1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Replaces repeated sequences of instructions with function calls. 11 /// 12 /// This works by placing every instruction from every basic block in a 13 /// suffix tree, and repeatedly querying that tree for repeated sequences of 14 /// instructions. If a sequence of instructions appears often, then it ought 15 /// to be beneficial to pull out into a function. 16 /// 17 /// The MachineOutliner communicates with a given target using hooks defined in 18 /// TargetInstrInfo.h. The target supplies the outliner with information on how 19 /// a specific sequence of instructions should be outlined. This information 20 /// is used to deduce the number of instructions necessary to 21 /// 22 /// * Create an outlined function 23 /// * Call that outlined function 24 /// 25 /// Targets must implement 26 /// * getOutliningCandidateInfo 27 /// * buildOutlinedFrame 28 /// * insertOutlinedCall 29 /// * isFunctionSafeToOutlineFrom 30 /// 31 /// in order to make use of the MachineOutliner. 32 /// 33 /// This was originally presented at the 2016 LLVM Developers' Meeting in the 34 /// talk "Reducing Code Size Using Outlining". For a high-level overview of 35 /// how this pass works, the talk is available on YouTube at 36 /// 37 /// https://www.youtube.com/watch?v=yorld-WSOeU 38 /// 39 /// The slides for the talk are available at 40 /// 41 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf 42 /// 43 /// The talk provides an overview of how the outliner finds candidates and 44 /// ultimately outlines them. It describes how the main data structure for this 45 /// pass, the suffix tree, is queried and purged for candidates. It also gives 46 /// a simplified suffix tree construction algorithm for suffix trees based off 47 /// of the algorithm actually used here, Ukkonen's algorithm. 48 /// 49 /// For the original RFC for this pass, please see 50 /// 51 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html 52 /// 53 /// For more information on the suffix tree data structure, please see 54 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 55 /// 56 //===----------------------------------------------------------------------===// 57 #include "llvm/CodeGen/MachineOutliner.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/Twine.h" 61 #include "llvm/CodeGen/MachineFunction.h" 62 #include "llvm/CodeGen/MachineModuleInfo.h" 63 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 64 #include "llvm/CodeGen/MachineRegisterInfo.h" 65 #include "llvm/CodeGen/Passes.h" 66 #include "llvm/CodeGen/TargetInstrInfo.h" 67 #include "llvm/CodeGen/TargetSubtargetInfo.h" 68 #include "llvm/IR/DIBuilder.h" 69 #include "llvm/IR/IRBuilder.h" 70 #include "llvm/IR/Mangler.h" 71 #include "llvm/Support/Allocator.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <functional> 76 #include <tuple> 77 #include <vector> 78 79 #define DEBUG_TYPE "machine-outliner" 80 81 using namespace llvm; 82 using namespace ore; 83 using namespace outliner; 84 85 STATISTIC(NumOutlined, "Number of candidates outlined"); 86 STATISTIC(FunctionsCreated, "Number of functions created"); 87 88 // Set to true if the user wants the outliner to run on linkonceodr linkage 89 // functions. This is false by default because the linker can dedupe linkonceodr 90 // functions. Since the outliner is confined to a single module (modulo LTO), 91 // this is off by default. It should, however, be the default behaviour in 92 // LTO. 93 static cl::opt<bool> EnableLinkOnceODROutlining( 94 "enable-linkonceodr-outlining", 95 cl::Hidden, 96 cl::desc("Enable the machine outliner on linkonceodr functions"), 97 cl::init(false)); 98 99 namespace { 100 101 /// Represents an undefined index in the suffix tree. 102 const unsigned EmptyIdx = -1; 103 104 /// A node in a suffix tree which represents a substring or suffix. 105 /// 106 /// Each node has either no children or at least two children, with the root 107 /// being a exception in the empty tree. 108 /// 109 /// Children are represented as a map between unsigned integers and nodes. If 110 /// a node N has a child M on unsigned integer k, then the mapping represented 111 /// by N is a proper prefix of the mapping represented by M. Note that this, 112 /// although similar to a trie is somewhat different: each node stores a full 113 /// substring of the full mapping rather than a single character state. 114 /// 115 /// Each internal node contains a pointer to the internal node representing 116 /// the same string, but with the first character chopped off. This is stored 117 /// in \p Link. Each leaf node stores the start index of its respective 118 /// suffix in \p SuffixIdx. 119 struct SuffixTreeNode { 120 121 /// The children of this node. 122 /// 123 /// A child existing on an unsigned integer implies that from the mapping 124 /// represented by the current node, there is a way to reach another 125 /// mapping by tacking that character on the end of the current string. 126 DenseMap<unsigned, SuffixTreeNode *> Children; 127 128 /// The start index of this node's substring in the main string. 129 unsigned StartIdx = EmptyIdx; 130 131 /// The end index of this node's substring in the main string. 132 /// 133 /// Every leaf node must have its \p EndIdx incremented at the end of every 134 /// step in the construction algorithm. To avoid having to update O(N) 135 /// nodes individually at the end of every step, the end index is stored 136 /// as a pointer. 137 unsigned *EndIdx = nullptr; 138 139 /// For leaves, the start index of the suffix represented by this node. 140 /// 141 /// For all other nodes, this is ignored. 142 unsigned SuffixIdx = EmptyIdx; 143 144 /// For internal nodes, a pointer to the internal node representing 145 /// the same sequence with the first character chopped off. 146 /// 147 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that 148 /// Ukkonen's algorithm does to achieve linear-time construction is 149 /// keep track of which node the next insert should be at. This makes each 150 /// insert O(1), and there are a total of O(N) inserts. The suffix link 151 /// helps with inserting children of internal nodes. 152 /// 153 /// Say we add a child to an internal node with associated mapping S. The 154 /// next insertion must be at the node representing S - its first character. 155 /// This is given by the way that we iteratively build the tree in Ukkonen's 156 /// algorithm. The main idea is to look at the suffixes of each prefix in the 157 /// string, starting with the longest suffix of the prefix, and ending with 158 /// the shortest. Therefore, if we keep pointers between such nodes, we can 159 /// move to the next insertion point in O(1) time. If we don't, then we'd 160 /// have to query from the root, which takes O(N) time. This would make the 161 /// construction algorithm O(N^2) rather than O(N). 162 SuffixTreeNode *Link = nullptr; 163 164 /// The length of the string formed by concatenating the edge labels from the 165 /// root to this node. 166 unsigned ConcatLen = 0; 167 168 /// Returns true if this node is a leaf. 169 bool isLeaf() const { return SuffixIdx != EmptyIdx; } 170 171 /// Returns true if this node is the root of its owning \p SuffixTree. 