xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/ADT/SetVector.h"
10 #include "llvm/ADT/SmallBitVector.h"
11 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
12 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
13 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
14 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/LowLevelType.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/RegisterBankInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/DivisionByConstantInfo.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cmath>
36 #include <optional>
37 #include <tuple>
38 
39 #define DEBUG_TYPE "gi-combiner"
40 
41 using namespace llvm;
42 using namespace MIPatternMatch;
43 
44 // Option to allow testing of the combiner while no targets know about indexed
45 // addressing.
46 static cl::opt<bool>
47     ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
48                        cl::desc("Force all indexed operations to be "
49                                 "legal for the GlobalISel combiner"));
50 
51 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
52                                MachineIRBuilder &B, bool IsPreLegalize,
53                                GISelKnownBits *KB, MachineDominatorTree *MDT,
54                                const LegalizerInfo *LI)
55     : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
56       MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI),
57       RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
58       TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
59   (void)this->KB;
60 }
61 
62 const TargetLowering &CombinerHelper::getTargetLowering() const {
63   return *Builder.getMF().getSubtarget().getTargetLowering();
64 }
65 
66 /// \returns The little endian in-memory byte position of byte \p I in a
67 /// \p ByteWidth bytes wide type.
68 ///
69 /// E.g. Given a 4-byte type x, x[0] -> byte 0
70 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
71   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
72   return I;
73 }
74 
75 /// Determines the LogBase2 value for a non-null input value using the
76 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
77 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
78   auto &MRI = *MIB.getMRI();
79   LLT Ty = MRI.getType(V);
80   auto Ctlz = MIB.buildCTLZ(Ty, V);
81   auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
82   return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
83 }
84 
85 /// \returns The big endian in-memory byte position of byte \p I in a
86 /// \p ByteWidth bytes wide type.
87 ///
88 /// E.g. Given a 4-byte type x, x[0] -> byte 3
89 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
90   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
91   return ByteWidth - I - 1;
92 }
93 
94 /// Given a map from byte offsets in memory to indices in a load/store,
95 /// determine if that map corresponds to a little or big endian byte pattern.
96 ///
97 /// \param MemOffset2Idx maps memory offsets to address offsets.
98 /// \param LowestIdx is the lowest index in \p MemOffset2Idx.
99 ///
100 /// \returns true if the map corresponds to a big endian byte pattern, false if
101 /// it corresponds to a little endian byte pattern, and std::nullopt otherwise.
102 ///
103 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
104 /// are as follows:
105 ///
106 /// AddrOffset   Little endian    Big endian
107 /// 0            0                3
108 /// 1            1                2
109 /// 2            2                1
110 /// 3            3                0
111 static std::optional<bool>
112 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
113             int64_t LowestIdx) {
114   // Need at least two byte positions to decide on endianness.
115   unsigned Width = MemOffset2Idx.size();
116   if (Width < 2)
117     return std::nullopt;
118   bool BigEndian = true, LittleEndian = true;
119   for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
120     auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
121     if (MemOffsetAndIdx == MemOffset2Idx.end())
122       return std::nullopt;
123     const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
124     assert(Idx >= 0 && "Expected non-negative byte offset?");
125     LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
126     BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
127     if (!BigEndian && !LittleEndian)
128       return std::nullopt;
129   }
130 
131   assert((BigEndian != LittleEndian) &&
132          "Pattern cannot be both big and little endian!");
133   return BigEndian;
134 }
135 
136 bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; }
137 
138 bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
139   assert(LI && "Must have LegalizerInfo to query isLegal!");
140   return LI->getAction(Query).Action == LegalizeActions::Legal;
141 }
142 
143 bool CombinerHelper::isLegalOrBeforeLegalizer(
144     const LegalityQuery &Query) const {
145   return isPreLegalize() || isLegal(Query);
146 }
147 
148 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
149   if (!Ty.isVector())
150     return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
151   // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
152   if (isPreLegalize())
153     return true;
154   LLT EltTy = Ty.getElementType();
155   return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
156          isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
157 }
158 
159 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
160                                     Register ToReg) const {
161   Observer.changingAllUsesOfReg(MRI, FromReg);
162 
163   if (MRI.constrainRegAttrs(ToReg, FromReg))
164     MRI.replaceRegWith(FromReg, ToReg);
165   else
166     Builder.buildCopy(ToReg, FromReg);
167 
168   Observer.finishedChangingAllUsesOfReg();
169 }
170 
171 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
172                                       MachineOperand &FromRegOp,
173                                       Register ToReg) const {
174   assert(FromRegOp.getParent() && "Expected an operand in an MI");
175   Observer.changingInstr(*FromRegOp.getParent());
176 
177   FromRegOp.setReg(ToReg);
178 
179   Observer.changedInstr(*FromRegOp.getParent());
180 }
181 
182 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
183                                        unsigned ToOpcode) const {
184   Observer.changingInstr(FromMI);
185 
186   FromMI.setDesc(Builder.getTII().get(ToOpcode));
187 
188   Observer.changedInstr(FromMI);
189 }
190 
191 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
192   return RBI->getRegBank(Reg, MRI, *TRI);
193 }
194 
195 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
196   if (RegBank)
197     MRI.setRegBank(Reg, *RegBank);
198 }
199 
200 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
201   if (matchCombineCopy(MI)) {
202     applyCombineCopy(MI);
203     return true;
204   }
205   return false;
206 }
207 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
208   if (MI.getOpcode() != TargetOpcode::COPY)
209     return false;
210   Register DstReg = MI.getOperand(0).getReg();
211   Register SrcReg = MI.getOperand(1).getReg();
212   return canReplaceReg(DstReg, SrcReg, MRI);
213 }
214 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
215   Register DstReg = MI.getOperand(0).getReg();
216   Register SrcReg = MI.getOperand(1).getReg();
217   MI.eraseFromParent();
218   replaceRegWith(MRI, DstReg, SrcReg);
219 }
220 
221 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
222   bool IsUndef = false;
223   SmallVector<Register, 4> Ops;
224   if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
225     applyCombineConcatVectors(MI, IsUndef, Ops);
226     return true;
227   }
228   return false;
229 }
230 
231 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
232                                                SmallVectorImpl<Register> &Ops) {
233   assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
234          "Invalid instruction");
235   IsUndef = true;
236   MachineInstr *Undef = nullptr;
237 
238   // Walk over all the operands of concat vectors and check if they are
239   // build_vector themselves or undef.
240   // Then collect their operands in Ops.
241   for (const MachineOperand &MO : MI.uses()) {
242     Register Reg = MO.getReg();
243     MachineInstr *Def = MRI.getVRegDef(Reg);
244     assert(Def && "Operand not defined");
245     switch (Def->getOpcode()) {
246     case TargetOpcode::G_BUILD_VECTOR:
247       IsUndef = false;
248       // Remember the operands of the build_vector to fold
249       // them into the yet-to-build flattened concat vectors.
250       for (const MachineOperand &BuildVecMO : Def->uses())
251         Ops.push_back(BuildVecMO.getReg());
252       break;
253     case TargetOpcode::G_IMPLICIT_DEF: {
254       LLT OpType = MRI.getType(Reg);
255       // Keep one undef value for all the undef operands.
256       if (!Undef) {
257         Builder.setInsertPt(*MI.getParent(), MI);
258         Undef = Builder.buildUndef(OpType.getScalarType());
259       }
260       assert(MRI.getType(Undef->getOperand(0).getReg()) ==
261                  OpType.getScalarType() &&
262              "All undefs should have the same type");
263       // Break the undef vector in as many scalar elements as needed
264       // for the flattening.
265       for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
266            EltIdx != EltEnd; ++EltIdx)
267         Ops.push_back(Undef->getOperand(0).getReg());
268       break;
269     }
270     default:
271       return false;
272     }
273   }
274   return true;
275 }
276 void CombinerHelper::applyCombineConcatVectors(
277     MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
278   // We determined that the concat_vectors can be flatten.
279   // Generate the flattened build_vector.
280   Register DstReg = MI.getOperand(0).getReg();
281   Builder.setInsertPt(*MI.getParent(), MI);
282   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
283 
284   // Note: IsUndef is sort of redundant. We could have determine it by
285   // checking that at all Ops are undef.  Alternatively, we could have
286   // generate a build_vector of undefs and rely on another combine to
287   // clean that up.  For now, given we already gather this information
288   // in tryCombineConcatVectors, just save compile time and issue the
289   // right thing.
290   if (IsUndef)
291     Builder.buildUndef(NewDstReg);
292   else
293     Builder.buildBuildVector(NewDstReg, Ops);
294   MI.eraseFromParent();
295   replaceRegWith(MRI, DstReg, NewDstReg);
296 }
297 
298 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
299   SmallVector<Register, 4> Ops;
300   if (matchCombineShuffleVector(MI, Ops)) {
301     applyCombineShuffleVector(MI, Ops);
302     return true;
303   }
304   return false;
305 }
306 
307 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
308                                                SmallVectorImpl<Register> &Ops) {
309   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
310          "Invalid instruction kind");
311   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
312   Register Src1 = MI.getOperand(1).getReg();
313   LLT SrcType = MRI.getType(Src1);
314   // As bizarre as it may look, shuffle vector can actually produce
315   // scalar! This is because at the IR level a <1 x ty> shuffle
316   // vector is perfectly valid.
317   unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
318   unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
319 
320   // If the resulting vector is smaller than the size of the source
321   // vectors being concatenated, we won't be able to replace the
322   // shuffle vector into a concat_vectors.
323   //
324   // Note: We may still be able to produce a concat_vectors fed by
325   //       extract_vector_elt and so on. It is less clear that would
326   //       be better though, so don't bother for now.
327   //
328   // If the destination is a scalar, the size of the sources doesn't
329   // matter. we will lower the shuffle to a plain copy. This will
330   // work only if the source and destination have the same size. But
331   // that's covered by the next condition.
332   //
333   // TODO: If the size between the source and destination don't match
334   //       we could still emit an extract vector element in that case.
335   if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
336     return false;
337 
338   // Check that the shuffle mask can be broken evenly between the
339   // different sources.
340   if (DstNumElts % SrcNumElts != 0)
341     return false;
342 
343   // Mask length is a multiple of the source vector length.
344   // Check if the shuffle is some kind of concatenation of the input
345   // vectors.
346   unsigned NumConcat = DstNumElts / SrcNumElts;
347   SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
348   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
349   for (unsigned i = 0; i != DstNumElts; ++i) {
350     int Idx = Mask[i];
351     // Undef value.
352     if (Idx < 0)
353       continue;
354     // Ensure the indices in each SrcType sized piece are sequential and that
355     // the same source is used for the whole piece.
356     if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
357         (ConcatSrcs[i / SrcNumElts] >= 0 &&
358          ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
359       return false;
360     // Remember which source this index came from.
361     ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
362   }
363 
364   // The shuffle is concatenating multiple vectors together.
365   // Collect the different operands for that.
366   Register UndefReg;
367   Register Src2 = MI.getOperand(2).getReg();
368   for (auto Src : ConcatSrcs) {
369     if (Src < 0) {
370       if (!UndefReg) {
371         Builder.setInsertPt(*MI.getParent(), MI);
372         UndefReg = Builder.buildUndef(SrcType).getReg(0);
373       }
374       Ops.push_back(UndefReg);
375     } else if (Src == 0)
376       Ops.push_back(Src1);
377     else
378       Ops.push_back(Src2);
379   }
380   return true;
381 }
382 
383 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
384                                                const ArrayRef<Register> Ops) {
385   Register DstReg = MI.getOperand(0).getReg();
386   Builder.setInsertPt(*MI.getParent(), MI);
387   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
388 
389   if (Ops.size() == 1)
390     Builder.buildCopy(NewDstReg, Ops[0]);
391   else
392     Builder.buildMergeLikeInstr(NewDstReg, Ops);
393 
394   MI.eraseFromParent();
395   replaceRegWith(MRI, DstReg, NewDstReg);
396 }
397 
398 namespace {
399 
400 /// Select a preference between two uses. CurrentUse is the current preference
401 /// while *ForCandidate is attributes of the candidate under consideration.
402 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
403                                   const LLT TyForCandidate,
404                                   unsigned OpcodeForCandidate,
405                                   MachineInstr *MIForCandidate) {
406   if (!CurrentUse.Ty.isValid()) {
407     if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
408         CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
409       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
410     return CurrentUse;
411   }
412 
413   // We permit the extend to hoist through basic blocks but this is only
414   // sensible if the target has extending loads. If you end up lowering back
415   // into a load and extend during the legalizer then the end result is
416   // hoisting the extend up to the load.
417 
418   // Prefer defined extensions to undefined extensions as these are more
419   // likely to reduce the number of instructions.
420   if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
421       CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
422     return CurrentUse;
423   else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
424            OpcodeForCandidate != TargetOpcode::G_ANYEXT)
425     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
426 
427   // Prefer sign extensions to zero extensions as sign-extensions tend to be
428   // more expensive.
429   if (CurrentUse.Ty == TyForCandidate) {
430     if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
431         OpcodeForCandidate == TargetOpcode::G_ZEXT)
432       return CurrentUse;
433     else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
434              OpcodeForCandidate == TargetOpcode::G_SEXT)
435       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
436   }
437 
438   // This is potentially target specific. We've chosen the largest type
439   // because G_TRUNC is usually free. One potential catch with this is that
440   // some targets have a reduced number of larger registers than smaller
441   // registers and this choice potentially increases the live-range for the
442   // larger value.
443   if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
444     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
445   }
446   return CurrentUse;
447 }
448 
449 /// Find a suitable place to insert some instructions and insert them. This
450 /// function accounts for special cases like inserting before a PHI node.
451 /// The current strategy for inserting before PHI's is to duplicate the
452 /// instructions for each predecessor. However, while that's ok for G_TRUNC
453 /// on most targets since it generally requires no code, other targets/cases may
454 /// want to try harder to find a dominating block.
455 static void InsertInsnsWithoutSideEffectsBeforeUse(
456     MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
457     std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
458                        MachineOperand &UseMO)>
459         Inserter) {
460   MachineInstr &UseMI = *UseMO.getParent();
461 
462   MachineBasicBlock *InsertBB = UseMI.getParent();
463 
464   // If the use is a PHI then we want the predecessor block instead.
465   if (UseMI.isPHI()) {
466     MachineOperand *PredBB = std::next(&UseMO);
467     InsertBB = PredBB->getMBB();
468   }
469 
470   // If the block is the same block as the def then we want to insert just after
471   // the def instead of at the start of the block.
472   if (InsertBB == DefMI.getParent()) {
473     MachineBasicBlock::iterator InsertPt = &DefMI;
474     Inserter(InsertBB, std::next(InsertPt), UseMO);
475     return;
476   }
477 
478   // Otherwise we want the start of the BB
479   Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
480 }
481 } // end anonymous namespace
482 
483 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
484   PreferredTuple Preferred;
485   if (matchCombineExtendingLoads(MI, Preferred)) {
486     applyCombineExtendingLoads(MI, Preferred);
487     return true;
488   }
489   return false;
490 }
491 
492 static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) {
493   unsigned CandidateLoadOpc;
494   switch (ExtOpc) {
495   case TargetOpcode::G_ANYEXT:
496     CandidateLoadOpc = TargetOpcode::G_LOAD;
497     break;
498   case TargetOpcode::G_SEXT:
499     CandidateLoadOpc = TargetOpcode::G_SEXTLOAD;
500     break;
501   case TargetOpcode::G_ZEXT:
502     CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD;
503     break;
504   default:
505     llvm_unreachable("Unexpected extend opc");
506   }
507   return CandidateLoadOpc;
508 }
509 
510 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
511                                                 PreferredTuple &Preferred) {
512   // We match the loads and follow the uses to the extend instead of matching
513   // the extends and following the def to the load. This is because the load
514   // must remain in the same position for correctness (unless we also add code
515   // to find a safe place to sink it) whereas the extend is freely movable.
516   // It also prevents us from duplicating the load for the volatile case or just
517   // for performance.
518   GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
519   if (!LoadMI)
520     return false;
521 
522   Register LoadReg = LoadMI->getDstReg();
523 
524   LLT LoadValueTy = MRI.getType(LoadReg);
525   if (!LoadValueTy.isScalar())
526     return false;
527 
528   // Most architectures are going to legalize <s8 loads into at least a 1 byte
529   // load, and the MMOs can only describe memory accesses in multiples of bytes.
530   // If we try to perform extload combining on those, we can end up with
531   // %a(s8) = extload %ptr (load 1 byte from %ptr)
532   // ... which is an illegal extload instruction.
533   if (LoadValueTy.getSizeInBits() < 8)
534     return false;
535 
536   // For non power-of-2 types, they will very likely be legalized into multiple
537   // loads. Don't bother trying to match them into extending loads.
538   if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
539     return false;
540 
541   // Find the preferred type aside from the any-extends (unless it's the only
542   // one) and non-extending ops. We'll emit an extending load to that type and
543   // and emit a variant of (extend (trunc X)) for the others according to the
544   // relative type sizes. At the same time, pick an extend to use based on the
545   // extend involved in the chosen type.
546   unsigned PreferredOpcode =
547       isa<GLoad>(&MI)
548           ? TargetOpcode::G_ANYEXT
549           : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
550   Preferred = {LLT(), PreferredOpcode, nullptr};
551   for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
552     if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
553         UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
554         (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
555       const auto &MMO = LoadMI->getMMO();
556       // For atomics, only form anyextending loads.
557       if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
558         continue;
559       // Check for legality.
560       if (!isPreLegalize()) {
561         LegalityQuery::MemDesc MMDesc(MMO);
562         unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode());
563         LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
564         LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
565         if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}})
566                 .Action != LegalizeActions::Legal)
567           continue;
568       }
569       Preferred = ChoosePreferredUse(Preferred,
570                                      MRI.getType(UseMI.getOperand(0).getReg()),
571                                      UseMI.getOpcode(), &UseMI);
572     }
573   }
574 
575   // There were no extends
576   if (!Preferred.MI)
577     return false;
578   // It should be impossible to chose an extend without selecting a different
579   // type since by definition the result of an extend is larger.
580   assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
581 
582   LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
583   return true;
584 }
585 
586 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
587                                                 PreferredTuple &Preferred) {
588   // Rewrite the load to the chosen extending load.
589   Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
590 
591   // Inserter to insert a truncate back to the original type at a given point
592   // with some basic CSE to limit truncate duplication to one per BB.
593   DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
594   auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
595                            MachineBasicBlock::iterator InsertBefore,
596                            MachineOperand &UseMO) {
597     MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
598     if (PreviouslyEmitted) {
599       Observer.changingInstr(*UseMO.getParent());
600       UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
601       Observer.changedInstr(*UseMO.getParent());
602       return;
603     }
604 
605     Builder.setInsertPt(*InsertIntoBB, InsertBefore);
606     Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
607     MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
608     EmittedInsns[InsertIntoBB] = NewMI;
609     replaceRegOpWith(MRI, UseMO, NewDstReg);
610   };
611 
612   Observer.changingInstr(MI);
613   unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode);
614   MI.setDesc(Builder.getTII().get(LoadOpc));
615 
616   // Rewrite all the uses to fix up the types.
617   auto &LoadValue = MI.getOperand(0);
618   SmallVector<MachineOperand *, 4> Uses;
619   for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
620     Uses.push_back(&UseMO);
621 
622   for (auto *UseMO : Uses) {
623     MachineInstr *UseMI = UseMO->getParent();
624 
625     // If the extend is compatible with the preferred extend then we should fix
626     // up the type and extend so that it uses the preferred use.
627     if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
628         UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
629       Register UseDstReg = UseMI->getOperand(0).getReg();
630       MachineOperand &UseSrcMO = UseMI->getOperand(1);
631       const LLT UseDstTy = MRI.getType(UseDstReg);
632       if (UseDstReg != ChosenDstReg) {
633         if (Preferred.Ty == UseDstTy) {
634           // If the use has the same type as the preferred use, then merge
635           // the vregs and erase the extend. For example:
636           //    %1:_(s8) = G_LOAD ...
637           //    %2:_(s32) = G_SEXT %1(s8)
638           //    %3:_(s32) = G_ANYEXT %1(s8)
639           //    ... = ... %3(s32)
640           // rewrites to:
641           //    %2:_(s32) = G_SEXTLOAD ...
642           //    ... = ... %2(s32)
643           replaceRegWith(MRI, UseDstReg, ChosenDstReg);
644           Observer.erasingInstr(*UseMO->getParent());
645           UseMO->getParent()->eraseFromParent();
646         } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
647           // If the preferred size is smaller, then keep the extend but extend
648           // from the result of the extending load. For example:
649           //    %1:_(s8) = G_LOAD ...
650           //    %2:_(s32) = G_SEXT %1(s8)
651           //    %3:_(s64) = G_ANYEXT %1(s8)
652           //    ... = ... %3(s64)
653           /// rewrites to:
654           //    %2:_(s32) = G_SEXTLOAD ...
655           //    %3:_(s64) = G_ANYEXT %2:_(s32)
656           //    ... = ... %3(s64)
657           replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
658         } else {
659           // If the preferred size is large, then insert a truncate. For
660           // example:
661           //    %1:_(s8) = G_LOAD ...
662           //    %2:_(s64) = G_SEXT %1(s8)
663           //    %3:_(s32) = G_ZEXT %1(s8)
664           //    ... = ... %3(s32)
665           /// rewrites to:
666           //    %2:_(s64) = G_SEXTLOAD ...
667           //    %4:_(s8) = G_TRUNC %2:_(s32)
668           //    %3:_(s64) = G_ZEXT %2:_(s8)
669           //    ... = ... %3(s64)
670           InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
671                                                  InsertTruncAt);
672         }
673         continue;
674       }
675       // The use is (one of) the uses of the preferred use we chose earlier.
676       // We're going to update the load to def this value later so just erase
677       // the old extend.
678       Observer.erasingInstr(*UseMO->getParent());
679       UseMO->getParent()->eraseFromParent();
680       continue;
681     }
682 
683     // The use isn't an extend. Truncate back to the type we originally loaded.
684     // This is free on many targets.
