1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the machine instruction level if-conversion pass, which 10 // tries to convert conditional branches into predicated instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "BranchFolding.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/CodeGen/LivePhysRegs.h" 24 #include "llvm/CodeGen/MBFIWrapper.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetLowering.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSchedule.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BranchProbability.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <functional> 51 #include <iterator> 52 #include <memory> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "if-converter" 59 60 // Hidden options for help debugging. 61 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); 62 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); 63 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); 64 static cl::opt<bool> DisableSimple("disable-ifcvt-simple", 65 cl::init(false), cl::Hidden); 66 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", 67 cl::init(false), cl::Hidden); 68 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", 69 cl::init(false), cl::Hidden); 70 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", 71 cl::init(false), cl::Hidden); 72 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", 75 cl::init(false), cl::Hidden); 76 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", 77 cl::init(false), cl::Hidden); 78 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", 79 cl::init(false), cl::Hidden); 80 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", 81 cl::init(true), cl::Hidden); 82 83 STATISTIC(NumSimple, "Number of simple if-conversions performed"); 84 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); 85 STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); 86 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); 87 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); 88 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); 89 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); 90 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); 91 STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); 92 STATISTIC(NumDupBBs, "Number of duplicated blocks"); 93 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); 94 95 namespace { 96 97 class IfConverter : public MachineFunctionPass { 98 enum IfcvtKind { 99 ICNotClassfied, // BB data valid, but not classified. 100 ICSimpleFalse, // Same as ICSimple, but on the false path. 101 ICSimple, // BB is entry of an one split, no rejoin sub-CFG. 102 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. 103 ICTriangleRev, // Same as ICTriangle, but true path rev condition. 104 ICTriangleFalse, // Same as ICTriangle, but on the false path. 105 ICTriangle, // BB is entry of a triangle sub-CFG. 106 ICDiamond, // BB is entry of a diamond sub-CFG. 107 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a 108 // common tail that can be shared. 109 }; 110 111 /// One per MachineBasicBlock, this is used to cache the result 112 /// if-conversion feasibility analysis. This includes results from 113 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its 114 /// classification, and common tail block of its successors (if it's a 115 /// diamond shape), its size, whether it's predicable, and whether any 116 /// instruction can clobber the 'would-be' predicate. 117 /// 118 /// IsDone - True if BB is not to be considered for ifcvt. 119 /// IsBeingAnalyzed - True if BB is currently being analyzed. 120 /// IsAnalyzed - True if BB has been analyzed (info is still valid). 121 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. 122 /// IsBrAnalyzable - True if analyzeBranch() returns false. 123 /// HasFallThrough - True if BB may fallthrough to the following BB. 124 /// IsUnpredicable - True if BB is known to be unpredicable. 125 /// ClobbersPred - True if BB could modify predicates (e.g. has 126 /// cmp, call, etc.) 127 /// NonPredSize - Number of non-predicated instructions. 128 /// ExtraCost - Extra cost for multi-cycle instructions. 129 /// ExtraCost2 - Some instructions are slower when predicated 130 /// BB - Corresponding MachineBasicBlock. 131 /// TrueBB / FalseBB- See analyzeBranch(). 132 /// BrCond - Conditions for end of block conditional branches. 133 /// Predicate - Predicate used in the BB. 134 struct BBInfo { 135 bool IsDone : 1; 136 bool IsBeingAnalyzed : 1; 137 bool IsAnalyzed : 1; 138 bool IsEnqueued : 1; 139 bool IsBrAnalyzable : 1; 140 bool IsBrReversible : 1; 141 bool HasFallThrough : 1; 142 bool IsUnpredicable : 1; 143 bool CannotBeCopied : 1; 144 bool ClobbersPred : 1; 145 unsigned NonPredSize = 0; 146 unsigned ExtraCost = 0; 147 unsigned ExtraCost2 = 0; 148 MachineBasicBlock *BB = nullptr; 149 MachineBasicBlock *TrueBB = nullptr; 150 MachineBasicBlock *FalseBB = nullptr; 151 SmallVector<MachineOperand, 4> BrCond; 152 SmallVector<MachineOperand, 4> Predicate; 153 154 BBInfo() : IsDone(false), IsBeingAnalyzed(false), 155 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), 156 IsBrReversible(false), HasFallThrough(false), 157 IsUnpredicable(false), CannotBeCopied(false), 158 ClobbersPred(false) {} 159 }; 160 161 /// Record information about pending if-conversions to attempt: 162 /// BBI - Corresponding BBInfo. 163 /// Kind - Type of block. See IfcvtKind. 164 /// NeedSubsumption - True if the to-be-predicated BB has already been 165 /// predicated. 166 /// NumDups - Number of instructions that would be duplicated due 167 /// to this if-conversion. (For diamonds, the number of 168 /// identical instructions at the beginnings of both 169 /// paths). 170 /// NumDups2 - For diamonds, the number of identical instructions 171 /// at the ends of both paths. 172 struct IfcvtToken { 173 BBInfo &BBI; 174 IfcvtKind Kind; 175 unsigned NumDups; 176 unsigned NumDups2; 177 bool NeedSubsumption : 1; 178 bool TClobbersPred : 1; 179 bool FClobbersPred : 1; 180 181 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, 182 bool tc = false, bool fc = false) 183 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), 184 TClobbersPred(tc), FClobbersPred(fc) {} 185 }; 186 187 /// Results of if-conversion feasibility analysis indexed by basic block 188 /// number. 189 std::vector<BBInfo> BBAnalysis; 190 TargetSchedModel SchedModel; 191 192 const TargetLoweringBase *TLI; 193 const TargetInstrInfo *TII; 194 const TargetRegisterInfo *TRI; 195 const MachineBranchProbabilityInfo *MBPI; 196 MachineRegisterInfo *MRI; 197 198 LivePhysRegs Redefs; 199 200 bool PreRegAlloc; 201 bool MadeChange; 202 int FnNum = -1; 203 std::function<bool(const MachineFunction &)> PredicateFtor; 204 205 public: 206 static char ID; 207 208 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) 209 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { 210 initializeIfConverterPass(*PassRegistry::getPassRegistry()); 211 } 212 213 void getAnalysisUsage(AnalysisUsage &AU) const override { 214 AU.addRequired<MachineBlockFrequencyInfo>(); 215 AU.addRequired<MachineBranchProbabilityInfo>(); 216 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 bool runOnMachineFunction(MachineFunction &MF) override; 221 222 MachineFunctionProperties getRequiredProperties() const override { 223 return MachineFunctionProperties().set( 224 MachineFunctionProperties::Property::NoVRegs); 225 } 226 227 private: 228 bool reverseBranchCondition(BBInfo &BBI) const; 229 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 230 BranchProbability Prediction) const; 231 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 232 bool FalseBranch, unsigned &Dups, 233 BranchProbability Prediction) const; 234 bool CountDuplicatedInstructions( 235 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 236 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 237 unsigned &Dups1, unsigned &Dups2, 238 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 239 bool SkipUnconditionalBranches) const; 240 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 241 unsigned &Dups1, unsigned &Dups2, 242 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 243 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, 244 unsigned &Dups1, unsigned &Dups2, 245 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; 246 void AnalyzeBranches(BBInfo &BBI); 247 void ScanInstructions(BBInfo &BBI, 248 MachineBasicBlock::iterator &Begin, 249 MachineBasicBlock::iterator &End, 250 bool BranchUnpredicable = false) const; 251 bool RescanInstructions( 252 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 253 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 254 BBInfo &TrueBBI, BBInfo &FalseBBI) const; 255 void AnalyzeBlock(MachineBasicBlock &MBB, 256 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 257 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, 258 bool isTriangle = false, bool RevBranch = false, 259 bool hasCommonTail = false); 260 void AnalyzeBlocks(MachineFunction &MF, 261 std::vector<std::unique_ptr<IfcvtToken>> &Tokens); 262 void InvalidatePreds(MachineBasicBlock &MBB); 263 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); 264 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); 265 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 266 unsigned NumDups1, unsigned NumDups2, 267 bool TClobbersPred, bool FClobbersPred, 268 bool RemoveBranch, bool MergeAddEdges); 269 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 270 unsigned NumDups1, unsigned NumDups2, 271 bool TClobbers, bool FClobbers); 272 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, 273 unsigned NumDups1, unsigned NumDups2, 274 bool TClobbers, bool FClobbers); 275 void PredicateBlock(BBInfo &BBI, 276 MachineBasicBlock::iterator E, 277 SmallVectorImpl<MachineOperand> &Cond, 278 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); 279 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 280 SmallVectorImpl<MachineOperand> &Cond, 281 bool IgnoreBr = false); 282 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); 283 284 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, 285 unsigned Cycle, unsigned Extra, 286 BranchProbability Prediction) const { 287 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, 288 Prediction); 289 } 290 291 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, 292 MachineBasicBlock &CommBB, unsigned Dups, 293 BranchProbability Prediction, bool Forked) const { 294 const MachineFunction &MF = *TBBInfo.BB->getParent(); 295 if (MF.getFunction().hasMinSize()) { 296 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); 297 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); 298 MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); 299 MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); 300 301 unsigned Dups1 = 0, Dups2 = 0; 302 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 303 *TBBInfo.BB, *FBBInfo.BB, 304 /*SkipUnconditionalBranches*/ true)) 305 llvm_unreachable("should already have been checked by ValidDiamond"); 306 307 unsigned BranchBytes = 0; 308 unsigned CommonBytes = 0; 309 310 // Count common instructions at the start of the true and false blocks. 