172 bool isRoot() const { return StartIdx == EmptyIdx; } 173 174 /// Return the number of elements in the substring associated with this node. 175 size_t size() const { 176 177 // Is it the root? If so, it's the empty string so return 0. 178 if (isRoot()) 179 return 0; 180 181 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); 182 183 // Size = the number of elements in the string. 184 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. 185 return *EndIdx - StartIdx + 1; 186 } 187 188 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link) 189 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {} 190 191 SuffixTreeNode() {} 192 }; 193 194 /// A data structure for fast substring queries. 195 /// 196 /// Suffix trees represent the suffixes of their input strings in their leaves. 197 /// A suffix tree is a type of compressed trie structure where each node 198 /// represents an entire substring rather than a single character. Each leaf 199 /// of the tree is a suffix. 200 /// 201 /// A suffix tree can be seen as a type of state machine where each state is a 202 /// substring of the full string. The tree is structured so that, for a string 203 /// of length N, there are exactly N leaves in the tree. This structure allows 204 /// us to quickly find repeated substrings of the input string. 205 /// 206 /// In this implementation, a "string" is a vector of unsigned integers. 207 /// These integers may result from hashing some data type. A suffix tree can 208 /// contain 1 or many strings, which can then be queried as one large string. 209 /// 210 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time 211 /// suffix tree construction. Ukkonen's algorithm is explained in more detail 212 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The 213 /// paper is available at 214 /// 215 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf 216 class SuffixTree { 217 public: 218 /// Each element is an integer representing an instruction in the module. 219 ArrayRef<unsigned> Str; 220 221 /// A repeated substring in the tree. 222 struct RepeatedSubstring { 223 /// The length of the string. 224 unsigned Length; 225 226 /// The start indices of each occurrence. 227 std::vector<unsigned> StartIndices; 228 }; 229 230 private: 231 /// Maintains each node in the tree. 232 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; 233 234 /// The root of the suffix tree. 235 /// 236 /// The root represents the empty string. It is maintained by the 237 /// \p NodeAllocator like every other node in the tree. 238 SuffixTreeNode *Root = nullptr; 239 240 /// Maintains the end indices of the internal nodes in the tree. 241 /// 242 /// Each internal node is guaranteed to never have its end index change 243 /// during the construction algorithm; however, leaves must be updated at 244 /// every step. Therefore, we need to store leaf end indices by reference 245 /// to avoid updating O(N) leaves at every step of construction. Thus, 246 /// every internal node must be allocated its own end index. 247 BumpPtrAllocator InternalEndIdxAllocator; 248 249 /// The end index of each leaf in the tree. 250 unsigned LeafEndIdx = -1; 251 252 /// Helper struct which keeps track of the next insertion point in 253 /// Ukkonen's algorithm. 254 struct ActiveState { 255 /// The next node to insert at. 256 SuffixTreeNode *Node; 257 258 /// The index of the first character in the substring currently being added. 259 unsigned Idx = EmptyIdx; 260 261 /// The length of the substring we have to add at the current step. 262 unsigned Len = 0; 263 }; 264 265 /// The point the next insertion will take place at in the 266 /// construction algorithm. 267 ActiveState Active; 268 269 /// Allocate a leaf node and add it to the tree. 270 /// 271 /// \param Parent The parent of this node. 272 /// \param StartIdx The start index of this node's associated string. 273 /// \param Edge The label on the edge leaving \p Parent to this node. 274 /// 275 /// \returns A pointer to the allocated leaf node. 276 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, 277 unsigned Edge) { 278 279 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); 280 281 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 282 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr); 283 Parent.Children[Edge] = N; 284 285 return N; 286 } 287 288 /// Allocate an internal node and add it to the tree. 289 /// 290 /// \param Parent The parent of this node. Only null when allocating the root. 291 /// \param StartIdx The start index of this node's associated string. 292 /// \param EndIdx The end index of this node's associated string. 293 /// \param Edge The label on the edge leaving \p Parent to this node. 294 /// 295 /// \returns A pointer to the allocated internal node. 296 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, 297 unsigned EndIdx, unsigned Edge) { 298 299 assert(StartIdx <= EndIdx && "String can't start after it ends!"); 300 assert(!(!Parent && StartIdx != EmptyIdx) && 301 "Non-root internal nodes must have parents!"); 302 303 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); 304 SuffixTreeNode *N = new (NodeAllocator.Allocate()) 305 SuffixTreeNode(StartIdx, E, Root); 306 if (Parent) 307 Parent->Children[Edge] = N; 308 309 return N; 310 } 311 312 /// Set the suffix indices of the leaves to the start indices of their 313 /// respective suffixes. 314 /// 315 /// \param[in] CurrNode The node currently being visited. 316 /// \param CurrNodeLen The concatenation of all node sizes from the root to 317 /// this node. Used to produce suffix indices. 318 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrNodeLen) { 319 320 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); 321 322 // Store the concatenation of lengths down from the root. 323 CurrNode.ConcatLen = CurrNodeLen; 324 // Traverse the tree depth-first. 325 for (auto &ChildPair : CurrNode.Children) { 326 assert(ChildPair.second && "Node had a null child!"); 327 setSuffixIndices(*ChildPair.second, 328 CurrNodeLen + ChildPair.second->size()); 329 } 330 331 // Is this node a leaf? If it is, give it a suffix index. 332 if (IsLeaf) 333 CurrNode.SuffixIdx = Str.size() - CurrNodeLen; 334 } 335 336 /// Construct the suffix tree for the prefix of the input ending at 337 /// \p EndIdx. 338 /// 339 /// Used to construct the full suffix tree iteratively. At the end of each 340 /// step, the constructed suffix tree is either a valid suffix tree, or a 341 /// suffix tree with implicit suffixes. At the end of the final step, the 342 /// suffix tree is a valid tree. 343 /// 344 /// \param EndIdx The end index of the current prefix in the main string. 345 /// \param SuffixesToAdd The number of suffixes that must be added 346 /// to complete the suffix tree at the current phase. 347 /// 348 /// \returns The number of suffixes that have not been added at the end of 349 /// this step. 350 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { 351 SuffixTreeNode *NeedsLink = nullptr; 352 353 while (SuffixesToAdd > 0) { 354 355 // Are we waiting to add anything other than just the last character? 