xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/MachineOutliner.cpp (revision e40139ff33b48b56a24c808b166b04b8ee6f5b21)
1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Replaces repeated sequences of instructions with function calls.
11 ///
12 /// This works by placing every instruction from every basic block in a
13 /// suffix tree, and repeatedly querying that tree for repeated sequences of
14 /// instructions. If a sequence of instructions appears often, then it ought
15 /// to be beneficial to pull out into a function.
16 ///
17 /// The MachineOutliner communicates with a given target using hooks defined in
18 /// TargetInstrInfo.h. The target supplies the outliner with information on how
19 /// a specific sequence of instructions should be outlined. This information
20 /// is used to deduce the number of instructions necessary to
21 ///
22 /// * Create an outlined function
23 /// * Call that outlined function
24 ///
25 /// Targets must implement
26 ///   * getOutliningCandidateInfo
27 ///   * buildOutlinedFrame
28 ///   * insertOutlinedCall
29 ///   * isFunctionSafeToOutlineFrom
30 ///
31 /// in order to make use of the MachineOutliner.
32 ///
33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the
34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of
35 /// how this pass works, the talk is available on YouTube at
36 ///
37 /// https://www.youtube.com/watch?v=yorld-WSOeU
38 ///
39 /// The slides for the talk are available at
40 ///
41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
42 ///
43 /// The talk provides an overview of how the outliner finds candidates and
44 /// ultimately outlines them. It describes how the main data structure for this
45 /// pass, the suffix tree, is queried and purged for candidates. It also gives
46 /// a simplified suffix tree construction algorithm for suffix trees based off
47 /// of the algorithm actually used here, Ukkonen's algorithm.
48 ///
49 /// For the original RFC for this pass, please see
50 ///
51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
52 ///
53 /// For more information on the suffix tree data structure, please see
54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
55 ///
56 //===----------------------------------------------------------------------===//
57 #include "llvm/CodeGen/MachineOutliner.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/CodeGen/MachineFunction.h"
62 #include "llvm/CodeGen/MachineModuleInfo.h"
63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
64 #include "llvm/CodeGen/MachineRegisterInfo.h"
65 #include "llvm/CodeGen/Passes.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include "llvm/IR/DIBuilder.h"
69 #include "llvm/IR/IRBuilder.h"
70 #include "llvm/IR/Mangler.h"
71 #include "llvm/Support/Allocator.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <functional>
76 #include <tuple>
77 #include <vector>
78 
79 #define DEBUG_TYPE "machine-outliner"
80 
81 using namespace llvm;
82 using namespace ore;
83 using namespace outliner;
84 
85 STATISTIC(NumOutlined, "Number of candidates outlined");
86 STATISTIC(FunctionsCreated, "Number of functions created");
87 
88 // Set to true if the user wants the outliner to run on linkonceodr linkage
89 // functions. This is false by default because the linker can dedupe linkonceodr
90 // functions. Since the outliner is confined to a single module (modulo LTO),
91 // this is off by default. It should, however, be the default behaviour in
92 // LTO.
93 static cl::opt<bool> EnableLinkOnceODROutlining(
94     "enable-linkonceodr-outlining",
95     cl::Hidden,
96     cl::desc("Enable the machine outliner on linkonceodr functions"),
97     cl::init(false));
98 
99 namespace {
100 
101 /// Represents an undefined index in the suffix tree.
102 const unsigned EmptyIdx = -1;
103 
104 /// A node in a suffix tree which represents a substring or suffix.
105 ///
106 /// Each node has either no children or at least two children, with the root
107 /// being a exception in the empty tree.
108 ///
109 /// Children are represented as a map between unsigned integers and nodes. If
110 /// a node N has a child M on unsigned integer k, then the mapping represented
111 /// by N is a proper prefix of the mapping represented by M. Note that this,
112 /// although similar to a trie is somewhat different: each node stores a full
113 /// substring of the full mapping rather than a single character state.
114 ///
115 /// Each internal node contains a pointer to the internal node representing
116 /// the same string, but with the first character chopped off. This is stored
117 /// in \p Link. Each leaf node stores the start index of its respective
118 /// suffix in \p SuffixIdx.
119 struct SuffixTreeNode {
120 
121   /// The children of this node.
122   ///
123   /// A child existing on an unsigned integer implies that from the mapping
124   /// represented by the current node, there is a way to reach another
125   /// mapping by tacking that character on the end of the current string.
126   DenseMap<unsigned, SuffixTreeNode *> Children;
127 
128   /// The start index of this node's substring in the main string.
129   unsigned StartIdx = EmptyIdx;
130 
131   /// The end index of this node's substring in the main string.
132   ///
133   /// Every leaf node must have its \p EndIdx incremented at the end of every
134   /// step in the construction algorithm. To avoid having to update O(N)
135   /// nodes individually at the end of every step, the end index is stored
136   /// as a pointer.
137   unsigned *EndIdx = nullptr;
138 
139   /// For leaves, the start index of the suffix represented by this node.
140   ///
141   /// For all other nodes, this is ignored.
142   unsigned SuffixIdx = EmptyIdx;
143 
144   /// For internal nodes, a pointer to the internal node representing
145   /// the same sequence with the first character chopped off.
146   ///
147   /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
148   /// Ukkonen's algorithm does to achieve linear-time construction is
149   /// keep track of which node the next insert should be at. This makes each
150   /// insert O(1), and there are a total of O(N) inserts. The suffix link
151   /// helps with inserting children of internal nodes.
152   ///
153   /// Say we add a child to an internal node with associated mapping S. The
154   /// next insertion must be at the node representing S - its first character.
155   /// This is given by the way that we iteratively build the tree in Ukkonen's
156   /// algorithm. The main idea is to look at the suffixes of each prefix in the
157   /// string, starting with the longest suffix of the prefix, and ending with
158   /// the shortest. Therefore, if we keep pointers between such nodes, we can
159   /// move to the next insertion point in O(1) time. If we don't, then we'd
160   /// have to query from the root, which takes O(N) time. This would make the
161   /// construction algorithm O(N^2) rather than O(N).
162   SuffixTreeNode *Link = nullptr;
163 
164   /// The length of the string formed by concatenating the edge labels from the
165   /// root to this node.
166   unsigned ConcatLen = 0;
167 
168   /// Returns true if this node is a leaf.
169   bool isLeaf() const { return SuffixIdx != EmptyIdx; }
170 
171   /// Returns true if this node is the root of its owning \p SuffixTree.