311 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) { 312 LLVM_DEBUG(dbgs() << "Common inst: " << I); 313 CommonBytes += TII->getInstSizeInBytes(I); 314 } 315 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) { 316 LLVM_DEBUG(dbgs() << "Common inst: " << I); 317 CommonBytes += TII->getInstSizeInBytes(I); 318 } 319 320 // Count instructions at the end of the true and false blocks, after 321 // the ones we plan to predicate. Analyzable branches will be removed 322 // (unless this is a forked diamond), and all other instructions are 323 // common between the two blocks. 324 for (auto &I : make_range(TIE, TBBInfo.BB->end())) { 325 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { 326 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 327 BranchBytes += TII->predictBranchSizeForIfCvt(I); 328 } else { 329 LLVM_DEBUG(dbgs() << "Common inst: " << I); 330 CommonBytes += TII->getInstSizeInBytes(I); 331 } 332 } 333 for (auto &I : make_range(FIE, FBBInfo.BB->end())) { 334 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { 335 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 336 BranchBytes += TII->predictBranchSizeForIfCvt(I); 337 } else { 338 LLVM_DEBUG(dbgs() << "Common inst: " << I); 339 CommonBytes += TII->getInstSizeInBytes(I); 340 } 341 } 342 for (auto &I : CommBB.terminators()) { 343 if (I.isBranch()) { 344 LLVM_DEBUG(dbgs() << "Saving branch: " << I); 345 BranchBytes += TII->predictBranchSizeForIfCvt(I); 346 } 347 } 348 349 // The common instructions in one branch will be eliminated, halving 350 // their code size. 351 CommonBytes /= 2; 352 353 // Count the instructions which we need to predicate. 354 unsigned NumPredicatedInstructions = 0; 355 for (auto &I : make_range(TIB, TIE)) { 356 if (!I.isDebugInstr()) { 357 LLVM_DEBUG(dbgs() << "Predicating: " << I); 358 NumPredicatedInstructions++; 359 } 360 } 361 for (auto &I : make_range(FIB, FIE)) { 362 if (!I.isDebugInstr()) { 363 LLVM_DEBUG(dbgs() << "Predicating: " << I); 364 NumPredicatedInstructions++; 365 } 366 } 367 368 // Even though we're optimising for size at the expense of performance, 369 // avoid creating really long predicated blocks. 370 if (NumPredicatedInstructions > 15) 371 return false; 372 373 // Some targets (e.g. Thumb2) need to insert extra instructions to 374 // start predicated blocks. 375 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions( 376 MF, NumPredicatedInstructions); 377 378 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes 379 << ", CommonBytes=" << CommonBytes 380 << ", NumPredicatedInstructions=" 381 << NumPredicatedInstructions 382 << ", ExtraPredicateBytes=" << ExtraPredicateBytes 383 << ")\n"); 384 return (BranchBytes + CommonBytes) > ExtraPredicateBytes; 385 } else { 386 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; 387 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; 388 bool Res = TCycle > 0 && FCycle > 0 && 389 TII->isProfitableToIfCvt( 390 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB, 391 FCycle, FBBInfo.ExtraCost2, Prediction); 392 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle 393 << ", FCycle=" << FCycle 394 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" 395 << FBBInfo.ExtraCost2 << ") = " << Res << "\n"); 396 return Res; 397 } 398 } 399 400 /// Returns true if Block ends without a terminator. 401 bool blockAlwaysFallThrough(BBInfo &BBI) const { 402 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; 403 } 404 405 /// Used to sort if-conversion candidates. 406 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, 407 const std::unique_ptr<IfcvtToken> &C2) { 408 int Incr1 = (C1->Kind == ICDiamond) 409 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; 410 int Incr2 = (C2->Kind == ICDiamond) 411 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; 412 if (Incr1 > Incr2) 413 return true; 414 else if (Incr1 == Incr2) { 415 // Favors subsumption. 416 if (!C1->NeedSubsumption && C2->NeedSubsumption) 417 return true; 418 else if (C1->NeedSubsumption == C2->NeedSubsumption) { 419 // Favors diamond over triangle, etc. 420 if ((unsigned)C1->Kind < (unsigned)C2->Kind) 421 return true; 422 else if (C1->Kind == C2->Kind) 423 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); 424 } 425 } 426 return false; 427 } 428 }; 429 430 } // end anonymous namespace 431 432 char IfConverter::ID = 0; 433 434 char &llvm::IfConverterID = IfConverter::ID; 435 436 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) 437 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 438 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 439 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) 440 441 bool IfConverter::runOnMachineFunction(MachineFunction &MF) { 442 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) 443 return false; 444 445 const TargetSubtargetInfo &ST = MF.getSubtarget(); 446 TLI = ST.getTargetLowering(); 447 TII = ST.getInstrInfo(); 448 TRI = ST.getRegisterInfo(); 449 MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); 450 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 451 ProfileSummaryInfo *PSI = 452 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 453 MRI = &MF.getRegInfo(); 454 SchedModel.init(&ST); 455 456 if (!TII) return false; 457 458 PreRegAlloc = MRI->isSSA(); 459 460 bool BFChange = false; 461 if (!PreRegAlloc) { 462 // Tail merge tend to expose more if-conversion opportunities. 463 BranchFolder BF(true, false, MBFI, *MBPI, PSI); 464 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo()); 465 } 466 467 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" 468 << MF.getName() << "\'"); 469 470 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { 471 LLVM_DEBUG(dbgs() << " skipped\n"); 472 return false; 473 } 474 LLVM_DEBUG(dbgs() << "\n"); 475 476 MF.RenumberBlocks(); 477 BBAnalysis.resize(MF.getNumBlockIDs()); 478 479 std::vector<std::unique_ptr<IfcvtToken>> Tokens; 480 MadeChange = false; 481 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + 482 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; 483 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { 484 // Do an initial analysis for each basic block and find all the potential 485 // candidates to perform if-conversion. 486 bool Change = false; 487 AnalyzeBlocks(MF, Tokens); 488 while (!Tokens.empty()) { 489 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); 490 Tokens.pop_back(); 491 BBInfo &BBI = Token->BBI; 492 IfcvtKind Kind = Token->Kind; 493 unsigned NumDups = Token->NumDups; 494 unsigned NumDups2 = Token->NumDups2; 495 496 // If the block has been evicted out of the queue or it has already been 497 // marked dead (due to it being predicated), then skip it. 498 if (BBI.IsDone) 499 BBI.IsEnqueued = false; 500 if (!BBI.IsEnqueued) 501 continue; 502 503 BBI.IsEnqueued = false; 504 505 bool RetVal = false; 506 switch (Kind) { 507 default: llvm_unreachable("Unexpected!"); 508 case ICSimple: 509 case ICSimpleFalse: { 510 bool isFalse = Kind == ICSimpleFalse; 511 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; 512 LLVM_DEBUG(dbgs() << "Ifcvt (Simple" 513 << (Kind == ICSimpleFalse ? " false" : "") 514 << "): " << printMBBReference(*BBI.BB) << " (" 515 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() 516 : BBI.TrueBB->getNumber()) 517 << ") "); 518 RetVal = IfConvertSimple(BBI, Kind); 519 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 520 if (RetVal) { 521 if (isFalse) ++NumSimpleFalse; 522 else ++NumSimple; 523 } 524 break; 525 } 526 case ICTriangle: 527 case ICTriangleRev: 528 case ICTriangleFalse: 529 case ICTriangleFRev: { 530 bool isFalse = Kind == ICTriangleFalse; 531 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); 532 if (DisableTriangle && !isFalse && !isRev) break; 533 if (DisableTriangleR && !isFalse && isRev) break; 534 if (DisableTriangleF && isFalse && !isRev) break; 535 if (DisableTriangleFR && isFalse && isRev) break; 536 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); 537 if (isFalse) 538 LLVM_DEBUG(dbgs() << " false"); 539 if (isRev) 540 LLVM_DEBUG(dbgs() << " rev"); 541 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) 542 << " (T:" << BBI.TrueBB->getNumber() 543 << ",F:" << BBI.FalseBB->getNumber() << ") "); 544 RetVal = IfConvertTriangle(BBI, Kind); 545 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 546 if (RetVal) { 547 if (isFalse) { 548 if (isRev) ++NumTriangleFRev; 549 else ++NumTriangleFalse; 550 } else { 551 if (isRev) ++NumTriangleRev; 552 else ++NumTriangle; 553 } 554 } 555 break; 556 } 557 case ICDiamond: 558 if (DisableDiamond) break; 559 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) 560 << " (T:" << BBI.TrueBB->getNumber() 561 << ",F:" << BBI.FalseBB->getNumber() << ") "); 562 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, 563 Token->TClobbersPred, 564 Token->FClobbersPred); 565 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 566 if (RetVal) ++NumDiamonds; 567 break; 568 case ICForkedDiamond: 569 if (DisableForkedDiamond) break; 570 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " 571 << printMBBReference(*BBI.BB) 572 << " (T:" << BBI.TrueBB->getNumber() 573 << ",F:" << BBI.FalseBB->getNumber() << ") "); 574 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, 575 Token->TClobbersPred, 576 Token->FClobbersPred); 577 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); 578 if (RetVal) ++NumForkedDiamonds; 579 break; 580 } 581 582 if (RetVal && MRI->tracksLiveness()) 583 recomputeLivenessFlags(*BBI.BB); 584 585 Change |= RetVal; 586 587 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + 588 NumTriangleFalse + NumTriangleFRev + NumDiamonds; 589 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) 590 break; 591 } 592 593 if (!Change) 594 break; 595 MadeChange |= Change; 596 } 597 598 Tokens.clear(); 599 BBAnalysis.clear(); 600 601 if (MadeChange && IfCvtBranchFold) { 602 BranchFolder BF(false, false, MBFI, *MBPI, PSI); 603 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo()); 604 } 605 606 MadeChange |= BFChange; 607 return MadeChange; 608 } 609 610 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. 611 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, 612 MachineBasicBlock *TrueBB) { 613 for (MachineBasicBlock *SuccBB : BB->successors()) { 614 if (SuccBB != TrueBB) 615 return SuccBB; 616 } 617 return nullptr; 618 } 619 620 /// Reverse the condition of the end of the block branch. Swap block's 'true' 621 /// and 'false' successors. 