//===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::LegalizeVectors method. // // The vector legalizer looks for vector operations which might need to be // scalarized and legalizes them. This is a separate step from Legalize because // scalarizing can introduce illegal types. For example, suppose we have an // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the // operation, which introduces nodes with the illegal type i64 which must be // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; // the operation must be unrolled, which introduces nodes with the illegal // type i8 which must be promoted. // // This does not legalize vector manipulations like ISD::BUILD_VECTOR, // or operations that happen to take a vector which are custom-lowered; // the legalization for such operations never produces nodes // with illegal types, so it's okay to put off legalizing them until // SelectionDAG::Legalize runs. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DataLayout.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "legalizevectorops" namespace { class VectorLegalizer { SelectionDAG& DAG; const TargetLowering &TLI; bool Changed = false; // Keep track of whether anything changed /// For nodes that are of legal width, and that have more than one use, this /// map indicates what regularized operand to use. This allows us to avoid /// legalizing the same thing more than once. SmallDenseMap LegalizedNodes; /// Adds a node to the translation cache. void AddLegalizedOperand(SDValue From, SDValue To) { LegalizedNodes.insert(std::make_pair(From, To)); // If someone requests legalization of the new node, return itself. if (From != To) LegalizedNodes.insert(std::make_pair(To, To)); } /// Legalizes the given node. SDValue LegalizeOp(SDValue Op); /// Assuming the node is legal, "legalize" the results. SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); /// Make sure Results are legal and update the translation cache. SDValue RecursivelyLegalizeResults(SDValue Op, MutableArrayRef Results); /// Wrapper to interface LowerOperation with a vector of Results. /// Returns false if the target wants to use default expansion. Otherwise /// returns true. If return is true and the Results are empty, then the /// target wants to keep the input node as is. bool LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results); /// Implements unrolling a VSETCC. SDValue UnrollVSETCC(SDNode *Node); /// Implement expand-based legalization of vector operations. /// /// This is just a high-level routine to dispatch to specific code paths for /// operations to legalize them. void Expand(SDNode *Node, SmallVectorImpl &Results); /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if /// FP_TO_SINT isn't legal. void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl &Results); /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if /// SINT_TO_FLOAT and SHR on vectors isn't legal. void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl &Results); /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. SDValue ExpandSEXTINREG(SDNode *Node); /// Implement expansion for ANY_EXTEND_VECTOR_INREG. /// /// Shuffles the low lanes of the operand into place and bitcasts to the proper /// type. The contents of the bits in the extended part of each element are /// undef. SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. /// /// Shuffles the low lanes of the operand into place, bitcasts to the proper /// type, then shifts left and arithmetic shifts right to introduce a sign /// extension. SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. /// /// Shuffles the low lanes of the operand into place and blends zeros into /// the remaining lanes, finally bitcasting to the proper type. SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); /// Expand bswap of vectors into a shuffle if legal. SDValue ExpandBSWAP(SDNode *Node); /// Implement vselect in terms of XOR, AND, OR when blend is not /// supported by the target. SDValue ExpandVSELECT(SDNode *Node); SDValue ExpandVP_SELECT(SDNode *Node); SDValue ExpandVP_MERGE(SDNode *Node); SDValue ExpandVP_REM(SDNode *Node); SDValue ExpandSELECT(SDNode *Node); std::pair ExpandLoad(SDNode *N); SDValue ExpandStore(SDNode *N); SDValue ExpandFNEG(SDNode *Node); void ExpandFSUB(SDNode *Node, SmallVectorImpl &Results); void ExpandSETCC(SDNode *Node, SmallVectorImpl &Results); void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl &Results); void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl &Results); void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl &Results); void ExpandMULO(SDNode *Node, SmallVectorImpl &Results); void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl &Results); void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl &Results); void ExpandREM(SDNode *Node, SmallVectorImpl &Results); void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl &Results); /// Implements vector promotion. /// /// This is essentially just bitcasting the operands to a different type and /// bitcasting the result back to the original type. void Promote(SDNode *Node, SmallVectorImpl &Results); /// Implements [SU]INT_TO_FP vector promotion. /// /// This is a [zs]ext of the input operand to a larger integer type. void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl &Results); /// Implements FP_TO_[SU]INT vector promotion of the result type. /// /// It is promoted to a larger integer type. The result is then /// truncated back to the original type. void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl &Results); public: VectorLegalizer(SelectionDAG& dag) : DAG(dag), TLI(dag.getTargetLoweringInfo()) {} /// Begin legalizer the vector operations in the DAG. bool Run(); }; } // end anonymous namespace bool VectorLegalizer::Run() { // Before we start legalizing vector nodes, check if there are any vectors. bool HasVectors = false; for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { // Check if the values of the nodes contain vectors. We don't need to check // the operands because we are going to check their values at some point. HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); // If