//===- IfConversion.cpp - Machine code if conversion pass -----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the machine instruction level if-conversion pass, which // tries to convert conditional branches into predicated instructions. // //===----------------------------------------------------------------------===// #include "BranchFolding.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MBFIWrapper.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "if-converter" // Hidden options for help debugging. static cl::opt IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); static cl::opt IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); static cl::opt IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); static cl::opt DisableSimple("disable-ifcvt-simple", cl::init(false), cl::Hidden); static cl::opt DisableSimpleF("disable-ifcvt-simple-false", cl::init(false), cl::Hidden); static cl::opt DisableTriangle("disable-ifcvt-triangle", cl::init(false), cl::Hidden); static cl::opt DisableTriangleR("disable-ifcvt-triangle-rev", cl::init(false), cl::Hidden); static cl::opt DisableTriangleF("disable-ifcvt-triangle-false", cl::init(false), cl::Hidden); static cl::opt DisableTriangleFR("disable-ifcvt-triangle-false-rev", cl::init(false), cl::Hidden); static cl::opt DisableDiamond("disable-ifcvt-diamond", cl::init(false), cl::Hidden); static cl::opt DisableForkedDiamond("disable-ifcvt-forked-diamond", cl::init(false), cl::Hidden); static cl::opt IfCvtBranchFold("ifcvt-branch-fold", cl::init(true), cl::Hidden); STATISTIC(NumSimple, "Number of simple if-conversions performed"); STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed"); STATISTIC(NumTriangle, "Number of triangle if-conversions performed"); STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed"); STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); STATISTIC(NumDiamonds, "Number of diamond if-conversions performed"); STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); STATISTIC(NumIfConvBBs, "Number of if-converted blocks"); STATISTIC(NumDupBBs, "Number of duplicated blocks"); STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated"); namespace { class IfConverter : public MachineFunctionPass { enum IfcvtKind { ICNotClassfied, // BB data valid, but not classified. ICSimpleFalse, // Same as ICSimple, but on the false path. ICSimple, // BB is entry of an one split, no rejoin sub-CFG. ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. ICTriangleRev, // Same as ICTriangle, but true path rev condition. ICTriangleFalse, // Same as ICTriangle, but on the false path. ICTriangle, // BB is entry of a triangle sub-CFG. ICDiamond, // BB is entry of a diamond sub-CFG. ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a // common tail that can be shared. }; /// One per MachineBasicBlock, this is used to cache the result /// if-conversion feasibility analysis. This includes results from /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its /// classification, and common tail block of its successors (if it's a /// diamond shape), its size, whether it's predicable, and whether any /// instruction can clobber the 'would-be' predicate. /// /// IsDone - True if BB is not to be considered for ifcvt. /// IsBeingAnalyzed - True if BB is currently being analyzed. /// IsAnalyzed - True if BB has been analyzed (info is still valid). /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. /// IsBrAnalyzable - True if analyzeBranch() returns false. /// HasFallThrough - True if BB may fallthrough to the following BB. /// IsUnpredicable - True if BB is known to be unpredicable. /// ClobbersPred - True if BB could modify predicates (e.g. has /// cmp, call, etc.) /// NonPredSize - Number of non-predicated instructions. /// ExtraCost - Extra cost for multi-cycle instructions. /// ExtraCost2 - Some instructions are slower when predicated /// BB - Corresponding MachineBasicBlock. /// TrueBB / FalseBB- See analyzeBranch(). /// BrCond - Conditions for end of block conditional branches. /// Predicate - Predicate used in the BB. struct BBInfo { bool IsDone : 1; bool IsBeingAnalyzed : 1; bool IsAnalyzed : 1; bool IsEnqueued : 1; bool IsBrAnalyzable : 1; bool IsBrReversible : 1; bool HasFallThrough : 1; bool IsUnpredicable : 1; bool CannotBeCopied : 1; bool ClobbersPred : 1; unsigned NonPredSize = 0; unsigned ExtraCost = 0; unsigned ExtraCost2 = 0; MachineBasicBlock *BB = nullptr; MachineBasicBlock *TrueBB = nullptr; MachineBasicBlock *FalseBB = nullptr; SmallVector BrCond; SmallVector Predicate; BBInfo() : IsDone(false), IsBeingAnalyzed(false), IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), IsBrReversible(false), HasFallThrough(false), IsUnpredicable(false), CannotBeCopied(false), ClobbersPred(false) {} }; /// Record information about pending if-conversions to attempt: /// BBI - Corresponding BBInfo. /// Kind - Type of block. See IfcvtKind. /// NeedSubsumption - True if the to-be-predicated BB has already been /// predicated. /// NumDups - Number of instructions that would be duplicated due /// to this if-conversion. (For diamonds, the number of /// identical instructions at the beginnings of both /// paths). /// NumDups2 - For diamonds, the number of identical instructions /// at the ends of both paths. struct IfcvtToken { BBInfo &BBI; IfcvtKind Kind; unsigned NumDups; unsigned NumDups2; bool NeedSubsumption : 1; bool TClobbersPred : 1; bool FClobbersPred : 1; IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, bool tc = false, bool fc = false) : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), TClobbersPred(tc), FClobbersPred(fc) {} }; /// Results of if-conversion feasibility analysis indexed by basic block /// number. std::vector BBAnalysis; TargetSchedModel SchedModel; const TargetLoweringBase *TLI; const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; const MachineBranchProbabilityInfo *MBPI; MachineRegisterInfo *MRI; LivePhysRegs Redefs; bool PreRegAlloc; bool MadeChange; int FnNum = -1; std::function PredicateFtor; public: static char ID; IfConverter(std::function Ftor = nullptr) : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { initializeIfConverterPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: bool reverseBranchCondition(BBInfo &BBI) const; bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, BranchProbability Prediction) const; bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, bool FalseBranch, unsigned &Dups, BranchProbability Prediction) const; bool CountDuplicatedInstructions( MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, unsigned &Dups1, unsigned &Dups2, MachineBasicBlock &TBB, MachineBasicBlock &FBB, bool SkipUnconditionalBranches) const; bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, unsigned &Dups1, unsigned &Dups2, BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, unsigned &Dups1, unsigned &Dups2, BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; void AnalyzeBranches(BBInfo &BBI); void ScanInstructions(BBInfo &BBI, MachineBasicBlock::iterator &Begin, MachineBasicBlock::iterator &End, bool BranchUnpredicable = false) const; bool RescanInstructions( MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, BBInfo &TrueBBI, BBInfo &FalseBBI) const; void AnalyzeBlock(MachineBasicBlock &MBB, std::vector> &Tokens); bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl &Pred, bool isTriangle = false, bool RevBranch = false, bool hasCommonTail = false); void AnalyzeBlocks(MachineFunction &MF, std::vector> &Tokens); void InvalidatePreds(MachineBasicBlock &MBB); bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, unsigned NumDups1, unsigned NumDups2, bool TClobbersPred, bool FClobbersPred, bool RemoveBranch, bool MergeAddEdges); bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, unsigned NumDups1, unsigned NumDups2, bool TClobbers, bool FClobbers); bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, unsigned NumDups1, unsigned NumDups2, bool TClobbers, bool FClobbers); void PredicateBlock(BBInfo &BBI, MachineBasicBlock::iterator E, SmallVectorImpl &Cond, SmallSet *LaterRedefs = nullptr); void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, SmallVectorImpl &Cond, bool IgnoreBr = false); void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, unsigned Cycle, unsigned Extra, BranchProbability Prediction) const { return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, Prediction); } bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, MachineBasicBlock &CommBB, unsigned Dups, BranchProbability Prediction, bool Forked) const { const MachineFunction &MF = *TBBInfo.BB->getParent(); if (MF.getFunction().hasMinSize()) { MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); unsigned Dups1 = 0, Dups2 = 