622 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { 623 DebugLoc dl; // FIXME: this is nowhere 624 if (!TII->reverseBranchCondition(BBI.BrCond)) { 625 TII->removeBranch(*BBI.BB); 626 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); 627 std::swap(BBI.TrueBB, BBI.FalseBB); 628 return true; 629 } 630 return false; 631 } 632 633 /// Returns the next block in the function blocks ordering. If it is the end, 634 /// returns NULL. 635 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { 636 MachineFunction::iterator I = MBB.getIterator(); 637 MachineFunction::iterator E = MBB.getParent()->end(); 638 if (++I == E) 639 return nullptr; 640 return &*I; 641 } 642 643 /// Returns true if the 'true' block (along with its predecessor) forms a valid 644 /// simple shape for ifcvt. It also returns the number of instructions that the 645 /// ifcvt would need to duplicate if performed in Dups. 646 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, 647 BranchProbability Prediction) const { 648 Dups = 0; 649 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 650 return false; 651 652 if (TrueBBI.IsBrAnalyzable) 653 return false; 654 655 if (TrueBBI.BB->pred_size() > 1) { 656 if (TrueBBI.CannotBeCopied || 657 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, 658 Prediction)) 659 return false; 660 Dups = TrueBBI.NonPredSize; 661 } 662 663 return true; 664 } 665 666 /// Returns true if the 'true' and 'false' blocks (along with their common 667 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is 668 /// true, it checks if 'true' block's false branch branches to the 'false' block 669 /// rather than the other way around. It also returns the number of instructions 670 /// that the ifcvt would need to duplicate if performed in 'Dups'. 671 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, 672 bool FalseBranch, unsigned &Dups, 673 BranchProbability Prediction) const { 674 Dups = 0; 675 if (TrueBBI.BB == FalseBBI.BB) 676 return false; 677 678 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) 679 return false; 680 681 if (TrueBBI.BB->pred_size() > 1) { 682 if (TrueBBI.CannotBeCopied) 683 return false; 684 685 unsigned Size = TrueBBI.NonPredSize; 686 if (TrueBBI.IsBrAnalyzable) { 687 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) 688 // Ends with an unconditional branch. It will be removed. 689 --Size; 690 else { 691 MachineBasicBlock *FExit = FalseBranch 692 ? TrueBBI.TrueBB : TrueBBI.FalseBB; 693 if (FExit) 694 // Require a conditional branch 695 ++Size; 696 } 697 } 698 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) 699 return false; 700 Dups = Size; 701 } 702 703 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; 704 if (!TExit && blockAlwaysFallThrough(TrueBBI)) { 705 MachineFunction::iterator I = TrueBBI.BB->getIterator(); 706 if (++I == TrueBBI.BB->getParent()->end()) 707 return false; 708 TExit = &*I; 709 } 710 return TExit && TExit == FalseBBI.BB; 711 } 712 713 /// Count duplicated instructions and move the iterators to show where they 714 /// are. 715 /// @param TIB True Iterator Begin 716 /// @param FIB False Iterator Begin 717 /// These two iterators initially point to the first instruction of the two 718 /// blocks, and finally point to the first non-shared instruction. 719 /// @param TIE True Iterator End 720 /// @param FIE False Iterator End 721 /// These two iterators initially point to End() for the two blocks() and 722 /// finally point to the first shared instruction in the tail. 723 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of 724 /// two blocks. 725 /// @param Dups1 count of duplicated instructions at the beginning of the 2 726 /// blocks. 727 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. 728 /// @param SkipUnconditionalBranches if true, Don't make sure that 729 /// unconditional branches at the end of the blocks are the same. True is 730 /// passed when the blocks are analyzable to allow for fallthrough to be 731 /// handled. 732 /// @return false if the shared portion prevents if conversion. 733 bool IfConverter::CountDuplicatedInstructions( 734 MachineBasicBlock::iterator &TIB, 735 MachineBasicBlock::iterator &FIB, 736 MachineBasicBlock::iterator &TIE, 737 MachineBasicBlock::iterator &FIE, 738 unsigned &Dups1, unsigned &Dups2, 739 MachineBasicBlock &TBB, MachineBasicBlock &FBB, 740 bool SkipUnconditionalBranches) const { 741 while (TIB != TIE && FIB != FIE) { 742 // Skip dbg_value instructions. These do not count. 743 TIB = skipDebugInstructionsForward(TIB, TIE, false); 744 FIB = skipDebugInstructionsForward(FIB, FIE, false); 745 if (TIB == TIE || FIB == FIE) 746 break; 747 if (!TIB->isIdenticalTo(*FIB)) 748 break; 749 // A pred-clobbering instruction in the shared portion prevents 750 // if-conversion. 751 std::vector<MachineOperand> PredDefs; 752 if (TII->ClobbersPredicate(*TIB, PredDefs, false)) 753 return false; 754 // If we get all the way to the branch instructions, don't count them. 755 if (!TIB->isBranch()) 756 ++Dups1; 757 ++TIB; 758 ++FIB; 759 } 760 761 // Check for already containing all of the block. 762 if (TIB == TIE || FIB == FIE) 763 return true; 764 // Now, in preparation for counting duplicate instructions at the ends of the 765 // blocks, switch to reverse_iterators. Note that getReverse() returns an 766 // iterator that points to the same instruction, unlike std::reverse_iterator. 767 // We have to do our own shifting so that we get the same range. 768 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); 769 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); 770 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); 771 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); 772 773 if (!TBB.succ_empty() || !FBB.succ_empty()) { 774 if (SkipUnconditionalBranches) { 775 while (RTIE != RTIB && RTIE->isUnconditionalBranch()) 776 ++RTIE; 777 while (RFIE != RFIB && RFIE->isUnconditionalBranch()) 778 ++RFIE; 779 } 780 } 781 782 // Count duplicate instructions at the ends of the blocks. 783 while (RTIE != RTIB && RFIE != RFIB) { 784 // Skip dbg_value instructions. These do not count. 785 // Note that these are reverse iterators going forward. 786 RTIE = skipDebugInstructionsForward(RTIE, RTIB, false); 787 RFIE = skipDebugInstructionsForward(RFIE, RFIB, false); 788 if (RTIE == RTIB || RFIE == RFIB) 789 break; 790 if (!RTIE->isIdenticalTo(*RFIE)) 791 break; 792 // We have to verify that any branch instructions are the same, and then we 793 // don't count them toward the # of duplicate instructions. 794 if (!RTIE->isBranch()) 795 ++Dups2; 796 ++RTIE; 797 ++RFIE; 798 } 799 TIE = std::next(RTIE.getReverse()); 800 FIE = std::next(RFIE.getReverse()); 801 return true; 802 } 803 804 /// RescanInstructions - Run ScanInstructions on a pair of blocks. 805 /// @param TIB - True Iterator Begin, points to first non-shared instruction 806 /// @param FIB - False Iterator Begin, points to first non-shared instruction 807 /// @param TIE - True Iterator End, points past last non-shared instruction 808 /// @param FIE - False Iterator End, points past last non-shared instruction 809 /// @param TrueBBI - BBInfo to update for the true block. 810 /// @param FalseBBI - BBInfo to update for the false block. 811 /// @returns - false if either block cannot be predicated or if both blocks end 812 /// with a predicate-clobbering instruction. 813 bool IfConverter::RescanInstructions( 814 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, 815 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, 816 BBInfo &TrueBBI, BBInfo &FalseBBI) const { 817 bool BranchUnpredicable = true; 818 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; 819 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); 820 if (TrueBBI.IsUnpredicable) 821 return false; 822 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); 823 if (FalseBBI.IsUnpredicable) 824 return false; 825 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) 826 return false; 827 return true; 828 } 829 830 #ifndef NDEBUG 831 static void verifySameBranchInstructions( 832 MachineBasicBlock *MBB1, 833 MachineBasicBlock *MBB2) { 834 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); 835 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); 836 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); 837 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); 838 while (E1 != B1 && E2 != B2) { 839 skipDebugInstructionsForward(E1, B1, false); 840 skipDebugInstructionsForward(E2, B2, false); 841 if (E1 == B1 && E2 == B2) 842 break; 843 844 if (E1 == B1) { 845 assert(!E2->isBranch() && "Branch mis-match, one block is empty."); 846 break; 847 } 848 if (E2 == B2) { 849 assert(!E1->isBranch() && "Branch mis-match, one block is empty."); 850 break; 851 } 852 853 if (E1->isBranch() || E2->isBranch()) 854 assert(E1->isIdenticalTo(*E2) && 855 "Branch mis-match, branch instructions don't match."); 856 else 857 break; 858 ++E1; 859 ++E2; 860 } 861 } 862 #endif 863 864 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along 865 /// with their common predecessor) form a diamond if a common tail block is 866 /// extracted. 867 /// While not strictly a diamond, this pattern would form a diamond if 868 /// tail-merging had merged the shared tails. 869 /// EBB 870 /// _/ \_ 871 /// | | 872 /// TBB FBB 873 /// / \ / \ 874 /// FalseBB TrueBB FalseBB 875 /// Currently only handles analyzable branches. 876 /// Specifically excludes actual diamonds to avoid overlap. 877 bool IfConverter::ValidForkedDiamond( 878 BBInfo &TrueBBI, BBInfo &FalseBBI, 879 unsigned &Dups1, unsigned &Dups2, 880 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 881 Dups1 = Dups2 = 0; 882 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 883 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 884 return false; 885 886 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) 887 return false; 888 // Don't IfConvert blocks that can't be folded into their predecessor. 889 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 890 return false; 891 892 // This function is specifically looking for conditional tails, as 893 // unconditional tails are already handled by the standard diamond case. 894 if (TrueBBI.BrCond.size() == 0 || 895 FalseBBI.BrCond.size() == 0) 896 return false; 897 898 MachineBasicBlock *TT = TrueBBI.TrueBB; 899 MachineBasicBlock *TF = TrueBBI.FalseBB; 900 MachineBasicBlock *FT = FalseBBI.TrueBB; 901 MachineBasicBlock *FF = FalseBBI.FalseBB; 902 903 if (!TT) 904 TT = getNextBlock(*TrueBBI.BB); 905 if (!TF) 906 TF = getNextBlock(*TrueBBI.BB); 907 if (!FT) 908 FT = getNextBlock(*FalseBBI.BB); 909 if (!FF) 910 FF = getNextBlock(*FalseBBI.BB); 911 912 if (!TT || !TF) 913 return false; 914 915 // Check successors. If they don't match, bail. 916 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) 917 return false; 918 919 bool FalseReversed = false; 920 if (TF == FT && TT == FF) { 921 // If the branches are opposing, but we can't reverse, don't do it. 922 if (!FalseBBI.IsBrReversible) 923 return false; 924 FalseReversed = true; 925 reverseBranchCondition(FalseBBI); 926 } 927 auto UnReverseOnExit = make_scope_exit([&]() { 928 if (FalseReversed) 929 reverseBranchCondition(FalseBBI); 930 }); 931 932 // Count duplicate instructions at the beginning of the true and false blocks. 