we found a vector node we can start the legalization. if (HasVectors) break; } // If this basic block has no vectors then no need to legalize vectors. if (!HasVectors) return false; // The legalize process is inherently a bottom-up recursive process (users // legalize their uses before themselves). Given infinite stack space, we // could just start legalizing on the root and traverse the whole graph. In // practice however, this causes us to run out of stack space on large basic // blocks. To avoid this problem, compute an ordering of the nodes where each // node is only legalized after all of its operands are legalized. DAG.AssignTopologicalOrder(); for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) LegalizeOp(SDValue(&*I, 0)); // Finally, it's possible the root changed. Get the new root. SDValue OldRoot = DAG.getRoot(); assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); DAG.setRoot(LegalizedNodes[OldRoot]); LegalizedNodes.clear(); // Remove dead nodes now. DAG.RemoveDeadNodes(); return Changed; } SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { assert(Op->getNumValues() == Result->getNumValues() && "Unexpected number of results"); // Generic legalization: just pass the operand through. for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); return SDValue(Result, Op.getResNo()); } SDValue VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, MutableArrayRef Results) { assert(Results.size() == Op->getNumValues() && "Unexpected number of results"); // Make sure that the generated code is itself legal. for (unsigned i = 0, e = Results.size(); i != e; ++i) { Results[i] = LegalizeOp(Results[i]); AddLegalizedOperand(Op.getValue(i), Results[i]); } return Results[Op.getResNo()]; } SDValue VectorLegalizer::LegalizeOp(SDValue Op) { // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. DenseMap::iterator I = LegalizedNodes.find(Op); if (I != LegalizedNodes.end()) return I->second; // Legalize the operands SmallVector Ops; for (const SDValue &Oper : Op->op_values()) Ops.push_back(LegalizeOp(Oper)); SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); bool HasVectorValueOrOp = llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || llvm::any_of(Node->op_values(), [](SDValue O) { return O.getValueType().isVector(); }); if (!HasVectorValueOrOp) return TranslateLegalizeResults(Op, Node); TargetLowering::LegalizeAction Action = TargetLowering::Legal; EVT ValVT; switch (Op.getOpcode()) { default: return TranslateLegalizeResults(Op, Node); case ISD::LOAD: { LoadSDNode *LD = cast(Node); ISD::LoadExtType ExtType = LD->getExtensionType(); EVT LoadedVT = LD->getMemoryVT(); if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); break; } case ISD::STORE: { StoreSDNode *ST = cast(Node); EVT StVT = ST->getMemoryVT(); MVT ValVT = ST->getValue().getSimpleValueType(); if (StVT.isVector() && ST->isTruncatingStore()) Action = TLI.getTruncStoreAction(ValVT, StVT); break; } case ISD::MERGE_VALUES: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); // This operation lies about being legal: when it claims to be legal, // it should actually be expanded. if (Action == TargetLowering::Legal) Action = TargetLowering::Expand; break; #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ case ISD::STRICT_##DAGN: #include "llvm/IR/ConstrainedOps.def" ValVT = Node->getValueType(0); if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || Op.getOpcode() == ISD::STRICT_UINT_TO_FP) ValVT = Node->getOperand(1).getValueType(); if (Op.getOpcode() == ISD::STRICT_FSETCC || Op.getOpcode() == ISD::STRICT_FSETCCS) { MVT OpVT = Node->getOperand(1).getSimpleValueType(); ISD::CondCode CCCode = cast(Node->getOperand(3))->get(); Action = TLI.getCondCodeAction(CCCode, OpVT); if (Action == TargetLowering::Legal) Action = TLI.getOperationAction(Node->getOpcode(), OpVT); } else { Action = TLI.getOperationAction(Node->getOpcode(), ValVT); } // If we're asked to expand a strict vector floating-point operation, // by default we're going to simply unroll it. That is usually the // best approach, except in the case where the resulting strict (scalar) // operations would themselves use the fallback mutation to non-strict. // In that specific case, just do the fallback on the vector op. if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == TargetLowering::Legal) { EVT EltVT = ValVT.getVectorElementType(); if (TLI.getOperationAction(Node->getOpcode(), EltVT) == TargetLowering::Expand && TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) == TargetLowering::Legal) Action = TargetLowering::Legal; } break; case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::MULHS: case ISD::MULHU: case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: case ISD::SDIVREM: case ISD::UDIVREM: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FREM: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SHL: case ISD::SRA: case ISD::SRL: case ISD::FSHL: case ISD::FSHR: case ISD::ROTL: case ISD::ROTR: case ISD::ABS: case ISD::BSWAP: case ISD::BITREVERSE: case ISD::CTLZ: case ISD::CTTZ: case ISD::CTLZ_ZERO_UNDEF: case ISD::CTTZ_ZERO_UNDEF: case ISD::CTPOP: case ISD::SELECT: case ISD::VSELECT: case ISD::SELECT_CC: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::TRUNCATE: case ISD::SIGN_EXTEND: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FNEG: case ISD::FABS: case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINNUM_IEEE: case ISD::FMAXNUM_IEEE: case ISD::FMINIMUM: case ISD::FMAXIMUM: case ISD::FCOPYSIGN: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FLDEXP: case ISD::FPOWI: case ISD::FPOW: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FCEIL: case ISD::FTRUNC: case ISD::FRINT: case ISD::FNEARBYINT: case ISD::FROUND: case ISD::FROUNDEVEN: case ISD::FFLOOR: case ISD::FP_ROUND: case ISD::FP_EXTEND: case ISD::FMA: case ISD::SIGN_EXTEND_INREG: case ISD::ANY_EXTEND_VECTOR_INREG: case ISD::SIGN_EXTEND_VECTOR_INREG: case ISD::ZERO_EXTEND_VECTOR_INREG: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: case ISD::SADDO: case ISD::UADDO: case ISD::SSUBO: case ISD::USUBO: case ISD::SMULO: case