xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp (revision 02e9120893770924227138ba49df1edb3896112a)
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineValueType.h"
33 #include "llvm/CodeGen/SelectionDAG.h"
34 #include "llvm/CodeGen/SelectionDAGNodes.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "legalizevectorops"
50 
51 namespace {
52 
53 class VectorLegalizer {
54   SelectionDAG& DAG;
55   const TargetLowering &TLI;
56   bool Changed = false; // Keep track of whether anything changed
57 
58   /// For nodes that are of legal width, and that have more than one use, this
59   /// map indicates what regularized operand to use.  This allows us to avoid
60   /// legalizing the same thing more than once.
61   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
62 
63   /// Adds a node to the translation cache.
64   void AddLegalizedOperand(SDValue From, SDValue To) {
65     LegalizedNodes.insert(std::make_pair(From, To));
66     // If someone requests legalization of the new node, return itself.
67     if (From != To)
68       LegalizedNodes.insert(std::make_pair(To, To));
69   }
70 
71   /// Legalizes the given node.
72   SDValue LegalizeOp(SDValue Op);
73 
74   /// Assuming the node is legal, "legalize" the results.
75   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
76 
77   /// Make sure Results are legal and update the translation cache.
78   SDValue RecursivelyLegalizeResults(SDValue Op,
79                                      MutableArrayRef<SDValue> Results);
80 
81   /// Wrapper to interface LowerOperation with a vector of Results.
82   /// Returns false if the target wants to use default expansion. Otherwise
83   /// returns true. If return is true and the Results are empty, then the
84   /// target wants to keep the input node as is.
85   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
86 
87   /// Implements unrolling a VSETCC.
88   SDValue UnrollVSETCC(SDNode *Node);
89 
90   /// Implement expand-based legalization of vector operations.
91   ///
92   /// This is just a high-level routine to dispatch to specific code paths for
93   /// operations to legalize them.
94   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
95 
96   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
97   /// FP_TO_SINT isn't legal.
98   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
99 
100   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
101   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
102   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
103 
104   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
105   SDValue ExpandSEXTINREG(SDNode *Node);
106 
107   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
108   ///
109   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
110   /// type. The contents of the bits in the extended part of each element are
111   /// undef.
112   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
113 
114   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
115   ///
116   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
117   /// type, then shifts left and arithmetic shifts right to introduce a sign
118   /// extension.
119   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
120 
121   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
122   ///
123   /// Shuffles the low lanes of the operand into place and blends zeros into
124   /// the remaining lanes, finally bitcasting to the proper type.
125   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
126 
127   /// Expand bswap of vectors into a shuffle if legal.
128   SDValue ExpandBSWAP(SDNode *Node);
129 
130   /// Implement vselect in terms of XOR, AND, OR when blend is not
131   /// supported by the target.
132   SDValue ExpandVSELECT(SDNode *Node);
133   SDValue ExpandVP_SELECT(SDNode *Node);
134   SDValue ExpandVP_MERGE(SDNode *Node);
135   SDValue ExpandVP_REM(SDNode *Node);
136   SDValue ExpandSELECT(SDNode *Node);
137   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
138   SDValue ExpandStore(SDNode *N);
139   SDValue ExpandFNEG(SDNode *Node);
140   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
141   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
142   void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
143   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
144   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
145   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
146   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
147   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149 
150   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151 
152   /// Implements vector promotion.
153   ///
154   /// This is essentially just bitcasting the operands to a different type and
155   /// bitcasting the result back to the original type.
156   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 
158   /// Implements [SU]INT_TO_FP vector promotion.
159   ///
160   /// This is a [zs]ext of the input operand to a larger integer type.
161   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
162 
163   /// Implements FP_TO_[SU]INT vector promotion of the result type.
164   ///
165   /// It is promoted to a larger integer type.  The result is then
166   /// truncated back to the original type.
167   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
168 
169 public:
170   VectorLegalizer(SelectionDAG& dag) :
171       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
172 
173   /// Begin legalizer the vector operations in the DAG.
174   bool Run();
175 };
176 
177 } // end anonymous namespace
178 
179 bool VectorLegalizer::Run() {
180   // Before we start legalizing vector nodes, check if there are any vectors.
181   bool HasVectors = false;
182   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
183        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
184     // Check if the values of the nodes contain vectors. We don't need to check
185     // the operands because we are going to check their values at some point.
186     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
187 
188     // If we found a vector node we can start the legalization.
189     if (HasVectors)
190       break;
191   }
192 
193   // If this basic block has no vectors then no need to legalize vectors.
194   if (!HasVectors)
195     return false;
196 
197   // The legalize process is inherently a bottom-up recursive process (users
198   // legalize their uses before themselves).  Given infinite stack space, we
199   // could just start legalizing on the root and traverse the whole graph.  In
200   // practice however, this causes us to run out of stack space on large basic
201   // blocks.  To avoid this problem, compute an ordering of the nodes where each
202   // node is only legalized after all of its operands are legalized.
203   DAG.AssignTopologicalOrder();
204   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206     LegalizeOp(SDValue(&*I, 0));
207 
208   // Finally, it's possible the root changed.  Get the new root.
209   SDValue OldRoot = DAG.getRoot();
210   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211   DAG.setRoot(LegalizedNodes[OldRoot]);
212 
213   LegalizedNodes.clear();
214 
215   // Remove dead nodes now.
216   DAG.RemoveDeadNodes();
217 
218   return Changed;
219 }
220 
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
222   assert(Op->getNumValues() == Result->getNumValues() &&
223          "Unexpected number of results");
224   // Generic legalization: just pass the operand through.
225   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
226     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
227   return SDValue(Result, Op.getResNo());
228 }
229 
230 SDValue
231 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
232                                             MutableArrayRef<SDValue> Results) {
233   assert(Results.size() == Op->getNumValues() &&
234          "Unexpected number of results");
235   // Make sure that the generated code is itself legal.
236   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
237     Results[i] = LegalizeOp(Results[i]);
238     AddLegalizedOperand(Op.getValue(i), Results[i]);
239   }
240 
241   return Results[Op.getResNo()];
242 }
243 
244 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
245   // Note that LegalizeOp may be reentered even from single-use nodes, which
246   // means that we always must cache transformed nodes.
