToDef. OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, OpInfo.getMatchedOperand()); AsmNodeOperands.push_back(DAG.getTargetConstant( OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); break; } // Treat indirect 'X' constraint as memory. if (OpInfo.ConstraintType == TargetLowering::C_Other && OpInfo.isIndirect) OpInfo.ConstraintType = TargetLowering::C_Memory; if (OpInfo.ConstraintType == TargetLowering::C_Immediate || OpInfo.ConstraintType == TargetLowering::C_Other) { std::vector Ops; TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, Ops, DAG); if (Ops.empty()) { if (OpInfo.ConstraintType == TargetLowering::C_Immediate) if (isa(InOperandVal)) { emitInlineAsmError(Call, "value out of range for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } emitInlineAsmError(Call, "invalid operand for inline asm constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } // Add information to the INLINEASM node to know about this input. unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); AsmNodeOperands.push_back(DAG.getTargetConstant( ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); llvm::append_range(AsmNodeOperands, Ops); break; } if (OpInfo.ConstraintType == TargetLowering::C_Memory || OpInfo.ConstraintType == TargetLowering::C_Address) { assert((OpInfo.isIndirect || OpInfo.ConstraintType != TargetLowering::C_Memory) && "Operand must be indirect to be a mem!"); assert(InOperandVal.getValueType() == TLI.getPointerTy(DAG.getDataLayout()) && "Memory operands expect pointer values"); unsigned ConstraintID = TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); assert(ConstraintID != InlineAsm::Constraint_Unknown && "Failed to convert memory constraint code to constraint id."); // Add information to the INLINEASM node to know about this input. unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); AsmNodeOperands.push_back(InOperandVal); break; } assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || OpInfo.ConstraintType == TargetLowering::C_Register) && "Unknown constraint type!"); // TODO: Support this. if (OpInfo.isIndirect) { emitInlineAsmError( Call, "Don't know how to handle indirect register inputs yet " "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } // Copy the input into the appropriate registers. if (OpInfo.AssignedRegs.Regs.empty()) { emitInlineAsmError(Call, "couldn't allocate input reg for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); return; } if (DetectWriteToReservedRegister()) return; SDLoc dl = getCurSDLoc(); OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, dl, DAG, AsmNodeOperands); break; } case InlineAsm::isClobber: // Add the clobbered value to the operand list, so that the register // allocator is aware that the physreg got clobbered. if (!OpInfo.AssignedRegs.Regs.empty()) OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, false, 0, getCurSDLoc(), DAG, AsmNodeOperands); break; } } // Finish up input operands. Set the input chain and add the flag last. AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; if (Flag.getNode()) AsmNodeOperands.push_back(Flag); unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; Chain = DAG.getNode(ISDOpc, getCurSDLoc(), DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); Flag = Chain.getValue(1); // Do additional work to generate outputs. SmallVector ResultVTs; SmallVector ResultValues; SmallVector OutChains; llvm::Type *CallResultType = Call.getType(); ArrayRef ResultTypes; if (StructType *StructResult = dyn_cast(CallResultType)) ResultTypes = StructResult->elements(); else if (!CallResultType->isVoidTy()) ResultTypes = makeArrayRef(CallResultType); auto CurResultType = ResultTypes.begin(); auto handleRegAssign = [&](SDValue V) { assert(CurResultType != ResultTypes.end() && "Unexpected value"); assert((*CurResultType)->isSized() && "Unexpected unsized type"); EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); ++CurResultType; // If the type of the inline asm call site return value is different but has // same size as the type of the asm output bitcast it. One example of this // is for vectors with different width / number of elements. This can // happen for register classes that can contain multiple different value // types. The preg or vreg allocated may not have the same VT as was // expected. // // This can also happen for a return value that disagrees with the register // class it is put in, eg. a double in a general-purpose register on a // 32-bit machine. if (ResultVT != V.getValueType() && ResultVT.getSizeInBits() == V.getValueSizeInBits()) V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); else if (ResultVT != V.getValueType() && ResultVT.isInteger() && V.getValueType().isInteger()) { // If a result value was tied to an input value, the computed result // may have a wider width than the expected result. Extract the // relevant portion. V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); } assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); ResultVTs.push_back(ResultVT); ResultValues.push_back(V); }; // Deal with output operands. for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { if (OpInfo.Type == InlineAsm::isOutput) { SDValue Val; // Skip trivial output operands. if (OpInfo.AssignedRegs.Regs.empty()) continue; switch (OpInfo.ConstraintType) { case TargetLowering::C_Register: case TargetLowering::C_RegisterClass: Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, &Call); break; case TargetLowering::C_Immediate: case TargetLowering::C_Other: Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), OpInfo, DAG); break; case TargetLowering::C_Memory: break; // Already handled. case TargetLowering::C_Address: break; // Silence warning. case TargetLowering::C_Unknown: assert(false && "Unexpected unknown constraint"); } // Indirect output manifest as stores. Record output chains. if (OpInfo.isIndirect) { const Value *Ptr = OpInfo.CallOperandVal; assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), MachinePointerInfo(Ptr)); OutChains.push_back(Store); } else { // generate CopyFromRegs to associated registers. assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); if (Val.getOpcode() == ISD::MERGE_VALUES) { for (const SDValue &V : Val->op_values()) handleRegAssign(V); } else handleRegAssign(Val); } } } // Set results. if (!ResultValues.empty()) { assert(CurResultType == ResultTypes.end() && "Mismatch in number of ResultTypes"); assert(ResultValues.size() == ResultTypes.size() && "Mismatch in number of output operands in asm result"); SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(ResultVTs), ResultValues); setValue(&Call, V); } // Collect store chains. if (!OutChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); if (EmitEHLabels) { Chain = lowerEndEH(Chain, cast(&Call), EHPadBB, BeginLabel); } // Only Update Root if inline assembly has a memory effect. if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || EmitEHLabels) DAG.setRoot(Chain); } void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, const Twine &Message) { LLVMContext &Ctx = *DAG.getContext(); Ctx.emitError(&Call, Message); // Make sure we leave the DAG in a valid state const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SmallVector ValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); if (ValueVTs.empty()) return; SmallVector Ops; for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) Ops.push_back(DAG.getUNDEF(ValueVTs[i])); setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); } void SelectionDAGBuilder::visitVAStart(const CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), MVT::Other, getRoot(), getValue(I.getArgOperand(0)), DAG.getSrcValue(I.getArgOperand(0)))); } void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const DataLayout &DL = DAG.getDataLayout(); SDValue V = DAG.getVAArg( TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), DL.getABITypeAlign(I.getType()).value()); DAG.setRoot(V.getValue(1)); if (I.getType()->isPointerTy()) V = DAG.getPtrExtOrTrunc( V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); setValue(&I, V); } void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), MVT::Other, getRoot(), getValue(I.getArgOperand(0)), DAG.getSrcValue(I.getArgOperand(0)))); } void SelectionDAGBuilder::visitVACopy(const CallInst &I) { DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), MVT::Other, getRoot(), getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), DAG.getSrcValue(I.getArgOperand(0)), DAG.getSrcValue(I.getArgOperand(1)))); } SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op) { const MDNode *Range = I.getMetadata(LLVMContext::MD_range); if (!Range) return Op; ConstantRange CR = getConstantRangeFromMetadata(*Range); if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) return Op; APInt Lo = CR.getUnsignedMin(); if (!Lo.isMinValue()) return Op; APInt Hi = CR.getUnsignedMax(); unsigned Bits = std::max(Hi.getActiveBits(), static_cast(IntegerType::MIN_INT_BITS)); EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); SDLoc SL = getCurSDLoc(); SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, DAG.getValueType(SmallVT)); unsigned NumVals = Op.getNode()->getNumValues(); if (NumVals == 1) return ZExt; SmallVector Ops; Ops.push_back(ZExt); for (unsigned I = 1; I != NumVals; ++I) Ops.push_back(Op.getValue(I)); return DAG.getMergeValues(Ops, SL); } /// Populate a CallLowerinInfo (into \p CLI) based on the properties of /// the call being lowered. /// /// This is a helper for lowering intrinsics that follow a target calling /// convention or require stack pointer adjustment. Only a subset of the /// intrinsic's operands need to participate in the calling convention. void SelectionDAGBuilder::populateCallLoweringInfo( TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, bool IsPatchPoint) { TargetLowering::ArgListTy Args; Args.reserve(NumArgs); // Populate the argument list. // Attributes for args start at offset 1, after the return attribute. for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { const Value *V = Call->getOperand(ArgI); assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); TargetLowering::ArgListEntry Entry; Entry.Node = getValue(V); Entry.Ty = V->getType(); Entry.setAttributes(Call, ArgI); Args.push_back(Entry); } CLI.setDebugLoc(getCurSDLoc()) .setChain(getRoot()) .