ISD::UMULO: case ISD::FCANONICALIZE: case ISD::FFREXP: case ISD::SADDSAT: case ISD::UADDSAT: case ISD::SSUBSAT: case ISD::USUBSAT: case ISD::SSHLSAT: case ISD::USHLSAT: case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: case ISD::MGATHER: Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); break; case ISD::SMULFIX: case ISD::SMULFIXSAT: case ISD::UMULFIX: case ISD::UMULFIXSAT: case ISD::SDIVFIX: case ISD::SDIVFIXSAT: case ISD::UDIVFIX: case ISD::UDIVFIXSAT: { unsigned Scale = Node->getConstantOperandVal(2); Action = TLI.getFixedPointOperationAction(Node->getOpcode(), Node->getValueType(0), Scale); break; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_MUL: case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_UMIN: case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMUL: case ISD::VECREDUCE_FMAX: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAXIMUM: case ISD::VECREDUCE_FMINIMUM: Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(0).getValueType()); break; case ISD::VECREDUCE_SEQ_FADD: case ISD::VECREDUCE_SEQ_FMUL: Action = TLI.getOperationAction(Node->getOpcode(), Node->getOperand(1).getValueType()); break; case ISD::SETCC: { MVT OpVT = Node->getOperand(0).getSimpleValueType(); ISD::CondCode CCCode = cast(Node->getOperand(2))->get(); Action = TLI.getCondCodeAction(CCCode, OpVT); if (Action == TargetLowering::Legal) Action = TLI.getOperationAction(Node->getOpcode(), OpVT); break; } #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...) \ case ISD::VPID: { \ EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS)) \ : Node->getOperand(LEGALPOS).getValueType(); \ if (ISD::VPID == ISD::VP_SETCC) { \ ISD::CondCode CCCode = cast(Node->getOperand(2))->get(); \ Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT()); \ if (Action != TargetLowering::Legal) \ break; \ } \ Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT); \ } break; #include "llvm/IR/VPIntrinsics.def" } LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); SmallVector ResultVals; switch (Action) { default: llvm_unreachable("This action is not supported yet!"); case TargetLowering::Promote: assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && "This action is not supported yet!"); LLVM_DEBUG(dbgs() << "Promoting\n"); Promote(Node, ResultVals); assert(!ResultVals.empty() && "No results for promotion?"); break; case TargetLowering::Legal: LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); break; case TargetLowering::Custom: LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); if (LowerOperationWrapper(Node, ResultVals)) break; LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); [[fallthrough]]; case TargetLowering::Expand: LLVM_DEBUG(dbgs() << "Expanding\n"); Expand(Node, ResultVals); break; } if (ResultVals.empty()) return TranslateLegalizeResults(Op, Node); Changed = true; return RecursivelyLegalizeResults(Op, ResultVals); } // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we // merge them somehow? bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, SmallVectorImpl &Results) { SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); if (!Res.getNode()) return false; if (Res == SDValue(Node, 0)) return true; // If the original node has one result, take the return value from // LowerOperation as is. It might not be result number 0. if (Node->getNumValues() == 1) { Results.push_back(Res); return true; } // If the original node has multiple results, then the return node should // have the same number of results. assert((Node->getNumValues() == Res->getNumValues()) && "Lowering returned the wrong number of results!"); // Places new result values base on N result number. for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) Results.push_back(Res.getValue(I)); return true; } void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl &Results) { // For a few operations there is a specific concept for promotion based on // the operand's type. switch (Node->getOpcode()) { case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::STRICT_SINT_TO_FP: case ISD::STRICT_UINT_TO_FP: // "Promote" the operation by extending the operand. PromoteINT_TO_FP(Node, Results); return; case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: case ISD::STRICT_FP_TO_SINT: // Promote the operation by extending the operand. PromoteFP_TO_INT(Node, Results); return; case ISD::FP_ROUND: case ISD::FP_EXTEND: // These operations are used to do promotion so they can't be promoted // themselves. llvm_unreachable("Don't know how to promote this operation!"); } // There are currently two cases of vector promotion: // 1) Bitcasting a vector of integers to a different type to a vector of the // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. // 2) Extending a vector of floats to a vector of the same number of larger // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. assert(Node->getNumValues() == 1 && "Can't promote a vector with multiple results!"); MVT VT = Node->getSimpleValueType(0); MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); SDLoc dl(Node); SmallVector Operands(Node->getNumOperands()); for (unsigned j = 0; j != Node->getNumOperands(); ++j) { if (Node->getOperand(j).getValueType().isVector()) if (Node->getOperand(j) .getValueType() .getVectorElementType() .isFloatingPoint() && NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); else Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); else Operands[j] = Node->getOperand(j); } SDValue Res = DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); else Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); Results.push_back(Res); } void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl &Results) { // INT_TO_FP operations may require the input operand be promoted even // when the type is otherwise legal. bool IsStrict = Node->isStrictFPOpcode(); MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && "Vectors have different number of elements!"); SDLoc dl(Node); SmallVector Operands(Node->getNumOperands()); unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || Node->getOpcode() == ISD::STRICT_UINT_TO_FP) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; for (unsigned j = 0; j != Node->getNumOperands(); ++j) { if (Node->getOperand(j).getValueType().isVector()) Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); else Operands[j] = Node->getOperand(j); } if (IsStrict) { SDValue Res = DAG.getNode(Node->getOpcode(), dl, {Node->getValueType(0), MVT::Other}, Operands); Results.push_back(Res); Results.push_back(Res.getValue(1)); return; } SDValue Res = DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); Results.push_back(Res); } // For FP_TO_INT we promote the result type to a vector type with wider // elements and then truncate the result. This is different from the default // PromoteVector which uses bitcast to promote thus assumning that the // promoted vector type has the same overall size. void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl &Results) { MVT VT = Node->getSimpleValueType(0); MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); bool IsStrict = Node->isStrictFPOpcode(); assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && "Vectors have different number of elements!"); unsigned NewOpc = Node->getOpcode(); // Change FP_TO_UINT to FP_TO_SINT if possible. // TODO: Should we only do this if FP_TO_UINT itself isn't legal? if (NewOpc == ISD::FP_TO_UINT && TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) NewOpc = ISD::FP_TO_SINT; if (NewOpc == ISD::STRICT_FP_TO_UINT && TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) NewOpc = ISD::STRICT_FP_TO_SINT; SDLoc dl(Node); SDValue Promoted, Chain; if (IsStrict) { Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, {Node->getOperand(0), Node->getOperand(1)}); Chain = Promoted.getValue(1); } else Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); // Assert that the converted value fits in the original type. If it doesn't // (eg: because the value being converted is too big), then the result of the // original operation was undefined anyway, so the assert is still correct. if (Node->getOpcode() == ISD::FP_TO_UINT || Node->getOpcode() == ISD::STRICT_FP_TO_UINT) NewOpc = ISD::AssertZext; else NewOpc = ISD::AssertSext; Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, DAG.getValueType(VT.getScalarType())); Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); Results.push_back(Promoted); if (IsStrict) Results.push_back(Chain); } std::pair VectorLegalizer::ExpandLoad(SDNode *N) { LoadSDNode *LD = cast(N); return TLI.scalarizeVectorLoad(LD, DAG); } SDValue VectorLegalizer::ExpandStore(SDNode *N) { StoreSDNode *ST = cast(N); SDValue TF = TLI.scalarizeVectorStore(ST, DAG); return TF; } void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl &Results) { switch (Node->getOpcode()) { case ISD::LOAD: { std::pair Tmp = ExpandLoad(Node); Results.push_back(Tmp.first); Results.push_back(Tmp.second); return; } case ISD::STORE: Results.push_back(ExpandStore(Node)); return; case ISD::MERGE_VALUES: for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) Results.push_back(Node->getOperand(i)); return; case ISD::SIGN_EXTEND_INREG: Results.push_back(ExpandSEXTINREG(Node)); return; case ISD::ANY_EXTEND_VECTOR_INREG: Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); return; case ISD::SIGN_EXTEND_VECTOR_INREG: Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); return; case ISD::ZERO_EXTEND_VECTOR_INREG: Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); return; case ISD::BSWAP: Results.push_back(ExpandBSWAP(Node)); return; case ISD::VP_BSWAP: Results.push_back(TLI.expandVPBSWAP(Node, DAG)); return; case ISD::VSELECT: Results.push_back(ExpandVSELECT(Node)); return; case ISD::VP_SELECT: Results.push_back(ExpandVP_SELECT(Node)); return; case ISD::VP_SREM: case ISD::VP_UREM: if (SDValue Expanded = ExpandVP_REM(Node)) { Results.push_back(Expanded); return; } break; case ISD::SELECT: Results.push_back(ExpandSELECT(Node)); return; case ISD::SELECT_CC: { if (Node->getValueType(0).isScalableVector()) { EVT CondVT = TLI.getSetCCResultType( DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); SDValue SetCC = DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0), Node->getOperand(1), Node->getOperand(4)); Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC, Node->getOperand(2), Node->getOperand(3))); return; } break; } case ISD::FP_TO_UINT: ExpandFP_TO_UINT(Node, Results); return; case ISD::UINT_TO_FP: ExpandUINT_TO_FLOAT(Node, Results); return; case ISD::FNEG: Results.push_back(ExpandFNEG(Node)); return; case ISD::FSUB: ExpandFSUB(Node, Results); return; case ISD::SETCC: case ISD::VP_SETCC: ExpandSETCC(Node, Results); return; case ISD::ABS: if (SDValue Expanded = TLI.expandABS(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::ABDS: case ISD::ABDU: if (SDValue Expanded = TLI.expandABD(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::BITREVERSE: ExpandBITREVERSE(Node, Results); return; case ISD::VP_BITREVERSE: if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::CTPOP: if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::VP_CTPOP: if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::CTLZ: case ISD::CTLZ_ZERO_UNDEF: if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::VP_CTLZ: case ISD::VP_CTLZ_ZERO_UNDEF: if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::CTTZ: case ISD::CTTZ_ZERO_UNDEF: if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::VP_CTTZ: case ISD::VP_CTTZ_ZERO_UNDEF: if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::FSHL: case ISD::VP_FSHL: case ISD::FSHR: case ISD::VP_FSHR: if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::ROTL: case ISD::ROTR: if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { Results.push_back(Expanded); return; } break; case ISD::FMINNUM: case ISD::FMAXNUM: if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::UADDO: case ISD::USUBO: ExpandUADDSUBO(Node, Results); return; case ISD::SADDO: case ISD::SSUBO: ExpandSADDSUBO(Node, Results); return; case ISD::UMULO: case ISD::SMULO: ExpandMULO(Node, Results); return; case ISD::USUBSAT: case ISD::SSUBSAT: case ISD::UADDSAT: case ISD::SADDSAT: if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::USHLSAT: case ISD::SSHLSAT: if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::FP_TO_SINT_SAT: case ISD::FP_TO_UINT_SAT: // Expand the fpsosisat if it is scalable to prevent it from unrolling below. if (Node->getValueType(0).isScalableVector()) { if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) { Results.push_back(Expanded); return; } } break; case ISD::SMULFIX: case ISD::UMULFIX: if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { Results.push_back(Expanded); return; } break; case ISD::SMULFIXSAT: case ISD::UMULFIXSAT: // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly // why. Maybe it results in worse codegen compared to the unroll for some // targets? This should probably be investigated. And if we still prefer to // unroll an explanation could be helpful. break; case ISD::SDIVFIX: case ISD::UDIVFIX: ExpandFixedPointDiv(Node, Results); return; case ISD::SDIVFIXSAT: case ISD::UDIVFIXSAT: break; #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ case ISD::STRICT_##DAGN: #include "llvm/IR/ConstrainedOps.def" ExpandStrictFPOp(Node, Results); return; case ISD::VECREDUCE_ADD: case ISD::VECREDUCE_MUL: case ISD::VECREDUCE_AND: case ISD::VECREDUCE_OR: case ISD::VECREDUCE_XOR: case ISD::VECREDUCE_SMAX: case ISD::VECREDUCE_SMIN: case ISD::VECREDUCE_UMAX: case ISD::VECREDUCE_UMIN: case ISD::VECREDUCE_FADD: case ISD::VECREDUCE_FMUL: case ISD::VECREDUCE_FMAX: case ISD::VECREDUCE_FMIN: case ISD::VECREDUCE_FMAXIMUM: case ISD::VECREDUCE_FMINIMUM: Results.push_back(TLI.expandVecReduce(Node, DAG)); return; case ISD::VECREDUCE_SEQ_FADD: case ISD::VECREDUCE_SEQ_FMUL: Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); return; case ISD::SREM: case ISD::UREM: ExpandREM(Node, Results); return; case ISD::VP_MERGE: Results.push_back(ExpandVP_MERGE(Node)); return; } SDValue Unrolled = DAG.UnrollVectorOp(Node); for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I) Results.push_back(Unrolled.getValue(I)); } SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { // Lower a select instruction where the condition is a scalar and the // operands are vectors. Lower this select to VSELECT and implement it // using XOR AND OR. The selector bit is broadcasted. EVT VT = Node->getValueType(0); SDLoc DL(Node); SDValue Mask = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); SDValue Op2 = Node->getOperand(2); assert(VT.isVector() && !Mask.getValueType().isVector() && Op1.getValueType() == Op2.getValueType() && "Invalid type"); // If we can't even use the basic vector operations of // AND,OR,XOR, we will have to scalarize the op. // Notice that the operation may be 'promoted' which means that it is // 'bitcasted' to another type which is handled. // Also, we need to be able to construct a splat vector using either // BUILD_VECTOR or SPLAT_VECTOR. // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to // BUILD_VECTOR? if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR : ISD::SPLAT_VECTOR, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Node); // Generate a mask operand. EVT MaskTy = VT.changeVectorElementTypeToInteger(); // What is the size of each element in the vector mask. EVT BitTy = MaskTy.getScalarType(); Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), DAG.getConstant(0, DL, BitTy)); // Broadcast the mask so that the entire vector is all one or all zero. Mask = DAG.getSplat(MaskTy, DL, Mask); // Bitcast the operands to be the same type as the mask. // This is needed when we select between FP types because // the mask is a vector of integers. Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); } SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { EVT VT = Node->getValueType(0); // Make sure that the SRA and SHL instructions are available. if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Node); SDLoc DL(Node); EVT OrigTy = cast(Node->getOperand(1))->getVT(); unsigned BW = VT.getScalarSizeInBits(); unsigned OrigBW = OrigTy.getScalarSizeInBits(); SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); } // Generically expand a vector anyext in register to a shuffle of the relevant // lanes into the appropriate locations, with other lanes left undef. SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { SDLoc DL(Node); EVT VT = Node->getValueType(0); int NumElements = VT.getVectorNumElements(); SDValue Src = Node->getOperand(0); EVT SrcVT = Src.getValueType(); int NumSrcElements = SrcVT.getVectorNumElements(); // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector // into a larger vector type. if (SrcVT.bitsLE(VT)) { assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && "ANY_EXTEND_VECTOR_INREG vector size mismatch"); NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), NumSrcElements); Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, DAG.getVectorIdxConstant(0, DL)); } // Build a base mask of undef shuffles. SmallVector ShuffleMask; ShuffleMask.resize(NumSrcElements, -1); // Place the extended lanes into the correct locations. int ExtLaneScale = NumSrcElements / NumElements; int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; for (int i = 0; i < NumElements; ++i) ShuffleMask[i * ExtLaneScale + EndianOffset] = i; return DAG.getNode( ISD::BITCAST, DL, VT, DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); } SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { SDLoc DL(Node); EVT VT = Node->getValueType(0); SDValue Src = Node->getOperand(0); EVT SrcVT = Src.getValueType(); // First build an any-extend node which can be legalized above when we // recurse through it. SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); // Now we need sign extend. Do this by shifting the elements. Even if these // aren't legal operations, they have a better chance of being legalized // without full scalarization than the sign extension does. unsigned EltWidth = VT.getScalarSizeInBits(); unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); return DAG.getNode(ISD::SRA, DL, VT, DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), ShiftAmount); } // Generically expand a vector zext in register to a shuffle of the relevant // lanes into the appropriate