356 if (Active.Len == 0) { 357 // If not, then say the active index is the end index. 358 Active.Idx = EndIdx; 359 } 360 361 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); 362 363 // The first character in the current substring we're looking at. 364 unsigned FirstChar = Str[Active.Idx]; 365 366 // Have we inserted anything starting with FirstChar at the current node? 367 if (Active.Node->Children.count(FirstChar) == 0) { 368 // If not, then we can just insert a leaf and move too the next step. 369 insertLeaf(*Active.Node, EndIdx, FirstChar); 370 371 // The active node is an internal node, and we visited it, so it must 372 // need a link if it doesn't have one. 373 if (NeedsLink) { 374 NeedsLink->Link = Active.Node; 375 NeedsLink = nullptr; 376 } 377 } else { 378 // There's a match with FirstChar, so look for the point in the tree to 379 // insert a new node. 380 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; 381 382 unsigned SubstringLen = NextNode->size(); 383 384 // Is the current suffix we're trying to insert longer than the size of 385 // the child we want to move to? 386 if (Active.Len >= SubstringLen) { 387 // If yes, then consume the characters we've seen and move to the next 388 // node. 389 Active.Idx += SubstringLen; 390 Active.Len -= SubstringLen; 391 Active.Node = NextNode; 392 continue; 393 } 394 395 // Otherwise, the suffix we're trying to insert must be contained in the 396 // next node we want to move to. 397 unsigned LastChar = Str[EndIdx]; 398 399 // Is the string we're trying to insert a substring of the next node? 400 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { 401 // If yes, then we're done for this step. Remember our insertion point 402 // and move to the next end index. At this point, we have an implicit 403 // suffix tree. 404 if (NeedsLink && !Active.Node->isRoot()) { 405 NeedsLink->Link = Active.Node; 406 NeedsLink = nullptr; 407 } 408 409 Active.Len++; 410 break; 411 } 412 413 // The string we're trying to insert isn't a substring of the next node, 414 // but matches up to a point. Split the node. 415 // 416 // For example, say we ended our search at a node n and we're trying to 417 // insert ABD. Then we'll create a new node s for AB, reduce n to just 418 // representing C, and insert a new leaf node l to represent d. This 419 // allows us to ensure that if n was a leaf, it remains a leaf. 420 // 421 // | ABC ---split---> | AB 422 // n s 423 // C / \ D 424 // n l 425 426 // The node s from the diagram 427 SuffixTreeNode *SplitNode = 428 insertInternalNode(Active.Node, NextNode->StartIdx, 429 NextNode->StartIdx + Active.Len - 1, FirstChar); 430 431 // Insert the new node representing the new substring into the tree as 432 // a child of the split node. This is the node l from the diagram. 433 insertLeaf(*SplitNode, EndIdx, LastChar); 434 435 // Make the old node a child of the split node and update its start 436 // index. This is the node n from the diagram. 437 NextNode->StartIdx += Active.Len; 438 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; 439 440 // SplitNode is an internal node, update the suffix link. 441 if (NeedsLink) 442 NeedsLink->Link = SplitNode; 443 444 NeedsLink = SplitNode; 445 } 446 447 // We've added something new to the tree, so there's one less suffix to 448 // add. 449 SuffixesToAdd--; 450 451 if (Active.Node->isRoot()) { 452 if (Active.Len > 0) { 453 Active.Len--; 454 Active.Idx = EndIdx - SuffixesToAdd + 1; 455 } 456 } else { 457 // Start the next phase at the next smallest suffix. 458 Active.Node = Active.Node->Link; 459 } 460 } 461 462 return SuffixesToAdd; 463 } 464 465 public: 466 /// Construct a suffix tree from a sequence of unsigned integers. 467 /// 468 /// \param Str The string to construct the suffix tree for. 469 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { 470 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); 471 Active.Node = Root; 472 473 // Keep track of the number of suffixes we have to add of the current 474 // prefix. 475 unsigned SuffixesToAdd = 0; 476 Active.Node = Root; 477 478 // Construct the suffix tree iteratively on each prefix of the string. 479 // PfxEndIdx is the end index of the current prefix. 480 // End is one past the last element in the string. 481 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; 482 PfxEndIdx++) { 483 SuffixesToAdd++; 484 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. 485 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); 486 } 487 488 // Set the suffix indices of each leaf. 489 assert(Root && "Root node can't be nullptr!"); 490 setSuffixIndices(*Root, 0); 491 } 492 493 494 /// Iterator for finding all repeated substrings in the suffix tree. 495 struct RepeatedSubstringIterator { 496 private: 497 /// The current node we're visiting. 498 SuffixTreeNode *N = nullptr; 499 500 /// The repeated substring associated with this node. 501 RepeatedSubstring RS; 502 503 /// The nodes left to visit. 504 std::vector<SuffixTreeNode *> ToVisit; 505 506 /// The minimum length of a repeated substring to find. 507 /// Since we're outlining, we want at least two instructions in the range. 508 /// FIXME: This may not be true for targets like X86 which support many 509 /// instruction lengths. 510 const unsigned MinLength = 2; 511 512 /// Move the iterator to the next repeated substring. 513 void advance() { 514 // Clear the current state. If we're at the end of the range, then this 515 // is the state we want to be in. 516 RS = RepeatedSubstring(); 517 N = nullptr; 518 519 // Each leaf node represents a repeat of a string. 520 std::vector<SuffixTreeNode *> LeafChildren; 521 522 // Continue visiting nodes until we find one which repeats more than once. 523 while (!ToVisit.empty()) { 524 SuffixTreeNode *Curr = ToVisit.back(); 525 ToVisit.pop_back(); 526 LeafChildren.clear(); 527 528 // Keep track of the length of the string associated with the node. If 529 // it's too short, we'll quit. 530 unsigned Length = Curr->ConcatLen; 531 532 // Iterate over each child, saving internal nodes for visiting, and 533 // leaf nodes in LeafChildren. Internal nodes represent individual 534 // strings, which may repeat. 535 for (auto &ChildPair : Curr->Children) { 536 // Save all of this node's children for processing. 537 if (!ChildPair.second->isLeaf()) 538 ToVisit.push_back(ChildPair.second); 539 540 // It's not an internal node, so it must be a leaf. If we have a 541 // long enough string, then save the leaf children. 542 else if (Length >= MinLength) 543 LeafChildren.push_back(ChildPair.second); 544 } 545 546 // The root never represents a repeated substring. If we're looking at 547 // that, then skip it. 548 if (Curr->isRoot()) 549 continue; 550 551 // Do we have any repeated substrings? 