685     InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
686   }
687 
688   MI.getOperand(0).setReg(ChosenDstReg);
689   Observer.changedInstr(MI);
690 }
691 
692 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
693                                                  BuildFnTy &MatchInfo) {
694   assert(MI.getOpcode() == TargetOpcode::G_AND);
695 
696   // If we have the following code:
697   //  %mask = G_CONSTANT 255
698   //  %ld   = G_LOAD %ptr, (load s16)
699   //  %and  = G_AND %ld, %mask
700   //
701   // Try to fold it into
702   //   %ld = G_ZEXTLOAD %ptr, (load s8)
703 
704   Register Dst = MI.getOperand(0).getReg();
705   if (MRI.getType(Dst).isVector())
706     return false;
707 
708   auto MaybeMask =
709       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
710   if (!MaybeMask)
711     return false;
712 
713   APInt MaskVal = MaybeMask->Value;
714 
715   if (!MaskVal.isMask())
716     return false;
717 
718   Register SrcReg = MI.getOperand(1).getReg();
719   // Don't use getOpcodeDef() here since intermediate instructions may have
720   // multiple users.
721   GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg));
722   if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()))
723     return false;
724 
725   Register LoadReg = LoadMI->getDstReg();
726   LLT RegTy = MRI.getType(LoadReg);
727   Register PtrReg = LoadMI->getPointerReg();
728   unsigned RegSize = RegTy.getSizeInBits();
729   uint64_t LoadSizeBits = LoadMI->getMemSizeInBits();
730   unsigned MaskSizeBits = MaskVal.countTrailingOnes();
731 
732   // The mask may not be larger than the in-memory type, as it might cover sign
733   // extended bits
734   if (MaskSizeBits > LoadSizeBits)
735     return false;
736 
737   // If the mask covers the whole destination register, there's nothing to
738   // extend
739   if (MaskSizeBits >= RegSize)
740     return false;
741 
742   // Most targets cannot deal with loads of size < 8 and need to re-legalize to
743   // at least byte loads. Avoid creating such loads here
744   if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
745     return false;
746 
747   const MachineMemOperand &MMO = LoadMI->getMMO();
748   LegalityQuery::MemDesc MemDesc(MMO);
749 
750   // Don't modify the memory access size if this is atomic/volatile, but we can
751   // still adjust the opcode to indicate the high bit behavior.
752   if (LoadMI->isSimple())
753     MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
754   else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize)
755     return false;
756 
757   // TODO: Could check if it's legal with the reduced or original memory size.
758   if (!isLegalOrBeforeLegalizer(
759           {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}}))
760     return false;
761 
762   MatchInfo = [=](MachineIRBuilder &B) {
763     B.setInstrAndDebugLoc(*LoadMI);
764     auto &MF = B.getMF();
765     auto PtrInfo = MMO.getPointerInfo();
766     auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy);
767     B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
768     LoadMI->eraseFromParent();
769   };
770   return true;
771 }
772 
773 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
774                                    const MachineInstr &UseMI) {
775   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
776          "shouldn't consider debug uses");
777   assert(DefMI.getParent() == UseMI.getParent());
778   if (&DefMI == &UseMI)
779     return true;
780   const MachineBasicBlock &MBB = *DefMI.getParent();
781   auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
782     return &MI == &DefMI || &MI == &UseMI;
783   });
784   if (DefOrUse == MBB.end())
785     llvm_unreachable("Block must contain both DefMI and UseMI!");
786   return &*DefOrUse == &DefMI;
787 }
788 
789 bool CombinerHelper::dominates(const MachineInstr &DefMI,
790                                const MachineInstr &UseMI) {
791   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
792          "shouldn't consider debug uses");
793   if (MDT)
794     return MDT->dominates(&DefMI, &UseMI);
795   else if (DefMI.getParent() != UseMI.getParent())
796     return false;
797 
798   return isPredecessor(DefMI, UseMI);
799 }
800 
801 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
802   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
803   Register SrcReg = MI.getOperand(1).getReg();
804   Register LoadUser = SrcReg;
805 
806   if (MRI.getType(SrcReg).isVector())
807     return false;
808 
809   Register TruncSrc;
810   if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
811     LoadUser = TruncSrc;
812 
813   uint64_t SizeInBits = MI.getOperand(2).getImm();
814   // If the source is a G_SEXTLOAD from the same bit width, then we don't
815   // need any extend at all, just a truncate.
816   if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
817     // If truncating more than the original extended value, abort.
818     auto LoadSizeBits = LoadMI->getMemSizeInBits();
819     if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
820       return false;
821     if (LoadSizeBits == SizeInBits)
822       return true;
823   }
824   return false;
825 }
826 
827 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
828   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
829   Builder.setInstrAndDebugLoc(MI);
830   Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
831   MI.eraseFromParent();
832 }
833 
834 bool CombinerHelper::matchSextInRegOfLoad(
835     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
836   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
837 
838   Register DstReg = MI.getOperand(0).getReg();
839   LLT RegTy = MRI.getType(DstReg);
840 
841   // Only supports scalars for now.
842   if (RegTy.isVector())
843     return false;
844 
845   Register SrcReg = MI.getOperand(1).getReg();
846   auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
847   if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg))
848     return false;
849 
850   uint64_t MemBits = LoadDef->getMemSizeInBits();
851 
852   // If the sign extend extends from a narrower width than the load's width,
853   // then we can narrow the load width when we combine to a G_SEXTLOAD.
854   // Avoid widening the load at all.
855   unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits);
856 
857   // Don't generate G_SEXTLOADs with a < 1 byte width.
858   if (NewSizeBits < 8)
859     return false;
860   // Don't bother creating a non-power-2 sextload, it will likely be broken up
861   // anyway for most targets.
862   if (!isPowerOf2_32(NewSizeBits))
863     return false;
864 
865   const MachineMemOperand &MMO = LoadDef->getMMO();
866   LegalityQuery::MemDesc MMDesc(MMO);
867 
868   // Don't modify the memory access size if this is atomic/volatile, but we can
869   // still adjust the opcode to indicate the high bit behavior.
870   if (LoadDef->isSimple())
871     MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
872   else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits())
873     return false;
874 
875   // TODO: Could check if it's legal with the reduced or original memory size.
876   if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
877                                  {MRI.getType(LoadDef->getDstReg()),
878                                   MRI.getType(LoadDef->getPointerReg())},
879                                  {MMDesc}}))
880     return false;
881 
882   MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
883   return true;
884 }
885 
886 void CombinerHelper::applySextInRegOfLoad(
887     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
888   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
889   Register LoadReg;
890   unsigned ScalarSizeBits;
891   std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
892   GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
893 
894   // If we have the following:
895   // %ld = G_LOAD %ptr, (load 2)
896   // %ext = G_SEXT_INREG %ld, 8
897   //    ==>
898   // %ld = G_SEXTLOAD %ptr (load 1)
899 
900   auto &MMO = LoadDef->getMMO();
901   Builder.setInstrAndDebugLoc(*LoadDef);
902   auto &MF = Builder.getMF();
903   auto PtrInfo = MMO.getPointerInfo();
904   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
905   Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
906                          LoadDef->getPointerReg(), *NewMMO);
907   MI.eraseFromParent();
908 }
909 
910 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
911                                             Register &Base, Register &Offset) {
912   auto &MF = *MI.getParent()->getParent();
913   const auto &TLI = *MF.getSubtarget().getTargetLowering();
914 
915 #ifndef NDEBUG
916   unsigned Opcode = MI.getOpcode();
917   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
918          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
919 #endif
920 
921   Base = MI.getOperand(1).getReg();
922   MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
923   if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
924     return false;
925 
926   LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
927   // FIXME: The following use traversal needs a bail out for patholigical cases.
928   for (auto &Use : MRI.use_nodbg_instructions(Base)) {
929     if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
930       continue;
931 
932     Offset = Use.getOperand(2).getReg();
933     if (!ForceLegalIndexing &&
934         !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
935       LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: "
936                         << Use);
937       continue;
938     }
939 
940     // Make sure the offset calculation is before the potentially indexed op.
941     // FIXME: we really care about dependency here. The offset calculation might
942     // be movable.
943     MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
944     if (!OffsetDef || !dominates(*OffsetDef, MI)) {
945       LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: "
946                         << Use);
947       continue;
948     }
949 
950     // FIXME: check whether all uses of Base are load/store with foldable
951     // addressing modes. If so, using the normal addr-modes is better than
952     // forming an indexed one.
953 
954     bool MemOpDominatesAddrUses = true;
955     for (auto &PtrAddUse :
956          MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
957       if (!dominates(MI, PtrAddUse)) {
958         MemOpDominatesAddrUses = false;
959         break;
960       }
961     }
962 
963     if (!MemOpDominatesAddrUses) {
964       LLVM_DEBUG(
965           dbgs() << "    Ignoring candidate as memop does not dominate uses: "
966                  << Use);
967       continue;
968     }
969 
970     LLVM_DEBUG(dbgs() << "    Found match: " << Use);
971     Addr = Use.getOperand(0).getReg();
972     return true;
973   }
974 
975   return false;
976 }
977 
978 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
979                                            Register &Base, Register &Offset) {
980   auto &MF = *MI.getParent()->getParent();
981   const auto &TLI = *MF.getSubtarget().getTargetLowering();
982 
983 #ifndef NDEBUG
984   unsigned Opcode = MI.getOpcode();
985   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
986          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
987 #endif
988 
989   Addr = MI.getOperand(1).getReg();
990   MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
991   if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
992     return false;
993 
994   Base = AddrDef->getOperand(1).getReg();
995   Offset = AddrDef->getOperand(2).getReg();
996 
997   LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
998 
999   if (!ForceLegalIndexing &&
1000       !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
1001     LLVM_DEBUG(dbgs() << "    Skipping, not legal for target");
1002     return false;
1003   }
1004 
1005   MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
1006   if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
1007     LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway.");
1008     return false;
1009   }
1010 
1011   if (MI.getOpcode() == TargetOpcode::G_STORE) {
1012     // Would require a copy.
1013     if (Base == MI.getOperand(0).getReg()) {
1014       LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway.");
1015       return false;
1016     }
1017 
1018     // We're expecting one use of Addr in MI, but it could also be the
1019     // value stored, which isn't actually dominated by the instruction.
1020     if (MI.getOperand(0).getReg() == Addr) {
1021       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses");
1022       return false;
1023     }
1024   }
1025 
1026   // FIXME: check whether all uses of the base pointer are constant PtrAdds.
1027   // That might allow us to end base's liveness here by adjusting the constant.
1028 
1029   for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
1030     if (!dominates(MI, UseMI)) {
1031       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses.");
1032       return false;
1033     }
1034   }
1035 
1036   return true;
1037 }
1038 
1039 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
1040   IndexedLoadStoreMatchInfo MatchInfo;
1041   if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
1042     applyCombineIndexedLoadStore(MI, MatchInfo);
1043     return true;
1044   }
1045   return false;
1046 }
1047 
1048 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1049   unsigned Opcode = MI.getOpcode();
1050   if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
1051       Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
1052     return false;
1053 
1054   // For now, no targets actually support these opcodes so don't waste time
1055   // running these unless we're forced to for testing.
1056   if (!ForceLegalIndexing)
1057     return false;
1058 
1059   MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
1060                                           MatchInfo.Offset);
1061   if (!MatchInfo.IsPre &&
1062       !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
1063                               MatchInfo.Offset))
1064     return false;
1065 
1066   return true;
1067 }
1068 
1069 void CombinerHelper::applyCombineIndexedLoadStore(
1070     MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1071   MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
1072   MachineIRBuilder MIRBuilder(MI);
1073   unsigned Opcode = MI.getOpcode();
1074   bool IsStore = Opcode == TargetOpcode::G_STORE;
1075   unsigned NewOpcode;
1076   switch (Opcode) {
1077   case TargetOpcode::G_LOAD:
1078     NewOpcode = TargetOpcode::G_INDEXED_LOAD;
1079     break;
1080   case TargetOpcode::G_SEXTLOAD:
1081     NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
1082     break;
1083   case TargetOpcode::G_ZEXTLOAD:
1084     NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
1085     break;
1086   case TargetOpcode::G_STORE:
1087     NewOpcode = TargetOpcode::G_INDEXED_STORE;
1088     break;
1089   default:
1090     llvm_unreachable("Unknown load/store opcode");
1091   }
1092 
1093   auto MIB = MIRBuilder.buildInstr(NewOpcode);
1094   if (IsStore) {
1095     MIB.addDef(MatchInfo.Addr);
1096     MIB.addUse(MI.getOperand(0).getReg());
1097   } else {
1098     MIB.addDef(MI.getOperand(0).getReg());
1099     MIB.addDef(MatchInfo.Addr);
1100   }
1101 
1102   MIB.addUse(MatchInfo.Base);
1103   MIB.addUse(MatchInfo.Offset);
1104   MIB.addImm(MatchInfo.IsPre);
1105   MI.eraseFromParent();
1106   AddrDef.eraseFromParent();
1107 
1108   LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
1109 }
1110 
1111 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
1112                                         MachineInstr *&OtherMI) {
1113   unsigned Opcode = MI.getOpcode();
1114   bool IsDiv, IsSigned;
1115 
1116   switch (Opcode) {
1117   default:
1118     llvm_unreachable("Unexpected opcode!");
1119   case TargetOpcode::G_SDIV:
1120   case TargetOpcode::G_UDIV: {
1121     IsDiv = true;
1122     IsSigned = Opcode == TargetOpcode::G_SDIV;
1123     break;
1124   }
1125   case TargetOpcode::G_SREM:
1126   case TargetOpcode::G_UREM: {
1127     IsDiv = false;
1128     IsSigned = Opcode == TargetOpcode::G_SREM;
1129     break;
1130   }
1131   }
1132 
1133   Register Src1 = MI.getOperand(1).getReg();
1134   unsigned DivOpcode, RemOpcode, DivremOpcode;
1135   if (IsSigned) {
1136     DivOpcode = TargetOpcode::G_SDIV;
1137     RemOpcode = TargetOpcode::G_SREM;
1138     DivremOpcode = TargetOpcode::G_SDIVREM;
1139   } else {
1140     DivOpcode = TargetOpcode::G_UDIV;
1141     RemOpcode = TargetOpcode::G_UREM;
1142     DivremOpcode = TargetOpcode::G_UDIVREM;
1143   }
1144 
1145   if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
1146     return false;
1147 
1148   // Combine:
1149   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
1150   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
1151   // into:
1152   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1153 
1154   // Combine:
1155   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
1156   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
1157   // into:
1158   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1159 
1160   for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
1161     if (MI.getParent() == UseMI.getParent() &&
1162         ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
1163          (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
1164         matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) &&
1165         matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) {
1166       OtherMI = &UseMI;
1167       return true;
1168     }
1169   }
1170 
1171   return false;
1172 }
1173 
1174 void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1175                                         MachineInstr *&OtherMI) {
1176   unsigned Opcode = MI.getOpcode();
1177   assert(OtherMI && "OtherMI shouldn't be empty.");
1178 
1179   Register DestDivReg, DestRemReg;
1180   if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1181     DestDivReg = MI.getOperand(0).getReg();
1182     DestRemReg = OtherMI->getOperand(0).getReg();
1183   } else {
1184     DestDivReg = OtherMI->getOperand(0).getReg();
1185     DestRemReg = MI.getOperand(0).getReg();
1186   }
1187 
1188   bool IsSigned =
1189       Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1190 
1191   // Check which instruction is first in the block so we don't break def-use
1192   // deps by "moving" the instruction incorrectly.
1193   if (dominates(MI, *OtherMI))
1194     Builder.setInstrAndDebugLoc(MI);
1195   else
1196     Builder.setInstrAndDebugLoc(*OtherMI);
1197 
1198   Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1199                               : TargetOpcode::G_UDIVREM,
1200                      {DestDivReg, DestRemReg},
1201                      {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
1202   MI.eraseFromParent();
1203   OtherMI->eraseFromParent();
1204 }
1205 
1206 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1207                                                    MachineInstr *&BrCond) {
1208   assert(MI.getOpcode() == TargetOpcode::G_BR);
1209 
1210   // Try to match the following:
1211   // bb1:
1212   //   G_BRCOND %c1, %bb2
1213   //   G_BR %bb3
1214   // bb2:
1215   // ...
1216   // bb3:
1217 
1218   // The above pattern does not have a fall through to the successor bb2, always
1219   // resulting in a branch no matter which path is taken. Here we try to find
1220   // and replace that pattern with conditional branch to bb3 and otherwise
1221   // fallthrough to bb2. This is generally better for branch predictors.
1222 
1223   MachineBasicBlock *MBB = MI.getParent();
1224   MachineBasicBlock::iterator BrIt(MI);
1225   if (BrIt == MBB->begin())
1226     return false;
1227   assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
1228 
1229   BrCond = &*std::prev(BrIt);
1230   if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1231     return false;
1232 
1233   // Check that the next block is the conditional branch target. Also make sure
1234   // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1235   MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1236   return BrCondTarget != MI.getOperand(0).getMBB() &&
1237          MBB->isLayoutSuccessor(BrCondTarget);
1238 }
1239 
1240 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1241                                                    MachineInstr *&BrCond) {
1242   MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1243   Builder.setInstrAndDebugLoc(*BrCond);
1244   LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1245   // FIXME: Does int/fp matter for this? If so, we might need to restrict
1246   // this to i1 only since we might not know for sure what kind of
1247   // compare generated the condition value.
1248   auto True = Builder.buildConstant(
1249       Ty, getICmpTrueVal(getTargetLowering(), false, false));
1250   auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1251 
1252   auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1253   Observer.changingInstr(MI);
1254   MI.getOperand(0).setMBB(FallthroughBB);
1255   Observer.changedInstr(MI);
1256 
1257   // Change the conditional branch to use the inverted condition and
1258   // new target block.
1259   Observer.changingInstr(*BrCond);
1260   BrCond->getOperand(0).setReg(Xor.getReg(0));
1261   BrCond->getOperand(1).setMBB(BrTarget);
1262   Observer.changedInstr(*BrCond);
1263 }
1264 
1265 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1266   if (Ty.isVector())
1267     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1268                                 Ty.getNumElements());
1269   return IntegerType::get(C, Ty.getSizeInBits());
1270 }
1271 
1272 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1273   MachineIRBuilder HelperBuilder(MI);
1274   GISelObserverWrapper DummyObserver;
1275   LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1276   return Helper.lowerMemcpyInline(MI) ==
1277          LegalizerHelper::LegalizeResult::Legalized;
1278 }
1279 
1280 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1281   MachineIRBuilder HelperBuilder(MI);
1282   GISelObserverWrapper DummyObserver;
1283   LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1284   return Helper.lowerMemCpyFamily(MI, MaxLen) ==
1285          LegalizerHelper::LegalizeResult::Legalized;
1286 }
1287 
1288 static std::optional<APFloat>
1289 constantFoldFpUnary(unsigned Opcode, LLT DstTy, const Register Op,
1290                     const MachineRegisterInfo &MRI) {
1291   const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1292   if (!MaybeCst)
1293     return std::nullopt;
1294 
1295   APFloat V = MaybeCst->getValueAPF();
1296   switch (Opcode) {
1297   default:
1298     llvm_unreachable("Unexpected opcode!");
1299   case TargetOpcode::G_FNEG: {
1300     V.changeSign();
1301     return V;
1302   }
1303   case TargetOpcode::G_FABS: {
1304     V.clearSign();
1305     return V;
1306   }
1307   case TargetOpcode::G_FPTRUNC:
1308     break;
1309   case TargetOpcode::G_FSQRT: {
1310     bool Unused;
1311     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1312     V = APFloat(sqrt(V.convertToDouble()));
1313     break;
1314   }
1315   case TargetOpcode::G_FLOG2: {
1316     bool Unused;
1317     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1318     V = APFloat(log2(V.convertToDouble()));
1319     break;
1320   }
1321   }
1322   // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1323   // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1324   // and `G_FLOG2` reach here.
1325   bool Unused;
1326   V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1327   return V;
1328 }
1329 
1330 bool CombinerHelper::matchCombineConstantFoldFpUnary(
1331     MachineInstr &MI, std::optional<APFloat> &Cst) {
1332   Register DstReg = MI.getOperand(0).getReg();
1333   Register SrcReg = MI.getOperand(1).getReg();
1334   LLT DstTy = MRI.getType(DstReg);
1335   Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1336   return Cst.has_value();
1337 }
1338 
1339 void CombinerHelper::applyCombineConstantFoldFpUnary(
1340     MachineInstr &MI, std::optional<APFloat> &Cst) {
1341   assert(Cst && "Optional is unexpectedly empty!");
1342   Builder.setInstrAndDebugLoc(MI);
1343   MachineFunction &MF = Builder.getMF();
1344   auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1345   Register DstReg = MI.getOperand(0).getReg();
1346   Builder.buildFConstant(DstReg, *FPVal);
1347   MI.eraseFromParent();
1348 }
1349 
1350 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1351                                            PtrAddChain &MatchInfo) {
1352   // We're trying to match the following pattern:
1353   //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1354   //   %root = G_PTR_ADD %t1, G_CONSTANT imm2
1355   // -->
1356   //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1357 
1358   if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1359     return false;
1360 
1361   Register Add2 = MI.getOperand(1).getReg();
1362   Register Imm1 = MI.getOperand(2).getReg();
1363   auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1364   if (!MaybeImmVal)
1365     return false;
1366 
1367   MachineInstr *Add2Def = MRI.getVRegDef(Add2);
1368   if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1369     return false;
1370 
1371   Register Base = Add2Def->getOperand(1).getReg();
1372   Register Imm2 = Add2Def->getOperand(2).getReg();
1373   auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1374   if (!MaybeImm2Val)
1375     return false;
1376 
1377   // Check if the new combined immediate forms an illegal addressing mode.
1378   // Do not combine if it was legal before but would get illegal.
1379   // To do so, we need to find a load/store user of the pointer to get
1380   // the access type.
1381   Type *AccessTy = nullptr;
1382   auto &MF = *MI.getMF();
1383   for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
1384     if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
1385       AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
1386                                MF.getFunction().getContext());
1387       break;
1388     }
1389   }
1390   TargetLoweringBase::AddrMode AMNew;
1391   APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
1392   AMNew.BaseOffs = CombinedImm.getSExtValue();
1393   if (AccessTy) {
1394     AMNew.HasBaseReg = true;
1395     TargetLoweringBase::AddrMode AMOld;
1396     AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue();
1397     AMOld.HasBaseReg = true;
1398     unsigned AS = MRI.getType(Add2).getAddressSpace();
1399     const auto &TLI = *MF.getSubtarget().getTargetLowering();
1400     if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
1401         !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
1402       return false;
1403   }
1404 
1405   // Pass the combined immediate to the apply function.