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) .setDiscardResult(Call->use_empty()) .setIsPatchPoint(IsPatchPoint) .setIsPreallocated( Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); } /// Add a stack map intrinsic call's live variable operands to a stackmap /// or patchpoint target node's operand list. /// /// Constants are converted to TargetConstants purely as an optimization to /// avoid constant materialization and register allocation. /// /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not /// generate addess computation nodes, and so FinalizeISel can convert the /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids /// address materialization and register allocation, but may also be required /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an /// alloca in the entry block, then the runtime may assume that the alloca's /// StackMap location can be read immediately after compilation and that the /// location is valid at any point during execution (this is similar to the /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were /// only available in a register, then the runtime would need to trap when /// execution reaches the StackMap in order to read the alloca's location. static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl &Ops, SelectionDAGBuilder &Builder) { SelectionDAG &DAG = Builder.DAG; for (unsigned I = StartIdx; I < Call.arg_size(); I++) { SDValue Op = Builder.getValue(Call.getArgOperand(I)); // Things on the stack are pointer-typed, meaning that they are already // legal and can be emitted directly to target nodes. if (FrameIndexSDNode *FI = dyn_cast(Op)) { Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); } else { // Otherwise emit a target independent node to be legalised. Ops.push_back(Builder.getValue(Call.getArgOperand(I))); } } } /// Lower llvm.experimental.stackmap. void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { // void @llvm.experimental.stackmap(i64 , i32 , // [live variables...]) assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); SDValue Chain, InFlag, Callee, NullPtr; SmallVector Ops; SDLoc DL = getCurSDLoc(); Callee = getValue(CI.getCalledOperand()); NullPtr = DAG.getIntPtrConstant(0, DL, true); // The stackmap intrinsic only records the live variables (the arguments // passed to it) and emits NOPS (if requested). Unlike the patchpoint // intrinsic, this won't be lowered to a function call. This means we don't // have to worry about calling conventions and target specific lowering code. // Instead we perform the call lowering right here. // // chain, flag = CALLSEQ_START(chain, 0, 0) // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) // chain, flag = CALLSEQ_END(chain, 0, 0, flag) // Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); InFlag = Chain.getValue(1); // Add the STACKMAP operands, starting with DAG house-keeping. Ops.push_back(Chain); Ops.push_back(InFlag); // Add the , operands. // // These do not require legalisation, and can be emitted directly to target // constant nodes. SDValue ID = getValue(CI.getArgOperand(0)); assert(ID.getValueType() == MVT::i64); SDValue IDConst = DAG.getTargetConstant( cast(ID)->getZExtValue(), DL, ID.getValueType()); Ops.push_back(IDConst); SDValue Shad = getValue(CI.getArgOperand(1)); assert(Shad.getValueType() == MVT::i32); SDValue ShadConst = DAG.getTargetConstant( cast(Shad)->getZExtValue(), DL, Shad.getValueType()); Ops.push_back(ShadConst); // Add the live variables. addStackMapLiveVars(CI, 2, DL, Ops, *this); // Create the STACKMAP node. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); InFlag = Chain.getValue(1); Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); // Stackmaps don't generate values, so nothing goes into the NodeMap. // Set the root to the target-lowered call chain. DAG.setRoot(Chain); // Inform the Frame Information that we have a stackmap in this function. FuncInfo.MF->getFrameInfo().setHasStackMap(); } /// Lower llvm.experimental.patchpoint directly to its target opcode. void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, const BasicBlock *EHPadBB) { // void|i64 @llvm.experimental.patchpoint.void|i64(i64 , // i32 , // i8* , // i32 , // [Args...], // [live variables...]) CallingConv::ID CC = CB.getCallingConv(); bool IsAnyRegCC = CC == CallingConv::AnyReg; bool HasDef = !CB.getType()->isVoidTy(); SDLoc dl = getCurSDLoc(); SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); // Handle immediate and symbolic callees. if (auto* ConstCallee = dyn_cast(Callee)) Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, /*isTarget=*/true); else if (auto* SymbolicCallee = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), SDLoc(SymbolicCallee), SymbolicCallee->getValueType(0)); // Get the real number of arguments participating in the call SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); unsigned NumArgs = cast(NArgVal)->getZExtValue(); // Skip the four meta args: , , , // Intrinsics include all meta-operands up to but not including CC. unsigned NumMetaOpers = PatchPointOpers::CCPos; assert(CB.arg_size() >= NumMetaOpers + NumArgs && "Not enough arguments provided to the patchpoint intrinsic"); // For AnyRegCC the arguments are lowered later on manually. unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; Type *ReturnTy = IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); TargetLowering::CallLoweringInfo CLI(DAG); populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); std::pair Result = lowerInvokable(CLI, EHPadBB); SDNode *CallEnd = Result.second.getNode(); if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) CallEnd = CallEnd->getOperand(0).getNode(); /// Get a call instruction from the call sequence chain. /// Tail calls are not allowed. assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "Expected a callseq node."); SDNode *Call = CallEnd->getOperand(0).getNode(); bool HasGlue = Call->getGluedNode(); // Replace the target specific call node with the patchable intrinsic. SmallVector Ops; // Push the chain. Ops.push_back(*(Call->op_begin())); // Optionally, push the glue (if any). if (HasGlue) Ops.push_back(*(Call->op_end() - 1)); // Push the register mask info. if (HasGlue) Ops.push_back(*(Call->op_end() - 2)); else Ops.push_back(*(Call->op_end() - 1)); // Add the and constants. SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); Ops.push_back(DAG.getTargetConstant( cast(IDVal)->getZExtValue(), dl, MVT::i64)); SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); Ops.push_back(DAG.getTargetConstant( cast(NBytesVal)->getZExtValue(), dl, MVT::i32)); // Add the callee. Ops.push_back(Callee); // Adjust to account for any arguments that have been passed on the // stack instead. // Call Node: Chain, Target, {Args}, RegMask, [Glue] unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); // Add the calling convention Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); // Add the arguments we omitted previously. The register allocator should // place these in any free register. if (IsAnyRegCC) for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) Ops.push_back(getValue(CB.getArgOperand(i))); // Push the arguments from the call instruction. SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; Ops.append(Call->op_begin() + 2, e); // Push live variables for the stack map. addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); SDVTList NodeTys; if (IsAnyRegCC && HasDef) { // Create the return types based on the intrinsic definition const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SmallVector ValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); assert(ValueVTs.size() == 1 && "Expected only one return value type."); // There is always a chain and a glue type at the end ValueVTs.push_back(MVT::Other); ValueVTs.push_back(MVT::Glue); NodeTys = DAG.getVTList(ValueVTs); } else NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); // Replace the target specific call node with a PATCHPOINT node. SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); // Update the NodeMap. if (HasDef) { if (IsAnyRegCC) setValue(&CB, SDValue(PPV.getNode(), 0)); else setValue(&CB, Result.first); } // Fixup the consumers of the intrinsic. The chain and glue may be used in the // call sequence. Furthermore the location of the chain and glue can change // when the AnyReg calling convention is used and the intrinsic returns a // value. if (IsAnyRegCC && HasDef) { SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; DAG.ReplaceAllUsesOfValuesWith(From, To, 2); } else