172   bool isRoot() const { return StartIdx == EmptyIdx; }
173 
174   /// Return the number of elements in the substring associated with this node.
175   size_t size() const {
176 
177     // Is it the root? If so, it's the empty string so return 0.
178     if (isRoot())
179       return 0;
180 
181     assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
182 
183     // Size = the number of elements in the string.
184     // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
185     return *EndIdx - StartIdx + 1;
186   }
187 
188   SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
189       : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
190 
191   SuffixTreeNode() {}
192 };
193 
194 /// A data structure for fast substring queries.
195 ///
196 /// Suffix trees represent the suffixes of their input strings in their leaves.
197 /// A suffix tree is a type of compressed trie structure where each node
198 /// represents an entire substring rather than a single character. Each leaf
199 /// of the tree is a suffix.
200 ///
201 /// A suffix tree can be seen as a type of state machine where each state is a
202 /// substring of the full string. The tree is structured so that, for a string
203 /// of length N, there are exactly N leaves in the tree. This structure allows
204 /// us to quickly find repeated substrings of the input string.
205 ///
206 /// In this implementation, a "string" is a vector of unsigned integers.
207 /// These integers may result from hashing some data type. A suffix tree can
208 /// contain 1 or many strings, which can then be queried as one large string.
209 ///
210 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time
211 /// suffix tree construction. Ukkonen's algorithm is explained in more detail
212 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
213 /// paper is available at
214 ///
215 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
216 class SuffixTree {
217 public:
218   /// Each element is an integer representing an instruction in the module.
219   ArrayRef<unsigned> Str;
220 
221   /// A repeated substring in the tree.
222   struct RepeatedSubstring {
223     /// The length of the string.
224     unsigned Length;
225 
226     /// The start indices of each occurrence.
227     std::vector<unsigned> StartIndices;
228   };
229 
230 private:
231   /// Maintains each node in the tree.
232   SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
233 
234   /// The root of the suffix tree.
235   ///
236   /// The root represents the empty string. It is maintained by the
237   /// \p NodeAllocator like every other node in the tree.
238   SuffixTreeNode *Root = nullptr;
239 
240   /// Maintains the end indices of the internal nodes in the tree.
241   ///
242   /// Each internal node is guaranteed to never have its end index change
243   /// during the construction algorithm; however, leaves must be updated at
244   /// every step. Therefore, we need to store leaf end indices by reference
245   /// to avoid updating O(N) leaves at every step of construction. Thus,
246   /// every internal node must be allocated its own end index.
247   BumpPtrAllocator InternalEndIdxAllocator;
248 
249   /// The end index of each leaf in the tree.
250   unsigned LeafEndIdx = -1;
251 
252   /// Helper struct which keeps track of the next insertion point in
253   /// Ukkonen's algorithm.
254   struct ActiveState {
255     /// The next node to insert at.
256     SuffixTreeNode *Node;
257 
258     /// The index of the first character in the substring currently being added.
259     unsigned Idx = EmptyIdx;
260 
261     /// The length of the substring we have to add at the current step.
262     unsigned Len = 0;
263   };
264 
265   /// The point the next insertion will take place at in the
266   /// construction algorithm.
267   ActiveState Active;
268 
269   /// Allocate a leaf node and add it to the tree.
270   ///
271   /// \param Parent The parent of this node.
272   /// \param StartIdx The start index of this node's associated string.
273   /// \param Edge The label on the edge leaving \p Parent to this node.
274   ///
275   /// \returns A pointer to the allocated leaf node.
276   SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
277                              unsigned Edge) {
278 
279     assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
280 
281     SuffixTreeNode *N = new (NodeAllocator.Allocate())
282         SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
283     Parent.Children[Edge] = N;
284 
285     return N;
286   }
287 
288   /// Allocate an internal node and add it to the tree.
289   ///
290   /// \param Parent The parent of this node. Only null when allocating the root.
291   /// \param StartIdx The start index of this node's associated string.
292   /// \param EndIdx The end index of this node's associated string.
293   /// \param Edge The label on the edge leaving \p Parent to this node.
294   ///
295   /// \returns A pointer to the allocated internal node.
296   SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
297                                      unsigned EndIdx, unsigned Edge) {
298 
299     assert(StartIdx <= EndIdx && "String can't start after it ends!");
300     assert(!(!Parent && StartIdx != EmptyIdx) &&
301            "Non-root internal nodes must have parents!");
302 
303     unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
304     SuffixTreeNode *N = new (NodeAllocator.Allocate())
305         SuffixTreeNode(StartIdx, E, Root);
306     if (Parent)
307       Parent->Children[Edge] = N;
308 
309     return N;
310   }
311 
312   /// Set the suffix indices of the leaves to the start indices of their
313   /// respective suffixes.
314   ///
315   /// \param[in] CurrNode The node currently being visited.
316   /// \param CurrNodeLen The concatenation of all node sizes from the root to
317   /// this node. Used to produce suffix indices.
318   void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) {
319 
320     bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
321 
322     // Store the concatenation of lengths down from the root.
323     CurrNode.ConcatLen = CurrNodeLen;
324     // Traverse the tree depth-first.
325     for (auto &ChildPair : CurrNode.Children) {
326       assert(ChildPair.second && "Node had a null child!");
327       setSuffixIndices(*ChildPair.second,
328                        CurrNodeLen + ChildPair.second->size());
329     }
330 
331     // Is this node a leaf? If it is, give it a suffix index.
332     if (IsLeaf)
333       CurrNode.SuffixIdx = Str.size() - CurrNodeLen;
334   }
335 
336   /// Construct the suffix tree for the prefix of the input ending at
337   /// \p EndIdx.
338   ///
339   /// Used to construct the full suffix tree iteratively. At the end of each
340   /// step, the constructed suffix tree is either a valid suffix tree, or a
341   /// suffix tree with implicit suffixes. At the end of the final step, the
342   /// suffix tree is a valid tree.
343   ///
344   /// \param EndIdx The end index of the current prefix in the main string.
345   /// \param SuffixesToAdd The number of suffixes that must be added
346   /// to complete the suffix tree at the current phase.
347   ///
348   /// \returns The number of suffixes that have not been added at the end of
349   /// this step.
350   unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
351     SuffixTreeNode *NeedsLink = nullptr;
352 
353     while (SuffixesToAdd > 0) {
354 
355       // Are we waiting to add anything other than just the last character?
356       if (Active.Len == 0) {
357         // If not, then say the active index is the end index.
358         Active.Idx = EndIdx;
359       }
360 
361       assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
362 
363       // The first character in the current substring we're looking at.