1406   MatchInfo.Imm = AMNew.BaseOffs;
1407   MatchInfo.Base = Base;
1408   MatchInfo.Bank = getRegBank(Imm2);
1409   return true;
1410 }
1411 
1412 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1413                                            PtrAddChain &MatchInfo) {
1414   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1415   MachineIRBuilder MIB(MI);
1416   LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1417   auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1418   setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
1419   Observer.changingInstr(MI);
1420   MI.getOperand(1).setReg(MatchInfo.Base);
1421   MI.getOperand(2).setReg(NewOffset.getReg(0));
1422   Observer.changedInstr(MI);
1423 }
1424 
1425 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1426                                           RegisterImmPair &MatchInfo) {
1427   // We're trying to match the following pattern with any of
1428   // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1429   //   %t1 = SHIFT %base, G_CONSTANT imm1
1430   //   %root = SHIFT %t1, G_CONSTANT imm2
1431   // -->
1432   //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1433 
1434   unsigned Opcode = MI.getOpcode();
1435   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1436           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1437           Opcode == TargetOpcode::G_USHLSAT) &&
1438          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1439 
1440   Register Shl2 = MI.getOperand(1).getReg();
1441   Register Imm1 = MI.getOperand(2).getReg();
1442   auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1443   if (!MaybeImmVal)
1444     return false;
1445 
1446   MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1447   if (Shl2Def->getOpcode() != Opcode)
1448     return false;
1449 
1450   Register Base = Shl2Def->getOperand(1).getReg();
1451   Register Imm2 = Shl2Def->getOperand(2).getReg();
1452   auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1453   if (!MaybeImm2Val)
1454     return false;
1455 
1456   // Pass the combined immediate to the apply function.
1457   MatchInfo.Imm =
1458       (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1459   MatchInfo.Reg = Base;
1460 
1461   // There is no simple replacement for a saturating unsigned left shift that
1462   // exceeds the scalar size.
1463   if (Opcode == TargetOpcode::G_USHLSAT &&
1464       MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1465     return false;
1466 
1467   return true;
1468 }
1469 
1470 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1471                                           RegisterImmPair &MatchInfo) {
1472   unsigned Opcode = MI.getOpcode();
1473   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1474           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1475           Opcode == TargetOpcode::G_USHLSAT) &&
1476          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1477 
1478   Builder.setInstrAndDebugLoc(MI);
1479   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1480   unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1481   auto Imm = MatchInfo.Imm;
1482 
1483   if (Imm >= ScalarSizeInBits) {
1484     // Any logical shift that exceeds scalar size will produce zero.
1485     if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1486       Builder.buildConstant(MI.getOperand(0), 0);
1487       MI.eraseFromParent();
1488       return;
1489     }
1490     // Arithmetic shift and saturating signed left shift have no effect beyond
1491     // scalar size.
1492     Imm = ScalarSizeInBits - 1;
1493   }
1494 
1495   LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1496   Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1497   Observer.changingInstr(MI);
1498   MI.getOperand(1).setReg(MatchInfo.Reg);
1499   MI.getOperand(2).setReg(NewImm);
1500   Observer.changedInstr(MI);
1501 }
1502 
1503 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1504                                               ShiftOfShiftedLogic &MatchInfo) {
1505   // We're trying to match the following pattern with any of
1506   // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1507   // with any of G_AND/G_OR/G_XOR logic instructions.
1508   //   %t1 = SHIFT %X, G_CONSTANT C0
1509   //   %t2 = LOGIC %t1, %Y
1510   //   %root = SHIFT %t2, G_CONSTANT C1
1511   // -->
1512   //   %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1513   //   %t4 = SHIFT %Y, G_CONSTANT C1
1514   //   %root = LOGIC %t3, %t4
1515   unsigned ShiftOpcode = MI.getOpcode();
1516   assert((ShiftOpcode == TargetOpcode::G_SHL ||
1517           ShiftOpcode == TargetOpcode::G_ASHR ||
1518           ShiftOpcode == TargetOpcode::G_LSHR ||
1519           ShiftOpcode == TargetOpcode::G_USHLSAT ||
1520           ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1521          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1522 
1523   // Match a one-use bitwise logic op.
1524   Register LogicDest = MI.getOperand(1).getReg();
1525   if (!MRI.hasOneNonDBGUse(LogicDest))
1526     return false;
1527 
1528   MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1529   unsigned LogicOpcode = LogicMI->getOpcode();
1530   if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1531       LogicOpcode != TargetOpcode::G_XOR)
1532     return false;
1533 
1534   // Find a matching one-use shift by constant.
1535   const Register C1 = MI.getOperand(2).getReg();
1536   auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
1537   if (!MaybeImmVal)
1538     return false;
1539 
1540   const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1541 
1542   auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1543     // Shift should match previous one and should be a one-use.
1544     if (MI->getOpcode() != ShiftOpcode ||
1545         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1546       return false;
1547 
1548     // Must be a constant.
1549     auto MaybeImmVal =
1550         getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1551     if (!MaybeImmVal)
1552       return false;
1553 
1554     ShiftVal = MaybeImmVal->Value.getSExtValue();
1555     return true;
1556   };
1557 
1558   // Logic ops are commutative, so check each operand for a match.
1559   Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1560   MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1561   Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1562   MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1563   uint64_t C0Val;
1564 
1565   if (matchFirstShift(LogicMIOp1, C0Val)) {
1566     MatchInfo.LogicNonShiftReg = LogicMIReg2;
1567     MatchInfo.Shift2 = LogicMIOp1;
1568   } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1569     MatchInfo.LogicNonShiftReg = LogicMIReg1;
1570     MatchInfo.Shift2 = LogicMIOp2;
1571   } else
1572     return false;
1573 
1574   MatchInfo.ValSum = C0Val + C1Val;
1575 
1576   // The fold is not valid if the sum of the shift values exceeds bitwidth.
1577   if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1578     return false;
1579 
1580   MatchInfo.Logic = LogicMI;
1581   return true;
1582 }
1583 
1584 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1585                                               ShiftOfShiftedLogic &MatchInfo) {
1586   unsigned Opcode = MI.getOpcode();
1587   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1588           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1589           Opcode == TargetOpcode::G_SSHLSAT) &&
1590          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1591 
1592   LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1593   LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1594   Builder.setInstrAndDebugLoc(MI);
1595 
1596   Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1597 
1598   Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1599   Register Shift1 =
1600       Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1601 
1602   // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same
1603   // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when
1604   // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we
1605   // remove old shift1. And it will cause crash later. So erase it earlier to
1606   // avoid the crash.
1607   MatchInfo.Shift2->eraseFromParent();
1608 
1609   Register Shift2Const = MI.getOperand(2).getReg();
1610   Register Shift2 = Builder
1611                         .buildInstr(Opcode, {DestType},
1612                                     {MatchInfo.LogicNonShiftReg, Shift2Const})
1613                         .getReg(0);
1614 
1615   Register Dest = MI.getOperand(0).getReg();
1616   Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1617 
1618   // This was one use so it's safe to remove it.
1619   MatchInfo.Logic->eraseFromParent();
1620 
1621   MI.eraseFromParent();
1622 }
1623 
1624 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1625                                           unsigned &ShiftVal) {
1626   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1627   auto MaybeImmVal =
1628       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1629   if (!MaybeImmVal)
1630     return false;
1631 
1632   ShiftVal = MaybeImmVal->Value.exactLogBase2();
1633   return (static_cast<int32_t>(ShiftVal) != -1);
1634 }
1635 
1636 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1637                                           unsigned &ShiftVal) {
1638   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1639   MachineIRBuilder MIB(MI);
1640   LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1641   auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1642   Observer.changingInstr(MI);
1643   MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1644   MI.getOperand(2).setReg(ShiftCst.getReg(0));
1645   Observer.changedInstr(MI);
1646 }
1647 
1648 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
1649 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1650                                              RegisterImmPair &MatchData) {
1651   assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
1652 
1653   Register LHS = MI.getOperand(1).getReg();
1654 
1655   Register ExtSrc;
1656   if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1657       !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1658       !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1659     return false;
1660 
1661   // TODO: Should handle vector splat.
1662   Register RHS = MI.getOperand(2).getReg();
1663   auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1664   if (!MaybeShiftAmtVal)
1665     return false;
1666 
1667   if (LI) {
1668     LLT SrcTy = MRI.getType(ExtSrc);
1669 
1670     // We only really care about the legality with the shifted value. We can
1671     // pick any type the constant shift amount, so ask the target what to
1672     // use. Otherwise we would have to guess and hope it is reported as legal.
1673     LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1674     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1675       return false;
1676   }
1677 
1678   int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
1679   MatchData.Reg = ExtSrc;
1680   MatchData.Imm = ShiftAmt;
1681 
1682   unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
1683   return MinLeadingZeros >= ShiftAmt;
1684 }
1685 
1686 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
1687                                              const RegisterImmPair &MatchData) {
1688   Register ExtSrcReg = MatchData.Reg;
1689   int64_t ShiftAmtVal = MatchData.Imm;
1690 
1691   LLT ExtSrcTy = MRI.getType(ExtSrcReg);
1692   Builder.setInstrAndDebugLoc(MI);
1693   auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
1694   auto NarrowShift =
1695       Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
1696   Builder.buildZExt(MI.getOperand(0), NarrowShift);
1697   MI.eraseFromParent();
1698 }
1699 
1700 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
1701                                               Register &MatchInfo) {
1702   GMerge &Merge = cast<GMerge>(MI);
1703   SmallVector<Register, 16> MergedValues;
1704   for (unsigned I = 0; I < Merge.getNumSources(); ++I)
1705     MergedValues.emplace_back(Merge.getSourceReg(I));
1706 
1707   auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
1708   if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
1709     return false;
1710 
1711   for (unsigned I = 0; I < MergedValues.size(); ++I)
1712     if (MergedValues[I] != Unmerge->getReg(I))
1713       return false;
1714 
1715   MatchInfo = Unmerge->getSourceReg();
1716   return true;
1717 }
1718 
1719 static Register peekThroughBitcast(Register Reg,
1720                                    const MachineRegisterInfo &MRI) {
1721   while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
1722     ;
1723 
1724   return Reg;
1725 }
1726 
1727 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
1728     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1729   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1730          "Expected an unmerge");
1731   auto &Unmerge = cast<GUnmerge>(MI);
1732   Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
1733 
1734   auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI);
1735   if (!SrcInstr)
1736     return false;
1737 
1738   // Check the source type of the merge.
1739   LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
1740   LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
1741   bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
1742   if (SrcMergeTy != Dst0Ty && !SameSize)
1743     return false;
1744   // They are the same now (modulo a bitcast).
1745   // We can collect all the src registers.
1746   for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
1747     Operands.push_back(SrcInstr->getSourceReg(Idx));
1748   return true;
1749 }
1750 
1751 void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
1752     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
1753   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1754          "Expected an unmerge");
1755   assert((MI.getNumOperands() - 1 == Operands.size()) &&
1756          "Not enough operands to replace all defs");
1757   unsigned NumElems = MI.getNumOperands() - 1;
1758 
1759   LLT SrcTy = MRI.getType(Operands[0]);
1760   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1761   bool CanReuseInputDirectly = DstTy == SrcTy;
1762   Builder.setInstrAndDebugLoc(MI);
1763   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1764     Register DstReg = MI.getOperand(Idx).getReg();
1765     Register SrcReg = Operands[Idx];
1766     if (CanReuseInputDirectly)
1767       replaceRegWith(MRI, DstReg, SrcReg);
1768     else
1769       Builder.buildCast(DstReg, SrcReg);
1770   }
1771   MI.eraseFromParent();
1772 }
1773 
1774 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
1775                                                  SmallVectorImpl<APInt> &Csts) {
1776   unsigned SrcIdx = MI.getNumOperands() - 1;
1777   Register SrcReg = MI.getOperand(SrcIdx).getReg();
1778   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
1779   if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
1780       SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
1781     return false;
1782   // Break down the big constant in smaller ones.
1783   const MachineOperand &CstVal = SrcInstr->getOperand(1);
1784   APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
1785                   ? CstVal.getCImm()->getValue()
1786                   : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
1787 
1788   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
1789   unsigned ShiftAmt = Dst0Ty.getSizeInBits();
1790   // Unmerge a constant.
1791   for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
1792     Csts.emplace_back(Val.trunc(ShiftAmt));
1793     Val = Val.lshr(ShiftAmt);
1794   }
1795 
1796   return true;
1797 }
1798 
1799 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
1800                                                  SmallVectorImpl<APInt> &Csts) {
1801   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1802          "Expected an unmerge");
1803   assert((MI.getNumOperands() - 1 == Csts.size()) &&
1804          "Not enough operands to replace all defs");
1805   unsigned NumElems = MI.getNumOperands() - 1;
1806   Builder.setInstrAndDebugLoc(MI);
1807   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1808     Register DstReg = MI.getOperand(Idx).getReg();
1809     Builder.buildConstant(DstReg, Csts[Idx]);
1810   }
1811 
1812   MI.eraseFromParent();
1813 }
1814 
1815 bool CombinerHelper::matchCombineUnmergeUndef(
1816     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
1817   unsigned SrcIdx = MI.getNumOperands() - 1;
1818   Register SrcReg = MI.getOperand(SrcIdx).getReg();
1819   MatchInfo = [&MI](MachineIRBuilder &B) {
1820     unsigned NumElems = MI.getNumOperands() - 1;
1821     for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
1822       Register DstReg = MI.getOperand(Idx).getReg();
1823       B.buildUndef(DstReg);
1824     }
1825   };
1826   return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
1827 }
1828 
1829 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1830   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1831          "Expected an unmerge");
1832   // Check that all the lanes are dead except the first one.
1833   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1834     if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
1835       return false;
1836   }
1837   return true;
1838 }
1839 
1840 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
1841   Builder.setInstrAndDebugLoc(MI);
1842   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1843   // Truncating a vector is going to truncate every single lane,
1844   // whereas we want the full lowbits.
1845   // Do the operation on a scalar instead.
1846   LLT SrcTy = MRI.getType(SrcReg);
1847   if (SrcTy.isVector())
1848     SrcReg =
1849         Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
1850 
1851   Register Dst0Reg = MI.getOperand(0).getReg();
1852   LLT Dst0Ty = MRI.getType(Dst0Reg);
1853   if (Dst0Ty.isVector()) {
1854     auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
1855     Builder.buildCast(Dst0Reg, MIB);
1856   } else
1857     Builder.buildTrunc(Dst0Reg, SrcReg);
1858   MI.eraseFromParent();
1859 }
1860 
1861 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
1862   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1863          "Expected an unmerge");
1864   Register Dst0Reg = MI.getOperand(0).getReg();
1865   LLT Dst0Ty = MRI.getType(Dst0Reg);
1866   // G_ZEXT on vector applies to each lane, so it will
1867   // affect all destinations. Therefore we won't be able
1868   // to simplify the unmerge to just the first definition.
1869   if (Dst0Ty.isVector())
1870     return false;
1871   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
1872   LLT SrcTy = MRI.getType(SrcReg);
1873   if (SrcTy.isVector())
1874     return false;
1875 
1876   Register ZExtSrcReg;
1877   if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
1878     return false;
1879 
1880   // Finally we can replace the first definition with
1881   // a zext of the source if the definition is big enough to hold
1882   // all of ZExtSrc bits.
1883   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1884   return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
1885 }
1886 
1887 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
1888   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
1889          "Expected an unmerge");
1890 
1891   Register Dst0Reg = MI.getOperand(0).getReg();
1892 
1893   MachineInstr *ZExtInstr =
1894       MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
1895   assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
1896          "Expecting a G_ZEXT");
1897 
1898   Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
1899   LLT Dst0Ty = MRI.getType(Dst0Reg);
1900   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
1901 
1902   Builder.setInstrAndDebugLoc(MI);
1903 
1904   if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
1905     Builder.buildZExt(Dst0Reg, ZExtSrcReg);
1906   } else {
1907     assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
1908            "ZExt src doesn't fit in destination");
1909     replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
1910   }
1911 
1912   Register ZeroReg;
1913   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
1914     if (!ZeroReg)
1915       ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
1916     replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
1917   }
1918   MI.eraseFromParent();
1919 }
1920 
1921 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
1922                                                 unsigned TargetShiftSize,
1923                                                 unsigned &ShiftVal) {
1924   assert((MI.getOpcode() == TargetOpcode::G_SHL ||
1925           MI.getOpcode() == TargetOpcode::G_LSHR ||
1926           MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
1927 
1928   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
1929   if (Ty.isVector()) // TODO:
1930     return false;
1931 
1932   // Don't narrow further than the requested size.
1933   unsigned Size = Ty.getSizeInBits();
1934   if (Size <= TargetShiftSize)
1935     return false;
1936 
1937   auto MaybeImmVal =
1938       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1939   if (!MaybeImmVal)
1940     return false;
1941 
1942   ShiftVal = MaybeImmVal->Value.getSExtValue();
1943   return ShiftVal >= Size / 2 && ShiftVal < Size;
1944 }
1945 
1946 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
1947                                                 const unsigned &ShiftVal) {
1948   Register DstReg = MI.getOperand(0).getReg();
1949   Register SrcReg = MI.getOperand(1).getReg();
1950   LLT Ty = MRI.getType(SrcReg);
1951   unsigned Size = Ty.getSizeInBits();
1952   unsigned HalfSize = Size / 2;
1953   assert(ShiftVal >= HalfSize);
1954 
1955   LLT HalfTy = LLT::scalar(HalfSize);
1956 
1957   Builder.setInstr(MI);
1958   auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
1959   unsigned NarrowShiftAmt = ShiftVal - HalfSize;
1960 
1961   if (MI.getOpcode() == TargetOpcode::G_LSHR) {
1962     Register Narrowed = Unmerge.getReg(1);
1963 
1964     //  dst = G_LSHR s64:x, C for C >= 32
1965     // =>
1966     //   lo, hi = G_UNMERGE_VALUES x
1967     //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
1968 
1969     if (NarrowShiftAmt != 0) {
1970       Narrowed = Builder.buildLShr(HalfTy, Narrowed,
1971         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
1972     }
1973 
1974     auto Zero = Builder.buildConstant(HalfTy, 0);
1975     Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero});
1976   } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
1977     Register Narrowed = Unmerge.getReg(0);
1978     //  dst = G_SHL s64:x, C for C >= 32
1979     // =>
1980     //   lo, hi = G_UNMERGE_VALUES x
1981     //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
1982     if (NarrowShiftAmt != 0) {
1983       Narrowed = Builder.buildShl(HalfTy, Narrowed,
1984         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
1985     }
1986 
1987     auto Zero = Builder.buildConstant(HalfTy, 0);
1988     Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed});
1989   } else {
1990     assert(MI.getOpcode() == TargetOpcode::G_ASHR);
1991     auto Hi = Builder.buildAShr(
1992       HalfTy, Unmerge.getReg(1),
1993       Builder.buildConstant(HalfTy, HalfSize - 1));
1994 
1995     if (ShiftVal == HalfSize) {
1996       // (G_ASHR i64:x, 32) ->
1997       //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
1998       Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi});
1999     } else if (ShiftVal == Size - 1) {
2000       // Don't need a second shift.
2001       // (G_ASHR i64:x, 63) ->
2002       //   %narrowed = (G_ASHR hi_32(x), 31)
2003       //   G_MERGE_VALUES %narrowed, %narrowed
2004       Builder.buildMergeLikeInstr(DstReg, {Hi, Hi});
2005     } else {
2006       auto Lo = Builder.buildAShr(
2007         HalfTy, Unmerge.getReg(1),
2008         Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2009 
2010       // (G_ASHR i64:x, C) ->, for C >= 32
2011       //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2012       Builder.buildMergeLikeInstr(DstReg, {Lo, Hi});
2013     }
2014   }
2015 
2016   MI.eraseFromParent();
2017 }
2018 
2019 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2020                                               unsigned TargetShiftAmount) {
2021   unsigned ShiftAmt;
2022   if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2023     applyCombineShiftToUnmerge(MI, ShiftAmt);
2024     return true;
2025   }
2026 
2027   return false;
2028 }
2029 
2030 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2031   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2032   Register DstReg = MI.getOperand(0).getReg();
2033   LLT DstTy = MRI.getType(DstReg);
2034   Register SrcReg = MI.getOperand(1).getReg();
2035   return mi_match(SrcReg, MRI,
2036                   m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2037 }
2038 
2039 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2040   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2041   Register DstReg = MI.getOperand(0).getReg();
2042   Builder.setInstr(MI);
2043   Builder.buildCopy(DstReg, Reg);
2044   MI.eraseFromParent();
2045 }
2046 
2047 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2048   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2049   Register DstReg = MI.getOperand(0).getReg();
2050   Builder.setInstr(MI);
2051   Builder.buildZExtOrTrunc(DstReg, Reg);
2052   MI.eraseFromParent();
2053 }
2054 
2055 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2056     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2057   assert(MI.getOpcode() == TargetOpcode::G_ADD);
2058   Register LHS = MI.getOperand(1).getReg();
2059   Register RHS = MI.getOperand(2).getReg();
2060   LLT IntTy = MRI.getType(LHS);
2061 
2062   // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2063   // instruction.
2064   PtrReg.second = false;
2065   for (Register SrcReg : {LHS, RHS}) {
2066     if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2067       // Don't handle cases where the integer is implicitly converted to the
2068       // pointer width.