locations, a blend of zero into the high bits, // and a bitcast to the wider element type. SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { SDLoc DL(Node); EVT VT = Node->getValueType(0); int NumElements = VT.getVectorNumElements(); SDValue Src = Node->getOperand(0); EVT SrcVT = Src.getValueType(); int NumSrcElements = SrcVT.getVectorNumElements(); // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector // into a larger vector type. if (SrcVT.bitsLE(VT)) { assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), NumSrcElements); Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src, DAG.getVectorIdxConstant(0, DL)); } // Build up a zero vector to blend into this one. SDValue Zero = DAG.getConstant(0, DL, SrcVT); // Shuffle the incoming lanes into the correct position, and pull all other // lanes from the zero vector. auto ShuffleMask = llvm::to_vector<16>(llvm::seq(0, NumSrcElements)); int ExtLaneScale = NumSrcElements / NumElements; int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; for (int i = 0; i < NumElements; ++i) ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; return DAG.getNode(ISD::BITCAST, DL, VT, DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); } static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl &ShuffleMask) { int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) for (int J = ScalarSizeInBytes - 1; J >= 0; --J) ShuffleMask.push_back((I * ScalarSizeInBytes) + J); } SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { EVT VT = Node->getValueType(0); // Scalable vectors can't use shuffle expansion. if (VT.isScalableVector()) return TLI.expandBSWAP(Node, DAG); // Generate a byte wise shuffle mask for the BSWAP. SmallVector ShuffleMask; createBSWAPShuffleMask(VT, ShuffleMask); EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); // Only emit a shuffle if the mask is legal. if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { SDLoc DL(Node); SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); return DAG.getNode(ISD::BITCAST, DL, VT, Op); } // If we have the appropriate vector bit operations, it is better to use them // than unrolling and expanding each component. if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && TLI.isOperationLegalOrCustom(ISD::SRL, VT) && TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) return TLI.expandBSWAP(Node, DAG); // Otherwise unroll. return DAG.UnrollVectorOp(Node); } void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, SmallVectorImpl &Results) { EVT VT = Node->getValueType(0); // We can't unroll or use shuffles for scalable vectors. if (VT.isScalableVector()) { Results.push_back(TLI.expandBITREVERSE(Node, DAG)); return; } // If we have the scalar operation, it's probably cheaper to unroll it. if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { SDValue Tmp = DAG.UnrollVectorOp(Node); Results.push_back(Tmp); return; } // If the vector element width is a whole number of bytes, test if its legal // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte // vector. This greatly reduces the number of bit shifts necessary. unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { SmallVector BSWAPMask; createBSWAPShuffleMask(VT, BSWAPMask); EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { SDLoc DL(Node); SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), BSWAPMask); Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); Results.push_back(Op); return; } } // If we have the appropriate vector bit operations, it is better to use them // than unrolling and expanding each component. if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && TLI.isOperationLegalOrCustom(ISD::SRL, VT) && TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { Results.push_back(TLI.expandBITREVERSE(Node, DAG)); return; } // Otherwise unroll. SDValue Tmp = DAG.UnrollVectorOp(Node); Results.push_back(Tmp); } SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { // Implement VSELECT in terms of XOR, AND, OR // on platforms which do not support blend natively. SDLoc DL(Node); SDValue Mask = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); SDValue Op2 = Node->getOperand(2); EVT VT = Mask.getValueType(); // If we can't even use the basic vector operations of // AND,OR,XOR, we will have to scalarize the op. // Notice that the operation may be 'promoted' which means that it is // 'bitcasted' to another type which is handled. if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Node); // This operation also isn't safe with AND, OR, XOR when the boolean type is // 0/1 and the select operands aren't also booleans, as we need an all-ones // vector constant to mask with. // FIXME: Sign extend 1 to all ones if that's legal on the target. auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && Op1.getValueType().getVectorElementType() == MVT::i1)) return DAG.UnrollVectorOp(Node); // If the mask and the type are different sizes, unroll the vector op. This // can occur when getSetCCResultType returns something that is different in // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. if (VT.getSizeInBits() != Op1.getValueSizeInBits()) return DAG.UnrollVectorOp(Node); // Bitcast the operands to be the same type as the mask. // This is needed when we select between FP types because // the mask is a vector of integers. Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); SDValue NotMask = DAG.getNOT(DL, Mask, VT); Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); } SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which // do not support it natively. SDLoc DL(Node); SDValue Mask = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); SDValue Op2 = Node->getOperand(2); SDValue EVL = Node->getOperand(3); EVT VT = Mask.getValueType(); // If we can't even use the basic vector operations of // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) return DAG.UnrollVectorOp(Node); // This operation also isn't safe when the operands aren't also booleans. if (Op1.getValueType().getVectorElementType() != MVT::i1) return DAG.UnrollVectorOp(Node); SDValue Ones = DAG.getAllOnesConstant(DL, VT); SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Ones, EVL); Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Ones, EVL); Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Ones, EVL); return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Ones, EVL); } SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) { // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector // indices less than the EVL/pivot are true. Combine that with the original // mask for a full-length mask. Use a full-length VSELECT to select between // the true and false values. SDLoc DL(Node); SDValue Mask = Node->getOperand(0); SDValue Op1 = Node->getOperand(1); SDValue Op2 = Node->getOperand(2); SDValue EVL = Node->getOperand(3); EVT MaskVT = Mask.getValueType(); bool IsFixedLen = MaskVT.isFixedLengthVector(); EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(), MaskVT.getVectorElementCount()); // If we can't construct the EVL mask efficiently, it's better to unroll. if ((IsFixedLen && !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) || (!IsFixedLen && (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) || !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT)))) return DAG.UnrollVectorOp(Node); // If using a SETCC would result in a different type than the mask type, // unroll. if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), EVLVecVT) != MaskVT) return DAG.UnrollVectorOp(Node); SDValue StepVec = DAG.getStepVector(DL, EVLVecVT); SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL); SDValue EVLMask = DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT); SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask); return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2); } SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) { // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB. EVT VT = Node->getValueType(0); unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV; if (!TLI.isOperationLegalOrCustom(DivOpc, VT) || !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) || !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT)) return SDValue(); SDLoc DL(Node); SDValue Dividend = Node->getOperand(0); SDValue Divisor = Node->getOperand(1); SDValue Mask = Node->getOperand(2); SDValue EVL = Node->getOperand(3); // X % Y -> X-X/Y*Y SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL); SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL); return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL); } void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl &Results) { // Attempt to expand using TargetLowering. SDValue Result, Chain; if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { Results.push_back(Result); if (Node->isStrictFPOpcode()) Results.push_back(Chain); return; } // Otherwise go ahead and unroll. if (Node->isStrictFPOpcode()) { UnrollStrictFPOp(Node, Results); return; } Results.push_back(DAG.UnrollVectorOp(Node)); } void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl &Results) { bool IsStrict = Node->isStrictFPOpcode(); unsigned OpNo = IsStrict ? 1 : 0; SDValue Src = Node->getOperand(OpNo); EVT VT = Src.getValueType(); SDLoc DL(Node); // Attempt to expand using TargetLowering. SDValue Result; SDValue Chain; if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { Results.push_back(Result); if (IsStrict) Results.push_back(Chain); return; } // Make sure that the SINT_TO_FP and SRL instructions are available. if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand) || (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == TargetLowering::Expand)) || TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { if (IsStrict) { UnrollStrictFPOp(Node, Results); return; } Results.push_back(DAG.UnrollVectorOp(Node)); return; } unsigned BW = VT.getScalarSizeInBits(); assert((BW == 64 || BW == 32) && "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); // Constants to clear the upper part of the word. // Notice that we can also use SHL+SHR, but using a constant is slightly // faster on x86. uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); // Two to the power of half-word-size. SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); // Clear upper part of LO, lower HI SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); if (IsStrict) { // Convert hi and lo to floats // Convert the hi part back to the upper values // TODO: Can any fast-math-flags be set on these nodes? SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {Node->getValueType(0), MVT::Other}, {Node->getOperand(0), HI}); fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, {fHI.getValue(1), fHI, TWOHW}); SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {Node->getValueType(0), MVT::Other}, {Node->getOperand(0), LO}); SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), fLO.getValue(1)); // Add the two halves SDValue Result = DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, {TF, fHI, fLO}); Results.push_back(Result); Results.push_back(Result.getValue(1)); return; } // Convert hi and lo to floats // Convert the hi part back to the upper values // TODO: Can any fast-math-flags be set on these nodes? SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); // Add the two halves Results.push_back( DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); } SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { SDLoc DL(Node); SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, Node->getOperand(0)); } return DAG.UnrollVectorOp(Node); } void VectorLegalizer::ExpandFSUB(SDNode *Node, SmallVectorImpl &Results) { // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, // we can defer this to operation legalization where it will be lowered as // a+(-b). EVT VT = Node->getValueType(0); if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && TLI.isOperationLegalOrCustom(ISD::FADD, VT)) return; // Defer to LegalizeDAG SDValue Tmp = DAG.UnrollVectorOp(Node); Results.push_back(Tmp); } void VectorLegalizer::ExpandSETCC(SDNode *Node, SmallVectorImpl &Results) { bool NeedInvert = false; bool IsVP = Node->getOpcode() == ISD::VP_SETCC; bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC || Node->getOpcode() == ISD::STRICT_FSETCCS; bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS; unsigned Offset = IsStrict ? 