364       unsigned FirstChar = Str[Active.Idx];
365 
366       // Have we inserted anything starting with FirstChar at the current node?
367       if (Active.Node->Children.count(FirstChar) == 0) {
368         // If not, then we can just insert a leaf and move too the next step.
369         insertLeaf(*Active.Node, EndIdx, FirstChar);
370 
371         // The active node is an internal node, and we visited it, so it must
372         // need a link if it doesn't have one.
373         if (NeedsLink) {
374           NeedsLink->Link = Active.Node;
375           NeedsLink = nullptr;
376         }
377       } else {
378         // There's a match with FirstChar, so look for the point in the tree to
379         // insert a new node.
380         SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
381 
382         unsigned SubstringLen = NextNode->size();
383 
384         // Is the current suffix we're trying to insert longer than the size of
385         // the child we want to move to?
386         if (Active.Len >= SubstringLen) {
387           // If yes, then consume the characters we've seen and move to the next
388           // node.
389           Active.Idx += SubstringLen;
390           Active.Len -= SubstringLen;
391           Active.Node = NextNode;
392           continue;
393         }
394 
395         // Otherwise, the suffix we're trying to insert must be contained in the
396         // next node we want to move to.
397         unsigned LastChar = Str[EndIdx];
398 
399         // Is the string we're trying to insert a substring of the next node?
400         if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
401           // If yes, then we're done for this step. Remember our insertion point
402           // and move to the next end index. At this point, we have an implicit
403           // suffix tree.
404           if (NeedsLink && !Active.Node->isRoot()) {
405             NeedsLink->Link = Active.Node;
406             NeedsLink = nullptr;
407           }
408 
409           Active.Len++;
410           break;
411         }
412 
413         // The string we're trying to insert isn't a substring of the next node,
414         // but matches up to a point. Split the node.
415         //
416         // For example, say we ended our search at a node n and we're trying to
417         // insert ABD. Then we'll create a new node s for AB, reduce n to just
418         // representing C, and insert a new leaf node l to represent d. This
419         // allows us to ensure that if n was a leaf, it remains a leaf.
420         //
421         //   | ABC  ---split--->  | AB
422         //   n                    s
423         //                     C / \ D
424         //                      n   l
425 
426         // The node s from the diagram
427         SuffixTreeNode *SplitNode =
428             insertInternalNode(Active.Node, NextNode->StartIdx,
429                                NextNode->StartIdx + Active.Len - 1, FirstChar);
430 
431         // Insert the new node representing the new substring into the tree as
432         // a child of the split node. This is the node l from the diagram.
433         insertLeaf(*SplitNode, EndIdx, LastChar);
434 
435         // Make the old node a child of the split node and update its start
436         // index. This is the node n from the diagram.
437         NextNode->StartIdx += Active.Len;
438         SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
439 
440         // SplitNode is an internal node, update the suffix link.
441         if (NeedsLink)
442           NeedsLink->Link = SplitNode;
443 
444         NeedsLink = SplitNode;
445       }
446 
447       // We've added something new to the tree, so there's one less suffix to
448       // add.
449       SuffixesToAdd--;
450 
451       if (Active.Node->isRoot()) {
452         if (Active.Len > 0) {
453           Active.Len--;
454           Active.Idx = EndIdx - SuffixesToAdd + 1;
455         }
456       } else {
457         // Start the next phase at the next smallest suffix.
458         Active.Node = Active.Node->Link;
459       }
460     }
461 
462     return SuffixesToAdd;
463   }
464 
465 public:
466   /// Construct a suffix tree from a sequence of unsigned integers.
467   ///
468   /// \param Str The string to construct the suffix tree for.
469   SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
470     Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
471     Active.Node = Root;
472 
473     // Keep track of the number of suffixes we have to add of the current
474     // prefix.
475     unsigned SuffixesToAdd = 0;
476     Active.Node = Root;
477 
478     // Construct the suffix tree iteratively on each prefix of the string.
479     // PfxEndIdx is the end index of the current prefix.
480     // End is one past the last element in the string.
481     for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
482          PfxEndIdx++) {
483       SuffixesToAdd++;
484       LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
485       SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
486     }
487 
488     // Set the suffix indices of each leaf.
489     assert(Root && "Root node can't be nullptr!");
490     setSuffixIndices(*Root, 0);
491   }
492 
493 
494   /// Iterator for finding all repeated substrings in the suffix tree.
495   struct RepeatedSubstringIterator {
496     private:
497     /// The current node we're visiting.
498     SuffixTreeNode *N = nullptr;
499 
500     /// The repeated substring associated with this node.
501     RepeatedSubstring RS;
502 
503     /// The nodes left to visit.
504     std::vector<SuffixTreeNode *> ToVisit;
505 
506     /// The minimum length of a repeated substring to find.
507     /// Since we're outlining, we want at least two instructions in the range.
508     /// FIXME: This may not be true for targets like X86 which support many
509     /// instruction lengths.
510     const unsigned MinLength = 2;
511 
512     /// Move the iterator to the next repeated substring.
513     void advance() {
514       // Clear the current state. If we're at the end of the range, then this
515       // is the state we want to be in.
516       RS = RepeatedSubstring();
517       N = nullptr;
518 
519       // Each leaf node represents a repeat of a string.
520       std::vector<SuffixTreeNode *> LeafChildren;
521 
522       // Continue visiting nodes until we find one which repeats more than once.
523       while (!ToVisit.empty()) {
524         SuffixTreeNode *Curr = ToVisit.back();
525         ToVisit.pop_back();
526         LeafChildren.clear();
527 
528         // Keep track of the length of the string associated with the node. If
529         // it's too short, we'll quit.
530         unsigned Length = Curr->ConcatLen;
531 
532         // Iterate over each child, saving internal nodes for visiting, and
533         // leaf nodes in LeafChildren. Internal nodes represent individual
534         // strings, which may repeat.
535         for (auto &ChildPair : Curr->Children) {
536           // Save all of this node's children for processing.
537           if (!ChildPair.second->isLeaf())
538             ToVisit.push_back(ChildPair.second);
539 
540           // It's not an internal node, so it must be a leaf. If we have a
541           // long enough string, then save the leaf children.
542           else if (Length >= MinLength)
543             LeafChildren.push_back(ChildPair.second);
544         }
545 
546         // The root never represents a repeated substring. If we're looking at
547         // that, then skip it.
548         if (Curr->isRoot())
549           continue;
550 
551         // Do we have any repeated substrings?