0; if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, *TBBInfo.BB, *FBBInfo.BB, /*SkipUnconditionalBranches*/ true)) llvm_unreachable("should already have been checked by ValidDiamond"); unsigned BranchBytes = 0; unsigned CommonBytes = 0; // Count common instructions at the start of the true and false blocks. for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) { LLVM_DEBUG(dbgs() << "Common inst: " << I); CommonBytes += TII->getInstSizeInBytes(I); } for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) { LLVM_DEBUG(dbgs() << "Common inst: " << I); CommonBytes += TII->getInstSizeInBytes(I); } // Count instructions at the end of the true and false blocks, after // the ones we plan to predicate. Analyzable branches will be removed // (unless this is a forked diamond), and all other instructions are // common between the two blocks. for (auto &I : make_range(TIE, TBBInfo.BB->end())) { if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { LLVM_DEBUG(dbgs() << "Saving branch: " << I); BranchBytes += TII->predictBranchSizeForIfCvt(I); } else { LLVM_DEBUG(dbgs() << "Common inst: " << I); CommonBytes += TII->getInstSizeInBytes(I); } } for (auto &I : make_range(FIE, FBBInfo.BB->end())) { if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { LLVM_DEBUG(dbgs() << "Saving branch: " << I); BranchBytes += TII->predictBranchSizeForIfCvt(I); } else { LLVM_DEBUG(dbgs() << "Common inst: " << I); CommonBytes += TII->getInstSizeInBytes(I); } } for (auto &I : CommBB.terminators()) { if (I.isBranch()) { LLVM_DEBUG(dbgs() << "Saving branch: " << I); BranchBytes += TII->predictBranchSizeForIfCvt(I); } } // The common instructions in one branch will be eliminated, halving // their code size. CommonBytes /= 2; // Count the instructions which we need to predicate. unsigned NumPredicatedInstructions = 0; for (auto &I : make_range(TIB, TIE)) { if (!I.isDebugInstr()) { LLVM_DEBUG(dbgs() << "Predicating: " << I); NumPredicatedInstructions++; } } for (auto &I : make_range(FIB, FIE)) { if (!I.isDebugInstr()) { LLVM_DEBUG(dbgs() << "Predicating: " << I); NumPredicatedInstructions++; } } // Even though we're optimising for size at the expense of performance, // avoid creating really long predicated blocks. if (NumPredicatedInstructions > 15) return false; // Some targets (e.g. Thumb2) need to insert extra instructions to // start predicated blocks. unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions( MF, NumPredicatedInstructions); LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes << ", CommonBytes=" << CommonBytes << ", NumPredicatedInstructions=" << NumPredicatedInstructions << ", ExtraPredicateBytes=" << ExtraPredicateBytes << ")\n"); return (BranchBytes + CommonBytes) > ExtraPredicateBytes; } else { unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; bool Res = TCycle > 0 && FCycle > 0 && TII->isProfitableToIfCvt( *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB, FCycle, FBBInfo.ExtraCost2, Prediction); LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle << ", FCycle=" << FCycle << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" << FBBInfo.ExtraCost2 << ") = " << Res << "\n"); return Res; } } /// Returns true if Block ends without a terminator. bool blockAlwaysFallThrough(BBInfo &BBI) const { return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; } /// Used to sort if-conversion candidates. static bool IfcvtTokenCmp(const std::unique_ptr &C1, const std::unique_ptr &C2) { int Incr1 = (C1->Kind == ICDiamond) ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; int Incr2 = (C2->Kind == ICDiamond) ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; if (Incr1 > Incr2) return true; else if (Incr1 == Incr2) { // Favors subsumption. if (!C1->NeedSubsumption && C2->NeedSubsumption) return true; else if (C1->NeedSubsumption == C2->NeedSubsumption) { // Favors diamond over triangle, etc. if ((unsigned)C1->Kind < (unsigned)C2->Kind) return true; else if (C1->Kind == C2->Kind) return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); } } return false; } }; } // end anonymous namespace char IfConverter::ID = 0; char &llvm::IfConverterID = IfConverter::ID; INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false) bool IfConverter::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) return false; const TargetSubtargetInfo &ST = MF.getSubtarget(); TLI = ST.getTargetLowering(); TII = ST.getInstrInfo(); TRI = ST.getRegisterInfo(); MBFIWrapper MBFI(getAnalysis()); MBPI = &getAnalysis(); ProfileSummaryInfo *PSI = &getAnalysis().getPSI(); MRI = &MF.getRegInfo(); SchedModel.init(&ST); if (!TII) return false; PreRegAlloc = MRI->isSSA(); bool BFChange = false; if (!PreRegAlloc) { // Tail merge tend to expose more if-conversion opportunities. BranchFolder BF(true, false, MBFI, *MBPI, PSI); BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo()); } LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" << MF.getName() << "\'"); if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { LLVM_DEBUG(dbgs() << " skipped\n"); return false; } LLVM_DEBUG(dbgs() << "\n"); MF.RenumberBlocks(); BBAnalysis.resize(MF.getNumBlockIDs()); std::vector> Tokens; MadeChange = false; unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { // Do an initial analysis for each basic block and find all the potential // candidates to perform if-conversion. bool Change = false; AnalyzeBlocks(MF, Tokens); while (!Tokens.empty()) { std::unique_ptr Token = std::move(Tokens.back()); Tokens.pop_back(); BBInfo &BBI = Token->BBI; IfcvtKind Kind = Token->Kind; unsigned NumDups = Token->NumDups; unsigned NumDups2 = Token->NumDups2; // If the block has been evicted out of the queue or it has already been // marked dead (due to it being predicated), then skip it. if (BBI.IsDone) BBI.IsEnqueued = false; if (!BBI.IsEnqueued) continue; BBI.IsEnqueued = false; bool RetVal = false; switch (Kind) { default: llvm_unreachable("Unexpected!"); case ICSimple: case ICSimpleFalse: { bool isFalse = Kind == ICSimpleFalse; if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; LLVM_DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? " false" : "") << "): " << printMBBReference(*BBI.BB) << " (" << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() : BBI.TrueBB->getNumber()) << ") "); RetVal = IfConvertSimple(BBI, Kind); LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); if (RetVal) { if (isFalse) ++NumSimpleFalse; else ++NumSimple; } break; } case ICTriangle: case ICTriangleRev: case ICTriangleFalse: case ICTriangleFRev: { bool isFalse = Kind == ICTriangleFalse; bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); if (DisableTriangle && !isFalse && !isRev) break; if (DisableTriangleR && !isFalse && isRev) break; if (DisableTriangleF && isFalse && !isRev) break; if (DisableTriangleFR && isFalse && isRev) break; LLVM_DEBUG(dbgs() << "Ifcvt (Triangle"); if (isFalse) LLVM_DEBUG(dbgs() << " false"); if (isRev) LLVM_DEBUG(dbgs() << " rev"); LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) << " (T:" << BBI.TrueBB->getNumber() << ",F:" << BBI.FalseBB->getNumber() << ") "); RetVal = IfConvertTriangle(BBI, Kind); LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); if (RetVal) { if (isFalse) { if (isRev) ++NumTriangleFRev; else ++NumTriangleFalse; } else { if (isRev) ++NumTriangleRev; else ++NumTriangle; } } break; } case ICDiamond: if (DisableDiamond) break; LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) << " (T:" << BBI.TrueBB->getNumber() << ",F:" << BBI.FalseBB->getNumber() << ") "); RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, Token->TClobbersPred, Token->FClobbersPred); LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); if (RetVal) ++NumDiamonds; break; case ICForkedDiamond: if (DisableForkedDiamond) break; LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " << printMBBReference(*BBI.BB) << " (T:" << BBI.TrueBB->getNumber() << ",F:" << BBI.FalseBB->getNumber() << ") "); RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, Token->TClobbersPred, Token->FClobbersPred); LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); if (RetVal) ++NumForkedDiamonds; break; } if (RetVal && MRI->tracksLiveness()) recomputeLivenessFlags(*BBI.BB); Change |= RetVal; NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) break; } if (!Change) break; MadeChange |= Change; } Tokens.clear(); BBAnalysis.clear(); if (MadeChange && IfCvtBranchFold) { BranchFolder BF(false, false, MBFI, *MBPI, PSI); BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo()); } MadeChange |= BFChange; return MadeChange; } /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, MachineBasicBlock *TrueBB) { for (MachineBasicBlock *SuccBB : BB->successors()) { if (SuccBB != TrueBB) return SuccBB; } return nullptr; } /// Reverse the condition of the end of the block branch. Swap block's 'true' /// and 'false' successors. bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { DebugLoc dl; // FIXME: this is nowhere if (!TII->reverseBranchCondition(BBI.BrCond)) { TII->removeBranch(*BBI.BB); TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); std::swap(BBI.TrueBB, BBI.FalseBB); return true; } return false; } /// Returns the next block in the function blocks ordering. If it is the end, /// returns NULL. static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { MachineFunction::iterator I = MBB.getIterator(); MachineFunction::iterator E = MBB.getParent()->end(); if (++I == E) return nullptr; return &*I; } /// Returns true if the 'true' block (along with its predecessor) forms a valid /// simple shape for ifcvt. It also returns the number of instructions that the /// ifcvt would need to duplicate if performed in Dups. bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, BranchProbability Prediction) const { Dups = 0; if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) return false; if (TrueBBI.IsBrAnalyzable) return false; if (TrueBBI.BB->pred_size() > 1) { if (TrueBBI.CannotBeCopied || !