2069       LLT PtrTy = MRI.getType(PtrReg.first);
2070       if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2071         return true;
2072     }
2073 
2074     PtrReg.second = true;
2075   }
2076 
2077   return false;
2078 }
2079 
2080 void CombinerHelper::applyCombineAddP2IToPtrAdd(
2081     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2082   Register Dst = MI.getOperand(0).getReg();
2083   Register LHS = MI.getOperand(1).getReg();
2084   Register RHS = MI.getOperand(2).getReg();
2085 
2086   const bool DoCommute = PtrReg.second;
2087   if (DoCommute)
2088     std::swap(LHS, RHS);
2089   LHS = PtrReg.first;
2090 
2091   LLT PtrTy = MRI.getType(LHS);
2092 
2093   Builder.setInstrAndDebugLoc(MI);
2094   auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2095   Builder.buildPtrToInt(Dst, PtrAdd);
2096   MI.eraseFromParent();
2097 }
2098 
2099 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2100                                                   APInt &NewCst) {
2101   auto &PtrAdd = cast<GPtrAdd>(MI);
2102   Register LHS = PtrAdd.getBaseReg();
2103   Register RHS = PtrAdd.getOffsetReg();
2104   MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2105 
2106   if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
2107     APInt Cst;
2108     if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2109       auto DstTy = MRI.getType(PtrAdd.getReg(0));
2110       // G_INTTOPTR uses zero-extension
2111       NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
2112       NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
2113       return true;
2114     }
2115   }
2116 
2117   return false;
2118 }
2119 
2120 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2121                                                   APInt &NewCst) {
2122   auto &PtrAdd = cast<GPtrAdd>(MI);
2123   Register Dst = PtrAdd.getReg(0);
2124 
2125   Builder.setInstrAndDebugLoc(MI);
2126   Builder.buildConstant(Dst, NewCst);
2127   PtrAdd.eraseFromParent();
2128 }
2129 
2130 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2131   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2132   Register DstReg = MI.getOperand(0).getReg();
2133   Register SrcReg = MI.getOperand(1).getReg();
2134   LLT DstTy = MRI.getType(DstReg);
2135   return mi_match(SrcReg, MRI,
2136                   m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2137 }
2138 
2139 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2140   assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
2141   Register DstReg = MI.getOperand(0).getReg();
2142   Register SrcReg = MI.getOperand(1).getReg();
2143   LLT DstTy = MRI.getType(DstReg);
2144   if (mi_match(SrcReg, MRI,
2145                m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2146     unsigned DstSize = DstTy.getScalarSizeInBits();
2147     unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2148     return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2149   }
2150   return false;
2151 }
2152 
2153 bool CombinerHelper::matchCombineExtOfExt(
2154     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2155   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2156           MI.getOpcode() == TargetOpcode::G_SEXT ||
2157           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2158          "Expected a G_[ASZ]EXT");
2159   Register SrcReg = MI.getOperand(1).getReg();
2160   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2161   // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2162   unsigned Opc = MI.getOpcode();
2163   unsigned SrcOpc = SrcMI->getOpcode();
2164   if (Opc == SrcOpc ||
2165       (Opc == TargetOpcode::G_ANYEXT &&
2166        (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2167       (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2168     MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2169     return true;
2170   }
2171   return false;
2172 }
2173 
2174 void CombinerHelper::applyCombineExtOfExt(
2175     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2176   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2177           MI.getOpcode() == TargetOpcode::G_SEXT ||
2178           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2179          "Expected a G_[ASZ]EXT");
2180 
2181   Register Reg = std::get<0>(MatchInfo);
2182   unsigned SrcExtOp = std::get<1>(MatchInfo);
2183 
2184   // Combine exts with the same opcode.
2185   if (MI.getOpcode() == SrcExtOp) {
2186     Observer.changingInstr(MI);
2187     MI.getOperand(1).setReg(Reg);
2188     Observer.changedInstr(MI);
2189     return;
2190   }
2191 
2192   // Combine:
2193   // - anyext([sz]ext x) to [sz]ext x
2194   // - sext(zext x) to zext x
2195   if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2196       (MI.getOpcode() == TargetOpcode::G_SEXT &&
2197        SrcExtOp == TargetOpcode::G_ZEXT)) {
2198     Register DstReg = MI.getOperand(0).getReg();
2199     Builder.setInstrAndDebugLoc(MI);
2200     Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2201     MI.eraseFromParent();
2202   }
2203 }
2204 
2205 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2206   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2207   Register DstReg = MI.getOperand(0).getReg();
2208   Register SrcReg = MI.getOperand(1).getReg();
2209   LLT DstTy = MRI.getType(DstReg);
2210 
2211   Builder.setInstrAndDebugLoc(MI);
2212   Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2213                    MI.getFlags());
2214   MI.eraseFromParent();
2215 }
2216 
2217 bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI,
2218                                             BuildFnTy &MatchInfo) {
2219   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2220   Register Src = MI.getOperand(1).getReg();
2221   Register NegSrc;
2222 
2223   if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc))))
2224     return false;
2225 
2226   MatchInfo = [=, &MI](MachineIRBuilder &B) {
2227     Observer.changingInstr(MI);
2228     MI.getOperand(1).setReg(NegSrc);
2229     Observer.changedInstr(MI);
2230   };
2231   return true;
2232 }
2233 
2234 bool CombinerHelper::matchCombineTruncOfExt(
2235     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2236   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2237   Register SrcReg = MI.getOperand(1).getReg();
2238   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2239   unsigned SrcOpc = SrcMI->getOpcode();
2240   if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2241       SrcOpc == TargetOpcode::G_ZEXT) {
2242     MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2243     return true;
2244   }
2245   return false;
2246 }
2247 
2248 void CombinerHelper::applyCombineTruncOfExt(
2249     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2250   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2251   Register SrcReg = MatchInfo.first;
2252   unsigned SrcExtOp = MatchInfo.second;
2253   Register DstReg = MI.getOperand(0).getReg();
2254   LLT SrcTy = MRI.getType(SrcReg);
2255   LLT DstTy = MRI.getType(DstReg);
2256   if (SrcTy == DstTy) {
2257     MI.eraseFromParent();
2258     replaceRegWith(MRI, DstReg, SrcReg);
2259     return;
2260   }
2261   Builder.setInstrAndDebugLoc(MI);
2262   if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2263     Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2264   else
2265     Builder.buildTrunc(DstReg, SrcReg);
2266   MI.eraseFromParent();
2267 }
2268 
2269 static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) {
2270   const unsigned ShiftSize = ShiftTy.getScalarSizeInBits();
2271   const unsigned TruncSize = TruncTy.getScalarSizeInBits();
2272 
2273   // ShiftTy > 32 > TruncTy -> 32
2274   if (ShiftSize > 32 && TruncSize < 32)
2275     return ShiftTy.changeElementSize(32);
2276 
2277   // TODO: We could also reduce to 16 bits, but that's more target-dependent.
2278   //  Some targets like it, some don't, some only like it under certain
2279   //  conditions/processor versions, etc.
2280   //  A TL hook might be needed for this.
2281 
2282   // Don't combine
2283   return ShiftTy;
2284 }
2285 
2286 bool CombinerHelper::matchCombineTruncOfShift(
2287     MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
2288   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2289   Register DstReg = MI.getOperand(0).getReg();
2290   Register SrcReg = MI.getOperand(1).getReg();
2291 
2292   if (!MRI.hasOneNonDBGUse(SrcReg))
2293     return false;
2294 
2295   LLT SrcTy = MRI.getType(SrcReg);
2296   LLT DstTy = MRI.getType(DstReg);
2297 
2298   MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI);
2299   const auto &TL = getTargetLowering();
2300 
2301   LLT NewShiftTy;
2302   switch (SrcMI->getOpcode()) {
2303   default:
2304     return false;
2305   case TargetOpcode::G_SHL: {
2306     NewShiftTy = DstTy;
2307 
2308     // Make sure new shift amount is legal.
2309     KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
2310     if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits()))
2311       return false;
2312     break;
2313   }
2314   case TargetOpcode::G_LSHR:
2315   case TargetOpcode::G_ASHR: {
2316     // For right shifts, we conservatively do not do the transform if the TRUNC
2317     // has any STORE users. The reason is that if we change the type of the
2318     // shift, we may break the truncstore combine.
2319     //
2320     // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)).
2321     for (auto &User : MRI.use_instructions(DstReg))
2322       if (User.getOpcode() == TargetOpcode::G_STORE)
2323         return false;
2324 
2325     NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy);
2326     if (NewShiftTy == SrcTy)
2327       return false;
2328 
2329     // Make sure we won't lose information by truncating the high bits.
2330     KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
2331     if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() -
2332                                 DstTy.getScalarSizeInBits()))
2333       return false;
2334     break;
2335   }
2336   }
2337 
2338   if (!isLegalOrBeforeLegalizer(
2339           {SrcMI->getOpcode(),
2340            {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}}))
2341     return false;
2342 
2343   MatchInfo = std::make_pair(SrcMI, NewShiftTy);
2344   return true;
2345 }
2346 
2347 void CombinerHelper::applyCombineTruncOfShift(
2348     MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
2349   Builder.setInstrAndDebugLoc(MI);
2350 
2351   MachineInstr *ShiftMI = MatchInfo.first;
2352   LLT NewShiftTy = MatchInfo.second;
2353 
2354   Register Dst = MI.getOperand(0).getReg();
2355   LLT DstTy = MRI.getType(Dst);
2356 
2357   Register ShiftAmt = ShiftMI->getOperand(2).getReg();
2358   Register ShiftSrc = ShiftMI->getOperand(1).getReg();
2359   ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0);
2360 
2361   Register NewShift =
2362       Builder
2363           .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt})
2364           .getReg(0);
2365 
2366   if (NewShiftTy == DstTy)
2367     replaceRegWith(MRI, Dst, NewShift);
2368   else
2369     Builder.buildTrunc(Dst, NewShift);
2370 
2371   eraseInst(MI);
2372 }
2373 
2374 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2375   return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2376     return MO.isReg() &&
2377            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2378   });
2379 }
2380 
2381 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2382   return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2383     return !MO.isReg() ||
2384            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2385   });
2386 }
2387 
2388 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2389   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2390   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2391   return all_of(Mask, [](int Elt) { return Elt < 0; });
2392 }
2393 
2394 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2395   assert(MI.getOpcode() == TargetOpcode::G_STORE);
2396   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2397                       MRI);
2398 }
2399 
2400 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2401   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2402   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2403                       MRI);
2404 }
2405 
2406 bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) {
2407   assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT ||
2408           MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&
2409          "Expected an insert/extract element op");
2410   LLT VecTy = MRI.getType(MI.getOperand(1).getReg());
2411   unsigned IdxIdx =
2412       MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
2413   auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI);
2414   if (!Idx)
2415     return false;
2416   return Idx->getZExtValue() >= VecTy.getNumElements();
2417 }
2418 
2419 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2420   GSelect &SelMI = cast<GSelect>(MI);
2421   auto Cst =
2422       isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
2423   if (!Cst)
2424     return false;
2425   OpIdx = Cst->isZero() ? 3 : 2;
2426   return true;
2427 }
2428 
2429 bool CombinerHelper::eraseInst(MachineInstr &MI) {
2430   MI.eraseFromParent();
2431   return true;
2432 }
2433 
2434 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2435                                     const MachineOperand &MOP2) {
2436   if (!MOP1.isReg() || !MOP2.isReg())
2437     return false;
2438   auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
2439   if (!InstAndDef1)
2440     return false;
2441   auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
2442   if (!InstAndDef2)
2443     return false;
2444   MachineInstr *I1 = InstAndDef1->MI;
2445   MachineInstr *I2 = InstAndDef2->MI;
2446 
2447   // Handle a case like this:
2448   //
2449   // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2450   //
2451   // Even though %0 and %1 are produced by the same instruction they are not
2452   // the same values.
2453   if (I1 == I2)
2454     return MOP1.getReg() == MOP2.getReg();
2455 
2456   // If we have an instruction which loads or stores, we can't guarantee that
2457   // it is identical.
2458   //
2459   // For example, we may have
2460   //
2461   // %x1 = G_LOAD %addr (load N from @somewhere)
2462   // ...
2463   // call @foo
2464   // ...
2465   // %x2 = G_LOAD %addr (load N from @somewhere)
2466   // ...
2467   // %or = G_OR %x1, %x2
2468   //
2469   // It's possible that @foo will modify whatever lives at the address we're
2470   // loading from. To be safe, let's just assume that all loads and stores
2471   // are different (unless we have something which is guaranteed to not
2472   // change.)
2473   if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad())
2474     return false;
2475 
2476   // If both instructions are loads or stores, they are equal only if both
2477   // are dereferenceable invariant loads with the same number of bits.
2478   if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
2479     GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
2480     GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
2481     if (!LS1 || !LS2)
2482       return false;
2483 
2484     if (!I2->isDereferenceableInvariantLoad() ||
2485         (LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
2486       return false;
2487   }
2488 
2489   // Check for physical registers on the instructions first to avoid cases
2490   // like this:
2491   //
2492   // %a = COPY $physreg
2493   // ...
2494   // SOMETHING implicit-def $physreg
2495   // ...
2496   // %b = COPY $physreg
2497   //
2498   // These copies are not equivalent.
2499   if (any_of(I1->uses(), [](const MachineOperand &MO) {
2500         return MO.isReg() && MO.getReg().isPhysical();
2501       })) {
2502     // Check if we have a case like this:
2503     //
2504     // %a = COPY $physreg
2505     // %b = COPY %a
2506     //
2507     // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2508     // From that, we know that they must have the same value, since they must
2509     // have come from the same COPY.
2510     return I1->isIdenticalTo(*I2);
2511   }
2512 
2513   // We don't have any physical registers, so we don't necessarily need the
2514   // same vreg defs.
2515   //
2516   // On the off-chance that there's some target instruction feeding into the
2517   // instruction, let's use produceSameValue instead of isIdenticalTo.
2518   if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
2519     // Handle instructions with multiple defs that produce same values. Values
2520     // are same for operands with same index.
2521     // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2522     // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2523     // I1 and I2 are different instructions but produce same values,
2524     // %1 and %6 are same, %1 and %7 are not the same value.
2525     return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) ==
2526            I2->findRegisterDefOperandIdx(InstAndDef2->Reg);
2527   }
2528   return false;
2529 }
2530 
2531 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2532   if (!MOP.isReg())
2533     return false;
2534   auto *MI = MRI.getVRegDef(MOP.getReg());
2535   auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
2536   return MaybeCst && MaybeCst->getBitWidth() <= 64 &&
2537          MaybeCst->getSExtValue() == C;
2538 }
2539 
2540 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2541                                                      unsigned OpIdx) {
2542   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2543   Register OldReg = MI.getOperand(0).getReg();
2544   Register Replacement = MI.getOperand(OpIdx).getReg();
2545   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2546   MI.eraseFromParent();
2547   replaceRegWith(MRI, OldReg, Replacement);
2548   return true;
2549 }
2550 
2551 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2552                                                  Register Replacement) {
2553   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2554   Register OldReg = MI.getOperand(0).getReg();
2555   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2556   MI.eraseFromParent();
2557   replaceRegWith(MRI, OldReg, Replacement);
2558   return true;
2559 }
2560 
2561 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2562   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2563   // Match (cond ? x : x)
2564   return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2565          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2566                        MRI);
2567 }
2568 
2569 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2570   return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2571          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2572                        MRI);
2573 }
2574 
2575 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2576   return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2577          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2578                        MRI);
2579 }
2580 
2581 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2582   MachineOperand &MO = MI.getOperand(OpIdx);
2583   return MO.isReg() &&
2584          getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2585 }
2586 
2587 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2588                                                         unsigned OpIdx) {
2589   MachineOperand &MO = MI.getOperand(OpIdx);
2590   return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2591 }
2592 
2593 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2594   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2595   Builder.setInstr(MI);
2596   Builder.buildFConstant(MI.getOperand(0), C);
2597   MI.eraseFromParent();
2598   return true;
2599 }
2600 
2601 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2602   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2603   Builder.setInstr(MI);
2604   Builder.buildConstant(MI.getOperand(0), C);
2605   MI.eraseFromParent();
2606   return true;
2607 }
2608 
2609 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2610   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2611   Builder.setInstr(MI);
2612   Builder.buildConstant(MI.getOperand(0), C);
2613   MI.eraseFromParent();
2614   return true;
2615 }
2616 
2617 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2618   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2619   Builder.setInstr(MI);
2620   Builder.buildUndef(MI.getOperand(0));
2621   MI.eraseFromParent();
2622   return true;
2623 }
2624 
2625 bool CombinerHelper::matchSimplifyAddToSub(
2626     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2627   Register LHS = MI.getOperand(1).getReg();
2628   Register RHS = MI.getOperand(2).getReg();
2629   Register &NewLHS = std::get<0>(MatchInfo);
2630   Register &NewRHS = std::get<1>(MatchInfo);
2631 
2632   // Helper lambda to check for opportunities for
2633   // ((0-A) + B) -> B - A
2634   // (A + (0-B)) -> A - B
2635   auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2636     if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2637       return false;
2638     NewLHS = MaybeNewLHS;
2639     return true;
2640   };
2641 
2642   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2643 }
2644 
2645 bool CombinerHelper::matchCombineInsertVecElts(
2646     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2647   assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
2648          "Invalid opcode");
2649   Register DstReg = MI.getOperand(0).getReg();
2650   LLT DstTy = MRI.getType(DstReg);
2651   assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
2652   unsigned NumElts = DstTy.getNumElements();
2653   // If this MI is part of a sequence of insert_vec_elts, then
2654   // don't do the combine in the middle of the sequence.
2655   if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2656                                    TargetOpcode::G_INSERT_VECTOR_ELT)
2657     return false;
2658   MachineInstr *CurrInst = &MI;
2659   MachineInstr *TmpInst;
2660   int64_t IntImm;
2661   Register TmpReg;
2662   MatchInfo.resize(NumElts);
2663   while (mi_match(
2664       CurrInst->getOperand(0).getReg(), MRI,
2665       m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2666     if (IntImm >= NumElts || IntImm < 0)
2667       return false;
2668     if (!MatchInfo[IntImm])
2669       MatchInfo[IntImm] = TmpReg;
2670     CurrInst = TmpInst;
2671   }
2672   // Variable index.
2673   if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2674     return false;
2675   if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2676     for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2677       if (!MatchInfo[I - 1].isValid())
2678         MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2679     }
2680     return true;
2681   }
2682   // If we didn't end in a G_IMPLICIT_DEF, bail out.
2683   return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2684 }
2685 
2686 void CombinerHelper::applyCombineInsertVecElts(
2687     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2688   Builder.setInstr(MI);
2689   Register UndefReg;
2690   auto GetUndef = [&]() {
2691     if (UndefReg)
2692       return UndefReg;
2693     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2694     UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2695     return UndefReg;
2696   };
2697   for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2698     if (!MatchInfo[I])
2699       MatchInfo[I] = GetUndef();
2700   }
2701   Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2702   MI.eraseFromParent();
2703 }
2704 
2705 void CombinerHelper::applySimplifyAddToSub(
2706     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2707   Builder.setInstr(MI);
2708   Register SubLHS, SubRHS;
2709   std::tie(SubLHS, SubRHS) = MatchInfo;
2710   Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2711   MI.eraseFromParent();
2712 }
2713 
2714 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2715     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2716   // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2717   //
2718   // Creates the new hand + logic instruction (but does not insert them.)
2719   //
2720   // On success, MatchInfo is populated with the new instructions. These are
2721   // inserted in applyHoistLogicOpWithSameOpcodeHands.
2722   unsigned LogicOpcode = MI.getOpcode();
2723   assert(LogicOpcode == TargetOpcode::G_AND ||
2724          LogicOpcode == TargetOpcode::G_OR ||
2725          LogicOpcode == TargetOpcode::G_XOR);
2726   MachineIRBuilder MIB(MI);
2727   Register Dst = MI.getOperand(0).getReg();
2728   Register LHSReg = MI.getOperand(1).getReg();
2729   Register RHSReg = MI.getOperand(2).getReg();
2730 
2731   // Don't recompute anything.
2732   if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2733     return false;
2734 
2735   // Make sure we have (hand x, ...), (hand y, ...)
2736   MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2737   MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2738   if (!LeftHandInst || !RightHandInst)
2739     return false;
2740   unsigned HandOpcode = LeftHandInst->getOpcode();
2741   if (HandOpcode != RightHandInst->getOpcode())
2742     return false;
2743   if (!LeftHandInst->getOperand(1).isReg() ||
2744       !RightHandInst->getOperand(1).isReg())
2745     return false;
2746 
2747   // Make sure the types match up, and if we're doing this post-legalization,
2748   // we end up with legal types.
2749   Register X = LeftHandInst->getOperand(1).getReg();
2750   Register Y = RightHandInst->getOperand(1).getReg();
2751   LLT XTy = MRI.getType(X);
2752   LLT YTy = MRI.getType(Y);
2753   if (XTy != YTy)
2754     return false;
2755   if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
2756     return false;
2757 
2758   // Optional extra source register.
2759   Register ExtraHandOpSrcReg;
2760   switch (HandOpcode) {
2761   default:
2762     return false;
2763   case TargetOpcode::G_ANYEXT:
2764   case TargetOpcode::G_SEXT:
2765   case TargetOpcode::G_ZEXT: {
2766     // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
2767     break;
2768   }
2769   case TargetOpcode::G_AND:
2770   case TargetOpcode::G_ASHR:
2771   case TargetOpcode::G_LSHR:
2772   case TargetOpcode::G_SHL: {
2773     // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
2774     MachineOperand &ZOp = LeftHandInst->getOperand(2);
2775     if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
2776       return false;
2777     ExtraHandOpSrcReg = ZOp.getReg();
2778     break;
2779   }
2780   }
2781 
2782   // Record the steps to build the new instructions.
2783   //
2784   // Steps to build (logic x, y)
2785   auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
2786   OperandBuildSteps LogicBuildSteps = {
2787       [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
2788       [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
2789       [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
2790   InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
2791 
2792   // Steps to build hand (logic x, y), ...z
2793   OperandBuildSteps HandBuildSteps = {
2794       [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
2795       [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
2796   if (ExtraHandOpSrcReg.isValid())
2797     HandBuildSteps.push_back(
2798         [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
2799   InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
2800 
2801   MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
2802   return true;
2803 }
2804 
2805 void CombinerHelper::applyBuildInstructionSteps(
2806     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2807   assert(MatchInfo.InstrsToBuild.size() &&
2808          "Expected at least one instr to build?");
2809   Builder.setInstr(MI);
2810   for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
2811     assert(InstrToBuild.Opcode && "Expected a valid opcode?");
2812     assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
2813     MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
2814     for (auto &OperandFn : InstrToBuild.OperandFns)
2815       OperandFn(Instr);
2816   }
2817   MI.eraseFromParent();
2818 }
2819 
2820 bool CombinerHelper::matchAshrShlToSextInreg(
2821     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2822   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2823   int64_t ShlCst, AshrCst;
2824   Register Src;
2825   if (!mi_match(MI.getOperand(0).getReg(), MRI,
2826                 m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)),
2827                         m_ICstOrSplat(AshrCst))))
2828     return false;
2829   if (ShlCst != AshrCst)
2830     return false;
2831   if (!isLegalOrBeforeLegalizer(
2832           {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
2833     return false;
2834   MatchInfo = std::make_tuple(Src, ShlCst);
2835   return true;
2836 }
2837 
2838 void CombinerHelper::applyAshShlToSextInreg(
2839     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
2840   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2841   Register Src;
2842   int64_t ShiftAmt;
2843   std::tie(Src, ShiftAmt) = MatchInfo;
2844   unsigned Size = MRI.getType(Src).getScalarSizeInBits();
2845   Builder.setInstrAndDebugLoc(MI);
2846   Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
2847   MI.eraseFromParent();
2848 }
2849 
2850 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
2851 bool CombinerHelper::matchOverlappingAnd(
2852     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
2853   assert(MI.getOpcode() == TargetOpcode::G_AND);
2854 
2855   Register Dst = MI.getOperand(0).getReg();
2856   LLT Ty = MRI.getType(Dst);
2857 
2858   Register R;
2859   int64_t C1;
2860   int64_t C2;
2861   if (!mi_match(
2862           Dst, MRI,
2863           m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
2864     return false;
2865 
2866   MatchInfo = [=](MachineIRBuilder &B) {
2867     if (C1 & C2) {
2868       B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
2869       return;
2870     }
2871     auto Zero = B.buildConstant(Ty, 0);
2872     replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
2873   };
2874   return true;
2875 }
2876 
2877 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
2878                                        Register &Replacement) {
2879   // Given
2880   //
2881   // %y:_(sN) = G_SOMETHING
2882   // %x:_(sN) = G_SOMETHING
2883   // %res:_(sN) = G_AND %x, %y
2884   //
2885   // Eliminate the G_AND when it is known that x & y == x or x & y == y.