247   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
248   if (I != LegalizedNodes.end()) return I->second;
249 
250   // Legalize the operands
251   SmallVector<SDValue, 8> Ops;
252   for (const SDValue &Oper : Op->op_values())
253     Ops.push_back(LegalizeOp(Oper));
254 
255   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
256 
257   bool HasVectorValueOrOp =
258       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
259       llvm::any_of(Node->op_values(),
260                    [](SDValue O) { return O.getValueType().isVector(); });
261   if (!HasVectorValueOrOp)
262     return TranslateLegalizeResults(Op, Node);
263 
264   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
265   EVT ValVT;
266   switch (Op.getOpcode()) {
267   default:
268     return TranslateLegalizeResults(Op, Node);
269   case ISD::LOAD: {
270     LoadSDNode *LD = cast<LoadSDNode>(Node);
271     ISD::LoadExtType ExtType = LD->getExtensionType();
272     EVT LoadedVT = LD->getMemoryVT();
273     if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
274       Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
275     break;
276   }
277   case ISD::STORE: {
278     StoreSDNode *ST = cast<StoreSDNode>(Node);
279     EVT StVT = ST->getMemoryVT();
280     MVT ValVT = ST->getValue().getSimpleValueType();
281     if (StVT.isVector() && ST->isTruncatingStore())
282       Action = TLI.getTruncStoreAction(ValVT, StVT);
283     break;
284   }
285   case ISD::MERGE_VALUES:
286     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
287     // This operation lies about being legal: when it claims to be legal,
288     // it should actually be expanded.
289     if (Action == TargetLowering::Legal)
290       Action = TargetLowering::Expand;
291     break;
292 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
293   case ISD::STRICT_##DAGN:
294 #include "llvm/IR/ConstrainedOps.def"
295     ValVT = Node->getValueType(0);
296     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
297         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
298       ValVT = Node->getOperand(1).getValueType();
299     if (Op.getOpcode() == ISD::STRICT_FSETCC ||
300         Op.getOpcode() == ISD::STRICT_FSETCCS) {
301       MVT OpVT = Node->getOperand(1).getSimpleValueType();
302       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(3))->get();
303       Action = TLI.getCondCodeAction(CCCode, OpVT);
304       if (Action == TargetLowering::Legal)
305         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
306     } else {
307       Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
308     }
309     // If we're asked to expand a strict vector floating-point operation,
310     // by default we're going to simply unroll it.  That is usually the
311     // best approach, except in the case where the resulting strict (scalar)
312     // operations would themselves use the fallback mutation to non-strict.
313     // In that specific case, just do the fallback on the vector op.
314     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
315         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
316             TargetLowering::Legal) {
317       EVT EltVT = ValVT.getVectorElementType();
318       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
319           == TargetLowering::Expand &&
320           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
321           == TargetLowering::Legal)
322         Action = TargetLowering::Legal;
323     }
324     break;
325   case ISD::ADD:
326   case ISD::SUB:
327   case ISD::MUL:
328   case ISD::MULHS:
329   case ISD::MULHU:
330   case ISD::SDIV:
331   case ISD::UDIV:
332   case ISD::SREM:
333   case ISD::UREM:
334   case ISD::SDIVREM:
335   case ISD::UDIVREM:
336   case ISD::FADD:
337   case ISD::FSUB:
338   case ISD::FMUL:
339   case ISD::FDIV:
340   case ISD::FREM:
341   case ISD::AND:
342   case ISD::OR:
343   case ISD::XOR:
344   case ISD::SHL:
345   case ISD::SRA:
346   case ISD::SRL:
347   case ISD::FSHL:
348   case ISD::FSHR:
349   case ISD::ROTL:
350   case ISD::ROTR:
351   case ISD::ABS:
352   case ISD::BSWAP:
353   case ISD::BITREVERSE:
354   case ISD::CTLZ:
355   case ISD::CTTZ:
356   case ISD::CTLZ_ZERO_UNDEF:
357   case ISD::CTTZ_ZERO_UNDEF:
358   case ISD::CTPOP:
359   case ISD::SELECT:
360   case ISD::VSELECT:
361   case ISD::SELECT_CC:
362   case ISD::ZERO_EXTEND:
363   case ISD::ANY_EXTEND:
364   case ISD::TRUNCATE:
365   case ISD::SIGN_EXTEND:
366   case ISD::FP_TO_SINT:
367   case ISD::FP_TO_UINT:
368   case ISD::FNEG:
369   case ISD::FABS:
370   case ISD::FMINNUM:
371   case ISD::FMAXNUM:
372   case ISD::FMINNUM_IEEE:
373   case ISD::FMAXNUM_IEEE:
374   case ISD::FMINIMUM:
375   case ISD::FMAXIMUM:
376   case ISD::FCOPYSIGN:
377   case ISD::FSQRT:
378   case ISD::FSIN:
379   case ISD::FCOS:
380   case ISD::FLDEXP:
381   case ISD::FPOWI:
382   case ISD::FPOW:
383   case ISD::FLOG:
384   case ISD::FLOG2:
385   case ISD::FLOG10:
386   case ISD::FEXP:
387   case ISD::FEXP2:
388   case ISD::FCEIL:
389   case ISD::FTRUNC:
390   case ISD::FRINT:
391   case ISD::FNEARBYINT:
392   case ISD::FROUND:
393   case ISD::FROUNDEVEN:
394   case ISD::FFLOOR:
395   case ISD::FP_ROUND:
396   case ISD::FP_EXTEND:
397   case ISD::FMA:
398   case ISD::SIGN_EXTEND_INREG:
399   case ISD::ANY_EXTEND_VECTOR_INREG:
400   case ISD::SIGN_EXTEND_VECTOR_INREG:
401   case ISD::ZERO_EXTEND_VECTOR_INREG:
402   case ISD::SMIN:
403   case ISD::SMAX:
404   case ISD::UMIN:
405   case ISD::UMAX:
406   case ISD::SMUL_LOHI:
407   case ISD::UMUL_LOHI:
408   case ISD::SADDO:
409   case ISD::UADDO:
410   case ISD::SSUBO:
411   case ISD::USUBO:
412   case ISD::SMULO:
413   case ISD::UMULO:
414   case ISD::FCANONICALIZE:
415   case ISD::FFREXP:
416   case ISD::SADDSAT:
417   case ISD::UADDSAT:
418   case ISD::SSUBSAT:
419   case ISD::USUBSAT:
420   case ISD::SSHLSAT:
421   case ISD::USHLSAT:
422   case ISD::FP_TO_SINT_SAT:
423   case ISD::FP_TO_UINT_SAT:
424   case ISD::MGATHER:
425     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
426     break;
427   case ISD::SMULFIX:
428   case ISD::SMULFIXSAT:
429   case ISD::UMULFIX:
430   case ISD::UMULFIXSAT:
431   case ISD::SDIVFIX:
432   case ISD::SDIVFIXSAT:
433   case ISD::UDIVFIX:
434   case ISD::UDIVFIXSAT: {
435     unsigned Scale = Node->getConstantOperandVal(2);
436     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
437                                               Node->getValueType(0), Scale);
438     break;
439   }
440   case ISD::SINT_TO_FP:
441   case ISD::UINT_TO_FP:
442   case ISD::VECREDUCE_ADD:
443   case ISD::VECREDUCE_MUL:
444   case ISD::VECREDUCE_AND:
445   case ISD::VECREDUCE_OR:
446   case ISD::VECREDUCE_XOR:
447   case ISD::VECREDUCE_SMAX:
448   case ISD::VECREDUCE_SMIN:
449   case ISD::VECREDUCE_UMAX:
450   case ISD::VECREDUCE_UMIN:
451   case ISD::VECREDUCE_FADD:
452   case ISD::VECREDUCE_FMUL:
453   case ISD::VECREDUCE_FMAX:
454   case ISD::VECREDUCE_FMIN:
455   case ISD::VECREDUCE_FMAXIMUM:
456   case ISD::VECREDUCE_FMINIMUM:
457     Action = TLI.getOperationAction(Node->getOpcode(),
458                                     Node->getOperand(0).getValueType());
459     break;
460   case ISD::VECREDUCE_SEQ_FADD:
461   case ISD::VECREDUCE_SEQ_FMUL:
462     Action = TLI.getOperationAction(Node->getOpcode(),
463                                     Node->getOperand(1).getValueType());
464     break;
465   case ISD::SETCC: {
466     MVT OpVT = Node->getOperand(0).getSimpleValueType();
467     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
468     Action = TLI.getCondCodeAction(CCCode, OpVT);
469     if (Action == TargetLowering::Legal)
470       Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