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, Prediction)) return false; Dups = TrueBBI.NonPredSize; } return true; } /// Returns true if the 'true' and 'false' blocks (along with their common /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is /// true, it checks if 'true' block's false branch branches to the 'false' block /// rather than the other way around. It also returns the number of instructions /// that the ifcvt would need to duplicate if performed in 'Dups'. bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, bool FalseBranch, unsigned &Dups, BranchProbability Prediction) const { Dups = 0; if (TrueBBI.BB == FalseBBI.BB) return false; if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) return false; if (TrueBBI.BB->pred_size() > 1) { if (TrueBBI.CannotBeCopied) return false; unsigned Size = TrueBBI.NonPredSize; if (TrueBBI.IsBrAnalyzable) { if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) // Ends with an unconditional branch. It will be removed. --Size; else { MachineBasicBlock *FExit = FalseBranch ? TrueBBI.TrueBB : TrueBBI.FalseBB; if (FExit) // Require a conditional branch ++Size; } } if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) return false; Dups = Size; } MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; if (!TExit && blockAlwaysFallThrough(TrueBBI)) { MachineFunction::iterator I = TrueBBI.BB->getIterator(); if (++I == TrueBBI.BB->getParent()->end()) return false; TExit = &*I; } return TExit && TExit == FalseBBI.BB; } /// Count duplicated instructions and move the iterators to show where they /// are. /// @param TIB True Iterator Begin /// @param FIB False Iterator Begin /// These two iterators initially point to the first instruction of the two /// blocks, and finally point to the first non-shared instruction. /// @param TIE True Iterator End /// @param FIE False Iterator End /// These two iterators initially point to End() for the two blocks() and /// finally point to the first shared instruction in the tail. /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of /// two blocks. /// @param Dups1 count of duplicated instructions at the beginning of the 2 /// blocks. /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. /// @param SkipUnconditionalBranches if true, Don't make sure that /// unconditional branches at the end of the blocks are the same. True is /// passed when the blocks are analyzable to allow for fallthrough to be /// handled. /// @return false if the shared portion prevents if conversion. bool IfConverter::CountDuplicatedInstructions( MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, unsigned &Dups1, unsigned &Dups2, MachineBasicBlock &TBB, MachineBasicBlock &FBB, bool SkipUnconditionalBranches) const { while (TIB != TIE && FIB != FIE) { // Skip dbg_value instructions. These do not count. TIB = skipDebugInstructionsForward(TIB, TIE, false); FIB = skipDebugInstructionsForward(FIB, FIE, false); if (TIB == TIE || FIB == FIE) break; if (!TIB->isIdenticalTo(*FIB)) break; // A pred-clobbering instruction in the shared portion prevents // if-conversion. std::vector PredDefs; if (TII->ClobbersPredicate(*TIB, PredDefs, false)) return false; // If we get all the way to the branch instructions, don't count them. if (!TIB->isBranch()) ++Dups1; ++TIB; ++FIB; } // Check for already containing all of the block. if (TIB == TIE || FIB == FIE) return true; // Now, in preparation for counting duplicate instructions at the ends of the // blocks, switch to reverse_iterators. Note that getReverse() returns an // iterator that points to the same instruction, unlike std::reverse_iterator. // We have to do our own shifting so that we get the same range. MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); if (!TBB.succ_empty() || !FBB.succ_empty()) { if (SkipUnconditionalBranches) { while (RTIE != RTIB && RTIE->isUnconditionalBranch()) ++RTIE; while (RFIE != RFIB && RFIE->isUnconditionalBranch()) ++RFIE; } } // Count duplicate instructions at the ends of the blocks. while (RTIE != RTIB && RFIE != RFIB) { // Skip dbg_value instructions. These do not count. // Note that these are reverse iterators going forward. RTIE = skipDebugInstructionsForward(RTIE, RTIB, false); RFIE = skipDebugInstructionsForward(RFIE, RFIB, false); if (RTIE == RTIB || RFIE == RFIB) break; if (!RTIE->isIdenticalTo(*RFIE)) break; // We have to verify that any branch instructions are the same, and then we // don't count them toward the # of duplicate instructions. if (!RTIE->isBranch()) ++Dups2; ++RTIE; ++RFIE; } TIE = std::next(RTIE.getReverse()); FIE = std::next(RFIE.getReverse()); return true; } /// RescanInstructions - Run ScanInstructions on a pair of blocks. /// @param TIB - True Iterator Begin, points to first non-shared instruction /// @param FIB - False Iterator Begin, points to first non-shared instruction /// @param TIE - True Iterator End, points past last non-shared instruction /// @param FIE - False Iterator End, points past last non-shared instruction /// @param TrueBBI - BBInfo to update for the true block. /// @param FalseBBI - BBInfo to update for the false block. /// @returns - false if either block cannot be predicated or if both blocks end /// with a predicate-clobbering instruction. bool IfConverter::RescanInstructions( MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, BBInfo &TrueBBI, BBInfo &FalseBBI) const { bool BranchUnpredicable = true; TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); if (TrueBBI.IsUnpredicable) return false; ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); if (FalseBBI.IsUnpredicable) return false; if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) return false; return true; } #ifndef NDEBUG static void verifySameBranchInstructions( MachineBasicBlock *MBB1, MachineBasicBlock *MBB2) { const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); while (E1 != B1 && E2 != B2) { skipDebugInstructionsForward(E1, B1, false); skipDebugInstructionsForward(E2, B2, false); if (E1 == B1 && E2 == B2) break; if (E1 == B1) { assert(!E2->isBranch() && "Branch mis-match, one block is empty."); break; } if (E2 == B2) { assert(!E1->isBranch() && "Branch mis-match, one block is empty."); break; } if (E1->isBranch() || E2->isBranch()) assert(E1->isIdenticalTo(*E2) && "Branch mis-match, branch instructions don't match."); else break; ++E1; ++E2; } } #endif /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along /// with their common predecessor) form a diamond if a common tail block is /// extracted. /// While not strictly a diamond, this pattern would form a diamond if /// tail-merging had merged the shared tails. /// EBB /// _/ \_ /// | | /// TBB FBB /// / \ / \ /// FalseBB TrueBB FalseBB /// Currently only handles analyzable branches. /// Specifically excludes actual diamonds to avoid overlap. bool IfConverter::ValidForkedDiamond( BBInfo &TrueBBI, BBInfo &FalseBBI, unsigned &Dups1, unsigned &Dups2, BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { Dups1 = Dups2 = 0; if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) return false; if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) return false; // Don't IfConvert blocks that can't be folded into their predecessor. if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) return false; // This function is specifically looking for conditional tails, as // unconditional tails are already handled by the standard diamond case. if (TrueBBI.BrCond.size() == 0 || FalseBBI.BrCond.size() == 0) return false; MachineBasicBlock *TT = TrueBBI.TrueBB; MachineBasicBlock *TF = TrueBBI.FalseBB; MachineBasicBlock *FT = FalseBBI.TrueBB; MachineBasicBlock *FF = FalseBBI.FalseBB; if (!TT) TT = getNextBlock(*TrueBBI.BB); if (!TF) TF = getNextBlock(*TrueBBI.BB); if (!FT) FT = getNextBlock(*FalseBBI.BB); if (!FF) FF = getNextBlock(*FalseBBI.BB); if (!TT || !TF) return false; // Check successors. If they don't match, bail. if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) return false; bool FalseReversed = false; if (TF == FT && TT == FF) { // If the branches are opposing, but we can't reverse, don't do it. if (!FalseBBI.IsBrReversible) return false; FalseReversed = true; reverseBranchCondition(FalseBBI); } auto UnReverseOnExit = make_scope_exit([&]() { if (FalseReversed) reverseBranchCondition(FalseBBI); }); // Count duplicate instructions at the beginning of the true and false blocks. MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, *TrueBBI.BB, *FalseBBI.BB, /* SkipUnconditionalBranches */ true)) return false; TrueBBICalc.BB = TrueBBI.BB; FalseBBICalc.BB = FalseBBI.BB; TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) return false; // The size is used to decide whether to if-convert, and the shared portions // are subtracted off. Because of the subtraction, we just use the size that // was calculated by the original ScanInstructions, as it is correct. TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; return true; } /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along /// with their common predecessor) forms a valid diamond shape for ifcvt. bool IfConverter::ValidDiamond( BBInfo &TrueBBI, BBInfo &FalseBBI, unsigned &Dups1, unsigned &Dups2, BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { Dups1 = Dups2 = 0; if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) return false; // If the True and False BBs are equal we're dealing with a degenerate case // that we don't treat as a diamond. if (TrueBBI.BB == FalseBBI.BB) return false; MachineBasicBlock *TT = TrueBBI.TrueBB; MachineBasicBlock *FT = FalseBBI.TrueBB; if (!TT && blockAlwaysFallThrough(TrueBBI)) TT = getNextBlock(*TrueBBI.BB); if (!FT && blockAlwaysFallThrough(FalseBBI)) FT = getNextBlock(*FalseBBI.BB); if (TT != FT) return false; if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) return false; if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) return false; // FIXME: Allow true block to have an early exit? if (TrueBBI.FalseBB || FalseBBI.FalseBB) return false; // Count duplicate instructions at the beginning and end of the true and // false blocks. // Skip unconditional branches only if we are considering an analyzable // diamond. Otherwise the branches must be the same. bool SkipUnconditionalBranches = TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, *TrueBBI.BB, *FalseBBI.BB, SkipUnconditionalBranches)) return false; TrueBBICalc.BB = TrueBBI.BB; FalseBBICalc.BB = FalseBBI.BB; TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) return false; // The size is used to decide whether to if-convert, and the shared portions // are subtracted off. Because of the subtraction, we just use the size that // was calculated by the original ScanInstructions, as it is correct. TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; return true; } /// AnalyzeBranches - Look at the branches at the end of a block to determine if /// the block is predicable. void IfConverter::AnalyzeBranches(BBInfo &BBI) { if (BBI.IsDone) return; BBI.TrueBB = BBI.FalseBB = nullptr; BBI.BrCond.clear(); BBI.IsBrAnalyzable = !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); if (!BBI.IsBrAnalyzable) { BBI.TrueBB = nullptr; BBI.FalseBB = nullptr; BBI.BrCond.clear(); } SmallVector RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); BBI.IsBrReversible = (RevCond.size() == 0) || !TII->reverseBranchCondition(RevCond); BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; if (BBI.BrCond.size()) { // No false branch. This BB must end with a conditional branch and a // fallthrough. if (!BBI.FalseBB) BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); if (!BBI.FalseBB) { // Malformed bcc? True and false blocks are the same? BBI.IsUnpredicable = true; } } } /// ScanInstructions - Scan all the instructions in the block to determine if /// the block is predicable. In most cases, that means all the instructions /// in the block are isPredicable(). Also checks if the block contains any /// instruction which can clobber a predicate (e.g. condition code register). /// If so, the block is not predicable unless it's the last instruction. void IfConverter::ScanInstructions(BBInfo &BBI, MachineBasicBlock::iterator &Begin, MachineBasicBlock::iterator &End, bool BranchUnpredicable) const { if (BBI.IsDone || BBI.IsUnpredicable) return; bool AlreadyPredicated = !BBI.Predicate.empty(); BBI.NonPredSize = 0; BBI.ExtraCost = 0; BBI.ExtraCost2 = 0; BBI.ClobbersPred = false; for (MachineInstr &MI : make_range(Begin, End)) { if (MI.isDebugInstr()) continue; // It's unsafe to duplicate convergent instructions in this context, so set // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the // following CFG, which is subject to our "simple" transformation. // // BB0 // if (c1) goto BB1; else goto BB2; // / \ // BB1 | // | BB2 // if (c2) goto TBB; else goto FBB; // | / | // | / | // TBB | // | | // | FBB // | // exit // // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd // be unconditional, and in BB2, they'd be predicated upon c2), and suppose // TBB contains a convergent instruction. This is safe iff doing so does // not add a control-flow dependency to the convergent instruction -- i.e., // it's safe iff the set of control flows that leads us to the convergent // instruction does not get smaller after the transformation. // // Originally we executed TBB if c1 || c2. After the transformation, there // are two copies of TBB's instructions. We get to the first if c1, and we // get to the second if !c1 && c2. // // There are clearly fewer ways to satisfy the condition "c1" than // "c1 || c2". Since we've shrunk the set of control flows which lead to // our convergent instruction, the transformation is unsafe. if (MI.isNotDuplicable() || MI.isConvergent()) BBI.CannotBeCopied = true; bool isPredicated = TII->isPredicated(MI); bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); if (BranchUnpredicable && MI.isBranch()) { BBI.IsUnpredicable = true; return; } // A conditional branch is not predicable, but it may be eliminated. if (isCondBr) continue; if (!isPredicated) { BBI.NonPredSize++; unsigned ExtraPredCost = TII->getPredicationCost(MI); unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); if (NumCycles > 1) BBI.ExtraCost += NumCycles-1; BBI.ExtraCost2 += ExtraPredCost; } else if (!AlreadyPredicated) { // FIXME: This instruction is already predicated before the // if-conversion pass. It's probably something like a conditional move. // Mark this block unpredicable for now. BBI.IsUnpredicable = true; return; } if (BBI.ClobbersPred && !isPredicated) { // Predicate modification instruction should end the block (except for // already predicated instructions and end of block branches). // Predicate may have been modified, the subsequent (currently) // unpredicated instructions cannot be correctly predicated. BBI.IsUnpredicable = true; return; } // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are // still potentially predicable. std::vector PredDefs; if (TII->ClobbersPredicate(MI, PredDefs, true)) BBI.ClobbersPred = true; if (!TII->isPredicable(MI)) { BBI.IsUnpredicable = true; return; } } } /// Determine if the block is a suitable candidate to be predicated by the /// specified predicate. /// @param BBI BBInfo for the block to check /// @param Pred Predicate array for the branch that leads to BBI /// @param isTriangle true if the Analysis is for a triangle /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false /// case /// @param hasCommonTail true if BBI shares a tail with a sibling block that /// contains any instruction that would make the block unpredicable. bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl &Pred, bool isTriangle, bool RevBranch, bool hasCommonTail) { // If the block is dead or unpredicable, then it cannot be predicated. // Two blocks may share a common unpredicable tail, but this doesn't prevent // them from being if-converted. The non-shared portion is assumed to have // been checked if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) return false; // If it is already predicated but we couldn't analyze its terminator, the // latter might fallthrough, but we can't determine where to. // Conservatively avoid if-converting again. if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) return false; // If it is already predicated, check if the new predicate subsumes // its predicate. if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) return