2886   //
2887   // Patterns like this can appear as a result of legalization. E.g.
2888   //
2889   // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
2890   // %one:_(s32) = G_CONSTANT i32 1
2891   // %and:_(s32) = G_AND %cmp, %one
2892   //
2893   // In this case, G_ICMP only produces a single bit, so x & 1 == x.
2894   assert(MI.getOpcode() == TargetOpcode::G_AND);
2895   if (!KB)
2896     return false;
2897 
2898   Register AndDst = MI.getOperand(0).getReg();
2899   Register LHS = MI.getOperand(1).getReg();
2900   Register RHS = MI.getOperand(2).getReg();
2901   KnownBits LHSBits = KB->getKnownBits(LHS);
2902   KnownBits RHSBits = KB->getKnownBits(RHS);
2903 
2904   // Check that x & Mask == x.
2905   // x & 1 == x, always
2906   // x & 0 == x, only if x is also 0
2907   // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
2908   //
2909   // Check if we can replace AndDst with the LHS of the G_AND
2910   if (canReplaceReg(AndDst, LHS, MRI) &&
2911       (LHSBits.Zero | RHSBits.One).isAllOnes()) {
2912     Replacement = LHS;
2913     return true;
2914   }
2915 
2916   // Check if we can replace AndDst with the RHS of the G_AND
2917   if (canReplaceReg(AndDst, RHS, MRI) &&
2918       (LHSBits.One | RHSBits.Zero).isAllOnes()) {
2919     Replacement = RHS;
2920     return true;
2921   }
2922 
2923   return false;
2924 }
2925 
2926 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
2927   // Given
2928   //
2929   // %y:_(sN) = G_SOMETHING
2930   // %x:_(sN) = G_SOMETHING
2931   // %res:_(sN) = G_OR %x, %y
2932   //
2933   // Eliminate the G_OR when it is known that x | y == x or x | y == y.
2934   assert(MI.getOpcode() == TargetOpcode::G_OR);
2935   if (!KB)
2936     return false;
2937 
2938   Register OrDst = MI.getOperand(0).getReg();
2939   Register LHS = MI.getOperand(1).getReg();
2940   Register RHS = MI.getOperand(2).getReg();
2941   KnownBits LHSBits = KB->getKnownBits(LHS);
2942   KnownBits RHSBits = KB->getKnownBits(RHS);
2943 
2944   // Check that x | Mask == x.
2945   // x | 0 == x, always
2946   // x | 1 == x, only if x is also 1
2947   // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
2948   //
2949   // Check if we can replace OrDst with the LHS of the G_OR
2950   if (canReplaceReg(OrDst, LHS, MRI) &&
2951       (LHSBits.One | RHSBits.Zero).isAllOnes()) {
2952     Replacement = LHS;
2953     return true;
2954   }
2955 
2956   // Check if we can replace OrDst with the RHS of the G_OR
2957   if (canReplaceReg(OrDst, RHS, MRI) &&
2958       (LHSBits.Zero | RHSBits.One).isAllOnes()) {
2959     Replacement = RHS;
2960     return true;
2961   }
2962 
2963   return false;
2964 }
2965 
2966 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
2967   // If the input is already sign extended, just drop the extension.
2968   Register Src = MI.getOperand(1).getReg();
2969   unsigned ExtBits = MI.getOperand(2).getImm();
2970   unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
2971   return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
2972 }
2973 
2974 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
2975                              int64_t Cst, bool IsVector, bool IsFP) {
2976   // For i1, Cst will always be -1 regardless of boolean contents.
2977   return (ScalarSizeBits == 1 && Cst == -1) ||
2978          isConstTrueVal(TLI, Cst, IsVector, IsFP);
2979 }
2980 
2981 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
2982                                  SmallVectorImpl<Register> &RegsToNegate) {
2983   assert(MI.getOpcode() == TargetOpcode::G_XOR);
2984   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2985   const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
2986   Register XorSrc;
2987   Register CstReg;
2988   // We match xor(src, true) here.
2989   if (!mi_match(MI.getOperand(0).getReg(), MRI,
2990                 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
2991     return false;
2992 
2993   if (!MRI.hasOneNonDBGUse(XorSrc))
2994     return false;
2995 
2996   // Check that XorSrc is the root of a tree of comparisons combined with ANDs
2997   // and ORs. The suffix of RegsToNegate starting from index I is used a work
2998   // list of tree nodes to visit.
2999   RegsToNegate.push_back(XorSrc);
3000   // Remember whether the comparisons are all integer or all floating point.
3001   bool IsInt = false;
3002   bool IsFP = false;
3003   for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
3004     Register Reg = RegsToNegate[I];
3005     if (!MRI.hasOneNonDBGUse(Reg))
3006       return false;
3007     MachineInstr *Def = MRI.getVRegDef(Reg);
3008     switch (Def->getOpcode()) {
3009     default:
3010       // Don't match if the tree contains anything other than ANDs, ORs and
3011       // comparisons.
3012       return false;
3013     case TargetOpcode::G_ICMP:
3014       if (IsFP)
3015         return false;
3016       IsInt = true;
3017       // When we apply the combine we will invert the predicate.
3018       break;
3019     case TargetOpcode::G_FCMP:
3020       if (IsInt)
3021         return false;
3022       IsFP = true;
3023       // When we apply the combine we will invert the predicate.
3024       break;
3025     case TargetOpcode::G_AND:
3026     case TargetOpcode::G_OR:
3027       // Implement De Morgan's laws:
3028       // ~(x & y) -> ~x | ~y
3029       // ~(x | y) -> ~x & ~y
3030       // When we apply the combine we will change the opcode and recursively
3031       // negate the operands.
3032       RegsToNegate.push_back(Def->getOperand(1).getReg());
3033       RegsToNegate.push_back(Def->getOperand(2).getReg());
3034       break;
3035     }
3036   }
3037 
3038   // Now we know whether the comparisons are integer or floating point, check
3039   // the constant in the xor.
3040   int64_t Cst;
3041   if (Ty.isVector()) {
3042     MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3043     auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI);
3044     if (!MaybeCst)
3045       return false;
3046     if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3047       return false;
3048   } else {
3049     if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3050       return false;
3051     if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3052       return false;
3053   }
3054 
3055   return true;
3056 }
3057 
3058 void CombinerHelper::applyNotCmp(MachineInstr &MI,
3059                                  SmallVectorImpl<Register> &RegsToNegate) {
3060   for (Register Reg : RegsToNegate) {
3061     MachineInstr *Def = MRI.getVRegDef(Reg);
3062     Observer.changingInstr(*Def);
3063     // For each comparison, invert the opcode. For each AND and OR, change the
3064     // opcode.
3065     switch (Def->getOpcode()) {
3066     default:
3067       llvm_unreachable("Unexpected opcode");
3068     case TargetOpcode::G_ICMP:
3069     case TargetOpcode::G_FCMP: {
3070       MachineOperand &PredOp = Def->getOperand(1);
3071       CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3072           (CmpInst::Predicate)PredOp.getPredicate());
3073       PredOp.setPredicate(NewP);
3074       break;
3075     }
3076     case TargetOpcode::G_AND:
3077       Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3078       break;
3079     case TargetOpcode::G_OR:
3080       Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3081       break;
3082     }
3083     Observer.changedInstr(*Def);
3084   }
3085 
3086   replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3087   MI.eraseFromParent();
3088 }
3089 
3090 bool CombinerHelper::matchXorOfAndWithSameReg(
3091     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3092   // Match (xor (and x, y), y) (or any of its commuted cases)
3093   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3094   Register &X = MatchInfo.first;
3095   Register &Y = MatchInfo.second;
3096   Register AndReg = MI.getOperand(1).getReg();
3097   Register SharedReg = MI.getOperand(2).getReg();
3098 
3099   // Find a G_AND on either side of the G_XOR.
3100   // Look for one of
3101   //
3102   // (xor (and x, y), SharedReg)
3103   // (xor SharedReg, (and x, y))
3104   if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3105     std::swap(AndReg, SharedReg);
3106     if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3107       return false;
3108   }
3109 
3110   // Only do this if we'll eliminate the G_AND.
3111   if (!MRI.hasOneNonDBGUse(AndReg))
3112     return false;
3113 
3114   // We can combine if SharedReg is the same as either the LHS or RHS of the
3115   // G_AND.
3116   if (Y != SharedReg)
3117     std::swap(X, Y);
3118   return Y == SharedReg;
3119 }
3120 
3121 void CombinerHelper::applyXorOfAndWithSameReg(
3122     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3123   // Fold (xor (and x, y), y) -> (and (not x), y)
3124   Builder.setInstrAndDebugLoc(MI);
3125   Register X, Y;
3126   std::tie(X, Y) = MatchInfo;
3127   auto Not = Builder.buildNot(MRI.getType(X), X);
3128   Observer.changingInstr(MI);
3129   MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3130   MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3131   MI.getOperand(2).setReg(Y);
3132   Observer.changedInstr(MI);
3133 }
3134 
3135 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3136   auto &PtrAdd = cast<GPtrAdd>(MI);
3137   Register DstReg = PtrAdd.getReg(0);
3138   LLT Ty = MRI.getType(DstReg);
3139   const DataLayout &DL = Builder.getMF().getDataLayout();
3140 
3141   if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3142     return false;
3143 
3144   if (Ty.isPointer()) {
3145     auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
3146     return ConstVal && *ConstVal == 0;
3147   }
3148 
3149   assert(Ty.isVector() && "Expecting a vector type");
3150   const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
3151   return isBuildVectorAllZeros(*VecMI, MRI);
3152 }
3153 
3154 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3155   auto &PtrAdd = cast<GPtrAdd>(MI);
3156   Builder.setInstrAndDebugLoc(PtrAdd);
3157   Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
3158   PtrAdd.eraseFromParent();
3159 }
3160 
3161 /// The second source operand is known to be a power of 2.
3162 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3163   Register DstReg = MI.getOperand(0).getReg();
3164   Register Src0 = MI.getOperand(1).getReg();
3165   Register Pow2Src1 = MI.getOperand(2).getReg();
3166   LLT Ty = MRI.getType(DstReg);
3167   Builder.setInstrAndDebugLoc(MI);
3168 
3169   // Fold (urem x, pow2) -> (and x, pow2-1)
3170   auto NegOne = Builder.buildConstant(Ty, -1);
3171   auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3172   Builder.buildAnd(DstReg, Src0, Add);
3173   MI.eraseFromParent();
3174 }
3175 
3176 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
3177                                               unsigned &SelectOpNo) {
3178   Register LHS = MI.getOperand(1).getReg();
3179   Register RHS = MI.getOperand(2).getReg();
3180 
3181   Register OtherOperandReg = RHS;
3182   SelectOpNo = 1;
3183   MachineInstr *Select = MRI.getVRegDef(LHS);
3184 
3185   // Don't do this unless the old select is going away. We want to eliminate the
3186   // binary operator, not replace a binop with a select.
3187   if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3188       !MRI.hasOneNonDBGUse(LHS)) {
3189     OtherOperandReg = LHS;
3190     SelectOpNo = 2;
3191     Select = MRI.getVRegDef(RHS);
3192     if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3193         !MRI.hasOneNonDBGUse(RHS))
3194       return false;
3195   }
3196 
3197   MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
3198   MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
3199 
3200   if (!isConstantOrConstantVector(*SelectLHS, MRI,
3201                                   /*AllowFP*/ true,
3202                                   /*AllowOpaqueConstants*/ false))
3203     return false;
3204   if (!isConstantOrConstantVector(*SelectRHS, MRI,
3205                                   /*AllowFP*/ true,
3206                                   /*AllowOpaqueConstants*/ false))
3207     return false;
3208 
3209   unsigned BinOpcode = MI.getOpcode();
3210 
3211   // We know know one of the operands is a select of constants. Now verify that
3212   // the other binary operator operand is either a constant, or we can handle a
3213   // variable.
3214   bool CanFoldNonConst =
3215       (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
3216       (isNullOrNullSplat(*SelectLHS, MRI) ||
3217        isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
3218       (isNullOrNullSplat(*SelectRHS, MRI) ||
3219        isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
3220   if (CanFoldNonConst)
3221     return true;
3222 
3223   return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
3224                                     /*AllowFP*/ true,
3225                                     /*AllowOpaqueConstants*/ false);
3226 }
3227 
3228 /// \p SelectOperand is the operand in binary operator \p MI that is the select
3229 /// to fold.
3230 bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI,
3231                                               const unsigned &SelectOperand) {
3232   Builder.setInstrAndDebugLoc(MI);
3233 
3234   Register Dst = MI.getOperand(0).getReg();
3235   Register LHS = MI.getOperand(1).getReg();
3236   Register RHS = MI.getOperand(2).getReg();
3237   MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
3238 
3239   Register SelectCond = Select->getOperand(1).getReg();
3240   Register SelectTrue = Select->getOperand(2).getReg();
3241   Register SelectFalse = Select->getOperand(3).getReg();
3242 
3243   LLT Ty = MRI.getType(Dst);
3244   unsigned BinOpcode = MI.getOpcode();
3245 
3246   Register FoldTrue, FoldFalse;
3247 
3248   // We have a select-of-constants followed by a binary operator with a
3249   // constant. Eliminate the binop by pulling the constant math into the select.
3250   // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
3251   if (SelectOperand == 1) {
3252     // TODO: SelectionDAG verifies this actually constant folds before
3253     // committing to the combine.
3254 
3255     FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
3256     FoldFalse =
3257         Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
3258   } else {
3259     FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
3260     FoldFalse =
3261         Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
3262   }
3263 
3264   Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
3265   MI.eraseFromParent();
3266 
3267   return true;
3268 }
3269 
3270 std::optional<SmallVector<Register, 8>>
3271 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3272   assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
3273   // We want to detect if Root is part of a tree which represents a bunch
3274   // of loads being merged into a larger load. We'll try to recognize patterns
3275   // like, for example:
3276   //
3277   //  Reg   Reg
3278   //   \    /
3279   //    OR_1   Reg
3280   //     \    /
3281   //      OR_2
3282   //        \     Reg
3283   //         .. /
3284   //        Root
3285   //
3286   //  Reg   Reg   Reg   Reg
3287   //     \ /       \   /
3288   //     OR_1      OR_2
3289   //       \       /
3290   //        \    /
3291   //         ...
3292   //         Root
3293   //
3294   // Each "Reg" may have been produced by a load + some arithmetic. This
3295   // function will save each of them.
3296   SmallVector<Register, 8> RegsToVisit;
3297   SmallVector<const MachineInstr *, 7> Ors = {Root};
3298 
3299   // In the "worst" case, we're dealing with a load for each byte. So, there
3300   // are at most #bytes - 1 ORs.
3301   const unsigned MaxIter =
3302       MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3303   for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3304     if (Ors.empty())
3305       break;
3306     const MachineInstr *Curr = Ors.pop_back_val();
3307     Register OrLHS = Curr->getOperand(1).getReg();
3308     Register OrRHS = Curr->getOperand(2).getReg();
3309 
3310     // In the combine, we want to elimate the entire tree.
3311     if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3312       return std::nullopt;
3313 
3314     // If it's a G_OR, save it and continue to walk. If it's not, then it's
3315     // something that may be a load + arithmetic.
3316     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3317       Ors.push_back(Or);
3318     else
3319       RegsToVisit.push_back(OrLHS);
3320     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3321       Ors.push_back(Or);
3322     else
3323       RegsToVisit.push_back(OrRHS);
3324   }
3325 
3326   // We're going to try and merge each register into a wider power-of-2 type,
3327   // so we ought to have an even number of registers.
3328   if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3329     return std::nullopt;
3330   return RegsToVisit;
3331 }
3332 
3333 /// Helper function for findLoadOffsetsForLoadOrCombine.
3334 ///
3335 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3336 /// and then moving that value into a specific byte offset.
3337 ///
3338 /// e.g. x[i] << 24
3339 ///
3340 /// \returns The load instruction and the byte offset it is moved into.
3341 static std::optional<std::pair<GZExtLoad *, int64_t>>
3342 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3343                          const MachineRegisterInfo &MRI) {
3344   assert(MRI.hasOneNonDBGUse(Reg) &&
3345          "Expected Reg to only have one non-debug use?");
3346   Register MaybeLoad;
3347   int64_t Shift;
3348   if (!mi_match(Reg, MRI,
3349                 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3350     Shift = 0;
3351     MaybeLoad = Reg;
3352   }
3353 
3354   if (Shift % MemSizeInBits != 0)
3355     return std::nullopt;
3356 
3357   // TODO: Handle other types of loads.
3358   auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3359   if (!Load)
3360     return std::nullopt;
3361 
3362   if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3363     return std::nullopt;
3364 
3365   return std::make_pair(Load, Shift / MemSizeInBits);
3366 }
3367 
3368 std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
3369 CombinerHelper::findLoadOffsetsForLoadOrCombine(
3370     SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3371     const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3372 
3373   // Each load found for the pattern. There should be one for each RegsToVisit.
3374   SmallSetVector<const MachineInstr *, 8> Loads;
3375 
3376   // The lowest index used in any load. (The lowest "i" for each x[i].)
3377   int64_t LowestIdx = INT64_MAX;
3378 
3379   // The load which uses the lowest index.
3380   GZExtLoad *LowestIdxLoad = nullptr;
3381 
3382   // Keeps track of the load indices we see. We shouldn't see any indices twice.
3383   SmallSet<int64_t, 8> SeenIdx;
3384 
3385   // Ensure each load is in the same MBB.
3386   // TODO: Support multiple MachineBasicBlocks.
3387   MachineBasicBlock *MBB = nullptr;
3388   const MachineMemOperand *MMO = nullptr;
3389 
3390   // Earliest instruction-order load in the pattern.
3391   GZExtLoad *EarliestLoad = nullptr;
3392 
3393   // Latest instruction-order load in the pattern.
3394   GZExtLoad *LatestLoad = nullptr;
3395 
3396   // Base pointer which every load should share.
3397   Register BasePtr;
3398 
3399   // We want to find a load for each register. Each load should have some
3400   // appropriate bit twiddling arithmetic. During this loop, we will also keep
3401   // track of the load which uses the lowest index. Later, we will check if we
3402   // can use its pointer in the final, combined load.
3403   for (auto Reg : RegsToVisit) {
3404     // Find the load, and find the position that it will end up in (e.g. a
3405     // shifted) value.
3406     auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3407     if (!LoadAndPos)
3408       return std::nullopt;
3409     GZExtLoad *Load;
3410     int64_t DstPos;
3411     std::tie(Load, DstPos) = *LoadAndPos;
3412 
3413     // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3414     // it is difficult to check for stores/calls/etc between loads.
3415     MachineBasicBlock *LoadMBB = Load->getParent();
3416     if (!MBB)
3417       MBB = LoadMBB;
3418     if (LoadMBB != MBB)
3419       return std::nullopt;
3420 
3421     // Make sure that the MachineMemOperands of every seen load are compatible.
3422     auto &LoadMMO = Load->getMMO();
3423     if (!MMO)
3424       MMO = &LoadMMO;
3425     if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3426       return std::nullopt;
3427 
3428     // Find out what the base pointer and index for the load is.
3429     Register LoadPtr;
3430     int64_t Idx;
3431     if (!mi_match(Load->getOperand(1).getReg(), MRI,
3432                   m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3433       LoadPtr = Load->getOperand(1).getReg();
3434       Idx = 0;
3435     }
3436 
3437     // Don't combine things like a[i], a[i] -> a bigger load.
3438     if (!SeenIdx.insert(Idx).second)
3439       return std::nullopt;
3440 
3441     // Every load must share the same base pointer; don't combine things like:
3442     //
3443     // a[i], b[i + 1] -> a bigger load.
3444     if (!BasePtr.isValid())
3445       BasePtr = LoadPtr;
3446     if (BasePtr != LoadPtr)
3447       return std::nullopt;
3448 
3449     if (Idx < LowestIdx) {
3450       LowestIdx = Idx;
3451       LowestIdxLoad = Load;
3452     }
3453 
3454     // Keep track of the byte offset that this load ends up at. If we have seen
3455     // the byte offset, then stop here. We do not want to combine:
3456     //
3457     // a[i] << 16, a[i + k] << 16 -> a bigger load.
3458     if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3459       return std::nullopt;
3460     Loads.insert(Load);
3461 
3462     // Keep track of the position of the earliest/latest loads in the pattern.
3463     // We will check that there are no load fold barriers between them later
3464     // on.
3465     //
3466     // FIXME: Is there a better way to check for load fold barriers?
3467     if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3468       EarliestLoad = Load;
3469     if (!LatestLoad || dominates(*LatestLoad, *Load))
3470       LatestLoad = Load;
3471   }
3472 
3473   // We found a load for each register. Let's check if each load satisfies the
3474   // pattern.
3475   assert(Loads.size() == RegsToVisit.size() &&
3476          "Expected to find a load for each register?");
3477   assert(EarliestLoad != LatestLoad && EarliestLoad &&
3478          LatestLoad && "Expected at least two loads?");
3479 
3480   // Check if there are any stores, calls, etc. between any of the loads. If
3481   // there are, then we can't safely perform the combine.
3482   //
3483   // MaxIter is chosen based off the (worst case) number of iterations it
3484   // typically takes to succeed in the LLVM test suite plus some padding.
3485   //
3486   // FIXME: Is there a better way to check for load fold barriers?