471     break;
472   }
473 
474 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
475   case ISD::VPID: {                                                            \
476     EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
477                                   : Node->getOperand(LEGALPOS).getValueType(); \
478     if (ISD::VPID == ISD::VP_SETCC) {                                          \
479       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
480       Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT());        \
481       if (Action != TargetLowering::Legal)                                     \
482         break;                                                                 \
483     }                                                                          \
484     Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
485   } break;
486 #include "llvm/IR/VPIntrinsics.def"
487   }
488 
489   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
490 
491   SmallVector<SDValue, 8> ResultVals;
492   switch (Action) {
493   default: llvm_unreachable("This action is not supported yet!");
494   case TargetLowering::Promote:
495     assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
496            "This action is not supported yet!");
497     LLVM_DEBUG(dbgs() << "Promoting\n");
498     Promote(Node, ResultVals);
499     assert(!ResultVals.empty() && "No results for promotion?");
500     break;
501   case TargetLowering::Legal:
502     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
503     break;
504   case TargetLowering::Custom:
505     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
506     if (LowerOperationWrapper(Node, ResultVals))
507       break;
508     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
509     [[fallthrough]];
510   case TargetLowering::Expand:
511     LLVM_DEBUG(dbgs() << "Expanding\n");
512     Expand(Node, ResultVals);
513     break;
514   }
515 
516   if (ResultVals.empty())
517     return TranslateLegalizeResults(Op, Node);
518 
519   Changed = true;
520   return RecursivelyLegalizeResults(Op, ResultVals);
521 }
522 
523 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
524 // merge them somehow?
525 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
526                                             SmallVectorImpl<SDValue> &Results) {
527   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
528 
529   if (!Res.getNode())
530     return false;
531 
532   if (Res == SDValue(Node, 0))
533     return true;
534 
535   // If the original node has one result, take the return value from
536   // LowerOperation as is. It might not be result number 0.
537   if (Node->getNumValues() == 1) {
538     Results.push_back(Res);
539     return true;
540   }
541 
542   // If the original node has multiple results, then the return node should
543   // have the same number of results.
544   assert((Node->getNumValues() == Res->getNumValues()) &&
545          "Lowering returned the wrong number of results!");
546 
547   // Places new result values base on N result number.
548   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
549     Results.push_back(Res.getValue(I));
550 
551   return true;
552 }
553 
554 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
555   // For a few operations there is a specific concept for promotion based on
556   // the operand's type.
557   switch (Node->getOpcode()) {
558   case ISD::SINT_TO_FP:
559   case ISD::UINT_TO_FP:
560   case ISD::STRICT_SINT_TO_FP:
561   case ISD::STRICT_UINT_TO_FP:
562     // "Promote" the operation by extending the operand.
563     PromoteINT_TO_FP(Node, Results);
564     return;
565   case ISD::FP_TO_UINT:
566   case ISD::FP_TO_SINT:
567   case ISD::STRICT_FP_TO_UINT:
568   case ISD::STRICT_FP_TO_SINT:
569     // Promote the operation by extending the operand.
570     PromoteFP_TO_INT(Node, Results);
571     return;
572   case ISD::FP_ROUND:
573   case ISD::FP_EXTEND:
574     // These operations are used to do promotion so they can't be promoted
575     // themselves.
576     llvm_unreachable("Don't know how to promote this operation!");
577   }
578 
579   // There are currently two cases of vector promotion:
580   // 1) Bitcasting a vector of integers to a different type to a vector of the
581   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
582   // 2) Extending a vector of floats to a vector of the same number of larger
583   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
584   assert(Node->getNumValues() == 1 &&
585          "Can't promote a vector with multiple results!");
586   MVT VT = Node->getSimpleValueType(0);
587   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
588   SDLoc dl(Node);
589   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
590 
591   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
592     if (Node->getOperand(j).getValueType().isVector())
593       if (Node->getOperand(j)
594               .getValueType()
595               .getVectorElementType()
596               .isFloatingPoint() &&
597           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
598         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
599       else
600         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
601     else
602       Operands[j] = Node->getOperand(j);
603   }
604 
605   SDValue Res =
606       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
607 
608   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
609       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
610        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
611     Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res,
612                       DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
613   else
614     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
615 
616   Results.push_back(Res);
617 }
618 
619 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
620                                        SmallVectorImpl<SDValue> &Results) {
621   // INT_TO_FP operations may require the input operand be promoted even
622   // when the type is otherwise legal.
623   bool IsStrict = Node->isStrictFPOpcode();
624   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
625   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
626   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
627          "Vectors have different number of elements!");
628 
629   SDLoc dl(Node);
630   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
631 
632   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
633                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
634                      ? ISD::ZERO_EXTEND
635                      : ISD::SIGN_EXTEND;
636   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
637     if (Node->getOperand(j).getValueType().isVector())
638       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
639     else
640       Operands[j] = Node->getOperand(j);
641   }
642 
643   if (IsStrict) {
644     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
645                               {Node->getValueType(0), MVT::Other}, Operands);
646     Results.push_back(Res);
647     Results.push_back(Res.getValue(1));
648     return;
649   }
650 
651   SDValue Res =
652       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
653   Results.push_back(Res);
654 }
655 
656 // For FP_TO_INT we promote the result type to a vector type with wider
657 // elements and then truncate the result.  This is different from the default
658 // PromoteVector which uses bitcast to promote thus assumning that the
659 // promoted vector type has the same overall size.