false; if (!hasCommonTail && BBI.BrCond.size()) { if (!isTriangle) return false; // Test predicate subsumption. SmallVector RevPred(Pred.begin(), Pred.end()); SmallVector Cond(BBI.BrCond.begin(), BBI.BrCond.end()); if (RevBranch) { if (TII->reverseBranchCondition(Cond)) return false; } if (TII->reverseBranchCondition(RevPred) || !TII->SubsumesPredicate(Cond, RevPred)) return false; } return true; } /// Analyze the structure of the sub-CFG starting from the specified block. /// Record its successors and whether it looks like an if-conversion candidate. void IfConverter::AnalyzeBlock( MachineBasicBlock &MBB, std::vector> &Tokens) { struct BBState { BBState(MachineBasicBlock &MBB) : MBB(&MBB) {} MachineBasicBlock *MBB; /// This flag is true if MBB's successors have been analyzed. bool SuccsAnalyzed = false; }; // Push MBB to the stack. SmallVector BBStack(1, MBB); while (!BBStack.empty()) { BBState &State = BBStack.back(); MachineBasicBlock *BB = State.MBB; BBInfo &BBI = BBAnalysis[BB->getNumber()]; if (!State.SuccsAnalyzed) { if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { BBStack.pop_back(); continue; } BBI.BB = BB; BBI.IsBeingAnalyzed = true; AnalyzeBranches(BBI); MachineBasicBlock::iterator Begin = BBI.BB->begin(); MachineBasicBlock::iterator End = BBI.BB->end(); ScanInstructions(BBI, Begin, End); // Unanalyzable or ends with fallthrough or unconditional branch, or if is // not considered for ifcvt anymore. if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); continue; } // Do not ifcvt if either path is a back edge to the entry block. if (BBI.TrueBB == BB || BBI.FalseBB == BB) { BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); continue; } // Do not ifcvt if true and false fallthrough blocks are the same. if (!BBI.FalseBB) { BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); continue; } // Push the False and True blocks to the stack. State.SuccsAnalyzed = true; BBStack.push_back(*BBI.FalseBB); BBStack.push_back(*BBI.TrueBB); continue; } BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; if (TrueBBI.IsDone && FalseBBI.IsDone) { BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); continue; } SmallVector RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); bool CanRevCond = !TII->reverseBranchCondition(RevCond); unsigned Dups = 0; unsigned Dups2 = 0; bool TNeedSub = !TrueBBI.Predicate.empty(); bool FNeedSub = !FalseBBI.Predicate.empty(); bool Enqueued = false; BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); if (CanRevCond) { BBInfo TrueBBICalc, FalseBBICalc; auto feasibleDiamond = [&](bool Forked) { bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB, Dups + Dups2, Prediction, Forked); bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, /* IsTriangle */ false, /* RevCond */ false, /* hasCommonTail */ true); bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, /* IsTriangle */ false, /* RevCond */ false, /* hasCommonTail */ true); return MeetsSize && TrueFeasible && FalseFeasible; }; if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, TrueBBICalc, FalseBBICalc)) { if (feasibleDiamond(false)) { // Diamond: // EBB // / \_ // | | // TBB FBB // \ / // TailBB // Note TailBB can be empty. Tokens.push_back(std::make_unique( BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); Enqueued = true; } } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, TrueBBICalc, FalseBBICalc)) { if (feasibleDiamond(true)) { // ForkedDiamond: // if TBB and FBB have a common tail that includes their conditional // branch instructions, then we can If Convert this pattern. // EBB // _/ \_ // | | // TBB FBB // / \ / \ // FalseBB TrueBB FalseBB // Tokens.push_back(std::make_unique( BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); Enqueued = true; } } } if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, TrueBBI.ExtraCost2, Prediction) && FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { // Triangle: // EBB // | \_ // | | // | TBB // | / // FBB Tokens.push_back( std::make_unique(BBI, ICTriangle, TNeedSub, Dups)); Enqueued = true; } if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, TrueBBI.ExtraCost2, Prediction) && FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { Tokens.push_back( std::make_unique(BBI, ICTriangleRev, TNeedSub, Dups)); Enqueued = true; } if (ValidSimple(TrueBBI, Dups, Prediction) && MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, TrueBBI.ExtraCost2, Prediction) && FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { // Simple (split, no rejoin): // EBB // | \_ // | | // | TBB---> exit // | // FBB Tokens.push_back( std::make_unique(BBI, ICSimple, TNeedSub, Dups)); Enqueued = true; } if (CanRevCond) { // Try the other path... if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, Prediction.getCompl()) && MeetIfcvtSizeLimit(*FalseBBI.BB, FalseBBI.NonPredSize + FalseBBI.ExtraCost, FalseBBI.ExtraCost2, Prediction.getCompl()) && FeasibilityAnalysis(FalseBBI, RevCond, true)) { Tokens.push_back(std::make_unique(BBI, ICTriangleFalse, FNeedSub, Dups)); Enqueued = true; } if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, Prediction.getCompl()) && MeetIfcvtSizeLimit(*FalseBBI.BB, FalseBBI.NonPredSize + FalseBBI.ExtraCost, FalseBBI.ExtraCost2, Prediction.getCompl()) && FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { Tokens.push_back( std::make_unique(BBI, ICTriangleFRev, FNeedSub, Dups)); Enqueued = true; } if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && MeetIfcvtSizeLimit(*FalseBBI.BB, FalseBBI.NonPredSize + FalseBBI.ExtraCost, FalseBBI.ExtraCost2, Prediction.getCompl()) && FeasibilityAnalysis(FalseBBI, RevCond)) { Tokens.push_back( std::make_unique(BBI, ICSimpleFalse, FNeedSub, Dups)); Enqueued = true; } } BBI.IsEnqueued = Enqueued; BBI.IsBeingAnalyzed = false; BBI.IsAnalyzed = true; BBStack.pop_back(); } } /// Analyze all blocks and find entries for all if-conversion candidates. void IfConverter::AnalyzeBlocks( MachineFunction &MF, std::vector> &Tokens) { for (MachineBasicBlock &MBB : MF) AnalyzeBlock(MBB, Tokens); // Sort to favor more complex ifcvt scheme. llvm::stable_sort(Tokens, IfcvtTokenCmp); } /// Returns true either if ToMBB is the next block after MBB or that all the /// intervening blocks are empty (given MBB can fall through to its next block). static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { MachineFunction::iterator PI = MBB.getIterator(); MachineFunction::iterator I = std::next(PI); MachineFunction::iterator TI = ToMBB.getIterator(); MachineFunction::iterator E = MBB.getParent()->end(); while (I != TI) { // Check isSuccessor to avoid case where the next block is empty, but // it's not a successor. if (I == E || !I->empty() || !PI->isSuccessor(&*I)) return false; PI = I++; } // Finally see if the last I is indeed a successor to PI. return PI->isSuccessor(&*I); } /// Invalidate predecessor BB info so it would be re-analyzed to determine if it /// can be if-converted. If predecessor is already enqueued, dequeue it! void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; if (PBBI.IsDone || PBBI.BB == &MBB) continue; PBBI.IsAnalyzed = false; PBBI.IsEnqueued = false; } } /// Inserts an unconditional branch from \p MBB to \p ToMBB. static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, const TargetInstrInfo *TII) { DebugLoc dl; // FIXME: this is nowhere SmallVector NoCond; TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); } /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all /// values defined in MI which are also live/used by MI. static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); // Before stepping forward past MI, remember which regs were live // before MI. This is needed to set the Undef flag only when reg is // dead. SparseSet> LiveBeforeMI; LiveBeforeMI.setUniverse(TRI->getNumRegs()); for (unsigned Reg : Redefs) LiveBeforeMI.insert(Reg); SmallVector, 4> Clobbers; Redefs.stepForward(MI, Clobbers); // Now add the implicit uses for each of the clobbered values. for (auto Clobber : Clobbers) { // FIXME: Const cast here is nasty, but better than making StepForward // take a mutable instruction instead of const. unsigned Reg = Clobber.first; MachineOperand &Op = const_cast(*Clobber.second); MachineInstr *OpMI = Op.getParent(); MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); if (Op.isRegMask()) { // First handle regmasks. They clobber any entries in the mask which // means that we need a def for those registers. if (LiveBeforeMI.count(Reg)) MIB.addReg(Reg, RegState::Implicit); // We also need to add an implicit def of this register for the later // use to read from. // For the register allocator to have allocated a register clobbered // by the call which is used later, it must be the case that // the call doesn't