933 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 934 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 935 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 936 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 937 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 938 *TrueBBI.BB, *FalseBBI.BB, 939 /* SkipUnconditionalBranches */ true)) 940 return false; 941 942 TrueBBICalc.BB = TrueBBI.BB; 943 FalseBBICalc.BB = FalseBBI.BB; 944 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 945 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 946 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 947 return false; 948 949 // The size is used to decide whether to if-convert, and the shared portions 950 // are subtracted off. Because of the subtraction, we just use the size that 951 // was calculated by the original ScanInstructions, as it is correct. 952 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 953 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 954 return true; 955 } 956 957 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along 958 /// with their common predecessor) forms a valid diamond shape for ifcvt. 959 bool IfConverter::ValidDiamond( 960 BBInfo &TrueBBI, BBInfo &FalseBBI, 961 unsigned &Dups1, unsigned &Dups2, 962 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { 963 Dups1 = Dups2 = 0; 964 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || 965 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) 966 return false; 967 968 // If the True and False BBs are equal we're dealing with a degenerate case 969 // that we don't treat as a diamond. 970 if (TrueBBI.BB == FalseBBI.BB) 971 return false; 972 973 MachineBasicBlock *TT = TrueBBI.TrueBB; 974 MachineBasicBlock *FT = FalseBBI.TrueBB; 975 976 if (!TT && blockAlwaysFallThrough(TrueBBI)) 977 TT = getNextBlock(*TrueBBI.BB); 978 if (!FT && blockAlwaysFallThrough(FalseBBI)) 979 FT = getNextBlock(*FalseBBI.BB); 980 if (TT != FT) 981 return false; 982 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) 983 return false; 984 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) 985 return false; 986 987 // FIXME: Allow true block to have an early exit? 988 if (TrueBBI.FalseBB || FalseBBI.FalseBB) 989 return false; 990 991 // Count duplicate instructions at the beginning and end of the true and 992 // false blocks. 993 // Skip unconditional branches only if we are considering an analyzable 994 // diamond. Otherwise the branches must be the same. 995 bool SkipUnconditionalBranches = 996 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; 997 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); 998 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); 999 MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); 1000 MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); 1001 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, 1002 *TrueBBI.BB, *FalseBBI.BB, 1003 SkipUnconditionalBranches)) 1004 return false; 1005 1006 TrueBBICalc.BB = TrueBBI.BB; 1007 FalseBBICalc.BB = FalseBBI.BB; 1008 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; 1009 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; 1010 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) 1011 return false; 1012 // The size is used to decide whether to if-convert, and the shared portions 1013 // are subtracted off. Because of the subtraction, we just use the size that 1014 // was calculated by the original ScanInstructions, as it is correct. 1015 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; 1016 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; 1017 return true; 1018 } 1019 1020 /// AnalyzeBranches - Look at the branches at the end of a block to determine if 1021 /// the block is predicable. 1022 void IfConverter::AnalyzeBranches(BBInfo &BBI) { 1023 if (BBI.IsDone) 1024 return; 1025 1026 BBI.TrueBB = BBI.FalseBB = nullptr; 1027 BBI.BrCond.clear(); 1028 BBI.IsBrAnalyzable = 1029 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); 1030 if (!BBI.IsBrAnalyzable) { 1031 BBI.TrueBB = nullptr; 1032 BBI.FalseBB = nullptr; 1033 BBI.BrCond.clear(); 1034 } 1035 1036 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1037 BBI.IsBrReversible = (RevCond.size() == 0) || 1038 !TII->reverseBranchCondition(RevCond); 1039 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; 1040 1041 if (BBI.BrCond.size()) { 1042 // No false branch. This BB must end with a conditional branch and a 1043 // fallthrough. 1044 if (!BBI.FalseBB) 1045 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); 1046 if (!BBI.FalseBB) { 1047 // Malformed bcc? True and false blocks are the same? 1048 BBI.IsUnpredicable = true; 1049 } 1050 } 1051 } 1052 1053 /// ScanInstructions - Scan all the instructions in the block to determine if 1054 /// the block is predicable. In most cases, that means all the instructions 1055 /// in the block are isPredicable(). Also checks if the block contains any 1056 /// instruction which can clobber a predicate (e.g. condition code register). 1057 /// If so, the block is not predicable unless it's the last instruction. 1058 void IfConverter::ScanInstructions(BBInfo &BBI, 1059 MachineBasicBlock::iterator &Begin, 1060 MachineBasicBlock::iterator &End, 1061 bool BranchUnpredicable) const { 1062 if (BBI.IsDone || BBI.IsUnpredicable) 1063 return; 1064 1065 bool AlreadyPredicated = !BBI.Predicate.empty(); 1066 1067 BBI.NonPredSize = 0; 1068 BBI.ExtraCost = 0; 1069 BBI.ExtraCost2 = 0; 1070 BBI.ClobbersPred = false; 1071 for (MachineInstr &MI : make_range(Begin, End)) { 1072 if (MI.isDebugInstr()) 1073 continue; 1074 1075 // It's unsafe to duplicate convergent instructions in this context, so set 1076 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the 1077 // following CFG, which is subject to our "simple" transformation. 1078 // 1079 // BB0 // if (c1) goto BB1; else goto BB2; 1080 // / \ 1081 // BB1 | 1082 // | BB2 // if (c2) goto TBB; else goto FBB; 1083 // | / | 1084 // | / | 1085 // TBB | 1086 // | | 1087 // | FBB 1088 // | 1089 // exit 1090 // 1091 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd 1092 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose 1093 // TBB contains a convergent instruction. This is safe iff doing so does 1094 // not add a control-flow dependency to the convergent instruction -- i.e., 1095 // it's safe iff the set of control flows that leads us to the convergent 1096 // instruction does not get smaller after the transformation. 1097 // 1098 // Originally we executed TBB if c1 || c2. After the transformation, there 1099 // are two copies of TBB's instructions. We get to the first if c1, and we 1100 // get to the second if !c1 && c2. 1101 // 1102 // There are clearly fewer ways to satisfy the condition "c1" than 1103 // "c1 || c2". Since we've shrunk the set of control flows which lead to 1104 // our convergent instruction, the transformation is unsafe. 1105 if (MI.isNotDuplicable() || MI.isConvergent()) 1106 BBI.CannotBeCopied = true; 1107 1108 bool isPredicated = TII->isPredicated(MI); 1109 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); 1110 1111 if (BranchUnpredicable && MI.isBranch()) { 1112 BBI.IsUnpredicable = true; 1113 return; 1114 } 1115 1116 // A conditional branch is not predicable, but it may be eliminated. 1117 if (isCondBr) 1118 continue; 1119 1120 if (!isPredicated) { 1121 BBI.NonPredSize++; 1122 unsigned ExtraPredCost = TII->getPredicationCost(MI); 1123 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); 1124 if (NumCycles > 1) 1125 BBI.ExtraCost += NumCycles-1; 1126 BBI.ExtraCost2 += ExtraPredCost; 1127 } else if (!AlreadyPredicated) { 1128 // FIXME: This instruction is already predicated before the 1129 // if-conversion pass. It's probably something like a conditional move. 1130 // Mark this block unpredicable for now. 1131 BBI.IsUnpredicable = true; 1132 return; 1133 } 1134 1135 if (BBI.ClobbersPred && !isPredicated) { 1136 // Predicate modification instruction should end the block (except for 1137 // already predicated instructions and end of block branches). 1138 // Predicate may have been modified, the subsequent (currently) 1139 // unpredicated instructions cannot be correctly predicated. 1140 BBI.IsUnpredicable = true; 1141 return; 1142 } 1143 1144 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are 1145 // still potentially predicable. 1146 std::vector<MachineOperand> PredDefs; 1147 if (TII->ClobbersPredicate(MI, PredDefs, true)) 1148 BBI.ClobbersPred = true; 1149 1150 if (!TII->isPredicable(MI)) { 1151 BBI.IsUnpredicable = true; 1152 return; 1153 } 1154 } 1155 } 1156 1157 /// Determine if the block is a suitable candidate to be predicated by the 1158 /// specified predicate. 1159 /// @param BBI BBInfo for the block to check 1160 /// @param Pred Predicate array for the branch that leads to BBI 1161 /// @param isTriangle true if the Analysis is for a triangle 1162 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false 1163 /// case 1164 /// @param hasCommonTail true if BBI shares a tail with a sibling block that 1165 /// contains any instruction that would make the block unpredicable. 1166 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, 1167 SmallVectorImpl<MachineOperand> &Pred, 1168 bool isTriangle, bool RevBranch, 1169 bool hasCommonTail) { 1170 // If the block is dead or unpredicable, then it cannot be predicated. 1171 // Two blocks may share a common unpredicable tail, but this doesn't prevent 1172 // them from being if-converted. The non-shared portion is assumed to have 1173 // been checked 1174 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) 1175 return false; 1176 1177 // If it is already predicated but we couldn't analyze its terminator, the 1178 // latter might fallthrough, but we can't determine where to. 1179 // Conservatively avoid if-converting again. 1180 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) 1181 return false; 1182 1183 // If it is already predicated, check if the new predicate subsumes 1184 // its predicate. 1185 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) 1186 return false; 1187 1188 if (!hasCommonTail && BBI.BrCond.size()) { 1189 if (!isTriangle) 1190 return false; 1191 1192 // Test predicate subsumption. 