660 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
661                                        SmallVectorImpl<SDValue> &Results) {
662   MVT VT = Node->getSimpleValueType(0);
663   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
664   bool IsStrict = Node->isStrictFPOpcode();
665   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
666          "Vectors have different number of elements!");
667 
668   unsigned NewOpc = Node->getOpcode();
669   // Change FP_TO_UINT to FP_TO_SINT if possible.
670   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
671   if (NewOpc == ISD::FP_TO_UINT &&
672       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
673     NewOpc = ISD::FP_TO_SINT;
674 
675   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
676       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
677     NewOpc = ISD::STRICT_FP_TO_SINT;
678 
679   SDLoc dl(Node);
680   SDValue Promoted, Chain;
681   if (IsStrict) {
682     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
683                            {Node->getOperand(0), Node->getOperand(1)});
684     Chain = Promoted.getValue(1);
685   } else
686     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
687 
688   // Assert that the converted value fits in the original type.  If it doesn't
689   // (eg: because the value being converted is too big), then the result of the
690   // original operation was undefined anyway, so the assert is still correct.
691   if (Node->getOpcode() == ISD::FP_TO_UINT ||
692       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
693     NewOpc = ISD::AssertZext;
694   else
695     NewOpc = ISD::AssertSext;
696 
697   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
698                          DAG.getValueType(VT.getScalarType()));
699   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
700   Results.push_back(Promoted);
701   if (IsStrict)
702     Results.push_back(Chain);
703 }
704 
705 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
706   LoadSDNode *LD = cast<LoadSDNode>(N);
707   return TLI.scalarizeVectorLoad(LD, DAG);
708 }
709 
710 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
711   StoreSDNode *ST = cast<StoreSDNode>(N);
712   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
713   return TF;
714 }
715 
716 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
717   switch (Node->getOpcode()) {
718   case ISD::LOAD: {
719     std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
720     Results.push_back(Tmp.first);
721     Results.push_back(Tmp.second);
722     return;
723   }
724   case ISD::STORE:
725     Results.push_back(ExpandStore(Node));
726     return;
727   case ISD::MERGE_VALUES:
728     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
729       Results.push_back(Node->getOperand(i));
730     return;
731   case ISD::SIGN_EXTEND_INREG:
732     Results.push_back(ExpandSEXTINREG(Node));
733     return;
734   case ISD::ANY_EXTEND_VECTOR_INREG:
735     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
736     return;
737   case ISD::SIGN_EXTEND_VECTOR_INREG:
738     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
739     return;
740   case ISD::ZERO_EXTEND_VECTOR_INREG:
741     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
742     return;
743   case ISD::BSWAP:
744     Results.push_back(ExpandBSWAP(Node));
745     return;
746   case ISD::VP_BSWAP:
747     Results.push_back(TLI.expandVPBSWAP(Node, DAG));
748     return;
749   case ISD::VSELECT:
750     Results.push_back(ExpandVSELECT(Node));
751     return;
752   case ISD::VP_SELECT:
753     Results.push_back(ExpandVP_SELECT(Node));
754     return;
755   case ISD::VP_SREM:
756   case ISD::VP_UREM:
757     if (SDValue Expanded = ExpandVP_REM(Node)) {
758       Results.push_back(Expanded);
759       return;
760     }
761     break;
762   case ISD::SELECT:
763     Results.push_back(ExpandSELECT(Node));
764     return;
765   case ISD::SELECT_CC: {
766     if (Node->getValueType(0).isScalableVector()) {
767       EVT CondVT = TLI.getSetCCResultType(
768           DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
769       SDValue SetCC =
770           DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
771                       Node->getOperand(1), Node->getOperand(4));
772       Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
773                                       Node->getOperand(2),
774                                       Node->getOperand(3)));
775       return;
776     }
777     break;
778   }
779   case ISD::FP_TO_UINT:
780     ExpandFP_TO_UINT(Node, Results);
781     return;
782   case ISD::UINT_TO_FP:
783     ExpandUINT_TO_FLOAT(Node, Results);
784     return;
785   case ISD::FNEG:
786     Results.push_back(ExpandFNEG(Node));
787     return;
788   case ISD::FSUB:
789     ExpandFSUB(Node, Results);
790     return;
791   case ISD::SETCC:
792   case ISD::VP_SETCC:
793     ExpandSETCC(Node, Results);
794     return;
795   case ISD::ABS:
796     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
797       Results.push_back(Expanded);
798       return;
799     }
800     break;
801   case ISD::ABDS:
802   case ISD::ABDU:
803     if (SDValue Expanded = TLI.expandABD(Node, DAG)) {
804       Results.push_back(Expanded);
805       return;
806     }
807     break;
808   case ISD::BITREVERSE:
809     ExpandBITREVERSE(Node, Results);
810     return;
811   case ISD::VP_BITREVERSE:
812     if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) {
813       Results.push_back(Expanded);
814       return;
815     }
816     break;
817   case ISD::CTPOP:
818     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
819       Results.push_back(Expanded);
820       return;
821     }
822     break;
823   case ISD::VP_CTPOP:
824     if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) {
825       Results.push_back(Expanded);
826       return;
827     }
828     break;
829   case ISD::CTLZ:
830   case ISD::CTLZ_ZERO_UNDEF:
831     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
832       Results.push_back(Expanded);
833       return;
834     }
835     break;
836   case ISD::VP_CTLZ:
837   case ISD::VP_CTLZ_ZERO_UNDEF:
838     if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) {
839       Results.push_back(Expanded);
840       return;
841     }
842     break;
843   case ISD::CTTZ:
844   case ISD::CTTZ_ZERO_UNDEF:
845     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
846       Results.push_back(Expanded);
847       return;
848     }
849     break;
850   case ISD::VP_CTTZ:
851   case ISD::VP_CTTZ_ZERO_UNDEF:
852     if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) {
853       Results.push_back(Expanded);
854       return;
855     }
856     break;
857   case ISD::FSHL:
858   case ISD::VP_FSHL:
859   case ISD::FSHR:
860   case ISD::VP_FSHR:
861     if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
862       Results.push_back(Expanded);
863       return;
864     }
865     break;
866   case ISD::ROTL:
867   case ISD::ROTR:
868     if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
869       Results.push_back(Expanded);
870       return;
871     }
872     break;
873   case ISD::FMINNUM:
874   case ISD::FMAXNUM:
875     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
876       Results.push_back(Expanded);
877       return;
878     }
879     break;
880   case ISD::SMIN:
881   case ISD::SMAX:
882   case ISD::UMIN:
883   case ISD::UMAX:
884     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
885       Results.push_back(Expanded);
886       return;
887     }
888     break;
889   case ISD::UADDO:
890   case ISD::USUBO:
891     ExpandUADDSUBO(Node, Results);
892     return;
893   case ISD::SADDO:
894   case ISD::SSUBO:
895     ExpandSADDSUBO(Node, Results);
896     return;
897   case ISD::UMULO:
898   case ISD::SMULO:
899     ExpandMULO(Node, Results);
900     return;
901   case ISD::USUBSAT:
902   case ISD::SSUBSAT:
903   case ISD::UADDSAT:
904   case ISD::SADDSAT:
905     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
906       Results.push_back(Expanded);
907       return;
908     }
909     break;
910   case ISD::USHLSAT:
911   case ISD::SSHLSAT:
912     if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) {
913       Results.push_back(Expanded);
914       return;
915     }
916     break;
917   case ISD::FP_TO_SINT_SAT:
918   case ISD::FP_TO_UINT_SAT:
919     // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
920     if (Node->getValueType(0).isScalableVector()) {
921       if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
922         Results.push_back(Expanded);
923         return;
924       }
925     }
926     break;
927   case ISD::SMULFIX:
928   case ISD::UMULFIX:
929     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
930       Results.push_back(Expanded);
931       return;
932     }
933     break;
934   case ISD::SMULFIXSAT:
935   case ISD::UMULFIXSAT:
936     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
937     // why. Maybe it results in worse codegen compared to the unroll for some
938     // targets? This should probably be investigated. And if we still prefer to
939     // unroll an explanation could be helpful.