3487   const unsigned MaxIter = 20;
3488   unsigned Iter = 0;
3489   for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3490                                                  LatestLoad->getIterator())) {
3491     if (Loads.count(&MI))
3492       continue;
3493     if (MI.isLoadFoldBarrier())
3494       return std::nullopt;
3495     if (Iter++ == MaxIter)
3496       return std::nullopt;
3497   }
3498 
3499   return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3500 }
3501 
3502 bool CombinerHelper::matchLoadOrCombine(
3503     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3504   assert(MI.getOpcode() == TargetOpcode::G_OR);
3505   MachineFunction &MF = *MI.getMF();
3506   // Assuming a little-endian target, transform:
3507   //  s8 *a = ...
3508   //  s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3509   // =>
3510   //  s32 val = *((i32)a)
3511   //
3512   //  s8 *a = ...
3513   //  s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3514   // =>
3515   //  s32 val = BSWAP(*((s32)a))
3516   Register Dst = MI.getOperand(0).getReg();
3517   LLT Ty = MRI.getType(Dst);
3518   if (Ty.isVector())
3519     return false;
3520 
3521   // We need to combine at least two loads into this type. Since the smallest
3522   // possible load is into a byte, we need at least a 16-bit wide type.
3523   const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3524   if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3525     return false;
3526 
3527   // Match a collection of non-OR instructions in the pattern.
3528   auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3529   if (!RegsToVisit)
3530     return false;
3531 
3532   // We have a collection of non-OR instructions. Figure out how wide each of
3533   // the small loads should be based off of the number of potential loads we
3534   // found.
3535   const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3536   if (NarrowMemSizeInBits % 8 != 0)
3537     return false;
3538 
3539   // Check if each register feeding into each OR is a load from the same
3540   // base pointer + some arithmetic.
3541   //
3542   // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3543   //
3544   // Also verify that each of these ends up putting a[i] into the same memory
3545   // offset as a load into a wide type would.
3546   SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3547   GZExtLoad *LowestIdxLoad, *LatestLoad;
3548   int64_t LowestIdx;
3549   auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3550       MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3551   if (!MaybeLoadInfo)
3552     return false;
3553   std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3554 
3555   // We have a bunch of loads being OR'd together. Using the addresses + offsets
3556   // we found before, check if this corresponds to a big or little endian byte
3557   // pattern. If it does, then we can represent it using a load + possibly a
3558   // BSWAP.
3559   bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3560   std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3561   if (!IsBigEndian)
3562     return false;
3563   bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3564   if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3565     return false;
3566 
3567   // Make sure that the load from the lowest index produces offset 0 in the
3568   // final value.
3569   //
3570   // This ensures that we won't combine something like this:
3571   //
3572   // load x[i] -> byte 2
3573   // load x[i+1] -> byte 0 ---> wide_load x[i]
3574   // load x[i+2] -> byte 1
3575   const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3576   const unsigned ZeroByteOffset =
3577       *IsBigEndian
3578           ? bigEndianByteAt(NumLoadsInTy, 0)
3579           : littleEndianByteAt(NumLoadsInTy, 0);
3580   auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3581   if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3582       ZeroOffsetIdx->second != LowestIdx)
3583     return false;
3584 
3585   // We wil reuse the pointer from the load which ends up at byte offset 0. It
3586   // may not use index 0.
3587   Register Ptr = LowestIdxLoad->getPointerReg();
3588   const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3589   LegalityQuery::MemDesc MMDesc(MMO);
3590   MMDesc.MemoryTy = Ty;
3591   if (!isLegalOrBeforeLegalizer(
3592           {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3593     return false;
3594   auto PtrInfo = MMO.getPointerInfo();
3595   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3596 
3597   // Load must be allowed and fast on the target.
3598   LLVMContext &C = MF.getFunction().getContext();
3599   auto &DL = MF.getDataLayout();
3600   unsigned Fast = 0;
3601   if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3602       !Fast)
3603     return false;
3604 
3605   MatchInfo = [=](MachineIRBuilder &MIB) {
3606     MIB.setInstrAndDebugLoc(*LatestLoad);
3607     Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3608     MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3609     if (NeedsBSwap)
3610       MIB.buildBSwap(Dst, LoadDst);
3611   };
3612   return true;
3613 }
3614 
3615 /// Check if the store \p Store is a truncstore that can be merged. That is,
3616 /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty
3617 /// Register then it does not need to match and SrcVal is set to the source
3618 /// value found.
3619 /// On match, returns the start byte offset of the \p SrcVal that is being
3620 /// stored.
3621 static std::optional<int64_t>
3622 getTruncStoreByteOffset(GStore &Store, Register &SrcVal,
3623                         MachineRegisterInfo &MRI) {
3624   Register TruncVal;
3625   if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal))))
3626     return std::nullopt;
3627 
3628   // The shift amount must be a constant multiple of the narrow type.
3629   // It is translated to the offset address in the wide source value "y".
3630   //
3631   // x = G_LSHR y, ShiftAmtC
3632   // s8 z = G_TRUNC x
3633   // store z, ...
3634   Register FoundSrcVal;
3635   int64_t ShiftAmt;
3636   if (!mi_match(TruncVal, MRI,
3637                 m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)),
3638                          m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) {
3639     if (!SrcVal.isValid() || TruncVal == SrcVal) {
3640       if (!SrcVal.isValid())
3641         SrcVal = TruncVal;
3642       return 0; // If it's the lowest index store.
3643     }
3644     return std::nullopt;
3645   }
3646 
3647   unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits();
3648   if (ShiftAmt % NarrowBits!= 0)
3649     return std::nullopt;
3650   const unsigned Offset = ShiftAmt / NarrowBits;
3651 
3652   if (SrcVal.isValid() && FoundSrcVal != SrcVal)
3653     return std::nullopt;
3654 
3655   if (!SrcVal.isValid())
3656     SrcVal = FoundSrcVal;
3657   else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal))
3658     return std::nullopt;
3659   return Offset;
3660 }
3661 
3662 /// Match a pattern where a wide type scalar value is stored by several narrow
3663 /// stores. Fold it into a single store or a BSWAP and a store if the targets
3664 /// supports it.
3665 ///
3666 /// Assuming little endian target:
3667 ///  i8 *p = ...
3668 ///  i32 val = ...
3669 ///  p[0] = (val >> 0) & 0xFF;
3670 ///  p[1] = (val >> 8) & 0xFF;
3671 ///  p[2] = (val >> 16) & 0xFF;
3672 ///  p[3] = (val >> 24) & 0xFF;
3673 /// =>
3674 ///  *((i32)p) = val;
3675 ///
3676 ///  i8 *p = ...
3677 ///  i32 val = ...
3678 ///  p[0] = (val >> 24) & 0xFF;
3679 ///  p[1] = (val >> 16) & 0xFF;
3680 ///  p[2] = (val >> 8) & 0xFF;
3681 ///  p[3] = (val >> 0) & 0xFF;
3682 /// =>
3683 ///  *((i32)p) = BSWAP(val);
3684 bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI,
3685                                           MergeTruncStoresInfo &MatchInfo) {
3686   auto &StoreMI = cast<GStore>(MI);
3687   LLT MemTy = StoreMI.getMMO().getMemoryType();
3688 
3689   // We only handle merging simple stores of 1-4 bytes.
3690   if (!MemTy.isScalar())
3691     return false;
3692   switch (MemTy.getSizeInBits()) {
3693   case 8:
3694   case 16:
3695   case 32:
3696     break;
3697   default:
3698     return false;
3699   }
3700   if (!StoreMI.isSimple())
3701     return false;
3702 
3703   // We do a simple search for mergeable stores prior to this one.
3704   // Any potential alias hazard along the way terminates the search.
3705   SmallVector<GStore *> FoundStores;
3706 
3707   // We're looking for:
3708   // 1) a (store(trunc(...)))
3709   // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get
3710   //    the partial value stored.
3711   // 3) where the offsets form either a little or big-endian sequence.
3712 
3713   auto &LastStore = StoreMI;
3714 
3715   // The single base pointer that all stores must use.
3716   Register BaseReg;
3717   int64_t LastOffset;
3718   if (!mi_match(LastStore.getPointerReg(), MRI,
3719                 m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) {
3720     BaseReg = LastStore.getPointerReg();
3721     LastOffset = 0;
3722   }
3723 
3724   GStore *LowestIdxStore = &LastStore;
3725   int64_t LowestIdxOffset = LastOffset;
3726 
3727   Register WideSrcVal;
3728   auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI);
3729   if (!LowestShiftAmt)
3730     return false; // Didn't match a trunc.
3731   assert(WideSrcVal.isValid());
3732 
3733   LLT WideStoreTy = MRI.getType(WideSrcVal);
3734   // The wide type might not be a multiple of the memory type, e.g. s48 and s32.
3735   if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0)
3736     return false;
3737   const unsigned NumStoresRequired =
3738       WideStoreTy.getSizeInBits() / MemTy.getSizeInBits();
3739 
3740   SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX);
3741   OffsetMap[*LowestShiftAmt] = LastOffset;
3742   FoundStores.emplace_back(&LastStore);
3743 
3744   // Search the block up for more stores.
3745   // We use a search threshold of 10 instructions here because the combiner
3746   // works top-down within a block, and we don't want to search an unbounded
3747   // number of predecessor instructions trying to find matching stores.
3748   // If we moved this optimization into a separate pass then we could probably
3749   // use a more efficient search without having a hard-coded threshold.
3750   const int MaxInstsToCheck = 10;
3751   int NumInstsChecked = 0;
3752   for (auto II = ++LastStore.getReverseIterator();
3753        II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck;
3754        ++II) {
3755     NumInstsChecked++;
3756     GStore *NewStore;
3757     if ((NewStore = dyn_cast<GStore>(&*II))) {
3758       if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple())
3759         break;
3760     } else if (II->isLoadFoldBarrier() || II->mayLoad()) {
3761       break;
3762     } else {
3763       continue; // This is a safe instruction we can look past.
3764     }
3765 
3766     Register NewBaseReg;
3767     int64_t MemOffset;
3768     // Check we're storing to the same base + some offset.
3769     if (!mi_match(NewStore->getPointerReg(), MRI,
3770                   m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) {
3771       NewBaseReg = NewStore->getPointerReg();
3772       MemOffset = 0;
3773     }
3774     if (BaseReg != NewBaseReg)
3775       break;
3776 
3777     auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI);
3778     if (!ShiftByteOffset)
3779       break;
3780     if (MemOffset < LowestIdxOffset) {
3781       LowestIdxOffset = MemOffset;
3782       LowestIdxStore = NewStore;
3783     }
3784 
3785     // Map the offset in the store and the offset in the combined value, and
3786     // early return if it has been set before.
3787     if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired ||
3788         OffsetMap[*ShiftByteOffset] != INT64_MAX)
3789       break;
3790     OffsetMap[*ShiftByteOffset] = MemOffset;
3791 
3792     FoundStores.emplace_back(NewStore);
3793     // Reset counter since we've found a matching inst.
3794     NumInstsChecked = 0;
3795     if (FoundStores.size() == NumStoresRequired)
3796       break;
3797   }
3798 
3799   if (FoundStores.size() != NumStoresRequired) {
3800     return false;
3801   }
3802 
3803   const auto &DL = LastStore.getMF()->getDataLayout();
3804   auto &C = LastStore.getMF()->getFunction().getContext();
3805   // Check that a store of the wide type is both allowed and fast on the target
3806   unsigned Fast = 0;
3807   bool Allowed = getTargetLowering().allowsMemoryAccess(
3808       C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast);
3809   if (!Allowed || !Fast)
3810     return false;
3811 
3812   // Check if the pieces of the value are going to the expected places in memory
3813   // to merge the stores.
3814   unsigned NarrowBits = MemTy.getScalarSizeInBits();
3815   auto checkOffsets = [&](bool MatchLittleEndian) {
3816     if (MatchLittleEndian) {
3817       for (unsigned i = 0; i != NumStoresRequired; ++i)
3818         if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset)
3819           return false;
3820     } else { // MatchBigEndian by reversing loop counter.
3821       for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired;
3822            ++i, --j)
3823         if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset)
3824           return false;
3825     }
3826     return true;
3827   };
3828 
3829   // Check if the offsets line up for the native data layout of this target.
3830   bool NeedBswap = false;
3831   bool NeedRotate = false;
3832   if (!checkOffsets(DL.isLittleEndian())) {
3833     // Special-case: check if byte offsets line up for the opposite endian.
3834     if (NarrowBits == 8 && checkOffsets(DL.isBigEndian()))
3835       NeedBswap = true;
3836     else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian()))
3837       NeedRotate = true;
3838     else
3839       return false;
3840   }
3841 
3842   if (NeedBswap &&
3843       !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}}))
3844     return false;
3845   if (NeedRotate &&
3846       !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}}))
3847     return false;
3848 
3849   MatchInfo.NeedBSwap = NeedBswap;
3850   MatchInfo.NeedRotate = NeedRotate;
3851   MatchInfo.LowestIdxStore = LowestIdxStore;
3852   MatchInfo.WideSrcVal = WideSrcVal;
3853   MatchInfo.FoundStores = std::move(FoundStores);
3854   return true;
3855 }
3856 
3857 void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI,
3858                                           MergeTruncStoresInfo &MatchInfo) {
3859 
3860   Builder.setInstrAndDebugLoc(MI);
3861   Register WideSrcVal = MatchInfo.WideSrcVal;
3862   LLT WideStoreTy = MRI.getType(WideSrcVal);
3863 
3864   if (MatchInfo.NeedBSwap) {
3865     WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0);
3866   } else if (MatchInfo.NeedRotate) {
3867     assert(WideStoreTy.getSizeInBits() % 2 == 0 &&
3868            "Unexpected type for rotate");
3869     auto RotAmt =
3870         Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2);
3871     WideSrcVal =
3872         Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0);
3873   }
3874 
3875   Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(),
3876                      MatchInfo.LowestIdxStore->getMMO().getPointerInfo(),
3877                      MatchInfo.LowestIdxStore->getMMO().getAlign());
3878 
3879   // Erase the old stores.
3880   for (auto *ST : MatchInfo.FoundStores)
3881     ST->eraseFromParent();
3882 }
3883 
3884 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
3885                                             MachineInstr *&ExtMI) {
3886   assert(MI.getOpcode() == TargetOpcode::G_PHI);
3887 
3888   Register DstReg = MI.getOperand(0).getReg();
3889 
3890   // TODO: Extending a vector may be expensive, don't do this until heuristics
3891   // are better.
3892   if (MRI.getType(DstReg).isVector())
3893     return false;
3894 
3895   // Try to match a phi, whose only use is an extend.
3896   if (!MRI.hasOneNonDBGUse(DstReg))
3897     return false;
3898   ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
3899   switch (ExtMI->getOpcode()) {
3900   case TargetOpcode::G_ANYEXT:
3901     return true; // G_ANYEXT is usually free.
3902   case TargetOpcode::G_ZEXT:
3903   case TargetOpcode::G_SEXT:
3904     break;
3905   default:
3906     return false;
3907   }
3908 
3909   // If the target is likely to fold this extend away, don't propagate.
3910   if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
3911     return false;
3912 
3913   // We don't want to propagate the extends unless there's a good chance that
3914   // they'll be optimized in some way.
3915   // Collect the unique incoming values.
3916   SmallPtrSet<MachineInstr *, 4> InSrcs;
3917   for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
3918     auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
3919     switch (DefMI->getOpcode()) {
3920     case TargetOpcode::G_LOAD:
3921     case TargetOpcode::G_TRUNC:
3922     case TargetOpcode::G_SEXT:
3923     case TargetOpcode::G_ZEXT:
3924     case TargetOpcode::G_ANYEXT:
3925     case TargetOpcode::G_CONSTANT:
3926       InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
3927       // Don't try to propagate if there are too many places to create new
3928       // extends, chances are it'll increase code size.
3929       if (InSrcs.size() > 2)
3930         return false;
3931       break;
3932     default:
3933       return false;
3934     }
3935   }
3936   return true;
3937 }
3938 
3939 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
3940                                             MachineInstr *&ExtMI) {
3941   assert(MI.getOpcode() == TargetOpcode::G_PHI);
3942   Register DstReg = ExtMI->getOperand(0).getReg();
3943   LLT ExtTy = MRI.getType(DstReg);
3944 
3945   // Propagate the extension into the block of each incoming reg's block.
3946   // Use a SetVector here because PHIs can have duplicate edges, and we want
3947   // deterministic iteration order.
3948   SmallSetVector<MachineInstr *, 8> SrcMIs;
3949   SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
3950   for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
3951     auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
3952     if (!SrcMIs.insert(SrcMI))
3953       continue;
3954 
3955     // Build an extend after each src inst.
3956     auto *MBB = SrcMI->getParent();
3957     MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
3958     if (InsertPt != MBB->end() && InsertPt->isPHI())
3959       InsertPt = MBB->getFirstNonPHI();
3960 
3961     Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
3962     Builder.setDebugLoc(MI.getDebugLoc());
3963     auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
3964                                           SrcMI->getOperand(0).getReg());
3965     OldToNewSrcMap[SrcMI] = NewExt;
3966   }
3967 
3968   // Create a new phi with the extended inputs.
3969   Builder.setInstrAndDebugLoc(MI);
3970   auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
3971   NewPhi.addDef(DstReg);
3972   for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
3973     if (!MO.isReg()) {
3974       NewPhi.addMBB(MO.getMBB());
3975       continue;
3976     }
3977     auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
3978     NewPhi.addUse(NewSrc->getOperand(0).getReg());
3979   }
3980   Builder.insertInstr(NewPhi);
3981   ExtMI->eraseFromParent();
3982 }
3983 
3984 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
3985                                                 Register &Reg) {
3986   assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
3987   // If we have a constant index, look for a G_BUILD_VECTOR source
3988   // and find the source register that the index maps to.
3989   Register SrcVec = MI.getOperand(1).getReg();
3990   LLT SrcTy = MRI.getType(SrcVec);
3991 
3992   auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
3993   if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
3994     return false;
3995 
3996   unsigned VecIdx = Cst->Value.getZExtValue();
3997 
3998   // Check if we have a build_vector or build_vector_trunc with an optional
3999   // trunc in front.
4000   MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec);
4001   if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) {
4002     SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg());
4003   }
4004 
4005   if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
4006       SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC)
4007     return false;
4008 
4009   EVT Ty(getMVTForLLT(SrcTy));
4010   if (!MRI.hasOneNonDBGUse(SrcVec) &&
4011       !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
4012     return false;
4013 
4014   Reg = SrcVecMI->getOperand(VecIdx + 1).getReg();
4015   return true;
4016 }
4017 
4018 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
4019                                                 Register &Reg) {
4020   // Check the type of the register, since it may have come from a
4021   // G_BUILD_VECTOR_TRUNC.
4022   LLT ScalarTy = MRI.getType(Reg);
4023   Register DstReg = MI.getOperand(0).getReg();
4024   LLT DstTy = MRI.getType(DstReg);
4025 
4026   Builder.setInstrAndDebugLoc(MI);
4027   if (ScalarTy != DstTy) {
4028     assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
4029     Builder.buildTrunc(DstReg, Reg);
4030     MI.eraseFromParent();
4031     return;
4032   }
4033   replaceSingleDefInstWithReg(MI, Reg);
4034 }
4035 
4036 bool CombinerHelper::matchExtractAllEltsFromBuildVector(
4037     MachineInstr &MI,
4038     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4039   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4040   // This combine tries to find build_vector's which have every source element
4041   // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
4042   // the masked load scalarization is run late in the pipeline. There's already
4043   // a combine for a similar pattern starting from the extract, but that
4044   // doesn't attempt to do it if there are multiple uses of the build_vector,
4045   // which in this case is true. Starting the combine from the build_vector
4046   // feels more natural than trying to find sibling nodes of extracts.
4047   // E.g.
4048   //  %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
4049   //  %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
4050   //  %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
4051   //  %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
4052   //  %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
4053   // ==>
4054   // replace ext{1,2,3,4} with %s{1,2,3,4}
4055 
4056   Register DstReg = MI.getOperand(0).getReg();
4057   LLT DstTy = MRI.getType(DstReg);
4058   unsigned NumElts = DstTy.getNumElements();
4059 
4060   SmallBitVector ExtractedElts(NumElts);
4061   for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
4062     if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
4063       return false;
4064     auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
4065     if (!Cst)
4066       return false;
4067     unsigned Idx = Cst->getZExtValue();
4068     if (Idx >= NumElts)
4069       return false; // Out of range.
4070     ExtractedElts.set(Idx);
4071     SrcDstPairs.emplace_back(
4072         std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
4073   }
4074   // Match if every element was extracted.
4075   return ExtractedElts.all();
4076 }
4077 
4078 void CombinerHelper::applyExtractAllEltsFromBuildVector(
4079     MachineInstr &MI,
4080     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4081   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4082   for (auto &Pair : SrcDstPairs) {
4083     auto *ExtMI = Pair.second;
4084     replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
4085     ExtMI->eraseFromParent();
4086   }
4087   MI.eraseFromParent();
4088 }
4089 
4090 void CombinerHelper::applyBuildFn(
4091     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4092   Builder.setInstrAndDebugLoc(MI);
4093   MatchInfo(Builder);
4094   MI.eraseFromParent();
4095 }
4096 
4097 void CombinerHelper::applyBuildFnNoErase(
4098     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4099   Builder.setInstrAndDebugLoc(MI);
4100   MatchInfo(Builder);
4101 }
4102 
4103 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
4104                                                BuildFnTy &MatchInfo) {
4105   assert(MI.getOpcode() == TargetOpcode::G_OR);
4106 
4107   Register Dst = MI.getOperand(0).getReg();
4108   LLT Ty = MRI.getType(Dst);
4109   unsigned BitWidth = Ty.getScalarSizeInBits();
4110 
4111   Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
4112   unsigned FshOpc = 0;
4113 
4114   // Match (or (shl ...), (lshr ...)).
4115   if (!mi_match(Dst, MRI,
4116                 // m_GOr() handles the commuted version as well.