1 : 0; SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue(); SDValue LHS = Node->getOperand(0 + Offset); SDValue RHS = Node->getOperand(1 + Offset); SDValue CC = Node->getOperand(2 + Offset); MVT OpVT = LHS.getSimpleValueType(); ISD::CondCode CCCode = cast(CC)->get(); if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { if (IsStrict) { UnrollStrictFPOp(Node, Results); return; } Results.push_back(UnrollVSETCC(Node)); return; } SDValue Mask, EVL; if (IsVP) { Mask = Node->getOperand(3 + Offset); EVL = Node->getOperand(4 + Offset); } SDLoc dl(Node); bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask, EVL, NeedInvert, dl, Chain, IsSignaling); if (Legalized) { // If we expanded the SETCC by swapping LHS and RHS, or by inverting the // condition code, create a new SETCC node. if (CC.getNode()) { if (IsStrict) { LHS = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(), {Chain, LHS, RHS, CC}, Node->getFlags()); Chain = LHS.getValue(1); } else if (IsVP) { LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0), {LHS, RHS, CC, Mask, EVL}, Node->getFlags()); } else { LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, Node->getFlags()); } } // If we expanded the SETCC by inverting the condition code, then wrap // the existing SETCC in a NOT to restore the intended condition. if (NeedInvert) { if (!IsVP) LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); else LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0)); } } else { assert(!IsStrict && "Don't know how to expand for strict nodes."); // Otherwise, SETCC for the given comparison type must be completely // illegal; expand it into a SELECT_CC. EVT VT = Node->getValueType(0); LHS = DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); LHS->setFlags(Node->getFlags()); } Results.push_back(LHS); if (IsStrict) Results.push_back(Chain); } void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, SmallVectorImpl &Results) { SDValue Result, Overflow; TLI.expandUADDSUBO(Node, Result, Overflow, DAG); Results.push_back(Result); Results.push_back(Overflow); } void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, SmallVectorImpl &Results) { SDValue Result, Overflow; TLI.expandSADDSUBO(Node, Result, Overflow, DAG); Results.push_back(Result); Results.push_back(Overflow); } void VectorLegalizer::ExpandMULO(SDNode *Node, SmallVectorImpl &Results) { SDValue Result, Overflow; if (!TLI.expandMULO(Node, Result, Overflow, DAG)) std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); Results.push_back(Result); Results.push_back(Overflow); } void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl &Results) { SDNode *N = Node; if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) Results.push_back(Expanded); } void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, SmallVectorImpl &Results) { if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { ExpandUINT_TO_FLOAT(Node, Results); return; } if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { ExpandFP_TO_UINT(Node, Results); return; } if (Node->getOpcode() == ISD::STRICT_FSETCC || Node->getOpcode() == ISD::STRICT_FSETCCS) { ExpandSETCC(Node, Results); return; } UnrollStrictFPOp(Node, Results); } void VectorLegalizer::ExpandREM(SDNode *Node, SmallVectorImpl &Results) { assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && "Expected REM node"); SDValue Result; if (!TLI.expandREM(Node, Result, DAG)) Result = DAG.UnrollVectorOp(Node); Results.push_back(Result); } void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, SmallVectorImpl &Results) { EVT VT = Node->getValueType(0); EVT EltVT = VT.getVectorElementType(); unsigned NumElems = VT.getVectorNumElements(); unsigned NumOpers = Node->getNumOperands(); const TargetLowering &TLI = DAG.getTargetLoweringInfo(); EVT TmpEltVT = EltVT; if (Node->getOpcode() == ISD::STRICT_FSETCC || Node->getOpcode() == ISD::STRICT_FSETCCS) TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), TmpEltVT); EVT ValueVTs[] = {TmpEltVT, MVT::Other}; SDValue Chain = Node->getOperand(0); SDLoc dl(Node); SmallVector OpValues; SmallVector OpChains; for (unsigned i = 0; i < NumElems; ++i) { SmallVector Opers; SDValue Idx = DAG.getVectorIdxConstant(i, dl); // The Chain is the first operand. Opers.push_back(Chain); // Now process the remaining operands. for (unsigned j = 1; j < NumOpers; ++j) { SDValue Oper = Node->getOperand(j); EVT OperVT = Oper.getValueType(); if (OperVT.isVector()) Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperVT.getVectorElementType(), Oper, Idx); Opers.push_back(Oper); } SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); SDValue ScalarResult = ScalarOp.getValue(0); SDValue ScalarChain = ScalarOp.getValue(1); if (Node->getOpcode() == ISD::STRICT_FSETCC || Node->getOpcode() == ISD::STRICT_FSETCCS) ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, DAG.getAllOnesConstant(dl, EltVT), DAG.getConstant(0, dl, EltVT)); OpValues.push_back(ScalarResult); OpChains.push_back(ScalarChain); } SDValue Result = DAG.getBuildVector(VT, dl, OpValues); SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); Results.push_back(Result); Results.push_back(NewChain); } SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { EVT VT = Node->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); SDValue LHS = Node->getOperand(0); SDValue RHS = Node->getOperand(1); SDValue CC = Node->getOperand(2); EVT TmpEltVT = LHS.getValueType().getVectorElementType(); SDLoc dl(Node); SmallVector Ops(NumElems); for (unsigned i = 0; i < NumElems; ++i) { SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, DAG.getVectorIdxConstant(i, dl)); SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, DAG.getVectorIdxConstant(i, dl)); Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), TmpEltVT), LHSElem, RHSElem, CC); Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), DAG.getConstant(0, dl, EltVT)); } return DAG.getBuildVector(VT, dl, Ops); } bool SelectionDAG::LegalizeVectors() { return VectorLegalizer(*this).Run(); }