552 if (LeafChildren.size() >= 2) { 553 // Yes. Update the state to reflect this, and then bail out. 554 N = Curr; 555 RS.Length = Length; 556 for (SuffixTreeNode *Leaf : LeafChildren) 557 RS.StartIndices.push_back(Leaf->SuffixIdx); 558 break; 559 } 560 } 561 562 // At this point, either NewRS is an empty RepeatedSubstring, or it was 563 // set in the above loop. Similarly, N is either nullptr, or the node 564 // associated with NewRS. 565 } 566 567 public: 568 /// Return the current repeated substring. 569 RepeatedSubstring &operator*() { return RS; } 570 571 RepeatedSubstringIterator &operator++() { 572 advance(); 573 return *this; 574 } 575 576 RepeatedSubstringIterator operator++(int I) { 577 RepeatedSubstringIterator It(*this); 578 advance(); 579 return It; 580 } 581 582 bool operator==(const RepeatedSubstringIterator &Other) { 583 return N == Other.N; 584 } 585 bool operator!=(const RepeatedSubstringIterator &Other) { 586 return !(*this == Other); 587 } 588 589 RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) { 590 // Do we have a non-null node? 591 if (N) { 592 // Yes. At the first step, we need to visit all of N's children. 593 // Note: This means that we visit N last. 594 ToVisit.push_back(N); 595 advance(); 596 } 597 } 598 }; 599 600 typedef RepeatedSubstringIterator iterator; 601 iterator begin() { return iterator(Root); } 602 iterator end() { return iterator(nullptr); } 603 }; 604 605 /// Maps \p MachineInstrs to unsigned integers and stores the mappings. 606 struct InstructionMapper { 607 608 /// The next available integer to assign to a \p MachineInstr that 609 /// cannot be outlined. 610 /// 611 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. 612 unsigned IllegalInstrNumber = -3; 613 614 /// The next available integer to assign to a \p MachineInstr that can 615 /// be outlined. 616 unsigned LegalInstrNumber = 0; 617 618 /// Correspondence from \p MachineInstrs to unsigned integers. 619 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> 620 InstructionIntegerMap; 621 622 /// Correspondence between \p MachineBasicBlocks and target-defined flags. 623 DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap; 624 625 /// The vector of unsigned integers that the module is mapped to. 626 std::vector<unsigned> UnsignedVec; 627 628 /// Stores the location of the instruction associated with the integer 629 /// at index i in \p UnsignedVec for each index i. 630 std::vector<MachineBasicBlock::iterator> InstrList; 631 632 // Set if we added an illegal number in the previous step. 633 // Since each illegal number is unique, we only need one of them between 634 // each range of legal numbers. This lets us make sure we don't add more 635 // than one illegal number per range. 636 bool AddedIllegalLastTime = false; 637 638 /// Maps \p *It to a legal integer. 639 /// 640 /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, 641 /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. 642 /// 643 /// \returns The integer that \p *It was mapped to. 644 unsigned mapToLegalUnsigned( 645 MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, 646 bool &HaveLegalRange, unsigned &NumLegalInBlock, 647 std::vector<unsigned> &UnsignedVecForMBB, 648 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 649 // We added something legal, so we should unset the AddedLegalLastTime 650 // flag. 651 AddedIllegalLastTime = false; 652 653 // If we have at least two adjacent legal instructions (which may have 654 // invisible instructions in between), remember that. 655 if (CanOutlineWithPrevInstr) 656 HaveLegalRange = true; 657 CanOutlineWithPrevInstr = true; 658 659 // Keep track of the number of legal instructions we insert. 660 NumLegalInBlock++; 661 662 // Get the integer for this instruction or give it the current 663 // LegalInstrNumber. 664 InstrListForMBB.push_back(It); 665 MachineInstr &MI = *It; 666 bool WasInserted; 667 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator 668 ResultIt; 669 std::tie(ResultIt, WasInserted) = 670 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); 671 unsigned MINumber = ResultIt->second; 672 673 // There was an insertion. 674 if (WasInserted) 675 LegalInstrNumber++; 676 677 UnsignedVecForMBB.push_back(MINumber); 678 679 // Make sure we don't overflow or use any integers reserved by the DenseMap. 680 if (LegalInstrNumber >= IllegalInstrNumber) 681 report_fatal_error("Instruction mapping overflow!"); 682 683 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 684 "Tried to assign DenseMap tombstone or empty key to instruction."); 685 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 686 "Tried to assign DenseMap tombstone or empty key to instruction."); 687 688 return MINumber; 689 } 690 691 /// Maps \p *It to an illegal integer. 692 /// 693 /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p 694 /// IllegalInstrNumber. 695 /// 696 /// \returns The integer that \p *It was mapped to. 697 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It, 698 bool &CanOutlineWithPrevInstr, std::vector<unsigned> &UnsignedVecForMBB, 699 std::vector<MachineBasicBlock::iterator> &InstrListForMBB) { 700 // Can't outline an illegal instruction. Set the flag. 701 CanOutlineWithPrevInstr = false; 702 703 // Only add one illegal number per range of legal numbers. 704 if (AddedIllegalLastTime) 705 return IllegalInstrNumber; 706 707 // Remember that we added an illegal number last time. 708 AddedIllegalLastTime = true; 709 unsigned MINumber = IllegalInstrNumber; 710 711 InstrListForMBB.push_back(It); 712 UnsignedVecForMBB.push_back(IllegalInstrNumber); 713 IllegalInstrNumber--; 714 715 assert(LegalInstrNumber < IllegalInstrNumber && 716 "Instruction mapping overflow!"); 717 718 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 719 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 720 721 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 722 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 723 724 return MINumber; 725 } 726 727 /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds 728 /// and appends it to \p UnsignedVec and \p InstrList. 729 /// 730 /// Two instructions are assigned the same integer if they are identical. 731 /// If an instruction is deemed unsafe to outline, then it will be assigned an 732 /// unique integer. The resulting mapping is placed into a suffix tree and 733 /// queried for candidates. 734 /// 735 /// \param MBB The \p MachineBasicBlock to be translated into integers. 736 /// \param TII \p TargetInstrInfo for the function. 737 void convertToUnsignedVec(MachineBasicBlock &MBB, 738 const TargetInstrInfo &TII) { 739 unsigned Flags = 0; 740 741 // Don't even map in this case. 742 if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) 743 return; 744 745 // Store info for the MBB for later outlining. 746 MBBFlagsMap[&MBB] = Flags; 747 748 MachineBasicBlock::iterator It = MBB.begin(); 749 750 // The number of instructions in this block that will be considered for 751 // outlining. 752 unsigned NumLegalInBlock = 0; 753 754 // True if we have at least two legal instructions which aren't separated 755 // by an illegal instruction. 756 bool HaveLegalRange = false; 757 758 // True if we can perform outlining given the last mapped (non-invisible) 759 // instruction. This lets us know if we have a legal range. 