4117                 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
4118                       m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
4119     return false;
4120 
4121   // Given constants C0 and C1 such that C0 + C1 is bit-width:
4122   // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
4123   int64_t CstShlAmt, CstLShrAmt;
4124   if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) &&
4125       mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) &&
4126       CstShlAmt + CstLShrAmt == BitWidth) {
4127     FshOpc = TargetOpcode::G_FSHR;
4128     Amt = LShrAmt;
4129 
4130   } else if (mi_match(LShrAmt, MRI,
4131                       m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4132              ShlAmt == Amt) {
4133     // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
4134     FshOpc = TargetOpcode::G_FSHL;
4135 
4136   } else if (mi_match(ShlAmt, MRI,
4137                       m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4138              LShrAmt == Amt) {
4139     // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
4140     FshOpc = TargetOpcode::G_FSHR;
4141 
4142   } else {
4143     return false;
4144   }
4145 
4146   LLT AmtTy = MRI.getType(Amt);
4147   if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
4148     return false;
4149 
4150   MatchInfo = [=](MachineIRBuilder &B) {
4151     B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
4152   };
4153   return true;
4154 }
4155 
4156 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
4157 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
4158   unsigned Opc = MI.getOpcode();
4159   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4160   Register X = MI.getOperand(1).getReg();
4161   Register Y = MI.getOperand(2).getReg();
4162   if (X != Y)
4163     return false;
4164   unsigned RotateOpc =
4165       Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
4166   return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
4167 }
4168 
4169 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
4170   unsigned Opc = MI.getOpcode();
4171   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4172   bool IsFSHL = Opc == TargetOpcode::G_FSHL;
4173   Observer.changingInstr(MI);
4174   MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
4175                                          : TargetOpcode::G_ROTR));
4176   MI.removeOperand(2);
4177   Observer.changedInstr(MI);
4178 }
4179 
4180 // Fold (rot x, c) -> (rot x, c % BitSize)
4181 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
4182   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4183          MI.getOpcode() == TargetOpcode::G_ROTR);
4184   unsigned Bitsize =
4185       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4186   Register AmtReg = MI.getOperand(2).getReg();
4187   bool OutOfRange = false;
4188   auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
4189     if (auto *CI = dyn_cast<ConstantInt>(C))
4190       OutOfRange |= CI->getValue().uge(Bitsize);
4191     return true;
4192   };
4193   return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
4194 }
4195 
4196 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
4197   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4198          MI.getOpcode() == TargetOpcode::G_ROTR);
4199   unsigned Bitsize =
4200       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4201   Builder.setInstrAndDebugLoc(MI);
4202   Register Amt = MI.getOperand(2).getReg();
4203   LLT AmtTy = MRI.getType(Amt);
4204   auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4205   Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4206   Observer.changingInstr(MI);
4207   MI.getOperand(2).setReg(Amt);
4208   Observer.changedInstr(MI);
4209 }
4210 
4211 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4212                                                    int64_t &MatchInfo) {
4213   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4214   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4215   auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4216   auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4217   std::optional<bool> KnownVal;
4218   switch (Pred) {
4219   default:
4220     llvm_unreachable("Unexpected G_ICMP predicate?");
4221   case CmpInst::ICMP_EQ:
4222     KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4223     break;
4224   case CmpInst::ICMP_NE:
4225     KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4226     break;
4227   case CmpInst::ICMP_SGE:
4228     KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4229     break;
4230   case CmpInst::ICMP_SGT:
4231     KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4232     break;
4233   case CmpInst::ICMP_SLE:
4234     KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4235     break;
4236   case CmpInst::ICMP_SLT:
4237     KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4238     break;
4239   case CmpInst::ICMP_UGE:
4240     KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4241     break;
4242   case CmpInst::ICMP_UGT:
4243     KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4244     break;
4245   case CmpInst::ICMP_ULE:
4246     KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4247     break;
4248   case CmpInst::ICMP_ULT:
4249     KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4250     break;
4251   }
4252   if (!KnownVal)
4253     return false;
4254   MatchInfo =
4255       *KnownVal
4256           ? getICmpTrueVal(getTargetLowering(),
4257                            /*IsVector = */
4258                            MRI.getType(MI.getOperand(0).getReg()).isVector(),
4259                            /* IsFP = */ false)
4260           : 0;
4261   return true;
4262 }
4263 
4264 bool CombinerHelper::matchICmpToLHSKnownBits(
4265     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4266   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4267   // Given:
4268   //
4269   // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4270   // %cmp = G_ICMP ne %x, 0
4271   //
4272   // Or:
4273   //
4274   // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4275   // %cmp = G_ICMP eq %x, 1
4276   //
4277   // We can replace %cmp with %x assuming true is 1 on the target.
4278   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4279   if (!CmpInst::isEquality(Pred))
4280     return false;
4281   Register Dst = MI.getOperand(0).getReg();
4282   LLT DstTy = MRI.getType(Dst);
4283   if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
4284                      /* IsFP = */ false) != 1)
4285     return false;
4286   int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
4287   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
4288     return false;
4289   Register LHS = MI.getOperand(2).getReg();
4290   auto KnownLHS = KB->getKnownBits(LHS);
4291   if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
4292     return false;
4293   // Make sure replacing Dst with the LHS is a legal operation.
4294   LLT LHSTy = MRI.getType(LHS);
4295   unsigned LHSSize = LHSTy.getSizeInBits();
4296   unsigned DstSize = DstTy.getSizeInBits();
4297   unsigned Op = TargetOpcode::COPY;
4298   if (DstSize != LHSSize)
4299     Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
4300   if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
4301     return false;
4302   MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
4303   return true;
4304 }
4305 
4306 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
4307 bool CombinerHelper::matchAndOrDisjointMask(
4308     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4309   assert(MI.getOpcode() == TargetOpcode::G_AND);
4310 
4311   // Ignore vector types to simplify matching the two constants.
4312   // TODO: do this for vectors and scalars via a demanded bits analysis.
4313   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
4314   if (Ty.isVector())
4315     return false;
4316 
4317   Register Src;
4318   Register AndMaskReg;
4319   int64_t AndMaskBits;
4320   int64_t OrMaskBits;
4321   if (!mi_match(MI, MRI,
4322                 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)),
4323                        m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg)))))
4324     return false;
4325 
4326   // Check if OrMask could turn on any bits in Src.
4327   if (AndMaskBits & OrMaskBits)
4328     return false;
4329 
4330   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4331     Observer.changingInstr(MI);
4332     // Canonicalize the result to have the constant on the RHS.
4333     if (MI.getOperand(1).getReg() == AndMaskReg)
4334       MI.getOperand(2).setReg(AndMaskReg);
4335     MI.getOperand(1).setReg(Src);
4336     Observer.changedInstr(MI);
4337   };
4338   return true;
4339 }
4340 
4341 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
4342 bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4343     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4344   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
4345   Register Dst = MI.getOperand(0).getReg();
4346   Register Src = MI.getOperand(1).getReg();
4347   LLT Ty = MRI.getType(Src);
4348   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4349   if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4350     return false;
4351   int64_t Width = MI.getOperand(2).getImm();
4352   Register ShiftSrc;
4353   int64_t ShiftImm;
4354   if (!mi_match(
4355           Src, MRI,
4356           m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4357                                   m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4358     return false;
4359   if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4360     return false;
4361 
4362   MatchInfo = [=](MachineIRBuilder &B) {
4363     auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4364     auto Cst2 = B.buildConstant(ExtractTy, Width);
4365     B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4366   };
4367   return true;
4368 }
4369 
4370 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
4371 bool CombinerHelper::matchBitfieldExtractFromAnd(
4372     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4373   assert(MI.getOpcode() == TargetOpcode::G_AND);
4374   Register Dst = MI.getOperand(0).getReg();
4375   LLT Ty = MRI.getType(Dst);
4376   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4377   if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
4378           TargetOpcode::G_UBFX, Ty, ExtractTy))
4379     return false;
4380 
4381   int64_t AndImm, LSBImm;
4382   Register ShiftSrc;
4383   const unsigned Size = Ty.getScalarSizeInBits();
4384   if (!mi_match(MI.getOperand(0).getReg(), MRI,
4385                 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4386                        m_ICst(AndImm))))
4387     return false;
4388 
4389   // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4390   auto MaybeMask = static_cast<uint64_t>(AndImm);
4391   if (MaybeMask & (MaybeMask + 1))
4392     return false;
4393 
4394   // LSB must fit within the register.
4395   if (static_cast<uint64_t>(LSBImm) >= Size)
4396     return false;
4397 
4398   uint64_t Width = APInt(Size, AndImm).countTrailingOnes();
4399   MatchInfo = [=](MachineIRBuilder &B) {
4400     auto WidthCst = B.buildConstant(ExtractTy, Width);
4401     auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4402     B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4403   };
4404   return true;
4405 }
4406 
4407 bool CombinerHelper::matchBitfieldExtractFromShr(
4408     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4409   const unsigned Opcode = MI.getOpcode();
4410   assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR);
4411 
4412   const Register Dst = MI.getOperand(0).getReg();
4413 
4414   const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
4415                                   ? TargetOpcode::G_SBFX
4416                                   : TargetOpcode::G_UBFX;
4417 
4418   // Check if the type we would use for the extract is legal
4419   LLT Ty = MRI.getType(Dst);
4420   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4421   if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
4422     return false;
4423 
4424   Register ShlSrc;
4425   int64_t ShrAmt;
4426   int64_t ShlAmt;
4427   const unsigned Size = Ty.getScalarSizeInBits();
4428 
4429   // Try to match shr (shl x, c1), c2
4430   if (!mi_match(Dst, MRI,
4431                 m_BinOp(Opcode,
4432                         m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
4433                         m_ICst(ShrAmt))))
4434     return false;
4435 
4436   // Make sure that the shift sizes can fit a bitfield extract
4437   if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
4438     return false;
4439 
4440   // Skip this combine if the G_SEXT_INREG combine could handle it
4441   if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
4442     return false;
4443 
4444   // Calculate start position and width of the extract
4445   const int64_t Pos = ShrAmt - ShlAmt;
4446   const int64_t Width = Size - ShrAmt;
4447 
4448   MatchInfo = [=](MachineIRBuilder &B) {
4449     auto WidthCst = B.buildConstant(ExtractTy, Width);
4450     auto PosCst = B.buildConstant(ExtractTy, Pos);
4451     B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
4452   };
4453   return true;
4454 }
4455 
4456 bool CombinerHelper::matchBitfieldExtractFromShrAnd(
4457     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4458   const unsigned Opcode = MI.getOpcode();
4459   assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR);
4460 
4461   const Register Dst = MI.getOperand(0).getReg();
4462   LLT Ty = MRI.getType(Dst);
4463   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4464   if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal(
4465           TargetOpcode::G_UBFX, Ty, ExtractTy))
4466     return false;
4467 
4468   // Try to match shr (and x, c1), c2
4469   Register AndSrc;
4470   int64_t ShrAmt;
4471   int64_t SMask;
4472   if (!mi_match(Dst, MRI,
4473                 m_BinOp(Opcode,
4474                         m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
4475                         m_ICst(ShrAmt))))
4476     return false;
4477 
4478   const unsigned Size = Ty.getScalarSizeInBits();
4479   if (ShrAmt < 0 || ShrAmt >= Size)
4480     return false;
4481 
4482   // If the shift subsumes the mask, emit the 0 directly.
4483   if (0 == (SMask >> ShrAmt)) {
4484     MatchInfo = [=](MachineIRBuilder &B) {
4485       B.buildConstant(Dst, 0);
4486     };
4487     return true;
4488   }
4489 
4490   // Check that ubfx can do the extraction, with no holes in the mask.
4491   uint64_t UMask = SMask;
4492   UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
4493   UMask &= maskTrailingOnes<uint64_t>(Size);
4494   if (!isMask_64(UMask))
4495     return false;
4496 
4497   // Calculate start position and width of the extract.
4498   const int64_t Pos = ShrAmt;
4499   const int64_t Width = countTrailingOnes(UMask) - ShrAmt;
4500 
4501   // It's preferable to keep the shift, rather than form G_SBFX.
4502   // TODO: remove the G_AND via demanded bits analysis.
4503   if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
4504     return false;
4505 
4506   MatchInfo = [=](MachineIRBuilder &B) {
4507     auto WidthCst = B.buildConstant(ExtractTy, Width);
4508     auto PosCst = B.buildConstant(ExtractTy, Pos);
4509     B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
4510   };
4511   return true;
4512 }
4513 
4514 bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4515     MachineInstr &PtrAdd) {
4516   assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD);
4517 
4518   Register Src1Reg = PtrAdd.getOperand(1).getReg();
4519   MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
4520   if (!Src1Def)
4521     return false;
4522 
4523   Register Src2Reg = PtrAdd.getOperand(2).getReg();
4524 
4525   if (MRI.hasOneNonDBGUse(Src1Reg))
4526     return false;
4527 
4528   auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
4529   if (!C1)
4530     return false;
4531   auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4532   if (!C2)
4533     return false;
4534 
4535   const APInt &C1APIntVal = *C1;
4536   const APInt &C2APIntVal = *C2;
4537   const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4538 
4539   for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
4540     // This combine may end up running before ptrtoint/inttoptr combines
4541     // manage to eliminate redundant conversions, so try to look through them.
4542     MachineInstr *ConvUseMI = &UseMI;
4543     unsigned ConvUseOpc = ConvUseMI->getOpcode();
4544     while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4545            ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4546       Register DefReg = ConvUseMI->getOperand(0).getReg();
4547       if (!MRI.hasOneNonDBGUse(DefReg))
4548         break;
4549       ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4550       ConvUseOpc = ConvUseMI->getOpcode();
4551     }
4552     auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
4553                      ConvUseOpc == TargetOpcode::G_STORE;
4554     if (!LoadStore)
4555       continue;
4556     // Is x[offset2] already not a legal addressing mode? If so then
4557     // reassociating the constants breaks nothing (we test offset2 because
4558     // that's the one we hope to fold into the load or store).
4559     TargetLoweringBase::AddrMode AM;
4560     AM.HasBaseReg = true;
4561     AM.BaseOffs = C2APIntVal.getSExtValue();
4562     unsigned AS =
4563         MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
4564     Type *AccessTy =
4565         getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
4566                       PtrAdd.getMF()->getFunction().getContext());
4567     const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4568     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4569                                    AccessTy, AS))
4570       continue;
4571 
4572     // Would x[offset1+offset2] still be a legal addressing mode?
4573     AM.BaseOffs = CombinedValue;
4574     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4575                                    AccessTy, AS))
4576       return true;
4577   }
4578 
4579   return false;
4580 }
4581 
4582 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
4583                                                   MachineInstr *RHS,
4584                                                   BuildFnTy &MatchInfo) {
4585   // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4586   Register Src1Reg = MI.getOperand(1).getReg();
4587   if (RHS->getOpcode() != TargetOpcode::G_ADD)
4588     return false;
4589   auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4590   if (!C2)
4591     return false;
4592 
4593   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4594     LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4595 
4596     auto NewBase =
4597         Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4598     Observer.changingInstr(MI);
4599     MI.getOperand(1).setReg(NewBase.getReg(0));
4600     MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4601     Observer.changedInstr(MI);
4602   };
4603   return !reassociationCanBreakAddressingModePattern(MI);
4604 }
4605 
4606 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
4607                                                   MachineInstr *LHS,
4608                                                   MachineInstr *RHS,
4609                                                   BuildFnTy &MatchInfo) {
4610   // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
4611   // if and only if (G_PTR_ADD X, C) has one use.
4612   Register LHSBase;
4613   std::optional<ValueAndVReg> LHSCstOff;
4614   if (!mi_match(MI.getBaseReg(), MRI,
4615                 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
4616     return false;
4617 
4618   auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
4619   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4620     // When we change LHSPtrAdd's offset register we might cause it to use a reg
4621     // before its def. Sink the instruction so the outer PTR_ADD to ensure this
4622     // doesn't happen.
4623     LHSPtrAdd->moveBefore(&MI);
4624     Register RHSReg = MI.getOffsetReg();
4625     // set VReg will cause type mismatch if it comes from extend/trunc
4626     auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value);
4627     Observer.changingInstr(MI);
4628     MI.getOperand(2).setReg(NewCst.getReg(0));
4629     Observer.changedInstr(MI);
4630     Observer.changingInstr(*LHSPtrAdd);
4631     LHSPtrAdd->getOperand(2).setReg(RHSReg);
4632     Observer.changedInstr(*LHSPtrAdd);
4633   };
4634   return !reassociationCanBreakAddressingModePattern(MI);
4635 }
4636 
4637 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI,
4638                                                         MachineInstr *LHS,
4639                                                         MachineInstr *RHS,
4640                                                         BuildFnTy &MatchInfo) {
4641   // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4642   auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
4643   if (!LHSPtrAdd)
4644     return false;
4645 
4646   Register Src2Reg = MI.getOperand(2).getReg();
4647   Register LHSSrc1 = LHSPtrAdd->getBaseReg();
4648   Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
4649   auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
4650   if (!C1)
4651     return false;
4652   auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4653   if (!C2)
4654     return false;
4655 
4656   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4657     auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4658     Observer.changingInstr(MI);
4659     MI.getOperand(1).setReg(LHSSrc1);
4660     MI.getOperand(2).setReg(NewCst.getReg(0));
4661     Observer.changedInstr(MI);
4662   };
4663   return !reassociationCanBreakAddressingModePattern(MI);
4664 }
4665 
4666 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
4667                                         BuildFnTy &MatchInfo) {
4668   auto &PtrAdd = cast<GPtrAdd>(MI);
4669   // We're trying to match a few pointer computation patterns here for
4670   // re-association opportunities.
4671   // 1) Isolating a constant operand to be on the RHS, e.g.:
4672   // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4673   //
4674   // 2) Folding two constants in each sub-tree as long as such folding
4675   // doesn't break a legal addressing mode.
4676   // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4677   //
4678   // 3) Move a constant from the LHS of an inner op to the RHS of the outer.
4679   // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
4680   // iif (G_PTR_ADD X, C) has one use.
4681   MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
4682   MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
4683 
4684   // Try to match example 2.
4685   if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
4686     return true;
4687 
4688   // Try to match example 3.
4689   if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
4690     return true;
4691 
4692   // Try to match example 1.
4693   if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
4694     return true;
4695 
4696   return false;
4697 }
4698 
4699 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
4700   Register Op1 = MI.getOperand(1).getReg();
4701   Register Op2 = MI.getOperand(2).getReg();
4702   auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4703   if (!MaybeCst)
4704     return false;
4705   MatchInfo = *MaybeCst;
4706   return true;
4707 }
4708 
4709 bool CombinerHelper::matchNarrowBinopFeedingAnd(
4710     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4711   // Look for a binop feeding into an AND with a mask:
4712   //
4713   // %add = G_ADD %lhs, %rhs
4714   // %and = G_AND %add, 000...11111111
4715   //
4716   // Check if it's possible to perform the binop at a narrower width and zext
4717   // back to the original width like so:
4718   //
4719   // %narrow_lhs = G_TRUNC %lhs
4720   // %narrow_rhs = G_TRUNC %rhs
4721   // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
4722   // %new_add = G_ZEXT %narrow_add
4723   // %and = G_AND %new_add, 000...11111111
4724   //
4725   // This can allow later combines to eliminate the G_AND if it turns out
4726   // that the mask is irrelevant.
4727   assert(MI.getOpcode() == TargetOpcode::G_AND);
4728   Register Dst = MI.getOperand(0).getReg();
4729   Register AndLHS = MI.getOperand(1).getReg();
4730   Register AndRHS = MI.getOperand(2).getReg();
4731   LLT WideTy = MRI.getType(Dst);
4732 
4733   // If the potential binop has more than one use, then it's possible that one
4734   // of those uses will need its full width.
4735   if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
4736     return false;
4737 
4738   // Check if the LHS feeding the AND is impacted by the high bits that we're
4739   // masking out.
4740   //
4741   // e.g. for 64-bit x, y:
4742   //
4743   // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
4744   MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
4745   if (!LHSInst)
4746     return false;
4747   unsigned LHSOpc = LHSInst->getOpcode();
4748   switch (LHSOpc) {
4749   default:
4750     return false;
4751   case TargetOpcode::G_ADD:
4752   case TargetOpcode::G_SUB:
4753   case TargetOpcode::G_MUL:
4754   case TargetOpcode::G_AND:
4755   case TargetOpcode::G_OR:
4756   case TargetOpcode::G_XOR:
4757     break;
4758   }
4759 
4760   // Find the mask on the RHS.
4761   auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
4762   if (!Cst)
4763     return false;
4764   auto Mask = Cst->Value;
4765   if (!Mask.isMask())
4766     return false;
4767 
4768   // No point in combining if there's nothing to truncate.
4769   unsigned NarrowWidth = Mask.countTrailingOnes();
4770   if (NarrowWidth == WideTy.getSizeInBits())
4771     return false;
4772   LLT NarrowTy = LLT::scalar(NarrowWidth);
4773 
4774   // Check if adding the zext + truncates could be harmful.