552         if (LeafChildren.size() >= 2) {
553           // Yes. Update the state to reflect this, and then bail out.
554           N = Curr;
555           RS.Length = Length;
556           for (SuffixTreeNode *Leaf : LeafChildren)
557             RS.StartIndices.push_back(Leaf->SuffixIdx);
558           break;
559         }
560       }
561 
562       // At this point, either NewRS is an empty RepeatedSubstring, or it was
563       // set in the above loop. Similarly, N is either nullptr, or the node
564       // associated with NewRS.
565     }
566 
567   public:
568     /// Return the current repeated substring.
569     RepeatedSubstring &operator*() { return RS; }
570 
571     RepeatedSubstringIterator &operator++() {
572       advance();
573       return *this;
574     }
575 
576     RepeatedSubstringIterator operator++(int I) {
577       RepeatedSubstringIterator It(*this);
578       advance();
579       return It;
580     }
581 
582     bool operator==(const RepeatedSubstringIterator &Other) {
583       return N == Other.N;
584     }
585     bool operator!=(const RepeatedSubstringIterator &Other) {
586       return !(*this == Other);
587     }
588 
589     RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
590       // Do we have a non-null node?
591       if (N) {
592         // Yes. At the first step, we need to visit all of N's children.
593         // Note: This means that we visit N last.
594         ToVisit.push_back(N);
595         advance();
596       }
597     }
598 };
599 
600   typedef RepeatedSubstringIterator iterator;
601   iterator begin() { return iterator(Root); }
602   iterator end() { return iterator(nullptr); }
603 };
604 
605 /// Maps \p MachineInstrs to unsigned integers and stores the mappings.
606 struct InstructionMapper {
607 
608   /// The next available integer to assign to a \p MachineInstr that
609   /// cannot be outlined.
610   ///
611   /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
612   unsigned IllegalInstrNumber = -3;
613 
614   /// The next available integer to assign to a \p MachineInstr that can
615   /// be outlined.
616   unsigned LegalInstrNumber = 0;
617 
618   /// Correspondence from \p MachineInstrs to unsigned integers.
619   DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
620       InstructionIntegerMap;
621 
622   /// Correspondence between \p MachineBasicBlocks and target-defined flags.
623   DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
624 
625   /// The vector of unsigned integers that the module is mapped to.
626   std::vector<unsigned> UnsignedVec;
627 
628   /// Stores the location of the instruction associated with the integer
629   /// at index i in \p UnsignedVec for each index i.
630   std::vector<MachineBasicBlock::iterator> InstrList;
631 
632   // Set if we added an illegal number in the previous step.
633   // Since each illegal number is unique, we only need one of them between
634   // each range of legal numbers. This lets us make sure we don't add more
635   // than one illegal number per range.
636   bool AddedIllegalLastTime = false;
637 
638   /// Maps \p *It to a legal integer.
639   ///
640   /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
641   /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
642   ///
643   /// \returns The integer that \p *It was mapped to.
644   unsigned mapToLegalUnsigned(
645       MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
646       bool &HaveLegalRange, unsigned &NumLegalInBlock,
647       std::vector<unsigned> &UnsignedVecForMBB,
648       std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
649     // We added something legal, so we should unset the AddedLegalLastTime
650     // flag.
651     AddedIllegalLastTime = false;
652 
653     // If we have at least two adjacent legal instructions (which may have
654     // invisible instructions in between), remember that.
655     if (CanOutlineWithPrevInstr)
656       HaveLegalRange = true;
657     CanOutlineWithPrevInstr = true;
658 
659     // Keep track of the number of legal instructions we insert.
660     NumLegalInBlock++;
661 
662     // Get the integer for this instruction or give it the current
663     // LegalInstrNumber.
664     InstrListForMBB.push_back(It);
665     MachineInstr &MI = *It;
666     bool WasInserted;
667     DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
668         ResultIt;
669     std::tie(ResultIt, WasInserted) =
670         InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
671     unsigned MINumber = ResultIt->second;
672 
673     // There was an insertion.
674     if (WasInserted)
675       LegalInstrNumber++;
676 
677     UnsignedVecForMBB.push_back(MINumber);
678 
679     // Make sure we don't overflow or use any integers reserved by the DenseMap.
680     if (LegalInstrNumber >= IllegalInstrNumber)
681       report_fatal_error("Instruction mapping overflow!");
682 
683     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
684            "Tried to assign DenseMap tombstone or empty key to instruction.");
685     assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
686            "Tried to assign DenseMap tombstone or empty key to instruction.");
687 
688     return MINumber;
689   }
690 
691   /// Maps \p *It to an illegal integer.
692   ///
693   /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
694   /// IllegalInstrNumber.
695   ///
696   /// \returns The integer that \p *It was mapped to.
697   unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It,
698   bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB,
699   std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
700     // Can't outline an illegal instruction. Set the flag.
701     CanOutlineWithPrevInstr = false;
702 
703     // Only add one illegal number per range of legal numbers.
704     if (AddedIllegalLastTime)
705       return IllegalInstrNumber;
706 
707     // Remember that we added an illegal number last time.
708     AddedIllegalLastTime = true;
709     unsigned MINumber = IllegalInstrNumber;
710 
711     InstrListForMBB.push_back(It);
712     UnsignedVecForMBB.push_back(IllegalInstrNumber);
713     IllegalInstrNumber--;
714 
715     assert(LegalInstrNumber < IllegalInstrNumber &&
716            "Instruction mapping overflow!");
717 
718     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
719            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
720 
721     assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
722            "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
723 
724     return MINumber;
725   }
726 
727   /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
728   /// and appends it to \p UnsignedVec and \p InstrList.
729   ///
730   /// Two instructions are assigned the same integer if they are identical.
731   /// If an instruction is deemed unsafe to outline, then it will be assigned an
732   /// unique integer. The resulting mapping is placed into a suffix tree and
733   /// queried for candidates.
734   ///
735   /// \param MBB The \p MachineBasicBlock to be translated into integers.
736   /// \param TII \p TargetInstrInfo for the function.
737   void convertToUnsignedVec(MachineBasicBlock &MBB,
738                             const TargetInstrInfo &TII) {
739     unsigned Flags = 0;
740 
741     // Don't even map in this case.
742     if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
743       return;
744 
745     // Store info for the MBB for later outlining.
746     MBBFlagsMap[&MBB] = Flags;
747 
748     MachineBasicBlock::iterator It = MBB.begin();
749 
750     // The number of instructions in this block that will be considered for
751     // outlining.