1193 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); 1194 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1195 if (RevBranch) { 1196 if (TII->reverseBranchCondition(Cond)) 1197 return false; 1198 } 1199 if (TII->reverseBranchCondition(RevPred) || 1200 !TII->SubsumesPredicate(Cond, RevPred)) 1201 return false; 1202 } 1203 1204 return true; 1205 } 1206 1207 /// Analyze the structure of the sub-CFG starting from the specified block. 1208 /// Record its successors and whether it looks like an if-conversion candidate. 1209 void IfConverter::AnalyzeBlock( 1210 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1211 struct BBState { 1212 BBState(MachineBasicBlock &MBB) : MBB(&MBB) {} 1213 MachineBasicBlock *MBB; 1214 1215 /// This flag is true if MBB's successors have been analyzed. 1216 bool SuccsAnalyzed = false; 1217 }; 1218 1219 // Push MBB to the stack. 1220 SmallVector<BBState, 16> BBStack(1, MBB); 1221 1222 while (!BBStack.empty()) { 1223 BBState &State = BBStack.back(); 1224 MachineBasicBlock *BB = State.MBB; 1225 BBInfo &BBI = BBAnalysis[BB->getNumber()]; 1226 1227 if (!State.SuccsAnalyzed) { 1228 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { 1229 BBStack.pop_back(); 1230 continue; 1231 } 1232 1233 BBI.BB = BB; 1234 BBI.IsBeingAnalyzed = true; 1235 1236 AnalyzeBranches(BBI); 1237 MachineBasicBlock::iterator Begin = BBI.BB->begin(); 1238 MachineBasicBlock::iterator End = BBI.BB->end(); 1239 ScanInstructions(BBI, Begin, End); 1240 1241 // Unanalyzable or ends with fallthrough or unconditional branch, or if is 1242 // not considered for ifcvt anymore. 1243 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { 1244 BBI.IsBeingAnalyzed = false; 1245 BBI.IsAnalyzed = true; 1246 BBStack.pop_back(); 1247 continue; 1248 } 1249 1250 // Do not ifcvt if either path is a back edge to the entry block. 1251 if (BBI.TrueBB == BB || BBI.FalseBB == BB) { 1252 BBI.IsBeingAnalyzed = false; 1253 BBI.IsAnalyzed = true; 1254 BBStack.pop_back(); 1255 continue; 1256 } 1257 1258 // Do not ifcvt if true and false fallthrough blocks are the same. 1259 if (!BBI.FalseBB) { 1260 BBI.IsBeingAnalyzed = false; 1261 BBI.IsAnalyzed = true; 1262 BBStack.pop_back(); 1263 continue; 1264 } 1265 1266 // Push the False and True blocks to the stack. 1267 State.SuccsAnalyzed = true; 1268 BBStack.push_back(*BBI.FalseBB); 1269 BBStack.push_back(*BBI.TrueBB); 1270 continue; 1271 } 1272 1273 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1274 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1275 1276 if (TrueBBI.IsDone && FalseBBI.IsDone) { 1277 BBI.IsBeingAnalyzed = false; 1278 BBI.IsAnalyzed = true; 1279 BBStack.pop_back(); 1280 continue; 1281 } 1282 1283 SmallVector<MachineOperand, 4> 1284 RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1285 bool CanRevCond = !TII->reverseBranchCondition(RevCond); 1286 1287 unsigned Dups = 0; 1288 unsigned Dups2 = 0; 1289 bool TNeedSub = !TrueBBI.Predicate.empty(); 1290 bool FNeedSub = !FalseBBI.Predicate.empty(); 1291 bool Enqueued = false; 1292 1293 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); 1294 1295 if (CanRevCond) { 1296 BBInfo TrueBBICalc, FalseBBICalc; 1297 auto feasibleDiamond = [&](bool Forked) { 1298 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB, 1299 Dups + Dups2, Prediction, Forked); 1300 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, 1301 /* IsTriangle */ false, /* RevCond */ false, 1302 /* hasCommonTail */ true); 1303 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, 1304 /* IsTriangle */ false, /* RevCond */ false, 1305 /* hasCommonTail */ true); 1306 return MeetsSize && TrueFeasible && FalseFeasible; 1307 }; 1308 1309 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1310 TrueBBICalc, FalseBBICalc)) { 1311 if (feasibleDiamond(false)) { 1312 // Diamond: 1313 // EBB 1314 // / \_ 1315 // | | 1316 // TBB FBB 1317 // \ / 1318 // TailBB 1319 // Note TailBB can be empty. 1320 Tokens.push_back(std::make_unique<IfcvtToken>( 1321 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1322 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1323 Enqueued = true; 1324 } 1325 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, 1326 TrueBBICalc, FalseBBICalc)) { 1327 if (feasibleDiamond(true)) { 1328 // ForkedDiamond: 1329 // if TBB and FBB have a common tail that includes their conditional 1330 // branch instructions, then we can If Convert this pattern. 1331 // EBB 1332 // _/ \_ 1333 // | | 1334 // TBB FBB 1335 // / \ / \ 1336 // FalseBB TrueBB FalseBB 1337 // 1338 Tokens.push_back(std::make_unique<IfcvtToken>( 1339 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, 1340 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); 1341 Enqueued = true; 1342 } 1343 } 1344 } 1345 1346 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && 1347 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1348 TrueBBI.ExtraCost2, Prediction) && 1349 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { 1350 // Triangle: 1351 // EBB 1352 // | \_ 1353 // | | 1354 // | TBB 1355 // | / 1356 // FBB 1357 Tokens.push_back( 1358 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); 1359 Enqueued = true; 1360 } 1361 1362 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && 1363 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1364 TrueBBI.ExtraCost2, Prediction) && 1365 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { 1366 Tokens.push_back( 1367 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); 1368 Enqueued = true; 1369 } 1370 1371 if (ValidSimple(TrueBBI, Dups, Prediction) && 1372 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, 1373 TrueBBI.ExtraCost2, Prediction) && 1374 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { 1375 // Simple (split, no rejoin): 1376 // EBB 1377 // | \_ 1378 // | | 1379 // | TBB---> exit 1380 // | 1381 // FBB 1382 Tokens.push_back( 1383 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); 1384 Enqueued = true; 1385 } 1386 1387 if (CanRevCond) { 1388 // Try the other path... 1389 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, 1390 Prediction.getCompl()) && 1391 MeetIfcvtSizeLimit(*FalseBBI.BB, 1392 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1393 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1394 FeasibilityAnalysis(FalseBBI, RevCond, true)) { 1395 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse, 1396 FNeedSub, Dups)); 1397 Enqueued = true; 1398 } 1399 1400 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, 1401 Prediction.getCompl()) && 1402 MeetIfcvtSizeLimit(*FalseBBI.BB, 1403 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1404 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1405 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { 1406 Tokens.push_back( 1407 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); 1408 Enqueued = true; 1409 } 1410 1411 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && 1412 MeetIfcvtSizeLimit(*FalseBBI.BB, 1413 FalseBBI.NonPredSize + FalseBBI.ExtraCost, 1414 FalseBBI.ExtraCost2, Prediction.getCompl()) && 1415 FeasibilityAnalysis(FalseBBI, RevCond)) { 1416 Tokens.push_back( 1417 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); 1418 Enqueued = true; 1419 } 1420 } 1421 1422 BBI.IsEnqueued = Enqueued; 1423 BBI.IsBeingAnalyzed = false; 1424 BBI.IsAnalyzed = true; 1425 BBStack.pop_back(); 1426 } 1427 } 1428 1429 /// Analyze all blocks and find entries for all if-conversion candidates. 1430 void IfConverter::AnalyzeBlocks( 1431 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { 1432 for (MachineBasicBlock &MBB : MF) 1433 AnalyzeBlock(MBB, Tokens); 1434 1435 // Sort to favor more complex ifcvt scheme. 1436 llvm::stable_sort(Tokens, IfcvtTokenCmp); 1437 } 1438 1439 /// Returns true either if ToMBB is the next block after MBB or that all the 1440 /// intervening blocks are empty (given MBB can fall through to its next block). 1441 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { 1442 MachineFunction::iterator PI = MBB.getIterator(); 1443 MachineFunction::iterator I = std::next(PI); 1444 MachineFunction::iterator TI = ToMBB.getIterator(); 1445 MachineFunction::iterator E = MBB.getParent()->end(); 1446 while (I != TI) { 1447 // Check isSuccessor to avoid case where the next block is empty, but 1448 // it's not a successor. 1449 if (I == E || !I->empty() || !PI->isSuccessor(&*I)) 1450 return false; 1451 PI = I++; 1452 } 1453 // Finally see if the last I is indeed a successor to PI. 1454 return PI->isSuccessor(&*I); 1455 } 1456 1457 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it 1458 /// can be if-converted. If predecessor is already enqueued, dequeue it! 1459 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { 1460 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { 1461 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; 1462 if (PBBI.IsDone || PBBI.BB == &MBB) 1463 continue; 1464 PBBI.IsAnalyzed = false; 1465 PBBI.IsEnqueued = false; 1466 } 1467 } 1468 1469 /// Inserts an unconditional branch from \p MBB to \p ToMBB. 1470 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, 1471 const TargetInstrInfo *TII) { 1472 DebugLoc dl; // FIXME: this is nowhere 1473 SmallVector<MachineOperand, 0> NoCond; 1474 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); 1475 } 1476 1477 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all 1478 /// values defined in MI which are also live/used by MI. 1479 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { 1480 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); 1481 1482 // Before stepping forward past MI, remember which regs were live 1483 // before MI. This is needed to set the Undef flag only when reg is 1484 // dead. 1485 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; 1486 LiveBeforeMI.setUniverse(TRI->getNumRegs()); 1487 for (unsigned Reg : Redefs) 1488 LiveBeforeMI.insert(Reg); 1489 1490 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; 1491 Redefs.stepForward(MI, Clobbers); 1492 1493 // Now add the implicit uses for each of the clobbered values. 1494 for (auto Clobber : Clobbers) { 1495 // FIXME: Const cast here is nasty, but better than making StepForward 1496 // take a mutable instruction instead of const. 1497 unsigned Reg = Clobber.first; 1498 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); 1499 MachineInstr *OpMI = Op.getParent(); 1500 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); 1501 if (Op.isRegMask()) { 1502 // First handle regmasks. They clobber any entries in the mask which 1503 // means that we need a def for those registers. 