760 bool CanOutlineWithPrevInstr = false; 761 762 // FIXME: Should this all just be handled in the target, rather than using 763 // repeated calls to getOutliningType? 764 std::vector<unsigned> UnsignedVecForMBB; 765 std::vector<MachineBasicBlock::iterator> InstrListForMBB; 766 767 for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; It++) { 768 // Keep track of where this instruction is in the module. 769 switch (TII.getOutliningType(It, Flags)) { 770 case InstrType::Illegal: 771 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, 772 UnsignedVecForMBB, InstrListForMBB); 773 break; 774 775 case InstrType::Legal: 776 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 777 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 778 break; 779 780 case InstrType::LegalTerminator: 781 mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, 782 NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); 783 // The instruction also acts as a terminator, so we have to record that 784 // in the string. 785 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 786 InstrListForMBB); 787 break; 788 789 case InstrType::Invisible: 790 // Normally this is set by mapTo(Blah)Unsigned, but we just want to 791 // skip this instruction. So, unset the flag here. 792 AddedIllegalLastTime = false; 793 break; 794 } 795 } 796 797 // Are there enough legal instructions in the block for outlining to be 798 // possible? 799 if (HaveLegalRange) { 800 // After we're done every insertion, uniquely terminate this part of the 801 // "string". This makes sure we won't match across basic block or function 802 // boundaries since the "end" is encoded uniquely and thus appears in no 803 // repeated substring. 804 mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, 805 InstrListForMBB); 806 InstrList.insert(InstrList.end(), InstrListForMBB.begin(), 807 InstrListForMBB.end()); 808 UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(), 809 UnsignedVecForMBB.end()); 810 } 811 } 812 813 InstructionMapper() { 814 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't 815 // changed. 816 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && 817 "DenseMapInfo<unsigned>'s empty key isn't -1!"); 818 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && 819 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); 820 } 821 }; 822 823 /// An interprocedural pass which finds repeated sequences of 824 /// instructions and replaces them with calls to functions. 825 /// 826 /// Each instruction is mapped to an unsigned integer and placed in a string. 827 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree 828 /// is then repeatedly queried for repeated sequences of instructions. Each 829 /// non-overlapping repeated sequence is then placed in its own 830 /// \p MachineFunction and each instance is then replaced with a call to that 831 /// function. 832 struct MachineOutliner : public ModulePass { 833 834 static char ID; 835 836 /// Set to true if the outliner should consider functions with 837 /// linkonceodr linkage. 838 bool OutlineFromLinkOnceODRs = false; 839 840 /// Set to true if the outliner should run on all functions in the module 841 /// considered safe for outlining. 842 /// Set to true by default for compatibility with llc's -run-pass option. 843 /// Set when the pass is constructed in TargetPassConfig. 844 bool RunOnAllFunctions = true; 845 846 StringRef getPassName() const override { return "Machine Outliner"; } 847 848 void getAnalysisUsage(AnalysisUsage &AU) const override { 849 AU.addRequired<MachineModuleInfoWrapperPass>(); 850 AU.addPreserved<MachineModuleInfoWrapperPass>(); 851 AU.setPreservesAll(); 852 ModulePass::getAnalysisUsage(AU); 853 } 854 855 MachineOutliner() : ModulePass(ID) { 856 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); 857 } 858 859 /// Remark output explaining that not outlining a set of candidates would be 860 /// better than outlining that set. 861 void emitNotOutliningCheaperRemark( 862 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 863 OutlinedFunction &OF); 864 865 /// Remark output explaining that a function was outlined. 866 void emitOutlinedFunctionRemark(OutlinedFunction &OF); 867 868 /// Find all repeated substrings that satisfy the outlining cost model by 869 /// constructing a suffix tree. 870 /// 871 /// If a substring appears at least twice, then it must be represented by 872 /// an internal node which appears in at least two suffixes. Each suffix 873 /// is represented by a leaf node. To do this, we visit each internal node 874 /// in the tree, using the leaf children of each internal node. If an 875 /// internal node represents a beneficial substring, then we use each of 876 /// its leaf children to find the locations of its substring. 877 /// 878 /// \param Mapper Contains outlining mapping information. 879 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions 880 /// each type of candidate. 881 void findCandidates(InstructionMapper &Mapper, 882 std::vector<OutlinedFunction> &FunctionList); 883 884 /// Replace the sequences of instructions represented by \p OutlinedFunctions 885 /// with calls to functions. 886 /// 887 /// \param M The module we are outlining from. 888 /// \param FunctionList A list of functions to be inserted into the module. 889 /// \param Mapper Contains the instruction mappings for the module. 890 bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList, 891 InstructionMapper &Mapper); 892 893 /// Creates a function for \p OF and inserts it into the module. 894 MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, 895 InstructionMapper &Mapper, 896 unsigned Name); 897 898 /// Construct a suffix tree on the instructions in \p M and outline repeated 899 /// strings from that tree. 900 bool runOnModule(Module &M) override; 901 902 /// Return a DISubprogram for OF if one exists, and null otherwise. Helper 903 /// function for remark emission. 904 DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { 905 DISubprogram *SP; 906 for (const Candidate &C : OF.Candidates) 907 if (C.getMF() && (SP = C.getMF()->getFunction().getSubprogram())) 908 return SP; 909 return nullptr; 910 } 911 912 /// Populate and \p InstructionMapper with instruction-to-integer mappings. 913 /// These are used to construct a suffix tree. 914 void populateMapper(InstructionMapper &Mapper, Module &M, 915 MachineModuleInfo &MMI); 916 917 /// Initialize information necessary to output a size remark. 918 /// FIXME: This should be handled by the pass manager, not the outliner. 919 /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy 920 /// pass manager. 921 void initSizeRemarkInfo( 922 const Module &M, const MachineModuleInfo &MMI, 923 StringMap<unsigned> &FunctionToInstrCount); 924 925 /// Emit the remark. 926 // FIXME: This should be handled by the pass manager, not the outliner. 927 void emitInstrCountChangedRemark( 928 const Module &M, const MachineModuleInfo &MMI, 929 const StringMap<unsigned> &FunctionToInstrCount); 930 }; 931 } // Anonymous namespace. 