DAG.ReplaceAllUsesWith(Call, PPV.getNode()); DAG.DeleteNode(Call); // Inform the Frame Information that we have a patchpoint in this function. FuncInfo.MF->getFrameInfo().setHasPatchPoint(); } void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, unsigned Intrinsic) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); SDValue Op1 = getValue(I.getArgOperand(0)); SDValue Op2; if (I.arg_size() > 1) Op2 = getValue(I.getArgOperand(1)); SDLoc dl = getCurSDLoc(); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); SDValue Res; SDNodeFlags SDFlags; if (auto *FPMO = dyn_cast(&I)) SDFlags.copyFMF(*FPMO); switch (Intrinsic) { case Intrinsic::vector_reduce_fadd: if (SDFlags.hasAllowReassociation()) Res = DAG.getNode(ISD::FADD, dl, VT, Op1, DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), SDFlags); else Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); break; case Intrinsic::vector_reduce_fmul: if (SDFlags.hasAllowReassociation()) Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), SDFlags); else Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); break; case Intrinsic::vector_reduce_add: Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); break; case Intrinsic::vector_reduce_mul: Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); break; case Intrinsic::vector_reduce_and: Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); break; case Intrinsic::vector_reduce_or: Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); break; case Intrinsic::vector_reduce_xor: Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); break; case Intrinsic::vector_reduce_smax: Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); break; case Intrinsic::vector_reduce_smin: Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); break; case Intrinsic::vector_reduce_umax: Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); break; case Intrinsic::vector_reduce_umin: Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); break; case Intrinsic::vector_reduce_fmax: Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); break; case Intrinsic::vector_reduce_fmin: Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); break; default: llvm_unreachable("Unhandled vector reduce intrinsic"); } setValue(&I, Res); } /// Returns an AttributeList representing the attributes applied to the return /// value of the given call. static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { SmallVector Attrs; if (CLI.RetSExt) Attrs.push_back(Attribute::SExt); if (CLI.RetZExt) Attrs.push_back(Attribute::ZExt); if (CLI.IsInReg) Attrs.push_back(Attribute::InReg); return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, Attrs); } /// TargetLowering::LowerCallTo - This is the default LowerCallTo /// implementation, which just calls LowerCall. /// FIXME: When all targets are /// migrated to using LowerCall, this hook should be integrated into SDISel. std::pair TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { // Handle the incoming return values from the call. CLI.Ins.clear(); Type *OrigRetTy = CLI.RetTy; SmallVector RetTys; SmallVector Offsets; auto &DL = CLI.DAG.getDataLayout(); ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); if (CLI.IsPostTypeLegalization) { // If we are lowering a libcall after legalization, split the return type. SmallVector OldRetTys; SmallVector OldOffsets; RetTys.swap(OldRetTys); Offsets.swap(OldOffsets); for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { EVT RetVT = OldRetTys[i]; uint64_t Offset = OldOffsets[i]; MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; RetTys.append(NumRegs, RegisterVT); for (unsigned j = 0; j != NumRegs; ++j) Offsets.push_back(Offset + j * RegisterVTByteSZ); } } SmallVector Outs; GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); bool CanLowerReturn = this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), CLI.IsVarArg, Outs, CLI.RetTy->getContext()); SDValue DemoteStackSlot; int DemoteStackIdx = -100; if (!CanLowerReturn) { // FIXME: equivalent assert? // assert(!CS.hasInAllocaArgument() && // "sret demotion is incompatible with inalloca"); uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); MachineFunction &MF = CLI.DAG.getMachineFunction(); DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); Type *StackSlotPtrType = PointerType::get(CLI.RetTy, DL.getAllocaAddrSpace()); DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); ArgListEntry Entry; Entry.Node = DemoteStackSlot; Entry.Ty = StackSlotPtrType; Entry.IsSExt = false; Entry.IsZExt = false; Entry.IsInReg = false; Entry.IsSRet = true; Entry.IsNest = false; Entry.IsByVal = false; Entry.IsByRef = false; Entry.IsReturned = false; Entry.IsSwiftSelf = false; Entry.IsSwiftAsync = false; Entry.IsSwiftError = false; Entry.IsCFGuardTarget = false; Entry.Alignment = Alignment; CLI.getArgs().insert(CLI.getArgs().begin(), Entry); CLI.NumFixedArgs += 1; CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); // sret demotion isn't compatible with tail-calls, since the sret argument // points into the callers stack frame. CLI.IsTailCall = false; } else { bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { ISD::ArgFlagsTy Flags; if (NeedsRegBlock) { Flags.setInConsecutiveRegs(); if (I == RetTys.size() - 1) Flags.setInConsecutiveRegsLast(); } EVT VT = RetTys[I]; MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), CLI.CallConv, VT); unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), CLI.CallConv, VT); for (unsigned i = 0; i != NumRegs; ++i) { ISD::InputArg MyFlags; MyFlags.Flags = Flags; MyFlags.VT = RegisterVT; MyFlags.ArgVT = VT; MyFlags.Used = CLI.IsReturnValueUsed; if (CLI.RetTy->isPointerTy()) { MyFlags.Flags.setPointer(); MyFlags.Flags.setPointerAddrSpace( cast(CLI.RetTy)->getAddressSpace()); } if (CLI.RetSExt) MyFlags.Flags.setSExt(); if (CLI.RetZExt) MyFlags.Flags.setZExt(); if (CLI.IsInReg) MyFlags.Flags.setInReg(); CLI.Ins.push_back(MyFlags); } } } // We push in swifterror return as the last element of CLI.Ins. ArgListTy &Args = CLI.getArgs(); if (supportSwiftError()) { for (const ArgListEntry &Arg : Args) { if (Arg.IsSwiftError) { ISD::InputArg MyFlags; MyFlags.VT = getPointerTy(DL); MyFlags.ArgVT = EVT(getPointerTy(DL)); MyFlags.Flags.setSwiftError(); CLI.Ins.push_back(MyFlags); } } } // Handle all of the outgoing arguments. CLI.Outs.clear(); CLI.OutVals.clear(); for (unsigned i = 0, e = Args.size(); i != e; ++i) { SmallVector ValueVTs; ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); // FIXME: Split arguments if CLI.IsPostTypeLegalization Type *FinalType = Args[i].Ty; if (Args[i].IsByVal) FinalType = Args[i].IndirectType; bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( FinalType, CLI.CallConv, CLI.IsVarArg, DL); for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; ++Value) { EVT VT = ValueVTs[Value]; Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); SDValue Op = SDValue(Args[i].Node.getNode(), Args[i].Node.getResNo() + Value); ISD::ArgFlagsTy Flags; // Certain targets (such as MIPS), may have a different ABI alignment // for a type depending on the context. Give the target a chance to // specify the alignment it wants. const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); Flags.setOrigAlign(OriginalAlignment); if (Args[i].Ty->isPointerTy()) { Flags.setPointer(); Flags.setPointerAddrSpace( cast(Args[i].Ty)->getAddressSpace()); } if (Args[i].IsZExt) Flags.setZExt(); if (Args[i].IsSExt) Flags.setSExt(); if (Args[i].IsInReg) { // If we are using vectorcall calling convention, a structure that is // passed InReg - is surely an HVA if (CLI.CallConv == CallingConv::X86_VectorCall && isa(FinalType)) { // The first value of a structure is marked if (0 == Value) Flags.setHvaStart(); Flags.setHva(); } // Set InReg Flag Flags.setInReg(); } if (Args[i].IsSRet) Flags.setSRet(); if (Args[i].IsSwiftSelf) Flags.setSwiftSelf(); if (Args[i].IsSwiftAsync) Flags.setSwiftAsync(); if (Args[i].IsSwiftError) Flags.setSwiftError(); if (Args[i].IsCFGuardTarget) Flags.setCFGuardTarget(); if (Args[i].IsByVal) Flags.setByVal(); if (Args[i].IsByRef) Flags.setByRef(); if (Args[i].IsPreallocated) { Flags.setPreallocated(); // Set the byval flag for CCAssignFn callbacks that don't know about // preallocated. This way we can know how many bytes we should've // allocated and how many bytes a callee cleanup function will pop. If // we port preallocated to more targets, we'll have to add custom // preallocated handling in the various CC lowering callbacks. Flags.setByVal(); } if (Args[i].IsInAlloca) { Flags.setInAlloca(); // Set the byval flag for CCAssignFn callbacks that don't know about // inalloca. This way we can know how many bytes we should've allocated // and how many bytes a callee cleanup function will pop. If we port // inalloca to more targets, we'll have to add custom inalloca handling // in the various CC lowering callbacks. Flags.setByVal(); } Align MemAlign; if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); Flags.setByValSize(FrameSize); // info is not there but there are cases it cannot get right. if (auto MA = Args[i].Alignment) MemAlign = *MA; else MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); } else if (auto MA = Args[i].Alignment) { MemAlign = *MA; } else { MemAlign = OriginalAlignment; } Flags.setMemAlign(MemAlign); if (Args[i].IsNest) Flags.setNest(); if (NeedsRegBlock) Flags.setInConsecutiveRegs(); MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), CLI.CallConv, VT); unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), CLI.CallConv, VT); SmallVector