return. MIB.addReg(Reg, RegState::Implicit | RegState::Define); continue; } if (LiveBeforeMI.count(Reg)) MIB.addReg(Reg, RegState::Implicit); else { bool HasLiveSubReg = false; for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { if (!LiveBeforeMI.count(*S)) continue; HasLiveSubReg = true; break; } if (HasLiveSubReg) MIB.addReg(Reg, RegState::Implicit); } } } /// If convert a simple (split, no rejoin) sub-CFG. bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; BBInfo *CvtBBI = &TrueBBI; BBInfo *NextBBI = &FalseBBI; SmallVector Cond(BBI.BrCond.begin(), BBI.BrCond.end()); if (Kind == ICSimpleFalse) std::swap(CvtBBI, NextBBI); MachineBasicBlock &CvtMBB = *CvtBBI->BB; MachineBasicBlock &NextMBB = *NextBBI->BB; if (CvtBBI->IsDone || (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { // Something has changed. It's no longer safe to predicate this block. BBI.IsAnalyzed = false; CvtBBI->IsAnalyzed = false; return false; } if (CvtMBB.hasAddressTaken()) // Conservatively abort if-conversion if BB's address is taken. return false; if (Kind == ICSimpleFalse) if (TII->reverseBranchCondition(Cond)) llvm_unreachable("Unable to reverse branch condition!"); Redefs.init(*TRI); if (MRI->tracksLiveness()) { // Initialize liveins to the first BB. These are potentially redefined by // predicated instructions. Redefs.addLiveInsNoPristines(CvtMBB); Redefs.addLiveInsNoPristines(NextMBB); } // Remove the branches from the entry so we can add the contents of the true // block to it. BBI.NonPredSize -= TII->removeBranch(*BBI.BB); if (CvtMBB.pred_size() > 1) { // Copy instructions in the true block, predicate them, and add them to // the entry block. CopyAndPredicateBlock(BBI, *CvtBBI, Cond); // Keep the CFG updated. BBI.BB->removeSuccessor(&CvtMBB, true); } else { // Predicate the instructions in the true block. PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); // Merge converted block into entry block. The BB to Cvt edge is removed // by MergeBlocks. MergeBlocks(BBI, *CvtBBI); } bool IterIfcvt = true; if (!canFallThroughTo(*BBI.BB, NextMBB)) { InsertUncondBranch(*BBI.BB, NextMBB, TII); BBI.HasFallThrough = false; // Now ifcvt'd block will look like this: // BB: // ... // t, f = cmp // if t op // b BBf // // We cannot further ifcvt this block because the unconditional branch // will have to be predicated on the new condition, that will not be // available if cmp executes. IterIfcvt = false; } // Update block info. BB can be iteratively if-converted. if (!IterIfcvt) BBI.IsDone = true; InvalidatePreds(*BBI.BB); CvtBBI->IsDone = true; // FIXME: Must maintain LiveIns. return true; } /// If convert a triangle sub-CFG. bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; BBInfo *CvtBBI = &TrueBBI; BBInfo *NextBBI = &FalseBBI; DebugLoc dl; // FIXME: this is nowhere SmallVector Cond(BBI.BrCond.begin(), BBI.BrCond.end()); if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) std::swap(CvtBBI, NextBBI); MachineBasicBlock &CvtMBB = *CvtBBI->BB; MachineBasicBlock &NextMBB = *NextBBI->BB; if (CvtBBI->IsDone || (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { // Something has changed. It's no longer safe to predicate this block. BBI.IsAnalyzed = false; CvtBBI->IsAnalyzed = false; return false; } if (CvtMBB.hasAddressTaken()) // Conservatively abort if-conversion if BB's address is taken. return false; if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) if (TII->reverseBranchCondition(Cond)) llvm_unreachable("Unable to reverse branch condition!"); if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { if (reverseBranchCondition(*CvtBBI)) { // BB has been changed, modify its predecessors (except for this // one) so they don't get ifcvt'ed based on bad intel. for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { if (PBB == BBI.BB) continue; BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; if (PBBI.IsEnqueued) { PBBI.IsAnalyzed = false; PBBI.IsEnqueued = false; } } } } // Initialize liveins to the first BB. These are potentially redefined by // predicated instructions. Redefs.init(*TRI); if (MRI->tracksLiveness()) { Redefs.addLiveInsNoPristines(CvtMBB); Redefs.addLiveInsNoPristines(NextMBB); } bool HasEarlyExit = CvtBBI->FalseBB != nullptr; BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; if (HasEarlyExit) { // Get probabilities before modifying CvtMBB and BBI.BB. CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); } // Remove the branches from the entry so we can add the contents of the true // block to it. BBI.NonPredSize -= TII->removeBranch(*BBI.BB); if (CvtMBB.pred_size() > 1) { // Copy instructions in the true block, predicate them, and add them to // the entry block. CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); } else { // Predicate the 'true' block after removing its branch. CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); // Now merge the entry of the triangle with the true block. MergeBlocks(BBI, *CvtBBI, false); } // Keep the CFG updated. BBI.BB->removeSuccessor(&CvtMBB, true); // If 'true' block has a 'false' successor, add an exit branch to it. if (HasEarlyExit) { SmallVector RevCond(CvtBBI->BrCond.begin(), CvtBBI->BrCond.end()); if (TII->reverseBranchCondition(RevCond)) llvm_unreachable("Unable to reverse branch condition!"); // Update the edge probability for both CvtBBI->FalseBB and NextBBI. // NewNext = New_Prob(BBI.BB, NextMBB) = // Prob(BBI.BB, NextMBB) + // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) auto NewTrueBB = getNextBlock(*BBI.BB); auto NewNext = BBNext + BBCvt * CvtNext; auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); if (NewTrueBBIter != BBI.BB->succ_end()) BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); auto NewFalse = BBCvt * CvtFalse; TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); } // Merge in the 'false' block if the 'false' block has no other // predecessors. Otherwise, add an unconditional branch to 'false'. bool FalseBBDead = false; bool IterIfcvt = true; bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); if (!isFallThrough) { // Only merge them if the true block does not fallthrough to the false // block. By not merging them, we make it possible to iteratively // ifcvt the blocks. if (!HasEarlyExit && NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && !NextMBB.hasAddressTaken()) { MergeBlocks(BBI, *NextBBI); FalseBBDead = true; } else { InsertUncondBranch(*BBI.BB, NextMBB, TII); BBI.HasFallThrough = false; } // Mixed predicated and unpredicated code. This cannot be iteratively // predicated. IterIfcvt = false; } // Update block info. BB can be iteratively if-converted. if (!IterIfcvt) BBI.IsDone = true; InvalidatePreds(*BBI.BB); CvtBBI->IsDone = true; if (FalseBBDead) NextBBI->IsDone = true; // FIXME: Must maintain LiveIns. return true; } /// Common code shared between diamond conversions. /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI /// and FalseBBI /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI /// and \p FalseBBI /// \p RemoveBranch - Remove the common branch of the two blocks before /// predicating. Only false for unanalyzable fallthrough /// cases. The caller will replace the branch if necessary. /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for /// unanalyzable fallthrough bool IfConverter::IfConvertDiamondCommon( BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, unsigned NumDups1, unsigned NumDups2, bool TClobbersPred, bool FClobbersPred, bool RemoveBranch, bool MergeAddEdges) { if (TrueBBI.IsDone || FalseBBI.IsDone || TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { // Something has changed. It's no longer safe to predicate these blocks. BBI.IsAnalyzed = false; TrueBBI.IsAnalyzed = false; FalseBBI.IsAnalyzed = false; return false; } if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) // Conservatively abort if-conversion if either BB has its address taken. return false; // Put the predicated instructions from the 'true' block before the // instructions from the 'false' block, unless the true block would clobber // the predicate, in which case, do the opposite. BBInfo *BBI1 = &TrueBBI; BBInfo *BBI2 = &FalseBBI; SmallVector RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); if (TII->reverseBranchCondition(RevCond)) llvm_unreachable("Unable to reverse branch condition!"); SmallVector *Cond1 = &BBI.BrCond; SmallVector *Cond2 = &RevCond; // Figure out the more profitable ordering. bool DoSwap = false; if (TClobbersPred && !FClobbersPred) DoSwap = true; else if (!TClobbersPred && !FClobbersPred) { if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) DoSwap = true; } else if (TClobbersPred && FClobbersPred) llvm_unreachable("Predicate info cannot be clobbered by both sides."); if (DoSwap) { std::swap(BBI1, BBI2); std::swap(Cond1, Cond2); } // Remove the