752     unsigned NumLegalInBlock = 0;
753 
754     // True if we have at least two legal instructions which aren't separated
755     // by an illegal instruction.
756     bool HaveLegalRange = false;
757 
758     // True if we can perform outlining given the last mapped (non-invisible)
759     // instruction. This lets us know if we have a legal range.
760     bool CanOutlineWithPrevInstr = false;
761 
762     // FIXME: Should this all just be handled in the target, rather than using
763     // repeated calls to getOutliningType?
764     std::vector<unsigned> UnsignedVecForMBB;
765     std::vector<MachineBasicBlock::iterator> InstrListForMBB;
766 
767     for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) {
768       // Keep track of where this instruction is in the module.
769       switch (TII.getOutliningType(It, Flags)) {
770       case InstrType::Illegal:
771         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr,
772                              UnsignedVecForMBB, InstrListForMBB);
773         break;
774 
775       case InstrType::Legal:
776         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
777                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
778         break;
779 
780       case InstrType::LegalTerminator:
781         mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
782                            NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
783         // The instruction also acts as a terminator, so we have to record that
784         // in the string.
785         mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
786         InstrListForMBB);
787         break;
788 
789       case InstrType::Invisible:
790         // Normally this is set by mapTo(Blah)Unsigned, but we just want to
791         // skip this instruction. So, unset the flag here.
792         AddedIllegalLastTime = false;
793         break;
794       }
795     }
796 
797     // Are there enough legal instructions in the block for outlining to be
798     // possible?
799     if (HaveLegalRange) {
800       // After we're done every insertion, uniquely terminate this part of the
801       // "string". This makes sure we won't match across basic block or function
802       // boundaries since the "end" is encoded uniquely and thus appears in no
803       // repeated substring.
804       mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
805       InstrListForMBB);
806       InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
807                        InstrListForMBB.end());
808       UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
809                          UnsignedVecForMBB.end());
810     }
811   }
812 
813   InstructionMapper() {
814     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
815     // changed.
816     assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
817            "DenseMapInfo<unsigned>'s empty key isn't -1!");
818     assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
819            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
820   }
821 };
822 
823 /// An interprocedural pass which finds repeated sequences of
824 /// instructions and replaces them with calls to functions.
825 ///
826 /// Each instruction is mapped to an unsigned integer and placed in a string.
827 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
828 /// is then repeatedly queried for repeated sequences of instructions. Each
829 /// non-overlapping repeated sequence is then placed in its own
830 /// \p MachineFunction and each instance is then replaced with a call to that
831 /// function.
832 struct MachineOutliner : public ModulePass {
833 
834   static char ID;
835 
836   /// Set to true if the outliner should consider functions with
837   /// linkonceodr linkage.
838   bool OutlineFromLinkOnceODRs = false;
839 
840   /// Set to true if the outliner should run on all functions in the module
841   /// considered safe for outlining.
842   /// Set to true by default for compatibility with llc's -run-pass option.
843   /// Set when the pass is constructed in TargetPassConfig.
844   bool RunOnAllFunctions = true;
845 
846   StringRef getPassName() const override { return "Machine Outliner"; }
847 
848   void getAnalysisUsage(AnalysisUsage &AU) const override {
849     AU.addRequired<MachineModuleInfoWrapperPass>();
850     AU.addPreserved<MachineModuleInfoWrapperPass>();
851     AU.setPreservesAll();
852     ModulePass::getAnalysisUsage(AU);
853   }
854 
855   MachineOutliner() : ModulePass(ID) {
856     initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
857   }
858 
859   /// Remark output explaining that not outlining a set of candidates would be
860   /// better than outlining that set.
861   void emitNotOutliningCheaperRemark(
862       unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
863       OutlinedFunction &OF);
864 
865   /// Remark output explaining that a function was outlined.
866   void emitOutlinedFunctionRemark(OutlinedFunction &OF);
867 
868   /// Find all repeated substrings that satisfy the outlining cost model by
869   /// constructing a suffix tree.
870   ///
871   /// If a substring appears at least twice, then it must be represented by
872   /// an internal node which appears in at least two suffixes. Each suffix
873   /// is represented by a leaf node. To do this, we visit each internal node
874   /// in the tree, using the leaf children of each internal node. If an
875   /// internal node represents a beneficial substring, then we use each of
876   /// its leaf children to find the locations of its substring.
877   ///
878   /// \param Mapper Contains outlining mapping information.
879   /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
880   /// each type of candidate.
881   void findCandidates(InstructionMapper &Mapper,
882                       std::vector<OutlinedFunction> &FunctionList);
883 
884   /// Replace the sequences of instructions represented by \p OutlinedFunctions
885   /// with calls to functions.
886   ///
887   /// \param M The module we are outlining from.
888   /// \param FunctionList A list of functions to be inserted into the module.
889   /// \param Mapper Contains the instruction mappings for the module.
890   bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList,
891                InstructionMapper &Mapper);
892 
893   /// Creates a function for \p OF and inserts it into the module.
894   MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
895                                           InstructionMapper &Mapper,
896                                           unsigned Name);
897 
898   /// Construct a suffix tree on the instructions in \p M and outline repeated
899   /// strings from that tree.
900   bool runOnModule(Module &M) override;
901 
902   /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
903   /// function for remark emission.
904   DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
905     DISubprogram *SP;
906     for (const Candidate &C : OF.Candidates)
907       if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram()))
908         return SP;
909     return nullptr;
910   }
911 
912   /// Populate and \p InstructionMapper with instruction-to-integer mappings.
913   /// These are used to construct a suffix tree.
914   void populateMapper(InstructionMapper &Mapper, Module &M,
915                       MachineModuleInfo &MMI);
916 
917   /// Initialize information necessary to output a size remark.
918   /// FIXME: This should be handled by the pass manager, not the outliner.
919   /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
920   /// pass manager.
921   void initSizeRemarkInfo(
922       const Module &M, const MachineModuleInfo &MMI,
923       StringMap<unsigned> &FunctionToInstrCount);
924 
925   /// Emit the remark.
926   // FIXME: This should be handled by the pass manager, not the outliner.
927   void emitInstrCountChangedRemark(
928       const Module &M, const MachineModuleInfo &MMI,
929       const StringMap<unsigned> &FunctionToInstrCount);
930 };
931 } // Anonymous namespace.