1504 if (LiveBeforeMI.count(Reg)) 1505 MIB.addReg(Reg, RegState::Implicit); 1506 1507 // We also need to add an implicit def of this register for the later 1508 // use to read from. 1509 // For the register allocator to have allocated a register clobbered 1510 // by the call which is used later, it must be the case that 1511 // the call doesn't return. 1512 MIB.addReg(Reg, RegState::Implicit | RegState::Define); 1513 continue; 1514 } 1515 if (LiveBeforeMI.count(Reg)) 1516 MIB.addReg(Reg, RegState::Implicit); 1517 else { 1518 bool HasLiveSubReg = false; 1519 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { 1520 if (!LiveBeforeMI.count(*S)) 1521 continue; 1522 HasLiveSubReg = true; 1523 break; 1524 } 1525 if (HasLiveSubReg) 1526 MIB.addReg(Reg, RegState::Implicit); 1527 } 1528 } 1529 } 1530 1531 /// If convert a simple (split, no rejoin) sub-CFG. 1532 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { 1533 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1534 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1535 BBInfo *CvtBBI = &TrueBBI; 1536 BBInfo *NextBBI = &FalseBBI; 1537 1538 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1539 if (Kind == ICSimpleFalse) 1540 std::swap(CvtBBI, NextBBI); 1541 1542 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1543 MachineBasicBlock &NextMBB = *NextBBI->BB; 1544 if (CvtBBI->IsDone || 1545 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1546 // Something has changed. It's no longer safe to predicate this block. 1547 BBI.IsAnalyzed = false; 1548 CvtBBI->IsAnalyzed = false; 1549 return false; 1550 } 1551 1552 if (CvtMBB.hasAddressTaken()) 1553 // Conservatively abort if-conversion if BB's address is taken. 1554 return false; 1555 1556 if (Kind == ICSimpleFalse) 1557 if (TII->reverseBranchCondition(Cond)) 1558 llvm_unreachable("Unable to reverse branch condition!"); 1559 1560 Redefs.init(*TRI); 1561 1562 if (MRI->tracksLiveness()) { 1563 // Initialize liveins to the first BB. These are potentially redefined by 1564 // predicated instructions. 1565 Redefs.addLiveInsNoPristines(CvtMBB); 1566 Redefs.addLiveInsNoPristines(NextMBB); 1567 } 1568 1569 // Remove the branches from the entry so we can add the contents of the true 1570 // block to it. 1571 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1572 1573 if (CvtMBB.pred_size() > 1) { 1574 // Copy instructions in the true block, predicate them, and add them to 1575 // the entry block. 1576 CopyAndPredicateBlock(BBI, *CvtBBI, Cond); 1577 1578 // Keep the CFG updated. 1579 BBI.BB->removeSuccessor(&CvtMBB, true); 1580 } else { 1581 // Predicate the instructions in the true block. 1582 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1583 1584 // Merge converted block into entry block. The BB to Cvt edge is removed 1585 // by MergeBlocks. 1586 MergeBlocks(BBI, *CvtBBI); 1587 } 1588 1589 bool IterIfcvt = true; 1590 if (!canFallThroughTo(*BBI.BB, NextMBB)) { 1591 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1592 BBI.HasFallThrough = false; 1593 // Now ifcvt'd block will look like this: 1594 // BB: 1595 // ... 1596 // t, f = cmp 1597 // if t op 1598 // b BBf 1599 // 1600 // We cannot further ifcvt this block because the unconditional branch 1601 // will have to be predicated on the new condition, that will not be 1602 // available if cmp executes. 1603 IterIfcvt = false; 1604 } 1605 1606 // Update block info. BB can be iteratively if-converted. 1607 if (!IterIfcvt) 1608 BBI.IsDone = true; 1609 InvalidatePreds(*BBI.BB); 1610 CvtBBI->IsDone = true; 1611 1612 // FIXME: Must maintain LiveIns. 1613 return true; 1614 } 1615 1616 /// If convert a triangle sub-CFG. 1617 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { 1618 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 1619 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 1620 BBInfo *CvtBBI = &TrueBBI; 1621 BBInfo *NextBBI = &FalseBBI; 1622 DebugLoc dl; // FIXME: this is nowhere 1623 1624 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); 1625 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1626 std::swap(CvtBBI, NextBBI); 1627 1628 MachineBasicBlock &CvtMBB = *CvtBBI->BB; 1629 MachineBasicBlock &NextMBB = *NextBBI->BB; 1630 if (CvtBBI->IsDone || 1631 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { 1632 // Something has changed. It's no longer safe to predicate this block. 1633 BBI.IsAnalyzed = false; 1634 CvtBBI->IsAnalyzed = false; 1635 return false; 1636 } 1637 1638 if (CvtMBB.hasAddressTaken()) 1639 // Conservatively abort if-conversion if BB's address is taken. 1640 return false; 1641 1642 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) 1643 if (TII->reverseBranchCondition(Cond)) 1644 llvm_unreachable("Unable to reverse branch condition!"); 1645 1646 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { 1647 if (reverseBranchCondition(*CvtBBI)) { 1648 // BB has been changed, modify its predecessors (except for this 1649 // one) so they don't get ifcvt'ed based on bad intel. 1650 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { 1651 if (PBB == BBI.BB) 1652 continue; 1653 BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; 1654 if (PBBI.IsEnqueued) { 1655 PBBI.IsAnalyzed = false; 1656 PBBI.IsEnqueued = false; 1657 } 1658 } 1659 } 1660 } 1661 1662 // Initialize liveins to the first BB. These are potentially redefined by 1663 // predicated instructions. 1664 Redefs.init(*TRI); 1665 if (MRI->tracksLiveness()) { 1666 Redefs.addLiveInsNoPristines(CvtMBB); 1667 Redefs.addLiveInsNoPristines(NextMBB); 1668 } 1669 1670 bool HasEarlyExit = CvtBBI->FalseBB != nullptr; 1671 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; 1672 1673 if (HasEarlyExit) { 1674 // Get probabilities before modifying CvtMBB and BBI.BB. 1675 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); 1676 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); 1677 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); 1678 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); 1679 } 1680 1681 // Remove the branches from the entry so we can add the contents of the true 1682 // block to it. 1683 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1684 1685 if (CvtMBB.pred_size() > 1) { 1686 // Copy instructions in the true block, predicate them, and add them to 1687 // the entry block. 1688 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); 1689 } else { 1690 // Predicate the 'true' block after removing its branch. 1691 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); 1692 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); 1693 1694 // Now merge the entry of the triangle with the true block. 1695 MergeBlocks(BBI, *CvtBBI, false); 1696 } 1697 1698 // Keep the CFG updated. 1699 BBI.BB->removeSuccessor(&CvtMBB, true); 1700 1701 // If 'true' block has a 'false' successor, add an exit branch to it. 1702 if (HasEarlyExit) { 1703 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), 1704 CvtBBI->BrCond.end()); 1705 if (TII->reverseBranchCondition(RevCond)) 1706 llvm_unreachable("Unable to reverse branch condition!"); 1707 1708 // Update the edge probability for both CvtBBI->FalseBB and NextBBI. 1709 // NewNext = New_Prob(BBI.BB, NextMBB) = 1710 // Prob(BBI.BB, NextMBB) + 1711 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) 1712 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = 1713 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) 1714 auto NewTrueBB = getNextBlock(*BBI.BB); 1715 auto NewNext = BBNext + BBCvt * CvtNext; 1716 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); 1717 if (NewTrueBBIter != BBI.BB->succ_end()) 1718 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); 1719 1720 auto NewFalse = BBCvt * CvtFalse; 1721 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); 1722 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); 1723 } 1724 1725 // Merge in the 'false' block if the 'false' block has no other 1726 // predecessors. Otherwise, add an unconditional branch to 'false'. 1727 bool FalseBBDead = false; 1728 bool IterIfcvt = true; 1729 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); 1730 if (!isFallThrough) { 1731 // Only merge them if the true block does not fallthrough to the false 1732 // block. By not merging them, we make it possible to iteratively 1733 // ifcvt the blocks. 1734 if (!HasEarlyExit && 1735 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && 1736 !NextMBB.hasAddressTaken()) { 1737 MergeBlocks(BBI, *NextBBI); 1738 FalseBBDead = true; 1739 } else { 1740 InsertUncondBranch(*BBI.BB, NextMBB, TII); 1741 BBI.HasFallThrough = false; 1742 } 1743 // Mixed predicated and unpredicated code. This cannot be iteratively 1744 // predicated. 1745 IterIfcvt = false; 1746 } 1747 1748 // Update block info. BB can be iteratively if-converted. 1749 if (!IterIfcvt) 1750 BBI.IsDone = true; 1751 InvalidatePreds(*BBI.BB); 1752 CvtBBI->IsDone = true; 1753 if (FalseBBDead) 1754 NextBBI->IsDone = true; 1755 1756 // FIXME: Must maintain LiveIns. 1757 return true; 1758 } 1759 1760 /// Common code shared between diamond conversions. 1761 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. 1762 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI 1763 /// and FalseBBI 1764 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI 1765 /// and \p FalseBBI 1766 /// \p RemoveBranch - Remove the common branch of the two blocks before 1767 /// predicating. Only false for unanalyzable fallthrough 1768 /// cases. The caller will replace the branch if necessary. 1769 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for 1770 /// unanalyzable fallthrough 1771 bool IfConverter::IfConvertDiamondCommon( 1772 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, 1773 unsigned NumDups1, unsigned NumDups2, 1774 bool TClobbersPred, bool FClobbersPred, 1775 bool RemoveBranch, bool MergeAddEdges) { 1776 1777 if (TrueBBI.IsDone || FalseBBI.IsDone || 1778 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { 1779 // Something has changed. It's no longer safe to predicate these blocks. 1780 BBI.IsAnalyzed = false; 1781 TrueBBI.IsAnalyzed = false; 1782 FalseBBI.IsAnalyzed = false; 1783 return false; 1784 } 1785 1786 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) 1787 // Conservatively abort if-conversion if either BB has its address taken. 1788 return false; 1789 1790 // Put the predicated instructions from the 'true' block before the 1791 // instructions from the 'false' block, unless the true block would clobber 1792 // the predicate, in which case, do the opposite. 1793 BBInfo *BBI1 = &TrueBBI; 1794 BBInfo *BBI2 = &FalseBBI; 1795 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); 1796 if (TII->reverseBranchCondition(RevCond)) 1797 llvm_unreachable("Unable to reverse branch condition!"); 1798 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; 1799 SmallVector<MachineOperand, 4> *Cond2 = &RevCond; 1800 1801 // Figure out the more profitable ordering. 