932 933 char MachineOutliner::ID = 0; 934 935 namespace llvm { 936 ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { 937 MachineOutliner *OL = new MachineOutliner(); 938 OL->RunOnAllFunctions = RunOnAllFunctions; 939 return OL; 940 } 941 942 } // namespace llvm 943 944 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, 945 false) 946 947 void MachineOutliner::emitNotOutliningCheaperRemark( 948 unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq, 949 OutlinedFunction &OF) { 950 // FIXME: Right now, we arbitrarily choose some Candidate from the 951 // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. 952 // We should probably sort these by function name or something to make sure 953 // the remarks are stable. 954 Candidate &C = CandidatesForRepeatedSeq.front(); 955 MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); 956 MORE.emit([&]() { 957 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", 958 C.front()->getDebugLoc(), C.getMBB()); 959 R << "Did not outline " << NV("Length", StringLen) << " instructions" 960 << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) 961 << " locations." 962 << " Bytes from outlining all occurrences (" 963 << NV("OutliningCost", OF.getOutliningCost()) << ")" 964 << " >= Unoutlined instruction bytes (" 965 << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" 966 << " (Also found at: "; 967 968 // Tell the user the other places the candidate was found. 969 for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { 970 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), 971 CandidatesForRepeatedSeq[i].front()->getDebugLoc()); 972 if (i != e - 1) 973 R << ", "; 974 } 975 976 R << ")"; 977 return R; 978 }); 979 } 980 981 void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { 982 MachineBasicBlock *MBB = &*OF.MF->begin(); 983 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); 984 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", 985 MBB->findDebugLoc(MBB->begin()), MBB); 986 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " 987 << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " 988 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) 989 << " locations. " 990 << "(Found at: "; 991 992 // Tell the user the other places the candidate was found. 993 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { 994 995 R << NV((Twine("StartLoc") + Twine(i)).str(), 996 OF.Candidates[i].front()->getDebugLoc()); 997 if (i != e - 1) 998 R << ", "; 999 } 1000 1001 R << ")"; 1002 1003 MORE.emit(R); 1004 } 1005 1006 void 1007 MachineOutliner::findCandidates(InstructionMapper &Mapper, 1008 std::vector<OutlinedFunction> &FunctionList) { 1009 FunctionList.clear(); 1010 SuffixTree ST(Mapper.UnsignedVec); 1011 1012 // First, find dall of the repeated substrings in the tree of minimum length 1013 // 2. 1014 std::vector<Candidate> CandidatesForRepeatedSeq; 1015 for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) { 1016 CandidatesForRepeatedSeq.clear(); 1017 SuffixTree::RepeatedSubstring RS = *It; 1018 unsigned StringLen = RS.Length; 1019 for (const unsigned &StartIdx : RS.StartIndices) { 1020 unsigned EndIdx = StartIdx + StringLen - 1; 1021 // Trick: Discard some candidates that would be incompatible with the 1022 // ones we've already found for this sequence. This will save us some 1023 // work in candidate selection. 1024 // 1025 // If two candidates overlap, then we can't outline them both. This 1026 // happens when we have candidates that look like, say 1027 // 1028 // AA (where each "A" is an instruction). 1029 // 1030 // We might have some portion of the module that looks like this: 1031 // AAAAAA (6 A's) 1032 // 1033 // In this case, there are 5 different copies of "AA" in this range, but 1034 // at most 3 can be outlined. If only outlining 3 of these is going to 1035 // be unbeneficial, then we ought to not bother. 1036 // 1037 // Note that two things DON'T overlap when they look like this: 1038 // start1...end1 .... start2...end2 1039 // That is, one must either 1040 // * End before the other starts 1041 // * Start after the other ends 1042 if (std::all_of( 1043 CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(), 1044 [&StartIdx, &EndIdx](const Candidate &C) { 1045 return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx()); 1046 })) { 1047 // It doesn't overlap with anything, so we can outline it. 1048 // Each sequence is over [StartIt, EndIt]. 1049 // Save the candidate and its location. 1050 1051 MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; 1052 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; 1053 MachineBasicBlock *MBB = StartIt->getParent(); 1054 1055 CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, 1056 EndIt, MBB, FunctionList.size(), 1057 Mapper.MBBFlagsMap[MBB]); 1058 } 1059 } 1060 1061 // We've found something we might want to outline. 1062 // Create an OutlinedFunction to store it and check if it'd be beneficial 1063 // to outline. 1064 if (CandidatesForRepeatedSeq.size() < 2) 1065 continue; 1066 1067 // Arbitrarily choose a TII from the first candidate. 1068 // FIXME: Should getOutliningCandidateInfo move to TargetMachine? 1069 const TargetInstrInfo *TII = 1070 CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); 1071 1072 OutlinedFunction OF = 1073 TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); 1074 1075 // If we deleted too many candidates, then there's nothing worth outlining. 1076 // FIXME: This should take target-specified instruction sizes into account. 1077 if (OF.Candidates.size() < 2) 1078 continue; 1079 1080 // Is it better to outline this candidate than not? 1081 if (OF.getBenefit() < 1) { 1082 emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF); 1083 continue; 1084 } 1085 1086 FunctionList.push_back(OF); 1087 } 1088 } 1089 1090 MachineFunction * 1091 MachineOutliner::createOutlinedFunction(Module &M, OutlinedFunction &OF, 1092 InstructionMapper &Mapper, 1093 unsigned Name) { 1094 1095 // Create the function name. This should be unique. 1096 // FIXME: We should have a better naming scheme. This should be stable, 1097 // regardless of changes to the outliner's cost model/traversal order. 1098 std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str(); 1099 1100 // Create the function using an IR-level function. 1101 LLVMContext &C = M.getContext(); 1102 Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), 1103 Function::ExternalLinkage, FunctionName, M); 1104 1105 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping 1106 // which gives us better results when we outline from linkonceodr functions. 1107 F->setLinkage(GlobalValue::InternalLinkage); 1108 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 1109 1110 // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's 1111 // necessary. 1112 1113 // Set optsize/minsize, so we don't insert padding between outlined 1114 // functions. 1115 F->addFnAttr(Attribute::OptimizeForSize); 1116 F->addFnAttr(Attribute::MinSize); 1117 1118 // Include target features from an arbitrary candidate for the outlined 1119 // function. This makes sure the outlined function knows what kinds of 1120 // instructions are going into it. This is fine, since all parent functions 1121 // must necessarily support the instructions that are in the outlined region. 