932 
933 char MachineOutliner::ID = 0;
934 
935 namespace llvm {
936 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
937   MachineOutliner *OL = new MachineOutliner();
938   OL->RunOnAllFunctions = RunOnAllFunctions;
939   return OL;
940 }
941 
942 } // namespace llvm
943 
944 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
945                 false)
946 
947 void MachineOutliner::emitNotOutliningCheaperRemark(
948     unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
949     OutlinedFunction &OF) {
950   // FIXME: Right now, we arbitrarily choose some Candidate from the
951   // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
952   // We should probably sort these by function name or something to make sure
953   // the remarks are stable.
954   Candidate &C = CandidatesForRepeatedSeq.front();
955   MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
956   MORE.emit([&]() {
957     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
958                                       C.front()->getDebugLoc(), C.getMBB());
959     R << "Did not outline " << NV("Length", StringLen) << " instructions"
960       << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
961       << " locations."
962       << " Bytes from outlining all occurrences ("
963       << NV("OutliningCost", OF.getOutliningCost()) << ")"
964       << " >= Unoutlined instruction bytes ("
965       << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
966       << " (Also found at: ";
967 
968     // Tell the user the other places the candidate was found.
969     for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
970       R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
971               CandidatesForRepeatedSeq[i].front()->getDebugLoc());
972       if (i != e - 1)
973         R << ", ";
974     }
975 
976     R << ")";
977     return R;
978   });
979 }
980 
981 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
982   MachineBasicBlock *MBB = &*OF.MF->begin();
983   MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
984   MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
985                               MBB->findDebugLoc(MBB->begin()), MBB);
986   R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
987     << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
988     << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
989     << " locations. "
990     << "(Found at: ";
991 
992   // Tell the user the other places the candidate was found.
993   for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
994 
995     R << NV((Twine("StartLoc") + Twine(i)).str(),
996             OF.Candidates[i].front()->getDebugLoc());
997     if (i != e - 1)
998       R << ", ";
999   }
1000 
1001   R << ")";
1002 
1003   MORE.emit(R);
1004 }
1005 
1006 void
1007 MachineOutliner::findCandidates(InstructionMapper &Mapper,
1008                                 std::vector<OutlinedFunction> &FunctionList) {
1009   FunctionList.clear();
1010   SuffixTree ST(Mapper.UnsignedVec);
1011 
1012   // First, find dall of the repeated substrings in the tree of minimum length
1013   // 2.
1014   std::vector<Candidate> CandidatesForRepeatedSeq;
1015   for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
1016     CandidatesForRepeatedSeq.clear();
1017     SuffixTree::RepeatedSubstring RS = *It;
1018     unsigned StringLen = RS.Length;
1019     for (const unsigned &StartIdx : RS.StartIndices) {
1020       unsigned EndIdx = StartIdx + StringLen - 1;
1021       // Trick: Discard some candidates that would be incompatible with the
1022       // ones we've already found for this sequence. This will save us some
1023       // work in candidate selection.
1024       //
1025       // If two candidates overlap, then we can't outline them both. This
1026       // happens when we have candidates that look like, say
1027       //
1028       // AA (where each "A" is an instruction).
1029       //
1030       // We might have some portion of the module that looks like this:
1031       // AAAAAA (6 A's)
1032       //
1033       // In this case, there are 5 different copies of "AA" in this range, but
1034       // at most 3 can be outlined. If only outlining 3 of these is going to
1035       // be unbeneficial, then we ought to not bother.
1036       //
1037       // Note that two things DON'T overlap when they look like this:
1038       // start1...end1 .... start2...end2
1039       // That is, one must either
1040       // * End before the other starts
1041       // * Start after the other ends
1042       if (std::all_of(
1043               CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
1044               [&StartIdx, &EndIdx](const Candidate &C) {
1045                 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
1046               })) {
1047         // It doesn't overlap with anything, so we can outline it.
1048         // Each sequence is over [StartIt, EndIt].
1049         // Save the candidate and its location.
1050 
1051         MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1052         MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1053         MachineBasicBlock *MBB = StartIt->getParent();
1054 
1055         CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
1056                                               EndIt, MBB, FunctionList.size(),
1057                                               Mapper.MBBFlagsMap[MBB]);
1058       }
1059     }
1060 
1061     // We've found something we might want to outline.
1062     // Create an OutlinedFunction to store it and check if it'd be beneficial
1063     // to outline.
1064     if (CandidatesForRepeatedSeq.size() < 2)
1065       continue;
1066 
1067     // Arbitrarily choose a TII from the first candidate.
1068     // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1069     const TargetInstrInfo *TII =
1070         CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
1071 
1072     OutlinedFunction OF =
1073         TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
1074 
1075     // If we deleted too many candidates, then there's nothing worth outlining.
1076     // FIXME: This should take target-specified instruction sizes into account.
1077     if (OF.Candidates.size() < 2)
1078       continue;
1079 
1080     // Is it better to outline this candidate than not?
1081     if (OF.getBenefit() < 1) {
1082       emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
1083       continue;
1084     }
1085 
1086     FunctionList.push_back(OF);
1087   }
1088 }
1089 
1090 MachineFunction *
1091 MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF,
1092                                         InstructionMapper &Mapper,
1093                                         unsigned Name) {
1094 
1095   // Create the function name. This should be unique.
1096   // FIXME: We should have a better naming scheme. This should be stable,
1097   // regardless of changes to the outliner's cost model/traversal order.
1098   std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str();
1099 
1100   // Create the function using an IR-level function.
1101   LLVMContext &C = M.getContext();
1102   Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false),
1103                                  Function::ExternalLinkage, FunctionName, M);
1104 
1105   // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1106   // which gives us better results when we outline from linkonceodr functions.
1107   F->setLinkage(GlobalValue::InternalLinkage);
1108   F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1109 
1110   // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1111   // necessary.
1112 
1113   // Set optsize/minsize, so we don't insert padding between outlined
1114   // functions.
1115   F->addFnAttr(Attribute::OptimizeForSize);
1116   F->addFnAttr(Attribute::MinSize);
1117 
1118   // Include target features from an arbitrary candidate for the outlined
1119   // function. This makes sure the outlined function knows what kinds of
1120   // instructions are going into it. This is fine, since all parent functions
1121   // must necessarily support the instructions that are in the outlined region.
1122   Candidate &FirstCand = OF.Candidates.front();
1123   const Function &ParentFn = FirstCand.getMF()->getFunction();
1124   if (ParentFn.hasFnAttribute("target-features"))
1125     F->addFnAttr(ParentFn.getFnAttribute("target-features"));
1126 
1127   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1128   IRBuilder<> Builder(EntryBB);
1129   Builder.CreateRetVoid();
1130 
1131   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1132   MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1133   MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1134   const TargetSubtargetInfo &STI = MF.getSubtarget();
1135   const TargetInstrInfo &TII = *STI.getInstrInfo();
1136 
1137   // Insert the new function into the module.