1802 bool DoSwap = false; 1803 if (TClobbersPred && !FClobbersPred) 1804 DoSwap = true; 1805 else if (!TClobbersPred && !FClobbersPred) { 1806 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) 1807 DoSwap = true; 1808 } else if (TClobbersPred && FClobbersPred) 1809 llvm_unreachable("Predicate info cannot be clobbered by both sides."); 1810 if (DoSwap) { 1811 std::swap(BBI1, BBI2); 1812 std::swap(Cond1, Cond2); 1813 } 1814 1815 // Remove the conditional branch from entry to the blocks. 1816 BBI.NonPredSize -= TII->removeBranch(*BBI.BB); 1817 1818 MachineBasicBlock &MBB1 = *BBI1->BB; 1819 MachineBasicBlock &MBB2 = *BBI2->BB; 1820 1821 // Initialize the Redefs: 1822 // - BB2 live-in regs need implicit uses before being redefined by BB1 1823 // instructions. 1824 // - BB1 live-out regs need implicit uses before being redefined by BB2 1825 // instructions. We start with BB1 live-ins so we have the live-out regs 1826 // after tracking the BB1 instructions. 1827 Redefs.init(*TRI); 1828 if (MRI->tracksLiveness()) { 1829 Redefs.addLiveInsNoPristines(MBB1); 1830 Redefs.addLiveInsNoPristines(MBB2); 1831 } 1832 1833 // Remove the duplicated instructions at the beginnings of both paths. 1834 // Skip dbg_value instructions. 1835 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(false); 1836 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(false); 1837 BBI1->NonPredSize -= NumDups1; 1838 BBI2->NonPredSize -= NumDups1; 1839 1840 // Skip past the dups on each side separately since there may be 1841 // differing dbg_value entries. NumDups1 can include a "return" 1842 // instruction, if it's not marked as "branch". 1843 for (unsigned i = 0; i < NumDups1; ++DI1) { 1844 if (DI1 == MBB1.end()) 1845 break; 1846 if (!DI1->isDebugInstr()) 1847 ++i; 1848 } 1849 while (NumDups1 != 0) { 1850 // Since this instruction is going to be deleted, update call 1851 // site info state if the instruction is call instruction. 1852 if (DI2->shouldUpdateCallSiteInfo()) 1853 MBB2.getParent()->eraseCallSiteInfo(&*DI2); 1854 1855 ++DI2; 1856 if (DI2 == MBB2.end()) 1857 break; 1858 if (!DI2->isDebugInstr()) 1859 --NumDups1; 1860 } 1861 1862 if (MRI->tracksLiveness()) { 1863 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { 1864 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; 1865 Redefs.stepForward(MI, Dummy); 1866 } 1867 } 1868 1869 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); 1870 MBB2.erase(MBB2.begin(), DI2); 1871 1872 // The branches have been checked to match, so it is safe to remove the 1873 // branch in BB1 and rely on the copy in BB2. The complication is that 1874 // the blocks may end with a return instruction, which may or may not 1875 // be marked as "branch". If it's not, then it could be included in 1876 // "dups1", leaving the blocks potentially empty after moving the common 1877 // duplicates. 1878 #ifndef NDEBUG 1879 // Unanalyzable branches must match exactly. Check that now. 1880 if (!BBI1->IsBrAnalyzable) 1881 verifySameBranchInstructions(&MBB1, &MBB2); 1882 #endif 1883 // Remove duplicated instructions from the tail of MBB1: any branch 1884 // instructions, and the common instructions counted by NumDups2. 1885 DI1 = MBB1.end(); 1886 while (DI1 != MBB1.begin()) { 1887 MachineBasicBlock::iterator Prev = std::prev(DI1); 1888 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1889 break; 1890 DI1 = Prev; 1891 } 1892 for (unsigned i = 0; i != NumDups2; ) { 1893 // NumDups2 only counted non-dbg_value instructions, so this won't 1894 // run off the head of the list. 1895 assert(DI1 != MBB1.begin()); 1896 1897 --DI1; 1898 1899 // Since this instruction is going to be deleted, update call 1900 // site info state if the instruction is call instruction. 1901 if (DI1->shouldUpdateCallSiteInfo()) 1902 MBB1.getParent()->eraseCallSiteInfo(&*DI1); 1903 1904 // skip dbg_value instructions 1905 if (!DI1->isDebugInstr()) 1906 ++i; 1907 } 1908 MBB1.erase(DI1, MBB1.end()); 1909 1910 DI2 = BBI2->BB->end(); 1911 // The branches have been checked to match. Skip over the branch in the false 1912 // block so that we don't try to predicate it. 1913 if (RemoveBranch) 1914 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); 1915 else { 1916 // Make DI2 point to the end of the range where the common "tail" 1917 // instructions could be found. 1918 while (DI2 != MBB2.begin()) { 1919 MachineBasicBlock::iterator Prev = std::prev(DI2); 1920 if (!Prev->isBranch() && !Prev->isDebugInstr()) 1921 break; 1922 DI2 = Prev; 1923 } 1924 } 1925 while (NumDups2 != 0) { 1926 // NumDups2 only counted non-dbg_value instructions, so this won't 1927 // run off the head of the list. 1928 assert(DI2 != MBB2.begin()); 1929 --DI2; 1930 // skip dbg_value instructions 1931 if (!DI2->isDebugInstr()) 1932 --NumDups2; 1933 } 1934 1935 // Remember which registers would later be defined by the false block. 1936 // This allows us not to predicate instructions in the true block that would 1937 // later be re-defined. That is, rather than 1938 // subeq r0, r1, #1 1939 // addne r0, r1, #1 1940 // generate: 1941 // sub r0, r1, #1 1942 // addne r0, r1, #1 1943 SmallSet<MCPhysReg, 4> RedefsByFalse; 1944 SmallSet<MCPhysReg, 4> ExtUses; 1945 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { 1946 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { 1947 if (FI.isDebugInstr()) 1948 continue; 1949 SmallVector<MCPhysReg, 4> Defs; 1950 for (const MachineOperand &MO : FI.operands()) { 1951 if (!MO.isReg()) 1952 continue; 1953 Register Reg = MO.getReg(); 1954 if (!Reg) 1955 continue; 1956 if (MO.isDef()) { 1957 Defs.push_back(Reg); 1958 } else if (!RedefsByFalse.count(Reg)) { 1959 // These are defined before ctrl flow reach the 'false' instructions. 1960 // They cannot be modified by the 'true' instructions. 1961 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1962 SubRegs.isValid(); ++SubRegs) 1963 ExtUses.insert(*SubRegs); 1964 } 1965 } 1966 1967 for (MCPhysReg Reg : Defs) { 1968 if (!ExtUses.count(Reg)) { 1969 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); 1970 SubRegs.isValid(); ++SubRegs) 1971 RedefsByFalse.insert(*SubRegs); 1972 } 1973 } 1974 } 1975 } 1976 1977 // Predicate the 'true' block. 1978 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); 1979 1980 // After predicating BBI1, if there is a predicated terminator in BBI1 and 1981 // a non-predicated in BBI2, then we don't want to predicate the one from 1982 // BBI2. The reason is that if we merged these blocks, we would end up with 1983 // two predicated terminators in the same block. 1984 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't 1985 // predicate them either. They were checked to be identical, and so the 1986 // same branch would happen regardless of which path was taken. 1987 if (!MBB2.empty() && (DI2 == MBB2.end())) { 1988 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); 1989 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); 1990 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); 1991 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); 1992 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) 1993 --DI2; 1994 } 1995 1996 // Predicate the 'false' block. 1997 PredicateBlock(*BBI2, DI2, *Cond2); 1998 1999 // Merge the true block into the entry of the diamond. 2000 MergeBlocks(BBI, *BBI1, MergeAddEdges); 2001 MergeBlocks(BBI, *BBI2, MergeAddEdges); 2002 return true; 2003 } 2004 2005 /// If convert an almost-diamond sub-CFG where the true 2006 /// and false blocks share a common tail. 2007 bool IfConverter::IfConvertForkedDiamond( 2008 BBInfo &BBI, IfcvtKind Kind, 2009 unsigned NumDups1, unsigned NumDups2, 2010 bool TClobbersPred, bool FClobbersPred) { 2011 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2012 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2013 2014 // Save the debug location for later. 2015 DebugLoc dl; 2016 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); 2017 if (TIE != TrueBBI.BB->end()) 2018 dl = TIE->getDebugLoc(); 2019 // Removing branches from both blocks is safe, because we have already 2020 // determined that both blocks have the same branch instructions. The branch 2021 // will be added back at the end, unpredicated. 2022 if (!IfConvertDiamondCommon( 2023 BBI, TrueBBI, FalseBBI, 2024 NumDups1, NumDups2, 2025 TClobbersPred, FClobbersPred, 2026 /* RemoveBranch */ true, /* MergeAddEdges */ true)) 2027 return false; 2028 2029 // Add back the branch. 2030 // Debug location saved above when removing the branch from BBI2 2031 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, 2032 TrueBBI.BrCond, dl); 2033 2034 // Update block info. 2035 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2036 InvalidatePreds(*BBI.BB); 2037 2038 // FIXME: Must maintain LiveIns. 2039 return true; 2040 } 2041 2042 /// If convert a diamond sub-CFG. 2043 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, 2044 unsigned NumDups1, unsigned NumDups2, 2045 bool TClobbersPred, bool FClobbersPred) { 2046 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; 2047 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; 2048 MachineBasicBlock *TailBB = TrueBBI.TrueBB; 2049 2050 // True block must fall through or end with an unanalyzable terminator. 2051 if (!TailBB) { 2052 if (blockAlwaysFallThrough(TrueBBI)) 2053 TailBB = FalseBBI.TrueBB; 2054 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); 2055 } 2056 2057 if (!IfConvertDiamondCommon( 2058 BBI, TrueBBI, FalseBBI, 2059 NumDups1, NumDups2, 2060 TClobbersPred, FClobbersPred, 2061 /* RemoveBranch */ TrueBBI.IsBrAnalyzable, 2062 /* MergeAddEdges */ TailBB == nullptr)) 2063 return false; 2064 2065 // If the if-converted block falls through or unconditionally branches into 2066 // the tail block, and the tail block does not have other predecessors, then 2067 // fold the tail block in as well. Otherwise, unless it falls through to the 2068 // tail, add a unconditional branch to it. 2069 if (TailBB) { 2070 // We need to remove the edges to the true and false blocks manually since 2071 // we didn't let IfConvertDiamondCommon update the CFG. 2072 BBI.BB->removeSuccessor(TrueBBI.BB); 2073 BBI.BB->removeSuccessor(FalseBBI.BB, true); 2074 2075 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; 2076 bool CanMergeTail = !TailBBI.HasFallThrough && 2077 !TailBBI.BB->hasAddressTaken(); 2078 // The if-converted block can still have a predicated terminator 2079 // (e.g. a predicated return). If that is the case, we cannot merge 2080 // it with the tail block. 2081 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); 2082 if (TI != BBI.BB->end() && TII->isPredicated(*TI)) 2083 CanMergeTail = false; 2084 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; 2085 // check if there are any other predecessors besides those. 