conditional branch from entry to the blocks. BBI.NonPredSize -= TII->removeBranch(*BBI.BB); MachineBasicBlock &MBB1 = *BBI1->BB; MachineBasicBlock &MBB2 = *BBI2->BB; // Initialize the Redefs: // - BB2 live-in regs need implicit uses before being redefined by BB1 // instructions. // - BB1 live-out regs need implicit uses before being redefined by BB2 // instructions. We start with BB1 live-ins so we have the live-out regs // after tracking the BB1 instructions. Redefs.init(*TRI); if (MRI->tracksLiveness()) { Redefs.addLiveInsNoPristines(MBB1); Redefs.addLiveInsNoPristines(MBB2); } // Remove the duplicated instructions at the beginnings of both paths. // Skip dbg_value instructions. MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(false); MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(false); BBI1->NonPredSize -= NumDups1; BBI2->NonPredSize -= NumDups1; // Skip past the dups on each side separately since there may be // differing dbg_value entries. NumDups1 can include a "return" // instruction, if it's not marked as "branch". for (unsigned i = 0; i < NumDups1; ++DI1) { if (DI1 == MBB1.end()) break; if (!DI1->isDebugInstr()) ++i; } while (NumDups1 != 0) { // Since this instruction is going to be deleted, update call // site info state if the instruction is call instruction. if (DI2->shouldUpdateCallSiteInfo()) MBB2.getParent()->eraseCallSiteInfo(&*DI2); ++DI2; if (DI2 == MBB2.end()) break; if (!DI2->isDebugInstr()) --NumDups1; } if (MRI->tracksLiveness()) { for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { SmallVector, 4> Dummy; Redefs.stepForward(MI, Dummy); } } BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); MBB2.erase(MBB2.begin(), DI2); // The branches have been checked to match, so it is safe to remove the // branch in BB1 and rely on the copy in BB2. The complication is that // the blocks may end with a return instruction, which may or may not // be marked as "branch". If it's not, then it could be included in // "dups1", leaving the blocks potentially empty after moving the common // duplicates. #ifndef NDEBUG // Unanalyzable branches must match exactly. Check that now. if (!BBI1->IsBrAnalyzable) verifySameBranchInstructions(&MBB1, &MBB2); #endif // Remove duplicated instructions from the tail of MBB1: any branch // instructions, and the common instructions counted by NumDups2. DI1 = MBB1.end(); while (DI1 != MBB1.begin()) { MachineBasicBlock::iterator Prev = std::prev(DI1); if (!Prev->isBranch() && !Prev->isDebugInstr()) break; DI1 = Prev; } for (unsigned i = 0; i != NumDups2; ) { // NumDups2 only counted non-dbg_value instructions, so this won't // run off the head of the list. assert(DI1 != MBB1.begin()); --DI1; // Since this instruction is going to be deleted, update call // site info state if the instruction is call instruction. if (DI1->shouldUpdateCallSiteInfo()) MBB1.getParent()->eraseCallSiteInfo(&*DI1); // skip dbg_value instructions if (!DI1->isDebugInstr()) ++i; } MBB1.erase(DI1, MBB1.end()); DI2 = BBI2->BB->end(); // The branches have been checked to match. Skip over the branch in the false // block so that we don't try to predicate it. if (RemoveBranch) BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); else { // Make DI2 point to the end of the range where the common "tail" // instructions could be found. while (DI2 != MBB2.begin()) { MachineBasicBlock::iterator Prev = std::prev(DI2); if (!Prev->isBranch() && !Prev->isDebugInstr()) break; DI2 = Prev; } } while (NumDups2 != 0) { // NumDups2 only counted non-dbg_value instructions, so this won't // run off the head of the list. assert(DI2 != MBB2.begin()); --DI2; // skip dbg_value instructions if (!DI2->isDebugInstr()) --NumDups2; } // Remember which registers would later be defined by the false block. // This allows us not to predicate instructions in the true block that would // later be re-defined. That is, rather than // subeq r0, r1, #1 // addne r0, r1, #1 // generate: // sub r0, r1, #1 // addne r0, r1, #1 SmallSet RedefsByFalse; SmallSet ExtUses; if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { if (FI.isDebugInstr()) continue; SmallVector Defs; for (const MachineOperand &MO : FI.operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (MO.isDef()) { Defs.push_back(Reg); } else if (!RedefsByFalse.count(Reg)) { // These are defined before ctrl flow reach the 'false' instructions. // They cannot be modified by the 'true' instructions. for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) ExtUses.insert(*SubRegs); } } for (MCPhysReg Reg : Defs) { if (!ExtUses.count(Reg)) { for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); SubRegs.isValid(); ++SubRegs) RedefsByFalse.insert(*SubRegs); } } } } // Predicate the 'true' block. PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); // After predicating BBI1, if there is a predicated terminator in BBI1 and // a non-predicated in BBI2, then we don't want to predicate the one from // BBI2. The reason is that if we merged these blocks, we would end up with // two predicated terminators in the same block. // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't // predicate them either. They were checked to be identical, and so the // same branch would happen regardless of which path was taken. if (!MBB2.empty() && (DI2 == MBB2.end())) { MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T); bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T); if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) --DI2; } // Predicate the 'false' block. PredicateBlock(*BBI2, DI2, *Cond2); // Merge the true block into the entry of the diamond. MergeBlocks(BBI, *BBI1, MergeAddEdges); MergeBlocks(BBI, *BBI2, MergeAddEdges); return true; } /// If convert an almost-diamond sub-CFG where the true /// and false blocks share a common tail. bool IfConverter::IfConvertForkedDiamond( BBInfo &BBI, IfcvtKind Kind, unsigned NumDups1, unsigned NumDups2, bool TClobbersPred, bool FClobbersPred) { BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; // Save the debug location for later. DebugLoc dl; MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); if (TIE != TrueBBI.BB->end()) dl = TIE->getDebugLoc(); // Removing branches from both blocks is safe, because we have already // determined that both blocks have the same branch instructions. The branch // will be added back at the end, unpredicated. if (!IfConvertDiamondCommon( BBI, TrueBBI, FalseBBI, NumDups1, NumDups2, TClobbersPred, FClobbersPred, /* RemoveBranch */ true, /* MergeAddEdges */ true)) return false; // Add back the branch. // Debug location saved above when removing the branch from BBI2 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, TrueBBI.BrCond, dl); // Update block info. BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; InvalidatePreds(*BBI.BB); // FIXME: Must maintain LiveIns. return true; } /// If convert a diamond sub-CFG. bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, unsigned NumDups1, unsigned NumDups2, bool TClobbersPred, bool FClobbersPred) { BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; MachineBasicBlock *TailBB = TrueBBI.TrueBB; // True block must fall through or end with an unanalyzable terminator. if (!TailBB) { if (blockAlwaysFallThrough(TrueBBI)) TailBB = FalseBBI.TrueBB; assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); } if (!IfConvertDiamondCommon( BBI, TrueBBI, FalseBBI, NumDups1, NumDups2, TClobbersPred, FClobbersPred, /* RemoveBranch */ TrueBBI.IsBrAnalyzable, /* MergeAddEdges */ TailBB == nullptr)) return false; // If the if-converted block falls through or unconditionally branches into // the tail block, and the tail block does not have other predecessors, then // fold the tail block in as well. Otherwise, unless it falls through to the // tail, add a unconditional branch to it. if (TailBB) { // We need to remove the edges to the true and false blocks manually since // we didn't let IfConvertDiamondCommon update the CFG. BBI.BB->removeSuccessor(TrueBBI.BB); BBI.BB->removeSuccessor(FalseBBI.BB, true); BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; bool CanMergeTail = !TailBBI.HasFallThrough && !TailBBI.BB->hasAddressTaken(); // The if-converted block can still have a predicated terminator // (e.g. a predicated return). If that is the case, we cannot merge // it with the tail block. MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); if (TI != BBI.BB->end() && TII->isPredicated(*TI)) CanMergeTail = false; // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; // check if there are any other predecessors besides those. unsigned NumPreds = TailBB->pred_size(); if (NumPreds > 1) CanMergeTail = false; else if (NumPreds == 1 && CanMergeTail) { MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) CanMergeTail = false; } if (CanMergeTail) { MergeBlocks(BBI, TailBBI); TailBBI.IsDone = true; } else { BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); InsertUncondBranch(*BBI.BB, *TailBB, TII); BBI.HasFallThrough = false; } } // Update block info. BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; InvalidatePreds(*BBI.BB); // FIXME: Must maintain LiveIns. return true; } static bool MaySpeculate(const MachineInstr &MI, SmallSet &LaterRedefs) { bool SawStore = true; if (!MI.isSafeToMove(nullptr, SawStore)) return false; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg) continue; if (MO.isDef() && !LaterRedefs.count(Reg)) return false; } return true; } /// Predicate instructions from the start of the block to the specified end with /// the specified condition. void IfConverter::PredicateBlock(BBInfo &BBI, MachineBasicBlock::iterator E, SmallVectorImpl &Cond, SmallSet *LaterRedefs) { bool AnyUnpred = false; bool MaySpec = LaterRedefs != nullptr; for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { if (I.isDebugInstr() || TII->isPredicated(I)) continue; // It may be possible not to predicate an instruction if it's the 'true' // side of a diamond and the 'false' side may re-define the instruction's // defs. if (MaySpec && MaySpeculate(I, *LaterRedefs)) { AnyUnpred = true; continue; } // If any instruction is predicated, then every instruction after it must // be predicated. MaySpec = false; if (!TII->PredicateInstruction(I, Cond)) { #ifndef NDEBUG dbgs() << "Unable to predicate " << I << "!\n"; #endif llvm_unreachable(nullptr); } // If the predicated instruction now redefines a register as the result of // if-conversion, add an implicit kill. UpdatePredRedefs(I, Redefs); } BBI.Predicate.append(Cond.begin(), Cond.end()); BBI.IsAnalyzed = false; BBI.NonPredSize = 0; ++NumIfConvBBs; if (AnyUnpred) ++NumUnpred; } /// Copy and predicate instructions from source BB to the destination block. /// Skip end of block branches if IgnoreBr is true. void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, SmallVectorImpl &Cond, bool IgnoreBr) { MachineFunction &MF = *ToBBI.BB->getParent(); MachineBasicBlock &FromMBB = *FromBBI.BB; for (MachineInstr &I : FromMBB) { // Do not copy the end of the block branches. if (IgnoreBr && I.isBranch()) break; MachineInstr *MI = MF.CloneMachineInstr(&I); // Make a copy of the call site info. if (I.isCandidateForCallSiteEntry()) MF.copyCallSiteInfo(&I, MI); ToBBI.BB->insert(ToBBI.BB->end(), MI); ToBBI.NonPredSize++; unsigned ExtraPredCost = TII->getPredicationCost(I); unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); if (NumCycles > 1) ToBBI.ExtraCost += NumCycles-1; ToBBI.ExtraCost2 += ExtraPredCost; if (!TII->isPredicated(I) && !MI->isDebugInstr()) { if (!TII->PredicateInstruction(*MI, Cond)) { #ifndef NDEBUG dbgs() << "Unable to predicate " << I << "!\n"; #endif llvm_unreachable(nullptr); } } // If the predicated instruction now redefines a register as the result of // if-conversion, add an implicit kill. UpdatePredRedefs(*MI, Redefs); } if (!IgnoreBr) { std::vector Succs(FromMBB.succ_begin(), FromMBB.succ_end()); MachineBasicBlock *NBB = getNextBlock(FromMBB); MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; for (MachineBasicBlock *Succ : Succs) { // Fallthrough edge can't be transferred. if (Succ == FallThrough) continue; ToBBI.BB->addSuccessor(Succ); } } ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); ToBBI.Predicate.append(Cond.begin(), Cond.end()); ToBBI.ClobbersPred |= FromBBI.ClobbersPred; ToBBI.IsAnalyzed = false; ++NumDupBBs; } /// Move all instructions from FromBB to the end of ToBB. This will leave /// FromBB as an empty block, so remove all of its successor edges and move it /// to the end of the function. If AddEdges is true, i.e., when FromBBI's /// branch is being moved, add those successor edges to ToBBI and remove the old /// edge from ToBBI to FromBBI. void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { MachineBasicBlock &FromMBB = *FromBBI.BB; assert(!FromMBB.hasAddressTaken() && "Removing a BB whose address is taken!"); // If we're about to splice an INLINEASM_BR from FromBBI, we need to update // ToBBI's successor list accordingly. if (FromMBB.mayHaveInlineAsmBr()) for (MachineInstr &MI : FromMBB) if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) for (MachineOperand &MO : MI.operands()) if (MO.isMBB() && !ToBBI.BB->isSuccessor(MO.getMBB())) ToBBI.BB->addSuccessor(MO.getMBB(), BranchProbability::getZero()); // In case FromMBB contains terminators (e.g. return instruction), // first move the non-terminator instructions, then the terminators. MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); // If FromBB has non-predicated terminator we should copy it at the end. if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) ToTI = ToBBI.BB->end(); ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); // Force normalizing the successors' probabilities of ToBBI.BB to convert all // unknown probabilities into known ones. // FIXME: This usage is too tricky and in the future we would like to // eliminate all unknown probabilities in MBB. if (ToBBI.IsBrAnalyzable) ToBBI.BB->normalizeSuccProbs(); SmallVector FromSuccs(FromMBB.successors()); MachineBasicBlock *NBB = getNextBlock(FromMBB); MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; // The edge probability from ToBBI.BB to FromMBB, which is only needed when // AddEdges is true and FromMBB is a successor of ToBBI.BB. auto To2FromProb = BranchProbability::getZero(); if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { // Remove the old edge but remember the edge probability so we can calculate // the correct weights on the new edges being added further down. To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); ToBBI.BB->removeSuccessor(&FromMBB); } for (MachineBasicBlock *Succ : FromSuccs) { // Fallthrough edge can't be transferred. if (Succ == FallThrough) { FromMBB.removeSuccessor(Succ); continue; } auto NewProb = BranchProbability::getZero(); if (AddEdges) { // Calculate the edge probability for the edge from ToBBI.BB to Succ, // which is a portion of the edge probability from FromMBB to Succ. The // portion ratio is the edge probability from ToBBI.BB to FromMBB (if // FromBBI is a successor of ToBBI.BB. See comment below for exception). NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This // only happens when if-converting a diamond CFG and FromMBB is the // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we // could just use the probabilities on FromMBB's out-edges when adding // new successors. if (!To2FromProb.isZero()) NewProb *= To2FromProb; } FromMBB.removeSuccessor(Succ); if (AddEdges) { // If the edge from ToBBI.BB to Succ already exists, update the // probability of this edge by adding NewProb to it. An example is shown // below, in which A is ToBBI.BB and B is FromMBB. In this case we // don't have to set C as A's successor as it already is. We only need to // update the edge probability on A->C. Note that B will not be // immediately removed from A's successors. It is possible that B->D is // not removed either if D is a fallthrough of B. Later the edge A->D // (generated here) and B->D will be combined into one edge. To maintain // correct edge probability of this combined edge, we need to set the edge // probability of A->B to zero, which is already done above. The edge // probability on A->D is calculated by scaling the original probability // on A->B by the probability of B->D. // // Before ifcvt: After ifcvt (assume B->D is kept): // // A A // /| /|\ // / B / B| // | /| | || // |/ | | |/ // C D C D // if (ToBBI.BB->isSuccessor(Succ)) ToBBI.BB->setSuccProbability( find(ToBBI.BB->successors(), Succ), MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); else ToBBI.BB->addSuccessor(Succ, NewProb); } } // Move the now empty FromMBB out of the way to the end of the function so // it doesn't interfere with fallthrough checks done by canFallThroughTo(). MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); if (Last != &FromMBB) FromMBB.moveAfter(Last); // Normalize the probabilities of ToBBI.BB's successors with all adjustment // we've done above. if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) ToBBI.BB->normalizeSuccProbs(); ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); FromBBI.Predicate.clear(); ToBBI.NonPredSize += FromBBI.NonPredSize; ToBBI.ExtraCost += FromBBI.ExtraCost; ToBBI.ExtraCost2 += FromBBI.ExtraCost2; FromBBI.NonPredSize = 0; FromBBI.ExtraCost = 0; FromBBI.ExtraCost2 = 0; ToBBI.ClobbersPred |= FromBBI.ClobbersPred; ToBBI.HasFallThrough = FromBBI.HasFallThrough; ToBBI.IsAnalyzed = false; FromBBI.IsAnalyzed = false; } FunctionPass * llvm::createIfConverter(std::function Ftor) { return new IfConverter(std::move(Ftor)); }