Parts(NumParts); ISD::NodeType ExtendKind = ISD::ANY_EXTEND; if (Args[i].IsSExt) ExtendKind = ISD::SIGN_EXTEND; else if (Args[i].IsZExt) ExtendKind = ISD::ZERO_EXTEND; // Conservatively only handle 'returned' on non-vectors that can be lowered, // for now. if (Args[i].IsReturned && !Op.getValueType().isVector() && CanLowerReturn) { assert((CLI.RetTy == Args[i].Ty || (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && CLI.RetTy->getPointerAddressSpace() == Args[i].Ty->getPointerAddressSpace())) && RetTys.size() == NumValues && "unexpected use of 'returned'"); // Before passing 'returned' to the target lowering code, ensure that // either the register MVT and the actual EVT are the same size or that // the return value and argument are extended in the same way; in these // cases it's safe to pass the argument register value unchanged as the // return register value (although it's at the target's option whether // to do so) // TODO: allow code generation to take advantage of partially preserved // registers rather than clobbering the entire register when the // parameter extension method is not compatible with the return // extension method if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && CLI.RetZExt == Args[i].IsZExt)) Flags.setReturned(); } getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, CLI.CallConv, ExtendKind); for (unsigned j = 0; j != NumParts; ++j) { // if it isn't first piece, alignment must be 1 // For scalable vectors the scalable part is currently handled // by individual targets, so we just use the known minimum size here. ISD::OutputArg MyFlags( Flags, Parts[j].getValueType().getSimpleVT(), VT, i < CLI.NumFixedArgs, i, j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); if (NumParts > 1 && j == 0) MyFlags.Flags.setSplit(); else if (j != 0) { MyFlags.Flags.setOrigAlign(Align(1)); if (j == NumParts - 1) MyFlags.Flags.setSplitEnd(); } CLI.Outs.push_back(MyFlags); CLI.OutVals.push_back(Parts[j]); } if (NeedsRegBlock && Value == NumValues - 1) CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); } } SmallVector InVals; CLI.Chain = LowerCall(CLI, InVals); // Update CLI.InVals to use outside of this function. CLI.InVals = InVals; // Verify that the target's LowerCall behaved as expected. assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && "LowerCall didn't return a valid chain!"); assert((!CLI.IsTailCall || InVals.empty()) && "LowerCall emitted a return value for a tail call!"); assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && "LowerCall didn't emit the correct number of values!"); // For a tail call, the return value is merely live-out and there aren't // any nodes in the DAG representing it. Return a special value to // indicate that a tail call has been emitted and no more Instructions // should be processed in the current block. if (CLI.IsTailCall) { CLI.DAG.setRoot(CLI.Chain); return std::make_pair(SDValue(), SDValue()); } #ifndef NDEBUG for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { assert(InVals[i].getNode() && "LowerCall emitted a null value!"); assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && "LowerCall emitted a value with the wrong type!"); } #endif SmallVector ReturnValues; if (!CanLowerReturn) { // The instruction result is the result of loading from the // hidden sret parameter. SmallVector PVTs; Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); ComputeValueVTs(*this, DL, PtrRetTy, PVTs); assert(PVTs.size() == 1 && "Pointers should fit in one register"); EVT PtrVT = PVTs[0]; unsigned NumValues = RetTys.size(); ReturnValues.resize(NumValues); SmallVector Chains(NumValues); // An aggregate return value cannot wrap around the address space, so // offsets to its parts don't wrap either. SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); MachineFunction &MF = CLI.DAG.getMachineFunction(); Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); for (unsigned i = 0; i < NumValues; ++i) { SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT), Flags); SDValue L = CLI.DAG.getLoad( RetTys[i], CLI.DL, CLI.Chain, Add, MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), DemoteStackIdx, Offsets[i]), HiddenSRetAlign); ReturnValues[i] = L; Chains[i] = L.getValue(1); } CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); } else { // Collect the legal value parts into potentially illegal values // that correspond to the original function's return values. Optional AssertOp; if (CLI.RetSExt) AssertOp = ISD::AssertSext; else if (CLI.RetZExt) AssertOp = ISD::AssertZext; unsigned CurReg = 0; for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { EVT VT = RetTys[I]; MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), CLI.CallConv, VT); unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), CLI.CallConv, VT); ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, CLI.CallConv, AssertOp)); CurReg += NumRegs; } // For a function returning void, there is no return value. We can't create // such a node, so we just return a null return value in that case. In // that case, nothing will actually look at the value. if (ReturnValues.empty()) return std::make_pair(SDValue(), CLI.Chain); } SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, CLI.DAG.getVTList(RetTys), ReturnValues); return std::make_pair(Res, CLI.Chain); } /// Places new result values for the node in Results (their number /// and types must exactly match those of the original return values of /// the node), or leaves Results empty, which indicates that the node is not /// to be custom lowered after all. void TargetLowering::LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDValue Res = LowerOperation(SDValue(N, 0), DAG); if (!Res.getNode()) return; // If the original node has one result, take the return value from // LowerOperation as is. It might not be result number 0. if (N->getNumValues() == 1) { Results.push_back(Res); return; } // If the original node has multiple results, then the return node should // have the same number of results. assert((N->getNumValues() == Res->getNumValues()) && "Lowering returned the wrong number of results!"); // Places new result values base on N result number. for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) Results.push_back(Res.getValue(I)); } SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { llvm_unreachable("LowerOperation not implemented for this target!"); } void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg, ISD::NodeType ExtendType) { SDValue Op = getNonRegisterValue(V); assert((Op.getOpcode() != ISD::CopyFromReg || cast(Op.getOperand(1))->getReg() != Reg) && "Copy from a reg to the same reg!"); assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); // If this is an InlineAsm we have to match the registers required, not the // notional registers required by the type. RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), None); // This is not an ABI copy. SDValue Chain = DAG.getEntryNode(); if (ExtendType == ISD::ANY_EXTEND) { auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) ExtendType = PreferredExtendIt->second; } RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); PendingExports.push_back(Chain); } #include "llvm/CodeGen/SelectionDAGISel.h" /// isOnlyUsedInEntryBlock - If the specified argument is only used in the /// entry block, return true. This includes arguments used by switches, since /// the switch may expand into multiple basic blocks. static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { // With FastISel active, we may be splitting blocks, so force creation // of virtual registers for all non-dead arguments. if (FastISel) return A->use_empty(); const BasicBlock &Entry = A->getParent()->front(); for (const User *U : A->users()) if (cast(U)->getParent() != &Entry || isa(U)) return false; // Use not in entry block. return true; } using ArgCopyElisionMapTy = DenseMap>; /// Scan the entry block of the function in FuncInfo for arguments that look /// like copies into a local alloca. Record any copied arguments in /// ArgCopyElisionCandidates. static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates) { // Record the state of every static alloca used in the entry block. Argument // allocas are all used in the entry block, so we need approximately as many // entries as we have arguments. enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; SmallDenseMap StaticAllocas; unsigned NumArgs = FuncInfo->Fn->arg_size(); StaticAllocas.reserve(NumArgs * 2); auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { if (!V) return nullptr; V = V->stripPointerCasts(); const auto *AI = dyn_cast(V); if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) return nullptr; auto Iter = StaticAllocas.insert({AI, Unknown}); return &Iter.first->second; }; // Look for stores of arguments to static allocas. Look through bitcasts and // GEPs to handle type coercions, as long as the alloca is fully initialized // by the store. Any non-store use of an alloca escapes it and any subsequent // unanalyzed store might write it. // FIXME: Handle structs initialized with multiple stores. for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { // Look for stores, and handle non-store uses conservatively. const auto *SI = dyn_cast(&I); if (!SI) { // We will look through cast uses, so ignore them completely. if (I.isCast()) continue; // Ignore debug info and pseudo op intrinsics, they don't escape or store // to allocas. if (I.isDebugOrPseudoInst()) continue; // This is an unknown instruction. Assume it escapes or writes to all // static alloca operands. for (const Use &U : I.operands()) { if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) *Info = StaticAllocaInfo::Clobbered; } continue; } // If the stored value is a static alloca, mark it as escaped. if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) *Info = StaticAllocaInfo::Clobbered; // Check if the destination is a static alloca. const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); if (!Info) continue; const AllocaInst *AI = cast(Dst); // Skip allocas that have been initialized or clobbered. if (*Info != StaticAllocaInfo::Unknown) continue; // Check if the stored value is an argument, and that this store fully // initializes the alloca. // If the argument type has padding bits we can't directly forward a pointer // as the upper bits may contain garbage. // Don't elide copies from the same argument twice. const Value *Val = SI->getValueOperand()->stripPointerCasts(); const auto *Arg = dyn_cast(Val); if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || Arg->getType()->isEmptyTy() || DL.getTypeStoreSize(Arg->getType()) != DL.getTypeAllocSize(AI->getAllocatedType()) || !DL.typeSizeEqualsStoreSize(Arg->getType()) || ArgCopyElisionCandidates.count(Arg)) { *Info = StaticAllocaInfo::Clobbered; continue; } LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); // Mark this alloca and store for argument copy elision. *Info = StaticAllocaInfo::Elidable; ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); // Stop scanning if we've seen all arguments. This will happen early in -O0 // builds, which is useful, because -O0 builds have large entry blocks and // many allocas. if (ArgCopyElisionCandidates.size() == NumArgs) break; } } /// Try to elide argument copies from memory into a local alloca. Succeeds if /// ArgVal is a load from a suitable fixed stack object. static void tryToElideArgumentCopy( FunctionLoweringInfo &FuncInfo, SmallVectorImpl &Chains, DenseMap &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, SDValue ArgVal, bool &ArgHasUses) { // Check if this is a load from a fixed stack object. auto *LNode = dyn_cast(ArgVal); if (!LNode) return; auto *FINode = dyn_cast(LNode->getBasePtr().getNode()); if (!FINode) return; // Check that the fixed stack object is the right size and alignment. // Look at the alignment that the user wrote on the alloca instead of looking // at the stack object. auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); assert(ArgCopyIter != ArgCopyElisionCandidates.end()); const AllocaInst *AI = ArgCopyIter->second.first; int FixedIndex = FINode->getIndex(); int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; int OldIndex = AllocaIndex; MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { LLVM_DEBUG( dbgs() << " argument copy elision failed due to bad fixed stack " "object size\n"); return; } Align RequiredAlignment = AI->getAlign(); if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " "greater than stack argument alignment (" << DebugStr(RequiredAlignment) << " vs " << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); return; } // Perform the elision. Delete the old stack object and replace its only use // in the variable info map. Mark the stack object as mutable. LLVM_DEBUG({ dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' << " Replacing frame index " << OldIndex << " with " << FixedIndex << '\n'; }); MFI.RemoveStackObject(OldIndex); MFI.setIsImmutableObjectIndex(FixedIndex, false); AllocaIndex = FixedIndex; ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); Chains.push_back(ArgVal.getValue(1)); // Avoid emitting code for the store implementing the copy. const StoreInst *SI = ArgCopyIter->second.second; ElidedArgCopyInstrs.insert(SI); // Check for uses of the argument again so that we can avoid exporting ArgVal // if it is't used by anything other than the store. for (const Value *U : Arg.users()) { if (U != SI) { ArgHasUses = true; break; } } } void SelectionDAGISel::LowerArguments(const Function &F) { SelectionDAG &DAG = SDB->DAG; SDLoc dl = SDB->getCurSDLoc(); const DataLayout &DL = DAG.getDataLayout(); SmallVector Ins; // In Naked functions we aren't going to save any registers. if (F.hasFnAttribute(Attribute::Naked)) return; if (!FuncInfo->CanLowerReturn) { // Put in an sret pointer parameter before all the other parameters. SmallVector ValueVTs; ComputeValueVTs(*TLI, DAG.getDataLayout(), F.getReturnType()->getPointerTo( DAG.getDataLayout().getAllocaAddrSpace()), ValueVTs); // NOTE: Assuming that a pointer will never break down to more than one VT // or one register. ISD::ArgFlagsTy Flags; Flags.setSRet(); MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, ISD::InputArg::NoArgIndex, 0); Ins.push_back(RetArg); } // Look for stores of arguments to static allocas. Mark such arguments with a // flag to ask the target to give us the memory location of that argument if // available. ArgCopyElisionMapTy ArgCopyElisionCandidates; findArgumentCopyElisionCandidates(DL, FuncInfo.get(), ArgCopyElisionCandidates); // Set up the incoming argument description vector. for (const Argument &Arg : F.args()) { unsigned ArgNo = Arg.getArgNo(); SmallVector ValueVTs; ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); bool isArgValueUsed = !Arg.use_empty(); unsigned PartBase = 0; Type *FinalType = Arg.getType(); if (Arg.hasAttribute(Attribute::ByVal)) FinalType = Arg.getParamByValType(); bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( FinalType, F.getCallingConv(), F.isVarArg(), DL); for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; ++Value) { EVT VT = ValueVTs[Value]; Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); ISD::ArgFlagsTy Flags; if (Arg.getType()->isPointerTy()) { Flags.setPointer(); Flags.setPointerAddrSpace( cast(Arg.getType())->getAddressSpace()); } if (Arg.hasAttribute(Attribute::ZExt)) Flags.setZExt(); if (Arg.hasAttribute(Attribute::SExt)) Flags.setSExt(); if (Arg.hasAttribute(Attribute::InReg)) { // If we are using vectorcall calling convention, a structure that is // passed InReg - is surely an HVA if (F.getCallingConv() == CallingConv::X86_VectorCall && isa(Arg.getType())) { // The first value of a structure is marked if (0 == Value) Flags.setHvaStart(); Flags.setHva(); } // Set InReg Flag Flags.setInReg(); } if (Arg.hasAttribute(Attribute::StructRet)) Flags.setSRet(); if (Arg.hasAttribute(Attribute::SwiftSelf)) Flags.setSwiftSelf(); if (Arg.hasAttribute(Attribute::SwiftAsync)) Flags.setSwiftAsync(); if (Arg.hasAttribute(Attribute::SwiftError)) Flags.setSwiftError(); if (Arg.hasAttribute(Attribute::ByVal)) Flags.setByVal(); if (Arg.hasAttribute(Attribute::ByRef)) Flags.setByRef(); if (Arg.hasAttribute(Attribute::InAlloca)) { Flags.setInAlloca(); // Set the byval flag for CCAssignFn callbacks that don't know about // inalloca. This way we can know how many bytes we should've allocated // and how many bytes a callee cleanup function will pop. If we port // inalloca to more targets, we'll have to add custom inalloca handling // in the various CC lowering callbacks. Flags.setByVal(); } if (Arg.hasAttribute(Attribute::Preallocated)) { Flags.setPreallocated(); // Set the byval flag for CCAssignFn callbacks that don't know about // preallocated. This way we can know how many bytes we should've // allocated and how many bytes a callee cleanup function will pop. If // we port preallocated to more targets, we'll have to add custom // preallocated handling in the various CC lowering callbacks. Flags.setByVal(); } // Certain targets (such as MIPS), may have a different ABI alignment // for a type depending on the context. Give the target a chance to // specify the alignment it wants. const Align OriginalAlignment( TLI->getABIAlignmentForCallingConv(ArgTy, DL)); Flags.setOrigAlign(OriginalAlignment); Align MemAlign; Type *ArgMemTy = nullptr; if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || Flags.isByRef()) { if (!ArgMemTy) ArgMemTy = Arg.getPointeeInMemoryValueType(); uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); // For in-memory arguments, size and alignment should be passed from FE. // BE will guess if this info is not there but there are cases it cannot // get right. if (auto ParamAlign = Arg.getParamStackAlign()) MemAlign = *ParamAlign; else if ((ParamAlign = Arg.getParamAlign())) MemAlign = *ParamAlign; else MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); if (Flags.isByRef()) Flags.setByRefSize(MemSize); else Flags.setByValSize(MemSize); } else if (auto ParamAlign = Arg.getParamStackAlign()) { MemAlign = *ParamAlign; } else { MemAlign = OriginalAlignment; } Flags.setMemAlign(MemAlign); if (Arg.hasAttribute(Attribute::Nest)) Flags.setNest(); if (NeedsRegBlock) Flags.setInConsecutiveRegs(); if (ArgCopyElisionCandidates.count(&Arg)) Flags.setCopyElisionCandidate(); if (Arg.hasAttribute(Attribute::Returned)) Flags.setReturned(); MVT RegisterVT = TLI->getRegisterTypeForCallingConv( *CurDAG->getContext(), F.getCallingConv(), VT); unsigned NumRegs = TLI->getNumRegistersForCallingConv( *CurDAG->getContext(), F.getCallingConv(), VT); for (unsigned i = 0; i != NumRegs; ++i) { // For scalable vectors, use the minimum size; individual targets // are responsible for handling scalable vector arguments and // return values. ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); if (NumRegs > 1 && i == 0) MyFlags.Flags.setSplit(); // if it isn't first piece, alignment must be 1 else if (i > 0) { MyFlags.Flags.setOrigAlign(Align(1)); if (i == NumRegs - 1) MyFlags.Flags.setSplitEnd(); } Ins.push_back(MyFlags); } if (NeedsRegBlock && Value == NumValues - 1) Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); PartBase += VT.getStoreSize().getKnownMinSize(); } } // Call the target to set up the argument values. SmallVector InVals; SDValue NewRoot = TLI->LowerFormalArguments( DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); // Verify that the target's LowerFormalArguments behaved as expected. assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && "LowerFormalArguments didn't return a valid chain!"); assert(InVals.size() == Ins.size() && "LowerFormalArguments didn't emit the correct number of values!"); LLVM_DEBUG({ for (unsigned i = 0, e = Ins.size(); i != e; ++i) { assert(InVals[i].getNode() && "LowerFormalArguments emitted a null value!"); assert(EVT(Ins[i].VT) == InVals[i].getValueType() && "LowerFormalArguments emitted a value with the wrong type!"); } }); // Update the DAG with the new chain value resulting from argument lowering. DAG.setRoot(NewRoot); // Set up the argument values. unsigned i = 0; if (!FuncInfo->CanLowerReturn) { // Create a virtual register for the sret pointer, and put in a copy // from the sret argument into it. SmallVector ValueVTs; ComputeValueVTs(*TLI, DAG.getDataLayout(), F.getReturnType()->getPointerTo( DAG.getDataLayout().getAllocaAddrSpace()), ValueVTs); MVT VT = ValueVTs[0].getSimpleVT(); MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); Optional AssertOp = None; SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, F.getCallingConv(), AssertOp); MachineFunction& MF = SDB->DAG.getMachineFunction(); MachineRegisterInfo& RegInfo = MF.getRegInfo(); Register SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); FuncInfo->DemoteRegister = SRetReg; NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); DAG.setRoot(NewRoot); // i indexes lowered arguments. Bump it past the hidden sret argument. ++i; } SmallVector Chains; DenseMap ArgCopyElisionFrameIndexMap; for (const Argument &Arg : F.args()) { SmallVector ArgValues; SmallVector ValueVTs; ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) continue; bool ArgHasUses = !Arg.use_empty(); // Elide the copying store if the target loaded this argument from a // suitable fixed stack object. if (Ins[i].Flags.isCopyElisionCandidate()) { tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, InVals[i], ArgHasUses); } // If this argument is unused then remember its value. It is used to generate // debugging information. bool isSwiftErrorArg = TLI->supportSwiftError() && Arg.hasAttribute(Attribute::SwiftError); if (!ArgHasUses && !isSwiftErrorArg) { SDB->setUnusedArgValue(&Arg, InVals[i]); // Also remember any frame index for use in FastISel. if (FrameIndexSDNode *FI = dyn_cast(InVals[i].getNode())) FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); } for (unsigned Val = 0; Val != NumValues; ++Val) { EVT VT = ValueVTs[Val]; MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), F.getCallingConv(), VT); unsigned NumParts = TLI->getNumRegistersForCallingConv( *CurDAG->getContext(), F.getCallingConv(), VT); // Even an apparent 'unused' swifterror argument needs to be returned. So // we do generate a copy for it that can be used on return from the // function. if (ArgHasUses || isSwiftErrorArg) { Optional AssertOp; if (Arg.hasAttribute(Attribute::SExt)) AssertOp = ISD::AssertSext; else if (Arg.hasAttribute(Attribute::ZExt)) AssertOp = ISD::AssertZext; ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, PartVT, VT, nullptr, F.getCallingConv(), AssertOp)); } i += NumParts; } // We don't need to do anything else for unused arguments. if (ArgValues.empty()) continue; // Note down frame index. if (FrameIndexSDNode *FI = dyn_cast(ArgValues[0].getNode())) FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), SDB->getCurSDLoc()); SDB->setValue(&Arg, Res); if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { // We want to associate the argument with the frame index, among // involved operands, that correspond to the lowest address. The // getCopyFromParts function, called earlier, is swapping the order of // the operands to BUILD_PAIR depending on endianness. The result of // that swapping is that the least significant bits of the argument will // be in the first operand of the BUILD_PAIR node, and the most // significant bits will be in the second operand. unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; if (LoadSDNode *LNode = dyn_cast(Res.getOperand(LowAddressOp).getNode())) if (FrameIndexSDNode *FI = dyn_cast(LNode->getBasePtr().getNode())) FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); } // Analyses past this point are naive and don't expect an assertion. if (Res.getOpcode() == ISD::AssertZext) Res = Res.getOperand(0); // Update the SwiftErrorVRegDefMap. if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { unsigned Reg = cast(Res.getOperand(1))->getReg(); if (Register::isVirtualRegister(Reg)) SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), Reg); } // If this argument is live outside of the entry block, insert a copy from // wherever we got it to the vreg that other BB's will reference it as. if (Res.getOpcode() == ISD::CopyFromReg) { // If we can, though, try to skip creating an unnecessary vreg. // FIXME: This isn't very clean... it would be nice to make this more // general. unsigned Reg = cast(Res.getOperand(1))->getReg(); if (Register::isVirtualRegister(Reg)) { FuncInfo->ValueMap[&Arg] = Reg; continue; } } if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { FuncInfo->InitializeRegForValue(&Arg); SDB->CopyToExportRegsIfNeeded(&Arg); } } if (!Chains.empty()) { Chains.push_back(NewRoot); NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); } DAG.setRoot(NewRoot); assert(i == InVals.size() && "Argument register count mismatch!"); // If any argument copy elisions occurred and we have debug info, update the // stale frame indices used in the dbg.declare variable info table. MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); if (I != ArgCopyElisionFrameIndexMap.end()) VI.Slot = I->second; } } // Finally, if the target has anything special to do, allow it to do so. emitFunctionEntryCode(); } /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to /// ensure constants are generated when needed. Remember the virtual registers /// that need to be added to the Machine PHI nodes as input. We cannot just /// directly add them, because expansion might result in multiple MBB's for one /// BB. As such, the start of the BB might correspond to a different MBB than /// the end. void SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const Instruction *TI = LLVMBB->getTerminator(); SmallPtrSet SuccsHandled; // Check PHI nodes in successors that expect a value to be available from this // block. for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { const BasicBlock *SuccBB = TI->getSuccessor(succ); if (!isa(SuccBB->begin())) continue; MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; // If this terminator has multiple identical successors (common for // switches), only handle each succ once. if (!SuccsHandled.insert(SuccMBB).second) continue; MachineBasicBlock::iterator MBBI = SuccMBB->begin(); // At this point we know that there is a 1-1 correspondence between LLVM PHI // nodes and Machine PHI nodes, but the incoming operands have not been // emitted yet. for (const PHINode &PN : SuccBB->phis()) { // Ignore dead phi's. if (PN.use_empty()) continue; // Skip empty types if (PN.getType()->isEmptyTy()) continue; unsigned Reg; const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); if (const Constant *C = dyn_cast(PHIOp)) { unsigned &RegOut = ConstantsOut[C]; if (RegOut == 0) { RegOut = FuncInfo.CreateRegs(C); // We need to zero/sign extend ConstantInt phi operands to match // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. ISD::NodeType ExtendType = ISD::ANY_EXTEND; if (auto *CI = dyn_cast(C)) ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; CopyValueToVirtualRegister(C, RegOut, ExtendType); } Reg = RegOut; } else { DenseMap::iterator I = FuncInfo.ValueMap.find(PHIOp); if (I != FuncInfo.ValueMap.end()) Reg = I->second; else { assert(isa(PHIOp) && FuncInfo.StaticAllocaMap.count(cast(PHIOp)) && "Didn't codegen value into a register!??"); Reg = FuncInfo.CreateRegs(PHIOp); CopyValueToVirtualRegister(PHIOp, Reg); } } // Remember that this register needs to added to the machine PHI node as // the input for this MBB. SmallVector ValueVTs; ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { EVT VT = ValueVTs[vti]; unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); for (unsigned i = 0, e = NumRegisters; i != e; ++i) FuncInfo.PHINodesToUpdate.push_back( std::make_pair(&*MBBI++, Reg + i)); Reg += NumRegisters; } } } ConstantsOut.clear(); } MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { MachineFunction::iterator I(MBB); if (++I == FuncInfo.MF->end()) return nullptr; return &*I; } /// During lowering new call nodes can be created (such as memset, etc.). /// Those will become new roots of the current DAG, but complications arise /// when they are tail calls. In such