2086 unsigned NumPreds = TailBB->pred_size(); 2087 if (NumPreds > 1) 2088 CanMergeTail = false; 2089 else if (NumPreds == 1 && CanMergeTail) { 2090 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); 2091 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) 2092 CanMergeTail = false; 2093 } 2094 if (CanMergeTail) { 2095 MergeBlocks(BBI, TailBBI); 2096 TailBBI.IsDone = true; 2097 } else { 2098 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); 2099 InsertUncondBranch(*BBI.BB, *TailBB, TII); 2100 BBI.HasFallThrough = false; 2101 } 2102 } 2103 2104 // Update block info. 2105 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; 2106 InvalidatePreds(*BBI.BB); 2107 2108 // FIXME: Must maintain LiveIns. 2109 return true; 2110 } 2111 2112 static bool MaySpeculate(const MachineInstr &MI, 2113 SmallSet<MCPhysReg, 4> &LaterRedefs) { 2114 bool SawStore = true; 2115 if (!MI.isSafeToMove(nullptr, SawStore)) 2116 return false; 2117 2118 for (const MachineOperand &MO : MI.operands()) { 2119 if (!MO.isReg()) 2120 continue; 2121 Register Reg = MO.getReg(); 2122 if (!Reg) 2123 continue; 2124 if (MO.isDef() && !LaterRedefs.count(Reg)) 2125 return false; 2126 } 2127 2128 return true; 2129 } 2130 2131 /// Predicate instructions from the start of the block to the specified end with 2132 /// the specified condition. 2133 void IfConverter::PredicateBlock(BBInfo &BBI, 2134 MachineBasicBlock::iterator E, 2135 SmallVectorImpl<MachineOperand> &Cond, 2136 SmallSet<MCPhysReg, 4> *LaterRedefs) { 2137 bool AnyUnpred = false; 2138 bool MaySpec = LaterRedefs != nullptr; 2139 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { 2140 if (I.isDebugInstr() || TII->isPredicated(I)) 2141 continue; 2142 // It may be possible not to predicate an instruction if it's the 'true' 2143 // side of a diamond and the 'false' side may re-define the instruction's 2144 // defs. 2145 if (MaySpec && MaySpeculate(I, *LaterRedefs)) { 2146 AnyUnpred = true; 2147 continue; 2148 } 2149 // If any instruction is predicated, then every instruction after it must 2150 // be predicated. 2151 MaySpec = false; 2152 if (!TII->PredicateInstruction(I, Cond)) { 2153 #ifndef NDEBUG 2154 dbgs() << "Unable to predicate " << I << "!\n"; 2155 #endif 2156 llvm_unreachable(nullptr); 2157 } 2158 2159 // If the predicated instruction now redefines a register as the result of 2160 // if-conversion, add an implicit kill. 2161 UpdatePredRedefs(I, Redefs); 2162 } 2163 2164 BBI.Predicate.append(Cond.begin(), Cond.end()); 2165 2166 BBI.IsAnalyzed = false; 2167 BBI.NonPredSize = 0; 2168 2169 ++NumIfConvBBs; 2170 if (AnyUnpred) 2171 ++NumUnpred; 2172 } 2173 2174 /// Copy and predicate instructions from source BB to the destination block. 2175 /// Skip end of block branches if IgnoreBr is true. 2176 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, 2177 SmallVectorImpl<MachineOperand> &Cond, 2178 bool IgnoreBr) { 2179 MachineFunction &MF = *ToBBI.BB->getParent(); 2180 2181 MachineBasicBlock &FromMBB = *FromBBI.BB; 2182 for (MachineInstr &I : FromMBB) { 2183 // Do not copy the end of the block branches. 2184 if (IgnoreBr && I.isBranch()) 2185 break; 2186 2187 MachineInstr *MI = MF.CloneMachineInstr(&I); 2188 // Make a copy of the call site info. 2189 if (I.isCandidateForCallSiteEntry()) 2190 MF.copyCallSiteInfo(&I, MI); 2191 2192 ToBBI.BB->insert(ToBBI.BB->end(), MI); 2193 ToBBI.NonPredSize++; 2194 unsigned ExtraPredCost = TII->getPredicationCost(I); 2195 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); 2196 if (NumCycles > 1) 2197 ToBBI.ExtraCost += NumCycles-1; 2198 ToBBI.ExtraCost2 += ExtraPredCost; 2199 2200 if (!TII->isPredicated(I) && !MI->isDebugInstr()) { 2201 if (!TII->PredicateInstruction(*MI, Cond)) { 2202 #ifndef NDEBUG 2203 dbgs() << "Unable to predicate " << I << "!\n"; 2204 #endif 2205 llvm_unreachable(nullptr); 2206 } 2207 } 2208 2209 // If the predicated instruction now redefines a register as the result of 2210 // if-conversion, add an implicit kill. 2211 UpdatePredRedefs(*MI, Redefs); 2212 } 2213 2214 if (!IgnoreBr) { 2215 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), 2216 FromMBB.succ_end()); 2217 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2218 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2219 2220 for (MachineBasicBlock *Succ : Succs) { 2221 // Fallthrough edge can't be transferred. 2222 if (Succ == FallThrough) 2223 continue; 2224 ToBBI.BB->addSuccessor(Succ); 2225 } 2226 } 2227 2228 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2229 ToBBI.Predicate.append(Cond.begin(), Cond.end()); 2230 2231 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2232 ToBBI.IsAnalyzed = false; 2233 2234 ++NumDupBBs; 2235 } 2236 2237 /// Move all instructions from FromBB to the end of ToBB. This will leave 2238 /// FromBB as an empty block, so remove all of its successor edges and move it 2239 /// to the end of the function. If AddEdges is true, i.e., when FromBBI's 2240 /// branch is being moved, add those successor edges to ToBBI and remove the old 2241 /// edge from ToBBI to FromBBI. 2242 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { 2243 MachineBasicBlock &FromMBB = *FromBBI.BB; 2244 assert(!FromMBB.hasAddressTaken() && 2245 "Removing a BB whose address is taken!"); 2246 2247 // If we're about to splice an INLINEASM_BR from FromBBI, we need to update 2248 // ToBBI's successor list accordingly. 2249 if (FromMBB.mayHaveInlineAsmBr()) 2250 for (MachineInstr &MI : FromMBB) 2251 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2252 for (MachineOperand &MO : MI.operands()) 2253 if (MO.isMBB() && !ToBBI.BB->isSuccessor(MO.getMBB())) 2254 ToBBI.BB->addSuccessor(MO.getMBB(), BranchProbability::getZero()); 2255 2256 // In case FromMBB contains terminators (e.g. return instruction), 2257 // first move the non-terminator instructions, then the terminators. 2258 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); 2259 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); 2260 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); 2261 2262 // If FromBB has non-predicated terminator we should copy it at the end. 2263 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) 2264 ToTI = ToBBI.BB->end(); 2265 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); 2266 2267 // Force normalizing the successors' probabilities of ToBBI.BB to convert all 2268 // unknown probabilities into known ones. 2269 // FIXME: This usage is too tricky and in the future we would like to 2270 // eliminate all unknown probabilities in MBB. 2271 if (ToBBI.IsBrAnalyzable) 2272 ToBBI.BB->normalizeSuccProbs(); 2273 2274 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors()); 2275 MachineBasicBlock *NBB = getNextBlock(FromMBB); 2276 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; 2277 // The edge probability from ToBBI.BB to FromMBB, which is only needed when 2278 // AddEdges is true and FromMBB is a successor of ToBBI.BB. 2279 auto To2FromProb = BranchProbability::getZero(); 2280 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { 2281 // Remove the old edge but remember the edge probability so we can calculate 2282 // the correct weights on the new edges being added further down. 2283 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); 2284 ToBBI.BB->removeSuccessor(&FromMBB); 2285 } 2286 2287 for (MachineBasicBlock *Succ : FromSuccs) { 2288 // Fallthrough edge can't be transferred. 2289 if (Succ == FallThrough) { 2290 FromMBB.removeSuccessor(Succ); 2291 continue; 2292 } 2293 2294 auto NewProb = BranchProbability::getZero(); 2295 if (AddEdges) { 2296 // Calculate the edge probability for the edge from ToBBI.BB to Succ, 2297 // which is a portion of the edge probability from FromMBB to Succ. The 2298 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if 2299 // FromBBI is a successor of ToBBI.BB. See comment below for exception). 2300 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); 2301 2302 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This 2303 // only happens when if-converting a diamond CFG and FromMBB is the 2304 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we 2305 // could just use the probabilities on FromMBB's out-edges when adding 2306 // new successors. 2307 if (!To2FromProb.isZero()) 2308 NewProb *= To2FromProb; 2309 } 2310 2311 FromMBB.removeSuccessor(Succ); 2312 2313 if (AddEdges) { 2314 // If the edge from ToBBI.BB to Succ already exists, update the 2315 // probability of this edge by adding NewProb to it. An example is shown 2316 // below, in which A is ToBBI.BB and B is FromMBB. In this case we 2317 // don't have to set C as A's successor as it already is. We only need to 2318 // update the edge probability on A->C. Note that B will not be 2319 // immediately removed from A's successors. It is possible that B->D is 2320 // not removed either if D is a fallthrough of B. Later the edge A->D 2321 // (generated here) and B->D will be combined into one edge. To maintain 2322 // correct edge probability of this combined edge, we need to set the edge 2323 // probability of A->B to zero, which is already done above. The edge 2324 // probability on A->D is calculated by scaling the original probability 2325 // on A->B by the probability of B->D. 2326 // 2327 // Before ifcvt: After ifcvt (assume B->D is kept): 2328 // 2329 // A A 2330 // /| /|\ 2331 // / B / B| 2332 // | /| | || 2333 // |/ | | |/ 2334 // C D C D 2335 // 2336 if (ToBBI.BB->isSuccessor(Succ)) 2337 ToBBI.BB->setSuccProbability( 2338 find(ToBBI.BB->successors(), Succ), 2339 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); 2340 else 2341 ToBBI.BB->addSuccessor(Succ, NewProb); 2342 } 2343 } 2344 2345 // Move the now empty FromMBB out of the way to the end of the function so 2346 // it doesn't interfere with fallthrough checks done by canFallThroughTo(). 2347 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); 2348 if (Last != &FromMBB) 2349 FromMBB.moveAfter(Last); 2350 2351 // Normalize the probabilities of ToBBI.BB's successors with all adjustment 2352 // we've done above. 2353 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) 2354 ToBBI.BB->normalizeSuccProbs(); 2355 2356 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); 2357 FromBBI.Predicate.clear(); 2358 2359 ToBBI.NonPredSize += FromBBI.NonPredSize; 2360 ToBBI.ExtraCost += FromBBI.ExtraCost; 2361 ToBBI.ExtraCost2 += FromBBI.ExtraCost2; 2362 FromBBI.NonPredSize = 0; 2363 FromBBI.ExtraCost = 0; 2364 FromBBI.ExtraCost2 = 0; 2365 2366 ToBBI.ClobbersPred |= FromBBI.ClobbersPred; 2367 ToBBI.HasFallThrough = FromBBI.HasFallThrough; 2368 ToBBI.IsAnalyzed = false; 2369 FromBBI.IsAnalyzed = false; 2370 } 2371 2372 FunctionPass * 2373 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { 2374 return new IfConverter(std::move(Ftor)); 2375 } 2376