940     break;
941   case ISD::SDIVFIX:
942   case ISD::UDIVFIX:
943     ExpandFixedPointDiv(Node, Results);
944     return;
945   case ISD::SDIVFIXSAT:
946   case ISD::UDIVFIXSAT:
947     break;
948 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
949   case ISD::STRICT_##DAGN:
950 #include "llvm/IR/ConstrainedOps.def"
951     ExpandStrictFPOp(Node, Results);
952     return;
953   case ISD::VECREDUCE_ADD:
954   case ISD::VECREDUCE_MUL:
955   case ISD::VECREDUCE_AND:
956   case ISD::VECREDUCE_OR:
957   case ISD::VECREDUCE_XOR:
958   case ISD::VECREDUCE_SMAX:
959   case ISD::VECREDUCE_SMIN:
960   case ISD::VECREDUCE_UMAX:
961   case ISD::VECREDUCE_UMIN:
962   case ISD::VECREDUCE_FADD:
963   case ISD::VECREDUCE_FMUL:
964   case ISD::VECREDUCE_FMAX:
965   case ISD::VECREDUCE_FMIN:
966   case ISD::VECREDUCE_FMAXIMUM:
967   case ISD::VECREDUCE_FMINIMUM:
968     Results.push_back(TLI.expandVecReduce(Node, DAG));
969     return;
970   case ISD::VECREDUCE_SEQ_FADD:
971   case ISD::VECREDUCE_SEQ_FMUL:
972     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
973     return;
974   case ISD::SREM:
975   case ISD::UREM:
976     ExpandREM(Node, Results);
977     return;
978   case ISD::VP_MERGE:
979     Results.push_back(ExpandVP_MERGE(Node));
980     return;
981   }
982 
983   SDValue Unrolled = DAG.UnrollVectorOp(Node);
984   for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I)
985     Results.push_back(Unrolled.getValue(I));
986 }
987 
988 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
989   // Lower a select instruction where the condition is a scalar and the
990   // operands are vectors. Lower this select to VSELECT and implement it
991   // using XOR AND OR. The selector bit is broadcasted.
992   EVT VT = Node->getValueType(0);
993   SDLoc DL(Node);
994 
995   SDValue Mask = Node->getOperand(0);
996   SDValue Op1 = Node->getOperand(1);
997   SDValue Op2 = Node->getOperand(2);
998 
999   assert(VT.isVector() && !Mask.getValueType().isVector()
1000          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
1001 
1002   // If we can't even use the basic vector operations of
1003   // AND,OR,XOR, we will have to scalarize the op.
1004   // Notice that the operation may be 'promoted' which means that it is
1005   // 'bitcasted' to another type which is handled.
1006   // Also, we need to be able to construct a splat vector using either
1007   // BUILD_VECTOR or SPLAT_VECTOR.
1008   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
1009   // BUILD_VECTOR?
1010   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1011       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1012       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1013       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
1014                                                       : ISD::SPLAT_VECTOR,
1015                              VT) == TargetLowering::Expand)
1016     return DAG.UnrollVectorOp(Node);
1017 
1018   // Generate a mask operand.
1019   EVT MaskTy = VT.changeVectorElementTypeToInteger();
1020 
1021   // What is the size of each element in the vector mask.
1022   EVT BitTy = MaskTy.getScalarType();
1023 
1024   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
1025                        DAG.getConstant(0, DL, BitTy));
1026 
1027   // Broadcast the mask so that the entire vector is all one or all zero.
1028   Mask = DAG.getSplat(MaskTy, DL, Mask);
1029 
1030   // Bitcast the operands to be the same type as the mask.
1031   // This is needed when we select between FP types because
1032   // the mask is a vector of integers.
1033   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
1034   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
1035 
1036   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
1037 
1038   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
1039   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
1040   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
1041   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1042 }
1043 
1044 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
1045   EVT VT = Node->getValueType(0);
1046 
1047   // Make sure that the SRA and SHL instructions are available.
1048   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
1049       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
1050     return DAG.UnrollVectorOp(Node);
1051 
1052   SDLoc DL(Node);
1053   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
1054 
1055   unsigned BW = VT.getScalarSizeInBits();
1056   unsigned OrigBW = OrigTy.getScalarSizeInBits();
1057   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
1058 
1059   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
1060   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
1061 }
1062 
1063 // Generically expand a vector anyext in register to a shuffle of the relevant
1064 // lanes into the appropriate locations, with other lanes left undef.
1065 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
1066   SDLoc DL(Node);
1067   EVT VT = Node->getValueType(0);
1068   int NumElements = VT.getVectorNumElements();
1069   SDValue Src = Node->getOperand(0);
1070   EVT SrcVT = Src.getValueType();
1071   int NumSrcElements = SrcVT.getVectorNumElements();
1072 
1073   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1074   // into a larger vector type.
1075   if (SrcVT.bitsLE(VT)) {
1076     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1077            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1078     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1079     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1080                              NumSrcElements);
1081     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1082                       Src, DAG.getVectorIdxConstant(0, DL));
1083   }
1084 
1085   // Build a base mask of undef shuffles.
1086   SmallVector<int, 16> ShuffleMask;
1087   ShuffleMask.resize(NumSrcElements, -1);
1088 
1089   // Place the extended lanes into the correct locations.
1090   int ExtLaneScale = NumSrcElements / NumElements;
1091   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1092   for (int i = 0; i < NumElements; ++i)
1093     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1094 
1095   return DAG.getNode(
1096       ISD::BITCAST, DL, VT,
1097       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1098 }
1099 
1100 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1101   SDLoc DL(Node);
1102   EVT VT = Node->getValueType(0);
1103   SDValue Src = Node->getOperand(0);
1104   EVT SrcVT = Src.getValueType();
1105 
1106   // First build an any-extend node which can be legalized above when we
1107   // recurse through it.