1122 Candidate &FirstCand = OF.Candidates.front(); 1123 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1124 if (ParentFn.hasFnAttribute("target-features")) 1125 F->addFnAttr(ParentFn.getFnAttribute("target-features")); 1126 1127 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 1128 IRBuilder<> Builder(EntryBB); 1129 Builder.CreateRetVoid(); 1130 1131 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1132 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); 1133 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); 1134 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1135 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1136 1137 // Insert the new function into the module. 1138 MF.insert(MF.begin(), &MBB); 1139 1140 for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; 1141 ++I) { 1142 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 1143 NewMI->dropMemRefs(MF); 1144 1145 // Don't keep debug information for outlined instructions. 1146 NewMI->setDebugLoc(DebugLoc()); 1147 MBB.insert(MBB.end(), NewMI); 1148 } 1149 1150 TII.buildOutlinedFrame(MBB, MF, OF); 1151 1152 // Outlined functions shouldn't preserve liveness. 1153 MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness); 1154 MF.getRegInfo().freezeReservedRegs(MF); 1155 1156 // If there's a DISubprogram associated with this outlined function, then 1157 // emit debug info for the outlined function. 1158 if (DISubprogram *SP = getSubprogramOrNull(OF)) { 1159 // We have a DISubprogram. Get its DICompileUnit. 1160 DICompileUnit *CU = SP->getUnit(); 1161 DIBuilder DB(M, true, CU); 1162 DIFile *Unit = SP->getFile(); 1163 Mangler Mg; 1164 // Get the mangled name of the function for the linkage name. 1165 std::string Dummy; 1166 llvm::raw_string_ostream MangledNameStream(Dummy); 1167 Mg.getNameWithPrefix(MangledNameStream, F, false); 1168 1169 DISubprogram *OutlinedSP = DB.createFunction( 1170 Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), 1171 Unit /* File */, 1172 0 /* Line 0 is reserved for compiler-generated code. */, 1173 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 1174 0, /* Line 0 is reserved for compiler-generated code. */ 1175 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, 1176 /* Outlined code is optimized code by definition. */ 1177 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); 1178 1179 // Don't add any new variables to the subprogram. 1180 DB.finalizeSubprogram(OutlinedSP); 1181 1182 // Attach subprogram to the function. 1183 F->setSubprogram(OutlinedSP); 1184 // We're done with the DIBuilder. 1185 DB.finalize(); 1186 } 1187 1188 return &MF; 1189 } 1190 1191 bool MachineOutliner::outline(Module &M, 1192 std::vector<OutlinedFunction> &FunctionList, 1193 InstructionMapper &Mapper) { 1194 1195 bool OutlinedSomething = false; 1196 1197 // Number to append to the current outlined function. 1198 unsigned OutlinedFunctionNum = 0; 1199 1200 // Sort by benefit. The most beneficial functions should be outlined first. 1201 llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS, 1202 const OutlinedFunction &RHS) { 1203 return LHS.getBenefit() > RHS.getBenefit(); 1204 }); 1205 1206 // Walk over each function, outlining them as we go along. Functions are 1207 // outlined greedily, based off the sort above. 1208 for (OutlinedFunction &OF : FunctionList) { 1209 // If we outlined something that overlapped with a candidate in a previous 1210 // step, then we can't outline from it. 1211 erase_if(OF.Candidates, [&Mapper](Candidate &C) { 1212 return std::any_of( 1213 Mapper.UnsignedVec.begin() + C.getStartIdx(), 1214 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1215 [](unsigned I) { return (I == static_cast<unsigned>(-1)); }); 1216 }); 1217 1218 // If we made it unbeneficial to outline this function, skip it. 1219 if (OF.getBenefit() < 1) 1220 continue; 1221 1222 // It's beneficial. Create the function and outline its sequence's 1223 // occurrences. 1224 OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); 1225 emitOutlinedFunctionRemark(OF); 1226 FunctionsCreated++; 1227 OutlinedFunctionNum++; // Created a function, move to the next name. 1228 MachineFunction *MF = OF.MF; 1229 const TargetSubtargetInfo &STI = MF->getSubtarget(); 1230 const TargetInstrInfo &TII = *STI.getInstrInfo(); 1231 1232 // Replace occurrences of the sequence with calls to the new function. 1233 for (Candidate &C : OF.Candidates) { 1234 MachineBasicBlock &MBB = *C.getMBB(); 1235 MachineBasicBlock::iterator StartIt = C.front(); 1236 MachineBasicBlock::iterator EndIt = C.back(); 1237 1238 // Insert the call. 1239 auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); 1240 1241 // If the caller tracks liveness, then we need to make sure that 1242 // anything we outline doesn't break liveness assumptions. The outlined 1243 // functions themselves currently don't track liveness, but we should 1244 // make sure that the ranges we yank things out of aren't wrong. 1245 if (MBB.getParent()->getProperties().hasProperty( 1246 MachineFunctionProperties::Property::TracksLiveness)) { 1247 // Helper lambda for adding implicit def operands to the call 1248 // instruction. It also updates call site information for moved 1249 // code. 1250 auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) { 1251 for (MachineOperand &MOP : MI.operands()) { 1252 // Skip over anything that isn't a register. 1253 if (!MOP.isReg()) 1254 continue; 1255 1256 // If it's a def, add it to the call instruction. 1257 if (MOP.isDef()) 1258 CallInst->addOperand(MachineOperand::CreateReg( 1259 MOP.getReg(), true, /* isDef = true */ 1260 true /* isImp = true */)); 1261 } 1262 if (MI.isCall()) 1263 MI.getMF()->eraseCallSiteInfo(&MI); 1264 }; 1265 // Copy over the defs in the outlined range. 1266 // First inst in outlined range <-- Anything that's defined in this 1267 // ... .. range has to be added as an 1268 // implicit Last inst in outlined range <-- def to the call 1269 // instruction. Also remove call site information for outlined block 1270 // of code. 1271 std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls); 1272 } 1273 1274 // Erase from the point after where the call was inserted up to, and 1275 // including, the final instruction in the sequence. 1276 // Erase needs one past the end, so we need std::next there too. 1277 MBB.erase(std::next(StartIt), std::next(EndIt)); 1278 1279 // Keep track of what we removed by marking them all as -1. 1280 std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(), 1281 Mapper.UnsignedVec.begin() + C.getEndIdx() + 1, 1282 [](unsigned &I) { I = static_cast<unsigned>(-1); }); 1283 OutlinedSomething = true; 1284 1285 // Statistics. 