cases, the call lowering will update /// the root, but the builder still needs to know that a tail call has been /// lowered in order to avoid generating an additional return. void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { // If the node is null, we do have a tail call. if (MaybeTC.getNode() != nullptr) DAG.setRoot(MaybeTC); else HasTailCall = true; } void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, MachineBasicBlock *SwitchMBB, MachineBasicBlock *DefaultMBB) { MachineFunction *CurMF = FuncInfo.MF; MachineBasicBlock *NextMBB = nullptr; MachineFunction::iterator BBI(W.MBB); if (++BBI != FuncInfo.MF->end()) NextMBB = &*BBI; unsigned Size = W.LastCluster - W.FirstCluster + 1; BranchProbabilityInfo *BPI = FuncInfo.BPI; if (Size == 2 && W.MBB == SwitchMBB) { // If any two of the cases has the same destination, and if one value // is the same as the other, but has one bit unset that the other has set, // use bit manipulation to do two compares at once. For example: // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" // TODO: This could be extended to merge any 2 cases in switches with 3 // cases. // TODO: Handle cases where W.CaseBB != SwitchBB. CaseCluster &Small = *W.FirstCluster; CaseCluster &Big = *W.LastCluster; if (Small.Low == Small.High && Big.Low == Big.High && Small.MBB == Big.MBB) { const APInt &SmallValue = Small.Low->getValue(); const APInt &BigValue = Big.Low->getValue(); // Check that there is only one bit different. APInt CommonBit = BigValue ^ SmallValue; if (CommonBit.isPowerOf2()) { SDValue CondLHS = getValue(Cond); EVT VT = CondLHS.getValueType(); SDLoc DL = getCurSDLoc(); SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, DAG.getConstant(CommonBit, DL, VT)); SDValue Cond = DAG.getSetCC( DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), ISD::SETEQ); // Update successor info. // Both Small and Big will jump to Small.BB, so we sum up the // probabilities. addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); if (BPI) addSuccessorWithProb( SwitchMBB, DefaultMBB, // The default destination is the first successor in IR. BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); else addSuccessorWithProb(SwitchMBB, DefaultMBB); // Insert the true branch. SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, DAG.getBasicBlock(Small.MBB)); // Insert the false branch. BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, DAG.getBasicBlock(DefaultMBB)); DAG.setRoot(BrCond); return; } } } if (TM.getOptLevel() != CodeGenOpt::None) { // Here, we order cases by probability so the most likely case will be // checked first. However, two clusters can have the same probability in // which case their relative ordering is non-deterministic. So we use Low // as a tie-breaker as clusters are guaranteed to never overlap. llvm::sort(W.FirstCluster, W.LastCluster + 1, [](const CaseCluster &a, const CaseCluster &b) { return a.Prob != b.Prob ? a.Prob > b.Prob : a.Low->getValue().slt(b.Low->getValue()); }); // Rearrange the case blocks so that the last one falls through if possible // without changing the order of probabilities. for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { --I; if (I->Prob > W.LastCluster->Prob) break; if (I->Kind == CC_Range && I->MBB == NextMBB) { std::swap(*I, *W.LastCluster); break; } } } // Compute total probability. BranchProbability DefaultProb = W.DefaultProb; BranchProbability UnhandledProbs = DefaultProb; for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) UnhandledProbs += I->Prob; MachineBasicBlock *CurMBB = W.MBB; for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { bool FallthroughUnreachable = false; MachineBasicBlock *Fallthrough; if (I == W.LastCluster) { // For the last cluster, fall through to the default destination. Fallthrough = DefaultMBB; FallthroughUnreachable = isa( DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); } else { Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); CurMF->insert(BBI, Fallthrough); // Put Cond in a virtual register to make it available from the new blocks. ExportFromCurrentBlock(Cond); } UnhandledProbs -= I->Prob; switch (I->Kind) { case CC_JumpTable: { // FIXME: Optimize away range check based on pivot comparisons. JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; // The jump block hasn't been inserted yet; insert it here. MachineBasicBlock *JumpMBB = JT->MBB; CurMF->insert(BBI, JumpMBB); auto JumpProb = I->Prob; auto FallthroughProb = UnhandledProbs; // If the default statement is a target of the jump table, we evenly // distribute the default probability to successors of CurMBB. Also // update the probability on the edge from JumpMBB to Fallthrough. for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), SE = JumpMBB->succ_end(); SI != SE; ++SI) { if (*SI == DefaultMBB) { JumpProb += DefaultProb / 2; FallthroughProb -= DefaultProb / 2; JumpMBB->setSuccProbability(SI, DefaultProb / 2); JumpMBB->normalizeSuccProbs(); break; } } if (FallthroughUnreachable) JTH->FallthroughUnreachable = true; if (!JTH->FallthroughUnreachable) addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); CurMBB->normalizeSuccProbs(); // The jump table header will be inserted in our current block, do the // range check, and fall through to our fallthrough block. JTH->HeaderBB = CurMBB; JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. // If we're in the right place, emit the jump table header right now. if (CurMBB == SwitchMBB) { visitJumpTableHeader(*JT, *JTH, SwitchMBB); JTH->Emitted = true; } break; } case CC_BitTests: { // FIXME: Optimize away range check based on pivot comparisons. BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; // The bit test blocks haven't been inserted yet; insert them here. for (BitTestCase &BTC : BTB->Cases) CurMF->insert(BBI, BTC.ThisBB); // Fill in fields of the BitTestBlock. BTB->Parent = CurMBB; BTB->Default = Fallthrough; BTB->DefaultProb = UnhandledProbs; // If the cases in bit test don't form a contiguous range, we evenly // distribute the probability on the edge to Fallthrough to two // successors of CurMBB. if (!BTB->ContiguousRange) { BTB->Prob += DefaultProb / 2; BTB->DefaultProb -= DefaultProb / 2; } if (FallthroughUnreachable) BTB->FallthroughUnreachable = true; // If we're in the right place, emit the bit test header right now. if (CurMBB == SwitchMBB) { visitBitTestHeader(*BTB, SwitchMBB); BTB->Emitted = true; } break; } case CC_Range: { const Value *RHS, *LHS, *MHS; ISD::CondCode CC; if (I->Low == I->High) { // Check Cond == I->Low. CC = ISD::SETEQ; LHS = Cond; RHS=I->Low; MHS = nullptr; } else { // Check I->Low <= Cond <= I->High. CC = ISD::SETLE; LHS = I->Low; MHS = Cond; RHS = I->High; } // If Fallthrough is unreachable, fold away the comparison. if (FallthroughUnreachable) CC = ISD::SETTRUE; // The false probability is the sum of all unhandled cases. CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, getCurSDLoc(), I->Prob, UnhandledProbs); if (CurMBB == SwitchMBB) visitSwitchCase(CB, SwitchMBB); else SL->SwitchCases.push_back(CB); break; } } CurMBB = Fallthrough; } } unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, CaseClusterIt First, CaseClusterIt Last) { return std::count_if(First, Last + 1, [&](const CaseCluster &X) { if (X.Prob != CC.Prob) return X.Prob > CC.Prob; // Ties are broken by comparing the case value. return X.Low->getValue().slt(CC.Low->getValue()); }); } void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W, Value *Cond, MachineBasicBlock *SwitchMBB) { assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && "Clusters not sorted?"); assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); // Balance the tree based on branch probabilities to create a near-optimal (in // terms of search time given key frequency) binary search tree. See e.g. Kurt // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). CaseClusterIt LastLeft = W.FirstCluster; CaseClusterIt FirstRight = W.LastCluster; auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; auto RightProb = FirstRight->Prob + W.DefaultProb / 2; // Move LastLeft and FirstRight towards each other from opposite directions to // find a partitioning of the clusters which balances the probability on both // sides. If LeftProb and RightProb are equal, alternate which side is // taken to ensure 0-probability nodes are distributed evenly. unsigned I = 0; while (LastLeft + 1 < FirstRight) { if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) LeftProb += (++LastLeft)->Prob; else RightProb += (--FirstRight)->Prob; I++; } while (true) { // Our binary search tree differs from a typical BST in that ours can have up // to three values in each leaf. The pivot selection above doesn't take that // into account, which means the tree might require more nodes and be less // efficient. We compensate for this here. unsigned NumLeft = LastLeft - W.FirstCluster + 1; unsigned NumRight = W.LastCluster - FirstRight + 1; if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { // If one side has less than 3 clusters, and the other has more than 3, // consider taking a cluster from the other side. if (NumLeft < NumRight) { // Consider moving the first cluster on the right to the left side. CaseCluster &CC = *FirstRight; unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); if (LeftSideRank <= RightSideRank) { // Moving the cluster to the left does not demote it. ++LastLeft; ++FirstRight; continue; } } else { assert(NumRight < NumLeft); // Consider moving the last element on the left to the right side. CaseCluster &CC = *LastLeft; unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); if (RightSideRank <= LeftSideRank) { // Moving the cluster to the right does not demot it. --LastLeft; --FirstRight; continue; } } } break; } assert(LastLeft + 1 == FirstRight); assert(LastLeft >= W.FirstCluster); assert(FirstRight <= W.LastCluster); // Use the first element on the right as pivot since we will make less-than // comparisons against it. CaseClusterIt PivotCluster = FirstRight; assert(PivotCluster > W.FirstCluster); assert(PivotCluster <= W.LastCluster); CaseClusterIt FirstLeft = W.FirstCluster; CaseClusterIt LastRight = W.LastCluster; const ConstantInt *Pivot = PivotCluster->Low; // New blocks will be inserted immediately after the current one. MachineFunction::iterator BBI(W.MBB); ++BBI; // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, // we can branch to its destination directly if it's squeezed exactly in // between the known lower bound and Pivot - 1. MachineBasicBlock *LeftMBB; if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && FirstLeft->Low == W.GE && (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { LeftMBB = FirstLeft->MBB; } else { LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); FuncInfo.MF->insert(BBI, LeftMBB); WorkList.push_back( {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); // Put Cond in a virtual register to make it available from the new blocks. ExportFromCurrentBlock(Cond); } // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a // single cluster, RHS.Low == Pivot, and we can branch to its destination // directly if RHS.High equals the current upper bound. MachineBasicBlock *RightMBB; if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { RightMBB = FirstRight->MBB; } else { RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); FuncInfo.MF->insert(BBI, RightMBB); WorkList.push_back( {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); // Put Cond in a virtual register to make it available from the new blocks. ExportFromCurrentBlock(Cond); } // Create the CaseBlock record that will be used to lower the branch. CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, getCurSDLoc(), LeftProb, RightProb); if (W.MBB == SwitchMBB) visitSwitchCase(CB, SwitchMBB); else SL->SwitchCases.push_back(CB); } // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb // from the swith statement. static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb) { if (PeeledCaseProb == BranchProbability::getOne()) return BranchProbability::getZero(); BranchProbability SwitchProb = PeeledCaseProb.getCompl(); uint32_t Numerator = CaseProb.getNumerator(); uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); return BranchProbability(Numerator, std::max(Numerator, Denominator)); } // Try to peel the top probability case if it exceeds the threshold. // Return current MachineBasicBlock for the switch statement if the peeling // does not occur. // If the peeling is performed, return the newly created MachineBasicBlock // for the peeled switch statement. Also update Clusters to remove the peeled // case. PeeledCaseProb is the BranchProbability for the peeled case. MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( const SwitchInst &SI, CaseClusterVector &Clusters, BranchProbability &PeeledCaseProb) { MachineBasicBlock *SwitchMBB = FuncInfo.MBB; // Don't perform if there is only one cluster or optimizing for size. if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || TM.getOptLevel() == CodeGenOpt::None || SwitchMBB->getParent()->getFunction().hasMinSize()) return SwitchMBB; BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); unsigned PeeledCaseIndex = 0; bool SwitchPeeled = false; for (unsigned Index = 0; Index < Clusters.size(); ++Index) { CaseCluster &CC = Clusters[Index]; if (CC.Prob < TopCaseProb) continue; TopCaseProb = CC.Prob; PeeledCaseIndex = Index; SwitchPeeled = true; } if (!SwitchPeeled) return SwitchMBB; LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " << TopCaseProb << "\n"); // Record the MBB for the peeled switch statement. MachineFunction::iterator BBI(SwitchMBB); ++BBI; MachineBasicBlock *PeeledSwitchMBB = FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); FuncInfo.MF->insert(BBI, PeeledSwitchMBB); ExportFromCurrentBlock(SI.getCondition()); auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, nullptr, nullptr, TopCaseProb.getCompl()}; lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); Clusters.erase(PeeledCaseIt); for (CaseCluster &CC : Clusters) { LLVM_DEBUG( dbgs() << "Scale the probablity for one cluster, before scaling: " << CC.Prob << "\n"); CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); } PeeledCaseProb = TopCaseProb; return PeeledSwitchMBB; } void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { // Extract cases from the switch. BranchProbabilityInfo *BPI = FuncInfo.BPI; CaseClusterVector Clusters; Clusters.reserve(SI.getNumCases()); for (auto I : SI.cases()) { MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; const ConstantInt *CaseVal = I.getCaseValue(); BranchProbability Prob = BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) : BranchProbability(1, SI.getNumCases() + 1); Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); } MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; // Cluster adjacent cases with the same destination. We do this at all // optimization levels because it's cheap to do and will make codegen faster // if there are many clusters. sortAndRangeify(Clusters); // The branch probablity of the peeled case. BranchProbability PeeledCaseProb = BranchProbability::getZero(); MachineBasicBlock *PeeledSwitchMBB = peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); // If there is only the default destination, jump there directly. MachineBasicBlock *SwitchMBB = FuncInfo.MBB; if (Clusters.empty()) { assert(PeeledSwitchMBB == SwitchMBB); SwitchMBB->addSuccessor(DefaultMBB); if (DefaultMBB != NextBlock(SwitchMBB)) { DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), DAG.getBasicBlock(DefaultMBB))); } return; } SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); SL->findBitTestClusters(Clusters, &SI); LLVM_DEBUG({ dbgs() << "Case clusters: "; for (const CaseCluster &C : Clusters) { if (C.Kind == CC_JumpTable) dbgs() << "JT:"; if (C.Kind == CC_BitTests) dbgs() << "BT:"; C.Low->getValue().print(dbgs(), true); if (C.Low != C.High) { dbgs() << '-'; C.High->getValue().print(dbgs(), true); } dbgs() << ' '; } dbgs() << '\n'; }); assert(!Clusters.empty()); SwitchWorkList WorkList; CaseClusterIt First = Clusters.begin(); CaseClusterIt Last = Clusters.end() - 1; auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); // Scale the branchprobability for DefaultMBB if the peel occurs and // DefaultMBB is not replaced. if (PeeledCaseProb != BranchProbability::getZero() && DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); WorkList.push_back( {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); while (!WorkList.empty()) { SwitchWorkListItem W = WorkList.pop_back_val(); unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && !DefaultMBB->getParent()->getFunction().hasMinSize()) { // For optimized builds, lower large range as a balanced binary tree. splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); continue; } lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); } } void SelectionDAGBuilder::visitStepVector(const CallInst &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); auto DL = getCurSDLoc(); EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); setValue(&I, DAG.getStepVector(DL, ResultVT)); } void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); SDLoc DL = getCurSDLoc(); SDValue V = getValue(I.getOperand(0)); assert(VT == V.getValueType() && "Malformed vector.reverse!"); if (VT.isScalableVector()) { setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); return; } // Use VECTOR_SHUFFLE for the fixed-length vector // to maintain existing behavior. SmallVector Mask; unsigned NumElts = VT.getVectorMinNumElements(); for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(NumElts - 1 - i); setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); } void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { SmallVector ValueVTs; ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; SmallVector Values(NumValues); SDValue Op = getValue(I.getOperand(0)); for (unsigned i = 0; i != NumValues; ++i) Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], SDValue(Op.getNode(), Op.getResNo() + i)); setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), DAG.getVTList(ValueVTs), Values)); } void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); SDLoc DL = getCurSDLoc(); SDValue V1 = getValue(I.getOperand(0)); SDValue V2 = getValue(I.getOperand(1)); int64_t Imm = cast(I.getOperand(2))->getSExtValue(); // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. if (VT.isScalableVector()) { MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, DAG.getConstant(Imm, DL, IdxVT))); return; } unsigned NumElts = VT.getVectorNumElements(); uint64_t Idx = (NumElts + Imm) % NumElts; // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. SmallVector Mask; for (unsigned i = 0; i < NumElts; ++i) Mask.push_back(Idx + i); setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); }