1108   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1109 
1110   // Now we need sign extend. Do this by shifting the elements. Even if these
1111   // aren't legal operations, they have a better chance of being legalized
1112   // without full scalarization than the sign extension does.
1113   unsigned EltWidth = VT.getScalarSizeInBits();
1114   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1115   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1116   return DAG.getNode(ISD::SRA, DL, VT,
1117                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1118                      ShiftAmount);
1119 }
1120 
1121 // Generically expand a vector zext in register to a shuffle of the relevant
1122 // lanes into the appropriate locations, a blend of zero into the high bits,
1123 // and a bitcast to the wider element type.
1124 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1125   SDLoc DL(Node);
1126   EVT VT = Node->getValueType(0);
1127   int NumElements = VT.getVectorNumElements();
1128   SDValue Src = Node->getOperand(0);
1129   EVT SrcVT = Src.getValueType();
1130   int NumSrcElements = SrcVT.getVectorNumElements();
1131 
1132   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1133   // into a larger vector type.
1134   if (SrcVT.bitsLE(VT)) {
1135     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1136            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1137     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1138     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1139                              NumSrcElements);
1140     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1141                       Src, DAG.getVectorIdxConstant(0, DL));
1142   }
1143 
1144   // Build up a zero vector to blend into this one.
1145   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1146 
1147   // Shuffle the incoming lanes into the correct position, and pull all other
1148   // lanes from the zero vector.
1149   auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
1150 
1151   int ExtLaneScale = NumSrcElements / NumElements;
1152   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1153   for (int i = 0; i < NumElements; ++i)
1154     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1155 
1156   return DAG.getNode(ISD::BITCAST, DL, VT,
1157                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1158 }
1159 
1160 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1161   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1162   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1163     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1164       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1165 }
1166 
1167 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1168   EVT VT = Node->getValueType(0);
1169 
1170   // Scalable vectors can't use shuffle expansion.
1171   if (VT.isScalableVector())
1172     return TLI.expandBSWAP(Node, DAG);
1173 
1174   // Generate a byte wise shuffle mask for the BSWAP.
1175   SmallVector<int, 16> ShuffleMask;
1176   createBSWAPShuffleMask(VT, ShuffleMask);
1177   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1178 
1179   // Only emit a shuffle if the mask is legal.
1180   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1181     SDLoc DL(Node);
1182     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1183     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1184     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1185   }
1186 
1187   // If we have the appropriate vector bit operations, it is better to use them
1188   // than unrolling and expanding each component.
1189   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1190       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1191       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1192       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1193     return TLI.expandBSWAP(Node, DAG);
1194 
1195   // Otherwise unroll.
1196   return DAG.UnrollVectorOp(Node);
1197 }
1198 
1199 void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
1200                                        SmallVectorImpl<SDValue> &Results) {
1201   EVT VT = Node->getValueType(0);
1202 
1203   // We can't unroll or use shuffles for scalable vectors.
1204   if (VT.isScalableVector()) {
1205     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1206     return;
1207   }
1208 
1209   // If we have the scalar operation, it's probably cheaper to unroll it.
1210   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
1211     SDValue Tmp = DAG.UnrollVectorOp(Node);
1212     Results.push_back(Tmp);
1213     return;
1214   }
1215 
1216   // If the vector element width is a whole number of bytes, test if its legal
1217   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1218   // vector. This greatly reduces the number of bit shifts necessary.
1219   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1220   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1221     SmallVector<int, 16> BSWAPMask;
1222     createBSWAPShuffleMask(VT, BSWAPMask);
1223 
1224     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1225     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1226         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1227          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1228           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1229           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1230           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1231       SDLoc DL(Node);
1232       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1233       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1234                                 BSWAPMask);
1235       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1236       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1237       Results.push_back(Op);
1238       return;
1239     }
1240   }
1241 
1242   // If we have the appropriate vector bit operations, it is better to use them
1243   // than unrolling and expanding each component.
1244   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1245       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1246       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1247       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
1248     Results.push_back(TLI.expandBITREVERSE(Node, DAG));
1249     return;
1250   }
1251 
1252   // Otherwise unroll.
1253   SDValue Tmp = DAG.UnrollVectorOp(Node);
1254   Results.push_back(Tmp);
1255 }
1256 
1257 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1258   // Implement VSELECT in terms of XOR, AND, OR
1259   // on platforms which do not support blend natively.
1260   SDLoc DL(Node);
1261 
1262   SDValue Mask = Node->getOperand(0);
1263   SDValue Op1 = Node->getOperand(1);
1264   SDValue Op2 = Node->getOperand(2);
1265 
1266   EVT VT = Mask.getValueType();
1267 
1268   // If we can't even use the basic vector operations of
1269   // AND,OR,XOR, we will have to scalarize the op.
1270   // Notice that the operation may be 'promoted' which means that it is
1271   // 'bitcasted' to another type which is handled.
1272   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1273       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1274       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1275     return DAG.UnrollVectorOp(Node);
1276 
1277   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1278   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1279   // vector constant to mask with.
1280   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1281   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1282   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1283       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1284         Op1.getValueType().getVectorElementType() == MVT::i1))
1285     return DAG.UnrollVectorOp(Node);
1286 
1287   // If the mask and the type are different sizes, unroll the vector op. This
1288   // can occur when getSetCCResultType returns something that is different in
1289   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1290   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1291     return DAG.UnrollVectorOp(Node);
1292 
1293   // Bitcast the operands to be the same type as the mask.
1294   // This is needed when we select between FP types because
1295   // the mask is a vector of integers.
1296   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1297   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1298 
1299   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1300 
1301   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1302   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1303   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1304   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1305 }
1306 
1307 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1308   // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1309   // do not support it natively.
1310   SDLoc DL(Node);
1311 
1312   SDValue Mask = Node->getOperand(0);
1313   SDValue Op1 = Node->getOperand(1);
1314   SDValue Op2 = Node->getOperand(2);
1315   SDValue EVL = Node->getOperand(3);
1316 
1317   EVT VT = Mask.getValueType();
1318 
1319   // If we can't even use the basic vector operations of
1320   // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1321   if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1322       TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1323       TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1324     return DAG.UnrollVectorOp(Node);
1325 
1326   // This operation also isn't safe when the operands aren't also booleans.
1327   if (Op1.getValueType().getVectorElementType() != MVT::i1)
1328     return DAG.UnrollVectorOp(Node);
1329 
1330   SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1331   SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Ones, EVL);
1332 
1333   Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Ones, EVL);
1334   Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Ones, EVL);
1335   return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Ones, EVL);
1336 }
1337 
1338 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
1339   // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1340   // indices less than the EVL/pivot are true. Combine that with the original
1341   // mask for a full-length mask. Use a full-length VSELECT to select between
1342   // the true and false values.