1286 NumOutlined++; 1287 } 1288 } 1289 1290 LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); 1291 1292 return OutlinedSomething; 1293 } 1294 1295 void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, 1296 MachineModuleInfo &MMI) { 1297 // Build instruction mappings for each function in the module. Start by 1298 // iterating over each Function in M. 1299 for (Function &F : M) { 1300 1301 // If there's nothing in F, then there's no reason to try and outline from 1302 // it. 1303 if (F.empty()) 1304 continue; 1305 1306 // Disable outlining from noreturn functions right now. Noreturn requires 1307 // special handling for the case where what we are outlining could be a 1308 // tail call. 1309 if (F.hasFnAttribute(Attribute::NoReturn)) 1310 continue; 1311 1312 // There's something in F. Check if it has a MachineFunction associated with 1313 // it. 1314 MachineFunction *MF = MMI.getMachineFunction(F); 1315 1316 // If it doesn't, then there's nothing to outline from. Move to the next 1317 // Function. 1318 if (!MF) 1319 continue; 1320 1321 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1322 1323 if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) 1324 continue; 1325 1326 // We have a MachineFunction. Ask the target if it's suitable for outlining. 1327 // If it isn't, then move on to the next Function in the module. 1328 if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) 1329 continue; 1330 1331 // We have a function suitable for outlining. Iterate over every 1332 // MachineBasicBlock in MF and try to map its instructions to a list of 1333 // unsigned integers. 1334 for (MachineBasicBlock &MBB : *MF) { 1335 // If there isn't anything in MBB, then there's no point in outlining from 1336 // it. 1337 // If there are fewer than 2 instructions in the MBB, then it can't ever 1338 // contain something worth outlining. 1339 // FIXME: This should be based off of the maximum size in B of an outlined 1340 // call versus the size in B of the MBB. 1341 if (MBB.empty() || MBB.size() < 2) 1342 continue; 1343 1344 // Check if MBB could be the target of an indirect branch. If it is, then 1345 // we don't want to outline from it. 1346 if (MBB.hasAddressTaken()) 1347 continue; 1348 1349 // MBB is suitable for outlining. Map it to a list of unsigneds. 1350 Mapper.convertToUnsignedVec(MBB, *TII); 1351 } 1352 } 1353 } 1354 1355 void MachineOutliner::initSizeRemarkInfo( 1356 const Module &M, const MachineModuleInfo &MMI, 1357 StringMap<unsigned> &FunctionToInstrCount) { 1358 // Collect instruction counts for every function. We'll use this to emit 1359 // per-function size remarks later. 1360 for (const Function &F : M) { 1361 MachineFunction *MF = MMI.getMachineFunction(F); 1362 1363 // We only care about MI counts here. If there's no MachineFunction at this 1364 // point, then there won't be after the outliner runs, so let's move on. 1365 if (!MF) 1366 continue; 1367 FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); 1368 } 1369 } 1370 1371 void MachineOutliner::emitInstrCountChangedRemark( 1372 const Module &M, const MachineModuleInfo &MMI, 1373 const StringMap<unsigned> &FunctionToInstrCount) { 1374 // Iterate over each function in the module and emit remarks. 1375 // Note that we won't miss anything by doing this, because the outliner never 1376 // deletes functions. 1377 for (const Function &F : M) { 1378 MachineFunction *MF = MMI.getMachineFunction(F); 1379 1380 // The outliner never deletes functions. If we don't have a MF here, then we 1381 // didn't have one prior to outlining either. 1382 if (!MF) 1383 continue; 1384 1385 std::string Fname = F.getName(); 1386 unsigned FnCountAfter = MF->getInstructionCount(); 1387 unsigned FnCountBefore = 0; 1388 1389 // Check if the function was recorded before. 1390 auto It = FunctionToInstrCount.find(Fname); 1391 1392 // Did we have a previously-recorded size? If yes, then set FnCountBefore 1393 // to that. 1394 if (It != FunctionToInstrCount.end()) 1395 FnCountBefore = It->second; 1396 1397 // Compute the delta and emit a remark if there was a change. 1398 int64_t FnDelta = static_cast<int64_t>(FnCountAfter) - 1399 static_cast<int64_t>(FnCountBefore); 1400 if (FnDelta == 0) 1401 continue; 1402 1403 MachineOptimizationRemarkEmitter MORE(*MF, nullptr); 1404 MORE.emit([&]() { 1405 MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", 1406 DiagnosticLocation(), 1407 &MF->front()); 1408 R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") 1409 << ": Function: " 1410 << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) 1411 << ": MI instruction count changed from " 1412 << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", 1413 FnCountBefore) 1414 << " to " 1415 << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", 1416 FnCountAfter) 1417 << "; Delta: " 1418 << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); 1419 return R; 1420 }); 1421 } 1422 } 1423 1424 bool MachineOutliner::runOnModule(Module &M) { 1425 // Check if there's anything in the module. If it's empty, then there's 1426 // nothing to outline. 1427 if (M.empty()) 1428 return false; 1429 1430 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI(); 1431 1432 // If the user passed -enable-machine-outliner=always or 1433 // -enable-machine-outliner, the pass will run on all functions in the module. 1434 // Otherwise, if the target supports default outlining, it will run on all 1435 // functions deemed by the target to be worth outlining from by default. Tell 1436 // the user how the outliner is running. 1437 LLVM_DEBUG( 1438 dbgs() << "Machine Outliner: Running on "; 1439 if (RunOnAllFunctions) 1440 dbgs() << "all functions"; 1441 else 1442 dbgs() << "target-default functions"; 1443 dbgs() << "\n" 1444 ); 1445 1446 // If the user specifies that they want to outline from linkonceodrs, set 1447 // it here. 1448 OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; 1449 InstructionMapper Mapper; 1450 1451 // Prepare instruction mappings for the suffix tree. 1452 populateMapper(Mapper, M, MMI); 1453 std::vector<OutlinedFunction> FunctionList; 1454 1455 // Find all of the outlining candidates. 1456 findCandidates(Mapper, FunctionList); 1457 1458 // If we've requested size remarks, then collect the MI counts of every 1459 // function before outlining, and the MI counts after outlining. 1460 // FIXME: This shouldn't be in the outliner at all; it should ultimately be 1461 // the pass manager's responsibility. 1462 // This could pretty easily be placed in outline instead, but because we 1463 // really ultimately *don't* want this here, it's done like this for now 1464 // instead. 1465 1466 // Check if we want size remarks. 1467 bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); 1468 StringMap<unsigned> FunctionToInstrCount; 1469 if (ShouldEmitSizeRemarks) 1470 initSizeRemarkInfo(M, MMI, FunctionToInstrCount); 1471 1472 // Outline each of the candidates and return true if something was outlined. 1473 bool OutlinedSomething = outline(M, FunctionList, Mapper); 1474 1475 // If we outlined something, we definitely changed the MI count of the 1476 // module. If we've asked for size remarks, then output them. 1477 // FIXME: This should be in the pass manager. 1478 if (ShouldEmitSizeRemarks && OutlinedSomething) 1479 emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); 1480 1481 return OutlinedSomething; 1482 } 1483