1138   MF.insert(MF.begin(), &MBB);
1139 
1140   for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E;
1141        ++I) {
1142     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
1143     NewMI->dropMemRefs(MF);
1144 
1145     // Don't keep debug information for outlined instructions.
1146     NewMI->setDebugLoc(DebugLoc());
1147     MBB.insert(MBB.end(), NewMI);
1148   }
1149 
1150   TII.buildOutlinedFrame(MBB, MF, OF);
1151 
1152   // Outlined functions shouldn't preserve liveness.
1153   MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1154   MF.getRegInfo().freezeReservedRegs(MF);
1155 
1156   // If there's a DISubprogram associated with this outlined function, then
1157   // emit debug info for the outlined function.
1158   if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1159     // We have a DISubprogram. Get its DICompileUnit.
1160     DICompileUnit *CU = SP->getUnit();
1161     DIBuilder DB(M, true, CU);
1162     DIFile *Unit = SP->getFile();
1163     Mangler Mg;
1164     // Get the mangled name of the function for the linkage name.
1165     std::string Dummy;
1166     llvm::raw_string_ostream MangledNameStream(Dummy);
1167     Mg.getNameWithPrefix(MangledNameStream, F, false);
1168 
1169     DISubprogram *OutlinedSP = DB.createFunction(
1170         Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1171         Unit /* File */,
1172         0 /* Line 0 is reserved for compiler-generated code. */,
1173         DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
1174         0, /* Line 0 is reserved for compiler-generated code. */
1175         DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1176         /* Outlined code is optimized code by definition. */
1177         DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
1178 
1179     // Don't add any new variables to the subprogram.
1180     DB.finalizeSubprogram(OutlinedSP);
1181 
1182     // Attach subprogram to the function.
1183     F->setSubprogram(OutlinedSP);
1184     // We're done with the DIBuilder.
1185     DB.finalize();
1186   }
1187 
1188   return &MF;
1189 }
1190 
1191 bool MachineOutliner::outline(Module &M,
1192                               std::vector<OutlinedFunction> &FunctionList,
1193                               InstructionMapper &Mapper) {
1194 
1195   bool OutlinedSomething = false;
1196 
1197   // Number to append to the current outlined function.
1198   unsigned OutlinedFunctionNum = 0;
1199 
1200   // Sort by benefit. The most beneficial functions should be outlined first.
1201   llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS,
1202                                      const OutlinedFunction &RHS) {
1203     return LHS.getBenefit() > RHS.getBenefit();
1204   });
1205 
1206   // Walk over each function, outlining them as we go along. Functions are
1207   // outlined greedily, based off the sort above.
1208   for (OutlinedFunction &OF : FunctionList) {
1209     // If we outlined something that overlapped with a candidate in a previous
1210     // step, then we can't outline from it.
1211     erase_if(OF.Candidates, [&Mapper](Candidate &C) {
1212       return std::any_of(
1213           Mapper.UnsignedVec.begin() + C.getStartIdx(),
1214           Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1215           [](unsigned I) { return (I == static_cast<unsigned>(-1)); });
1216     });
1217 
1218     // If we made it unbeneficial to outline this function, skip it.
1219     if (OF.getBenefit() < 1)
1220       continue;
1221 
1222     // It's beneficial. Create the function and outline its sequence's
1223     // occurrences.
1224     OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
1225     emitOutlinedFunctionRemark(OF);
1226     FunctionsCreated++;
1227     OutlinedFunctionNum++; // Created a function, move to the next name.
1228     MachineFunction *MF = OF.MF;
1229     const TargetSubtargetInfo &STI = MF->getSubtarget();
1230     const TargetInstrInfo &TII = *STI.getInstrInfo();
1231 
1232     // Replace occurrences of the sequence with calls to the new function.
1233     for (Candidate &C : OF.Candidates) {
1234       MachineBasicBlock &MBB = *C.getMBB();
1235       MachineBasicBlock::iterator StartIt = C.front();
1236       MachineBasicBlock::iterator EndIt = C.back();
1237 
1238       // Insert the call.
1239       auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);
1240 
1241       // If the caller tracks liveness, then we need to make sure that
1242       // anything we outline doesn't break liveness assumptions. The outlined
1243       // functions themselves currently don't track liveness, but we should
1244       // make sure that the ranges we yank things out of aren't wrong.
1245       if (MBB.getParent()->getProperties().hasProperty(
1246               MachineFunctionProperties::Property::TracksLiveness)) {
1247         // Helper lambda for adding implicit def operands to the call
1248         // instruction. It also updates call site information for moved
1249         // code.
1250         auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) {
1251           for (MachineOperand &MOP : MI.operands()) {
1252             // Skip over anything that isn't a register.
1253             if (!MOP.isReg())
1254               continue;
1255 
1256             // If it's a def, add it to the call instruction.
1257             if (MOP.isDef())
1258               CallInst->addOperand(MachineOperand::CreateReg(
1259                   MOP.getReg(), true, /* isDef = true */
1260                   true /* isImp = true */));
1261           }
1262           if (MI.isCall())
1263             MI.getMF()->eraseCallSiteInfo(&MI);
1264         };
1265         // Copy over the defs in the outlined range.
1266         // First inst in outlined range <-- Anything that's defined in this
1267         // ...                           .. range has to be added as an
1268         // implicit Last inst in outlined range  <-- def to the call
1269         // instruction. Also remove call site information for outlined block
1270         // of code.
1271         std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls);
1272       }
1273 
1274       // Erase from the point after where the call was inserted up to, and
1275       // including, the final instruction in the sequence.
1276       // Erase needs one past the end, so we need std::next there too.
1277       MBB.erase(std::next(StartIt), std::next(EndIt));
1278 
1279       // Keep track of what we removed by marking them all as -1.
1280       std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(),
1281                     Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1282                     [](unsigned &I) { I = static_cast<unsigned>(-1); });
1283       OutlinedSomething = true;
1284 
1285       // Statistics.
1286       NumOutlined++;
1287     }
1288   }
1289 
1290   LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1291 
1292   return OutlinedSomething;
1293 }
1294 
1295 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
1296                                      MachineModuleInfo &MMI) {
1297   // Build instruction mappings for each function in the module. Start by
1298   // iterating over each Function in M.
1299   for (Function &F : M) {
1300 
1301     // If there's nothing in F, then there's no reason to try and outline from
1302     // it.