1343   SDLoc DL(Node);
1344 
1345   SDValue Mask = Node->getOperand(0);
1346   SDValue Op1 = Node->getOperand(1);
1347   SDValue Op2 = Node->getOperand(2);
1348   SDValue EVL = Node->getOperand(3);
1349 
1350   EVT MaskVT = Mask.getValueType();
1351   bool IsFixedLen = MaskVT.isFixedLengthVector();
1352 
1353   EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
1354                                   MaskVT.getVectorElementCount());
1355 
1356   // If we can't construct the EVL mask efficiently, it's better to unroll.
1357   if ((IsFixedLen &&
1358        !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
1359       (!IsFixedLen &&
1360        (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
1361         !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
1362     return DAG.UnrollVectorOp(Node);
1363 
1364   // If using a SETCC would result in a different type than the mask type,
1365   // unroll.
1366   if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1367                              EVLVecVT) != MaskVT)
1368     return DAG.UnrollVectorOp(Node);
1369 
1370   SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
1371   SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL);
1372   SDValue EVLMask =
1373       DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
1374 
1375   SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
1376   return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
1377 }
1378 
1379 SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) {
1380   // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
1381   EVT VT = Node->getValueType(0);
1382 
1383   unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV;
1384 
1385   if (!TLI.isOperationLegalOrCustom(DivOpc, VT) ||
1386       !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) ||
1387       !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT))
1388     return SDValue();
1389 
1390   SDLoc DL(Node);
1391 
1392   SDValue Dividend = Node->getOperand(0);
1393   SDValue Divisor = Node->getOperand(1);
1394   SDValue Mask = Node->getOperand(2);
1395   SDValue EVL = Node->getOperand(3);
1396 
1397   // X % Y -> X-X/Y*Y
1398   SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL);
1399   SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL);
1400   return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL);
1401 }
1402 
1403 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1404                                        SmallVectorImpl<SDValue> &Results) {
1405   // Attempt to expand using TargetLowering.
1406   SDValue Result, Chain;
1407   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1408     Results.push_back(Result);
1409     if (Node->isStrictFPOpcode())
1410       Results.push_back(Chain);
1411     return;
1412   }
1413 
1414   // Otherwise go ahead and unroll.
1415   if (Node->isStrictFPOpcode()) {
1416     UnrollStrictFPOp(Node, Results);
1417     return;
1418   }
1419 
1420   Results.push_back(DAG.UnrollVectorOp(Node));
1421 }
1422 
1423 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1424                                           SmallVectorImpl<SDValue> &Results) {
1425   bool IsStrict = Node->isStrictFPOpcode();
1426   unsigned OpNo = IsStrict ? 1 : 0;
1427   SDValue Src = Node->getOperand(OpNo);
1428   EVT VT = Src.getValueType();
1429   SDLoc DL(Node);
1430 
1431   // Attempt to expand using TargetLowering.
1432   SDValue Result;
1433   SDValue Chain;
1434   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1435     Results.push_back(Result);
1436     if (IsStrict)
1437       Results.push_back(Chain);
1438     return;
1439   }
1440 
1441   // Make sure that the SINT_TO_FP and SRL instructions are available.
1442   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
1443                          TargetLowering::Expand) ||
1444        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
1445                         TargetLowering::Expand)) ||
1446       TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
1447     if (IsStrict) {
1448       UnrollStrictFPOp(Node, Results);
1449       return;
1450     }
1451 
1452     Results.push_back(DAG.UnrollVectorOp(Node));
1453     return;
1454   }
1455 
1456   unsigned BW = VT.getScalarSizeInBits();
1457   assert((BW == 64 || BW == 32) &&
1458          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1459 
1460   SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1461 
1462   // Constants to clear the upper part of the word.
1463   // Notice that we can also use SHL+SHR, but using a constant is slightly
1464   // faster on x86.
1465   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1466   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1467 
1468   // Two to the power of half-word-size.
1469   SDValue TWOHW =
1470       DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
1471 
1472   // Clear upper part of LO, lower HI
1473   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
1474   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
1475 
1476   if (IsStrict) {
1477     // Convert hi and lo to floats
1478     // Convert the hi part back to the upper values
1479     // TODO: Can any fast-math-flags be set on these nodes?
1480     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1481                               {Node->getValueType(0), MVT::Other},
1482                               {Node->getOperand(0), HI});
1483     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
1484                       {fHI.getValue(1), fHI, TWOHW});
1485     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
1486                               {Node->getValueType(0), MVT::Other},
1487                               {Node->getOperand(0), LO});
1488 
1489     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1490                              fLO.getValue(1));
1491 
1492     // Add the two halves
1493     SDValue Result =
1494         DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
1495                     {TF, fHI, fLO});
1496 
1497     Results.push_back(Result);
1498     Results.push_back(Result.getValue(1));
1499     return;
1500   }
1501 
1502   // Convert hi and lo to floats
1503   // Convert the hi part back to the upper values
1504   // TODO: Can any fast-math-flags be set on these nodes?
1505   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
1506   fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
1507   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
1508 
1509   // Add the two halves
1510   Results.push_back(
1511       DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
1512 }
1513 
1514 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1515   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
1516     SDLoc DL(Node);
1517     SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
1518     // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1519     return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
1520                        Node->getOperand(0));
1521   }
1522   return DAG.UnrollVectorOp(Node);
1523 }
1524 
1525 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1526                                  SmallVectorImpl<SDValue> &Results) {
1527   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1528   // we can defer this to operation legalization where it will be lowered as
1529   // a+(-b).
1530   EVT VT = Node->getValueType(0);
1531   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1532       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1533     return; // Defer to LegalizeDAG
1534 
1535   SDValue Tmp = DAG.UnrollVectorOp(Node);
1536   Results.push_back(Tmp);
1537 }
1538 
1539 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1540                                   SmallVectorImpl<SDValue> &Results) {
1541   bool NeedInvert = false;
1542   bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
1543   bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC ||
1544                   Node->getOpcode() == ISD::STRICT_FSETCCS;
1545   bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
1546   unsigned Offset = IsStrict ? 1 : 0;
1547 
1548   SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
1549   SDValue LHS = Node->getOperand(0 + Offset);
1550   SDValue RHS = Node->getOperand(1 + Offset);
1551   SDValue CC = Node->getOperand(2 + Offset);
1552 
1553   MVT OpVT = LHS.getSimpleValueType();
1554   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1555 
1556   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1557     if (IsStrict) {
1558       UnrollStrictFPOp(Node, Results);
1559       return;
1560     }
1561     Results.push_back(UnrollVSETCC(Node));
1562     return;
1563   }
1564 
1565   SDValue Mask, EVL;
1566   if (IsVP) {
1567     Mask = Node->getOperand(3 + Offset);
1568     EVL = Node->getOperand(4 + Offset);
1569   }
1570 
1571   SDLoc dl(Node);
1572   bool Legalized =
1573       TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
1574                                 EVL, NeedInvert, dl, Chain, IsSignaling);
1575 
1576   if (Legalized) {
1577     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
1578     // condition code, create a new SETCC node.