1303     if (F.empty())
1304       continue;
1305 
1306     // Disable outlining from noreturn functions right now. Noreturn requires
1307     // special handling for the case where what we are outlining could be a
1308     // tail call.
1309     if (F.hasFnAttribute(Attribute::NoReturn))
1310       continue;
1311 
1312     // There's something in F. Check if it has a MachineFunction associated with
1313     // it.
1314     MachineFunction *MF = MMI.getMachineFunction(F);
1315 
1316     // If it doesn't, then there's nothing to outline from. Move to the next
1317     // Function.
1318     if (!MF)
1319       continue;
1320 
1321     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1322 
1323     if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1324       continue;
1325 
1326     // We have a MachineFunction. Ask the target if it's suitable for outlining.
1327     // If it isn't, then move on to the next Function in the module.
1328     if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1329       continue;
1330 
1331     // We have a function suitable for outlining. Iterate over every
1332     // MachineBasicBlock in MF and try to map its instructions to a list of
1333     // unsigned integers.
1334     for (MachineBasicBlock &MBB : *MF) {
1335       // If there isn't anything in MBB, then there's no point in outlining from
1336       // it.
1337       // If there are fewer than 2 instructions in the MBB, then it can't ever
1338       // contain something worth outlining.
1339       // FIXME: This should be based off of the maximum size in B of an outlined
1340       // call versus the size in B of the MBB.
1341       if (MBB.empty() || MBB.size() < 2)
1342         continue;
1343 
1344       // Check if MBB could be the target of an indirect branch. If it is, then
1345       // we don't want to outline from it.
1346       if (MBB.hasAddressTaken())
1347         continue;
1348 
1349       // MBB is suitable for outlining. Map it to a list of unsigneds.
1350       Mapper.convertToUnsignedVec(MBB, *TII);
1351     }
1352   }
1353 }
1354 
1355 void MachineOutliner::initSizeRemarkInfo(
1356     const Module &M, const MachineModuleInfo &MMI,
1357     StringMap<unsigned> &FunctionToInstrCount) {
1358   // Collect instruction counts for every function. We'll use this to emit
1359   // per-function size remarks later.
1360   for (const Function &F : M) {
1361     MachineFunction *MF = MMI.getMachineFunction(F);
1362 
1363     // We only care about MI counts here. If there's no MachineFunction at this
1364     // point, then there won't be after the outliner runs, so let's move on.
1365     if (!MF)
1366       continue;
1367     FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
1368   }
1369 }
1370 
1371 void MachineOutliner::emitInstrCountChangedRemark(
1372     const Module &M, const MachineModuleInfo &MMI,
1373     const StringMap<unsigned> &FunctionToInstrCount) {
1374   // Iterate over each function in the module and emit remarks.
1375   // Note that we won't miss anything by doing this, because the outliner never
1376   // deletes functions.
1377   for (const Function &F : M) {
1378     MachineFunction *MF = MMI.getMachineFunction(F);
1379 
1380     // The outliner never deletes functions. If we don't have a MF here, then we
1381     // didn't have one prior to outlining either.
1382     if (!MF)
1383       continue;
1384 
1385     std::string Fname = F.getName();
1386     unsigned FnCountAfter = MF->getInstructionCount();
1387     unsigned FnCountBefore = 0;
1388 
1389     // Check if the function was recorded before.
1390     auto It = FunctionToInstrCount.find(Fname);
1391 
1392     // Did we have a previously-recorded size? If yes, then set FnCountBefore
1393     // to that.
1394     if (It != FunctionToInstrCount.end())
1395       FnCountBefore = It->second;
1396 
1397     // Compute the delta and emit a remark if there was a change.
1398     int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
1399                       static_cast<int64_t>(FnCountBefore);
1400     if (FnDelta == 0)
1401       continue;
1402 
1403     MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
1404     MORE.emit([&]() {
1405       MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
1406                                           DiagnosticLocation(),
1407                                           &MF->front());
1408       R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1409         << ": Function: "
1410         << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
1411         << ": MI instruction count changed from "
1412         << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1413                                                     FnCountBefore)
1414         << " to "
1415         << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1416                                                     FnCountAfter)
1417         << "; Delta: "
1418         << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
1419       return R;
1420     });
1421   }
1422 }
1423 
1424 bool MachineOutliner::runOnModule(Module &M) {
1425   // Check if there's anything in the module. If it's empty, then there's
1426   // nothing to outline.
1427   if (M.empty())
1428     return false;
1429 
1430   MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1431 
1432   // If the user passed -enable-machine-outliner=always or
1433   // -enable-machine-outliner, the pass will run on all functions in the module.
1434   // Otherwise, if the target supports default outlining, it will run on all
1435   // functions deemed by the target to be worth outlining from by default. Tell
1436   // the user how the outliner is running.
1437   LLVM_DEBUG(
1438     dbgs() << "Machine Outliner: Running on ";
1439     if (RunOnAllFunctions)
1440       dbgs() << "all functions";
1441     else
1442       dbgs() << "target-default functions";
1443     dbgs() << "\n"
1444   );
1445 
1446   // If the user specifies that they want to outline from linkonceodrs, set
1447   // it here.
1448   OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1449   InstructionMapper Mapper;
1450 
1451   // Prepare instruction mappings for the suffix tree.
1452   populateMapper(Mapper, M, MMI);
1453   std::vector<OutlinedFunction> FunctionList;
1454 
1455   // Find all of the outlining candidates.
1456   findCandidates(Mapper, FunctionList);
1457 
1458   // If we've requested size remarks, then collect the MI counts of every
1459   // function before outlining, and the MI counts after outlining.
1460   // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1461   // the pass manager's responsibility.
1462   // This could pretty easily be placed in outline instead, but because we
1463   // really ultimately *don't* want this here, it's done like this for now
1464   // instead.
1465 
1466   // Check if we want size remarks.
1467   bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
1468   StringMap<unsigned> FunctionToInstrCount;
1469   if (ShouldEmitSizeRemarks)
1470     initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
1471 
1472   // Outline each of the candidates and return true if something was outlined.
1473   bool OutlinedSomething = outline(M, FunctionList, Mapper);
1474 
1475   // If we outlined something, we definitely changed the MI count of the
1476   // module. If we've asked for size remarks, then output them.
1477   // FIXME: This should be in the pass manager.
1478   if (ShouldEmitSizeRemarks && OutlinedSomething)
1479     emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
1480 
1481   return OutlinedSomething;
1482 }
1483