1579     if (CC.getNode()) {
1580       if (IsStrict) {
1581         LHS = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(),
1582                           {Chain, LHS, RHS, CC}, Node->getFlags());
1583         Chain = LHS.getValue(1);
1584       } else if (IsVP) {
1585         LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
1586                           {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
1587       } else {
1588         LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
1589                           Node->getFlags());
1590       }
1591     }
1592 
1593     // If we expanded the SETCC by inverting the condition code, then wrap
1594     // the existing SETCC in a NOT to restore the intended condition.
1595     if (NeedInvert) {
1596       if (!IsVP)
1597         LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
1598       else
1599         LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
1600     }
1601   } else {
1602     assert(!IsStrict && "Don't know how to expand for strict nodes.");
1603 
1604     // Otherwise, SETCC for the given comparison type must be completely
1605     // illegal; expand it into a SELECT_CC.
1606     EVT VT = Node->getValueType(0);
1607     LHS =
1608         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
1609                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
1610                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
1611     LHS->setFlags(Node->getFlags());
1612   }
1613 
1614   Results.push_back(LHS);
1615   if (IsStrict)
1616     Results.push_back(Chain);
1617 }
1618 
1619 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
1620                                      SmallVectorImpl<SDValue> &Results) {
1621   SDValue Result, Overflow;
1622   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
1623   Results.push_back(Result);
1624   Results.push_back(Overflow);
1625 }
1626 
1627 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
1628                                      SmallVectorImpl<SDValue> &Results) {
1629   SDValue Result, Overflow;
1630   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
1631   Results.push_back(Result);
1632   Results.push_back(Overflow);
1633 }
1634 
1635 void VectorLegalizer::ExpandMULO(SDNode *Node,
1636                                  SmallVectorImpl<SDValue> &Results) {
1637   SDValue Result, Overflow;
1638   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
1639     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
1640 
1641   Results.push_back(Result);
1642   Results.push_back(Overflow);
1643 }
1644 
1645 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
1646                                           SmallVectorImpl<SDValue> &Results) {
1647   SDNode *N = Node;
1648   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
1649           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
1650     Results.push_back(Expanded);
1651 }
1652 
1653 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
1654                                        SmallVectorImpl<SDValue> &Results) {
1655   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
1656     ExpandUINT_TO_FLOAT(Node, Results);
1657     return;
1658   }
1659   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
1660     ExpandFP_TO_UINT(Node, Results);
1661     return;
1662   }
1663 
1664   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1665       Node->getOpcode() == ISD::STRICT_FSETCCS) {
1666     ExpandSETCC(Node, Results);
1667     return;
1668   }
1669 
1670   UnrollStrictFPOp(Node, Results);
1671 }
1672 
1673 void VectorLegalizer::ExpandREM(SDNode *Node,
1674                                 SmallVectorImpl<SDValue> &Results) {
1675   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
1676          "Expected REM node");
1677 
1678   SDValue Result;
1679   if (!TLI.expandREM(Node, Result, DAG))
1680     Result = DAG.UnrollVectorOp(Node);
1681   Results.push_back(Result);
1682 }
1683 
1684 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
1685                                        SmallVectorImpl<SDValue> &Results) {
1686   EVT VT = Node->getValueType(0);
1687   EVT EltVT = VT.getVectorElementType();
1688   unsigned NumElems = VT.getVectorNumElements();
1689   unsigned NumOpers = Node->getNumOperands();
1690   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1691 
1692   EVT TmpEltVT = EltVT;
1693   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1694       Node->getOpcode() == ISD::STRICT_FSETCCS)
1695     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
1696                                       *DAG.getContext(), TmpEltVT);
1697 
1698   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
1699   SDValue Chain = Node->getOperand(0);
1700   SDLoc dl(Node);
1701 
1702   SmallVector<SDValue, 32> OpValues;
1703   SmallVector<SDValue, 32> OpChains;
1704   for (unsigned i = 0; i < NumElems; ++i) {
1705     SmallVector<SDValue, 4> Opers;
1706     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
1707 
1708     // The Chain is the first operand.
1709     Opers.push_back(Chain);
1710 
1711     // Now process the remaining operands.
1712     for (unsigned j = 1; j < NumOpers; ++j) {
1713       SDValue Oper = Node->getOperand(j);
1714       EVT OperVT = Oper.getValueType();
1715 
1716       if (OperVT.isVector())
1717         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1718                            OperVT.getVectorElementType(), Oper, Idx);
1719 
1720       Opers.push_back(Oper);
1721     }
1722 
1723     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
1724     SDValue ScalarResult = ScalarOp.getValue(0);
1725     SDValue ScalarChain = ScalarOp.getValue(1);
1726 
1727     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
1728         Node->getOpcode() == ISD::STRICT_FSETCCS)
1729       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
1730                                    DAG.getAllOnesConstant(dl, EltVT),
1731                                    DAG.getConstant(0, dl, EltVT));
1732 
1733     OpValues.push_back(ScalarResult);
1734     OpChains.push_back(ScalarChain);
1735   }
1736 
1737   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1738   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1739 
1740   Results.push_back(Result);
1741   Results.push_back(NewChain);
1742 }
1743 
1744 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
1745   EVT VT = Node->getValueType(0);
1746   unsigned NumElems = VT.getVectorNumElements();
1747   EVT EltVT = VT.getVectorElementType();
1748   SDValue LHS = Node->getOperand(0);
1749   SDValue RHS = Node->getOperand(1);
1750   SDValue CC = Node->getOperand(2);
1751   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1752   SDLoc dl(Node);
1753   SmallVector<SDValue, 8> Ops(NumElems);
1754   for (unsigned i = 0; i < NumElems; ++i) {
1755     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1756                                   DAG.getVectorIdxConstant(i, dl));
1757     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1758                                   DAG.getVectorIdxConstant(i, dl));
1759     Ops[i] = DAG.getNode(ISD::SETCC, dl,
1760                          TLI.getSetCCResultType(DAG.getDataLayout(),
1761                                                 *DAG.getContext(), TmpEltVT),
1762                          LHSElem, RHSElem, CC);
1763     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
1764                            DAG.getConstant(0, dl, EltVT));
1765   }
1766   return DAG.getBuildVector(VT, dl, Ops);
1767 }
1768 
1769 bool SelectionDAG::LegalizeVectors() {
1770   return VectorLegalizer(*this).Run();
1771 }
1772