4775   auto &MF = *MI.getMF();
4776   const auto &TLI = getTargetLowering();
4777   LLVMContext &Ctx = MF.getFunction().getContext();
4778   auto &DL = MF.getDataLayout();
4779   if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
4780       !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
4781     return false;
4782   if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
4783       !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
4784     return false;
4785   Register BinOpLHS = LHSInst->getOperand(1).getReg();
4786   Register BinOpRHS = LHSInst->getOperand(2).getReg();
4787   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4788     auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
4789     auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
4790     auto NarrowBinOp =
4791         Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
4792     auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
4793     Observer.changingInstr(MI);
4794     MI.getOperand(1).setReg(Ext.getReg(0));
4795     Observer.changedInstr(MI);
4796   };
4797   return true;
4798 }
4799 
4800 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) {
4801   unsigned Opc = MI.getOpcode();
4802   assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO);
4803 
4804   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
4805     return false;
4806 
4807   MatchInfo = [=, &MI](MachineIRBuilder &B) {
4808     Observer.changingInstr(MI);
4809     unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
4810                                                    : TargetOpcode::G_SADDO;
4811     MI.setDesc(Builder.getTII().get(NewOpc));
4812     MI.getOperand(3).setReg(MI.getOperand(2).getReg());
4813     Observer.changedInstr(MI);
4814   };
4815   return true;
4816 }
4817 
4818 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4819   // (G_*MULO x, 0) -> 0 + no carry out
4820   assert(MI.getOpcode() == TargetOpcode::G_UMULO ||
4821          MI.getOpcode() == TargetOpcode::G_SMULO);
4822   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4823     return false;
4824   Register Dst = MI.getOperand(0).getReg();
4825   Register Carry = MI.getOperand(1).getReg();
4826   if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
4827       !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4828     return false;
4829   MatchInfo = [=](MachineIRBuilder &B) {
4830     B.buildConstant(Dst, 0);
4831     B.buildConstant(Carry, 0);
4832   };
4833   return true;
4834 }
4835 
4836 bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
4837   // (G_*ADDO x, 0) -> x + no carry out
4838   assert(MI.getOpcode() == TargetOpcode::G_UADDO ||
4839          MI.getOpcode() == TargetOpcode::G_SADDO);
4840   if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
4841     return false;
4842   Register Carry = MI.getOperand(1).getReg();
4843   if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
4844     return false;
4845   Register Dst = MI.getOperand(0).getReg();
4846   Register LHS = MI.getOperand(2).getReg();
4847   MatchInfo = [=](MachineIRBuilder &B) {
4848     B.buildCopy(Dst, LHS);
4849     B.buildConstant(Carry, 0);
4850   };
4851   return true;
4852 }
4853 
4854 bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) {
4855   // (G_*ADDE x, y, 0) -> (G_*ADDO x, y)
4856   // (G_*SUBE x, y, 0) -> (G_*SUBO x, y)
4857   assert(MI.getOpcode() == TargetOpcode::G_UADDE ||
4858          MI.getOpcode() == TargetOpcode::G_SADDE ||
4859          MI.getOpcode() == TargetOpcode::G_USUBE ||
4860          MI.getOpcode() == TargetOpcode::G_SSUBE);
4861   if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0)))
4862     return false;
4863   MatchInfo = [&](MachineIRBuilder &B) {
4864     unsigned NewOpcode;
4865     switch (MI.getOpcode()) {
4866     case TargetOpcode::G_UADDE:
4867       NewOpcode = TargetOpcode::G_UADDO;
4868       break;
4869     case TargetOpcode::G_SADDE:
4870       NewOpcode = TargetOpcode::G_SADDO;
4871       break;
4872     case TargetOpcode::G_USUBE:
4873       NewOpcode = TargetOpcode::G_USUBO;
4874       break;
4875     case TargetOpcode::G_SSUBE:
4876       NewOpcode = TargetOpcode::G_SSUBO;
4877       break;
4878     }
4879     Observer.changingInstr(MI);
4880     MI.setDesc(B.getTII().get(NewOpcode));
4881     MI.removeOperand(4);
4882     Observer.changedInstr(MI);
4883   };
4884   return true;
4885 }
4886 
4887 bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI,
4888                                         BuildFnTy &MatchInfo) {
4889   assert(MI.getOpcode() == TargetOpcode::G_SUB);
4890   Register Dst = MI.getOperand(0).getReg();
4891   // (x + y) - z -> x (if y == z)
4892   // (x + y) - z -> y (if x == z)
4893   Register X, Y, Z;
4894   if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) {
4895     Register ReplaceReg;
4896     int64_t CstX, CstY;
4897     if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) &&
4898                    mi_match(Z, MRI, m_SpecificICstOrSplat(CstY))))
4899       ReplaceReg = X;
4900     else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
4901                         mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
4902       ReplaceReg = Y;
4903     if (ReplaceReg) {
4904       MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); };
4905       return true;
4906     }
4907   }
4908 
4909   // x - (y + z) -> 0 - y (if x == z)
4910   // x - (y + z) -> 0 - z (if x == y)
4911   if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) {
4912     Register ReplaceReg;
4913     int64_t CstX;
4914     if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
4915                    mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
4916       ReplaceReg = Y;
4917     else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
4918                         mi_match(Y, MRI, m_SpecificICstOrSplat(CstX))))
4919       ReplaceReg = Z;
4920     if (ReplaceReg) {
4921       MatchInfo = [=](MachineIRBuilder &B) {
4922         auto Zero = B.buildConstant(MRI.getType(Dst), 0);
4923         B.buildSub(Dst, Zero, ReplaceReg);
4924       };
4925       return true;
4926     }
4927   }
4928   return false;
4929 }
4930 
4931 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) {
4932   assert(MI.getOpcode() == TargetOpcode::G_UDIV);
4933   auto &UDiv = cast<GenericMachineInstr>(MI);
4934   Register Dst = UDiv.getReg(0);
4935   Register LHS = UDiv.getReg(1);
4936   Register RHS = UDiv.getReg(2);
4937   LLT Ty = MRI.getType(Dst);
4938   LLT ScalarTy = Ty.getScalarType();
4939   const unsigned EltBits = ScalarTy.getScalarSizeInBits();
4940   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4941   LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
4942   auto &MIB = Builder;
4943   MIB.setInstrAndDebugLoc(MI);
4944 
4945   bool UseNPQ = false;
4946   SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4947 
4948   auto BuildUDIVPattern = [&](const Constant *C) {
4949     auto *CI = cast<ConstantInt>(C);
4950     const APInt &Divisor = CI->getValue();
4951 
4952     bool SelNPQ = false;
4953     APInt Magic(Divisor.getBitWidth(), 0);
4954     unsigned PreShift = 0, PostShift = 0;
4955 
4956     // Magic algorithm doesn't work for division by 1. We need to emit a select
4957     // at the end.
4958     // TODO: Use undef values for divisor of 1.
4959     if (!Divisor.isOneValue()) {
4960       UnsignedDivisionByConstantInfo magics =
4961           UnsignedDivisionByConstantInfo::get(Divisor);
4962 
4963       Magic = std::move(magics.Magic);
4964 
4965       assert(magics.PreShift < Divisor.getBitWidth() &&
4966              "We shouldn't generate an undefined shift!");
4967       assert(magics.PostShift < Divisor.getBitWidth() &&
4968              "We shouldn't generate an undefined shift!");
4969       assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift");
4970       PreShift = magics.PreShift;
4971       PostShift = magics.PostShift;
4972       SelNPQ = magics.IsAdd;
4973     }
4974 
4975     PreShifts.push_back(
4976         MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
4977     MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0));
4978     NPQFactors.push_back(
4979         MIB.buildConstant(ScalarTy,
4980                           SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4981                                  : APInt::getZero(EltBits))
4982             .getReg(0));
4983     PostShifts.push_back(
4984         MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
4985     UseNPQ |= SelNPQ;
4986     return true;
4987   };
4988 
4989   // Collect the shifts/magic values from each element.
4990   bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
4991   (void)Matched;
4992   assert(Matched && "Expected unary predicate match to succeed");
4993 
4994   Register PreShift, PostShift, MagicFactor, NPQFactor;
4995   auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
4996   if (RHSDef) {
4997     PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
4998     MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
4999     NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
5000     PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
5001   } else {
5002     assert(MRI.getType(RHS).isScalar() &&
5003            "Non-build_vector operation should have been a scalar");
5004     PreShift = PreShifts[0];
5005     MagicFactor = MagicFactors[0];
5006     PostShift = PostShifts[0];
5007   }
5008 
5009   Register Q = LHS;
5010   Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
5011 
5012   // Multiply the numerator (operand 0) by the magic value.
5013   Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
5014 
5015   if (UseNPQ) {
5016     Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
5017 
5018     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5019     // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
5020     if (Ty.isVector())
5021       NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
5022     else
5023       NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
5024 
5025     Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
5026   }
5027 
5028   Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
5029   auto One = MIB.buildConstant(Ty, 1);
5030   auto IsOne = MIB.buildICmp(
5031       CmpInst::Predicate::ICMP_EQ,
5032       Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
5033   return MIB.buildSelect(Ty, IsOne, LHS, Q);
5034 }
5035 
5036 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) {
5037   assert(MI.getOpcode() == TargetOpcode::G_UDIV);
5038   Register Dst = MI.getOperand(0).getReg();
5039   Register RHS = MI.getOperand(2).getReg();
5040   LLT DstTy = MRI.getType(Dst);
5041   auto *RHSDef = MRI.getVRegDef(RHS);
5042   if (!isConstantOrConstantVector(*RHSDef, MRI))
5043     return false;
5044 
5045   auto &MF = *MI.getMF();
5046   AttributeList Attr = MF.getFunction().getAttributes();
5047   const auto &TLI = getTargetLowering();
5048   LLVMContext &Ctx = MF.getFunction().getContext();
5049   auto &DL = MF.getDataLayout();
5050   if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
5051     return false;
5052 
5053   // Don't do this for minsize because the instruction sequence is usually
5054   // larger.
5055   if (MF.getFunction().hasMinSize())
5056     return false;
5057 
5058   // Don't do this if the types are not going to be legal.
5059   if (LI) {
5060     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
5061       return false;
5062     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
5063       return false;
5064     if (!isLegalOrBeforeLegalizer(
5065             {TargetOpcode::G_ICMP,
5066              {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
5067               DstTy}}))
5068       return false;
5069   }
5070 
5071   auto CheckEltValue = [&](const Constant *C) {
5072     if (auto *CI = dyn_cast_or_null<ConstantInt>(C))
5073       return !CI->isZero();
5074     return false;
5075   };
5076   return matchUnaryPredicate(MRI, RHS, CheckEltValue);
5077 }
5078 
5079 void CombinerHelper::applyUDivByConst(MachineInstr &MI) {
5080   auto *NewMI = buildUDivUsingMul(MI);
5081   replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
5082 }
5083 
5084 bool CombinerHelper::matchSDivByConst(MachineInstr &MI) {
5085   assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
5086   Register Dst = MI.getOperand(0).getReg();
5087   Register RHS = MI.getOperand(2).getReg();
5088   LLT DstTy = MRI.getType(Dst);
5089 
5090   auto &MF = *MI.getMF();
5091   AttributeList Attr = MF.getFunction().getAttributes();
5092   const auto &TLI = getTargetLowering();
5093   LLVMContext &Ctx = MF.getFunction().getContext();
5094   auto &DL = MF.getDataLayout();
5095   if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
5096     return false;
5097 
5098   // Don't do this for minsize because the instruction sequence is usually
5099   // larger.
5100   if (MF.getFunction().hasMinSize())
5101     return false;
5102 
5103   // If the sdiv has an 'exact' flag we can use a simpler lowering.
5104   if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
5105     return matchUnaryPredicate(
5106         MRI, RHS, [](const Constant *C) { return C && !C->isZeroValue(); });
5107   }
5108 
5109   // Don't support the general case for now.
5110   return false;
5111 }
5112 
5113 void CombinerHelper::applySDivByConst(MachineInstr &MI) {
5114   auto *NewMI = buildSDivUsingMul(MI);
5115   replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
5116 }
5117 
5118 MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) {
5119   assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
5120   auto &SDiv = cast<GenericMachineInstr>(MI);
5121   Register Dst = SDiv.getReg(0);
5122   Register LHS = SDiv.getReg(1);
5123   Register RHS = SDiv.getReg(2);
5124   LLT Ty = MRI.getType(Dst);
5125   LLT ScalarTy = Ty.getScalarType();
5126   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5127   LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
5128   auto &MIB = Builder;
5129   MIB.setInstrAndDebugLoc(MI);
5130 
5131   bool UseSRA = false;
5132   SmallVector<Register, 16> Shifts, Factors;
5133 
5134   auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI));
5135   bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value();
5136 
5137   auto BuildSDIVPattern = [&](const Constant *C) {
5138     // Don't recompute inverses for each splat element.
5139     if (IsSplat && !Factors.empty()) {
5140       Shifts.push_back(Shifts[0]);
5141       Factors.push_back(Factors[0]);
5142       return true;
5143     }
5144 
5145     auto *CI = cast<ConstantInt>(C);
5146     APInt Divisor = CI->getValue();
5147     unsigned Shift = Divisor.countTrailingZeros();
5148     if (Shift) {
5149       Divisor.ashrInPlace(Shift);
5150       UseSRA = true;
5151     }
5152 
5153     // Calculate the multiplicative inverse modulo BW.
5154     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5155     unsigned W = Divisor.getBitWidth();
5156     APInt Factor = Divisor.zext(W + 1)
5157                        .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5158                        .trunc(W);
5159     Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
5160     Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
5161     return true;
5162   };
5163 
5164   // Collect all magic values from the build vector.
5165   bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern);
5166   (void)Matched;
5167   assert(Matched && "Expected unary predicate match to succeed");
5168 
5169   Register Shift, Factor;
5170   if (Ty.isVector()) {
5171     Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0);
5172     Factor = MIB.buildBuildVector(Ty, Factors).getReg(0);
5173   } else {
5174     Shift = Shifts[0];
5175     Factor = Factors[0];
5176   }
5177 
5178   Register Res = LHS;
5179 
5180   if (UseSRA)
5181     Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0);
5182 
5183   return MIB.buildMul(Ty, Res, Factor);
5184 }
5185 
5186 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) {
5187   assert(MI.getOpcode() == TargetOpcode::G_UMULH);
5188   Register RHS = MI.getOperand(2).getReg();
5189   Register Dst = MI.getOperand(0).getReg();
5190   LLT Ty = MRI.getType(Dst);
5191   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5192   auto MatchPow2ExceptOne = [&](const Constant *C) {
5193     if (auto *CI = dyn_cast<ConstantInt>(C))
5194       return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
5195     return false;
5196   };
5197   if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
5198     return false;
5199   return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}});
5200 }
5201 
5202 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) {
5203   Register LHS = MI.getOperand(1).getReg();
5204   Register RHS = MI.getOperand(2).getReg();
5205   Register Dst = MI.getOperand(0).getReg();
5206   LLT Ty = MRI.getType(Dst);
5207   LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5208   unsigned NumEltBits = Ty.getScalarSizeInBits();
5209 
5210   Builder.setInstrAndDebugLoc(MI);
5211   auto LogBase2 = buildLogBase2(RHS, Builder);
5212   auto ShiftAmt =
5213       Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
5214   auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
5215   Builder.buildLShr(Dst, LHS, Trunc);
5216   MI.eraseFromParent();
5217 }
5218 
5219 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
5220                                                BuildFnTy &MatchInfo) {
5221   unsigned Opc = MI.getOpcode();
5222   assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||
5223          Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
5224          Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA);
5225 
5226   Register Dst = MI.getOperand(0).getReg();
5227   Register X = MI.getOperand(1).getReg();
5228   Register Y = MI.getOperand(2).getReg();
5229   LLT Type = MRI.getType(Dst);
5230 
5231   // fold (fadd x, fneg(y)) -> (fsub x, y)
5232   // fold (fadd fneg(y), x) -> (fsub x, y)
5233   // G_ADD is commutative so both cases are checked by m_GFAdd
5234   if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
5235       isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
5236     Opc = TargetOpcode::G_FSUB;
5237   }
5238   /// fold (fsub x, fneg(y)) -> (fadd x, y)
5239   else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
5240            isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
5241     Opc = TargetOpcode::G_FADD;
5242   }
5243   // fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
5244   // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
5245   // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
5246   // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
5247   else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
5248             Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
5249            mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
5250            mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
5251     // no opcode change
5252   } else
5253     return false;
5254 
5255   MatchInfo = [=, &MI](MachineIRBuilder &B) {
5256     Observer.changingInstr(MI);
5257     MI.setDesc(B.getTII().get(Opc));
5258     MI.getOperand(1).setReg(X);
5259     MI.getOperand(2).setReg(Y);
5260     Observer.changedInstr(MI);
5261   };
5262   return true;
5263 }
5264 
5265 bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
5266   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5267 
5268   Register LHS = MI.getOperand(1).getReg();
5269   MatchInfo = MI.getOperand(2).getReg();
5270   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
5271 
5272   const auto LHSCst = Ty.isVector()
5273                           ? getFConstantSplat(LHS, MRI, /* allowUndef */ true)
5274                           : getFConstantVRegValWithLookThrough(LHS, MRI);
5275   if (!LHSCst)
5276     return false;
5277 
5278   // -0.0 is always allowed
5279   if (LHSCst->Value.isNegZero())
5280     return true;
5281 
5282   // +0.0 is only allowed if nsz is set.
5283   if (LHSCst->Value.isPosZero())
5284     return MI.getFlag(MachineInstr::FmNsz);
5285 
5286   return false;
5287 }
5288 
5289 void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
5290   Builder.setInstrAndDebugLoc(MI);
5291   Register Dst = MI.getOperand(0).getReg();
5292   Builder.buildFNeg(
5293       Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0));
5294   eraseInst(MI);
5295 }
5296 
5297 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
5298 /// due to global flags or MachineInstr flags.
5299 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
5300   if (MI.getOpcode() != TargetOpcode::G_FMUL)
5301     return false;
5302   return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
5303 }
5304 
5305 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
5306                         const MachineRegisterInfo &MRI) {
5307   return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
5308                        MRI.use_instr_nodbg_end()) >
5309          std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
5310                        MRI.use_instr_nodbg_end());
5311 }
5312 
5313 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
5314                                          bool &AllowFusionGlobally,
5315                                          bool &HasFMAD, bool &Aggressive,
5316                                          bool CanReassociate) {
5317 
5318   auto *MF = MI.getMF();
5319   const auto &TLI = *MF->getSubtarget().getTargetLowering();
5320   const TargetOptions &Options = MF->getTarget().Options;
5321   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5322 
5323   if (CanReassociate &&
5324       !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
5325     return false;
5326 
5327   // Floating-point multiply-add with intermediate rounding.
5328   HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType));
5329   // Floating-point multiply-add without intermediate rounding.
5330   bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
5331                 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
5332   // No valid opcode, do not combine.
5333   if (!HasFMAD && !HasFMA)
5334     return false;
5335 
5336   AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
5337                         Options.UnsafeFPMath || HasFMAD;
5338   // If the addition is not contractable, do not combine.
5339   if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
5340     return false;
5341 
5342   Aggressive = TLI.enableAggressiveFMAFusion(DstType);
5343   return true;
5344 }
5345 
5346 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
5347     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5348   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5349 
5350   bool AllowFusionGlobally, HasFMAD, Aggressive;
5351   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5352     return false;
5353 
5354   Register Op1 = MI.getOperand(1).getReg();
5355   Register Op2 = MI.getOperand(2).getReg();
5356   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5357   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5358   unsigned PreferredFusedOpcode =
5359       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5360 
5361   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5362   // prefer to fold the multiply with fewer uses.
5363   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5364       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5365     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5366       std::swap(LHS, RHS);
5367   }
5368 
5369   // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5370   if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5371       (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
5372     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5373       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5374                    {LHS.MI->getOperand(1).getReg(),
5375                     LHS.MI->getOperand(2).getReg(), RHS.Reg});
5376     };
5377     return true;
5378   }
5379 
5380   // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5381   if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5382       (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
5383     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5384       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5385                    {RHS.MI->getOperand(1).getReg(),
5386                     RHS.MI->getOperand(2).getReg(), LHS.Reg});
5387     };
5388     return true;
5389   }
5390 
5391   return false;
5392 }
5393 
5394 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
5395     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5396   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5397 
5398   bool AllowFusionGlobally, HasFMAD, Aggressive;
5399   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5400     return false;
5401 
5402   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5403   Register Op1 = MI.getOperand(1).getReg();
5404   Register Op2 = MI.getOperand(2).getReg();
5405   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5406   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5407   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5408 
5409   unsigned PreferredFusedOpcode =
5410       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5411 
5412   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5413   // prefer to fold the multiply with fewer uses.
5414   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5415       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5416     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5417       std::swap(LHS, RHS);
5418   }
5419 
5420   // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
5421   MachineInstr *FpExtSrc;
5422   if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5423       isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5424       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5425                           MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5426     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5427       auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5428       auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5429       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5430                    {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
5431     };
5432     return true;
5433   }
5434 
5435   // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
5436   // Note: Commutes FADD operands.
5437   if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5438       isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5439       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5440                           MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5441     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5442       auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5443       auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5444       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5445                    {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
5446     };
5447     return true;
5448   }
5449 
5450   return false;
5451 }
5452 
5453 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
5454     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5455   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5456 
5457   bool AllowFusionGlobally, HasFMAD, Aggressive;
5458   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
5459     return false;
5460 
5461   Register Op1 = MI.getOperand(1).getReg();
5462   Register Op2 = MI.getOperand(2).getReg();
5463   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5464   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5465   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5466 
5467   unsigned PreferredFusedOpcode =
5468       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5469 
5470   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5471   // prefer to fold the multiply with fewer uses.
5472   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5473       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5474     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5475       std::swap(LHS, RHS);
5476   }
5477 
5478   MachineInstr *FMA = nullptr;
5479   Register Z;
5480   // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
5481   if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5482       (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
5483        TargetOpcode::G_FMUL) &&
5484       MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
5485       MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
5486     FMA = LHS.MI;
5487     Z = RHS.Reg;
5488   }
5489   // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
5490   else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5491            (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
5492             TargetOpcode::G_FMUL) &&
5493            MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
5494            MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
5495     Z = LHS.Reg;
5496     FMA = RHS.MI;
5497   }
5498 
5499   if (FMA) {
5500     MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
5501     Register X = FMA->getOperand(1).getReg();
5502     Register Y = FMA->getOperand(2).getReg();
5503     Register U = FMulMI->getOperand(1).getReg();
5504     Register V = FMulMI->getOperand(2).getReg();
5505 
5506     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5507       Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
5508       B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
5509       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5510                    {X, Y, InnerFMA});
5511     };
5512     return true;
5513   }
5514 
5515   return false;
5516 }
5517 
5518 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
5519     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5520   assert(MI.getOpcode() == TargetOpcode::G_FADD);
5521 
5522   bool AllowFusionGlobally, HasFMAD, Aggressive;
5523   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5524     return false;
5525 
5526   if (!Aggressive)
5527     return false;
5528 
5529   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5530   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5531   Register Op1 = MI.getOperand(1).getReg();
5532   Register Op2 = MI.getOperand(2).getReg();
5533   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5534   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5535 
5536   unsigned PreferredFusedOpcode =
5537       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5538 
5539   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5540   // prefer to fold the multiply with fewer uses.
5541   if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5542       isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5543     if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5544       std::swap(LHS, RHS);
5545   }
5546 
5547   // Builds: (fma x, y, (fma (fpext u), (fpext v), z))
5548   auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
5549                                  Register Y, MachineIRBuilder &B) {
5550     Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
5551     Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
5552     Register InnerFMA =
5553         B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
5554             .getReg(0);
5555     B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5556                  {X, Y, InnerFMA});
5557   };
5558 
5559   MachineInstr *FMulMI, *FMAMI;
5560   // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
5561   //   -> (fma x, y, (fma (fpext u), (fpext v), z))
5562   if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5563       mi_match(LHS.MI->getOperand(3).getReg(), MRI,
5564                m_GFPExt(m_MInstr(FMulMI))) &&
5565       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5566       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5567                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5568     MatchInfo = [=](MachineIRBuilder &B) {
5569       buildMatchInfo(FMulMI->getOperand(1).getReg(),
5570                      FMulMI->getOperand(2).getReg(), RHS.Reg,
5571                      LHS.MI->getOperand(1).getReg(),
5572                      LHS.MI->getOperand(2).getReg(), B);
5573     };
5574     return true;
5575   }
5576 
5577   // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
5578   //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5579   // FIXME: This turns two single-precision and one double-precision
5580   // operation into two double-precision operations, which might not be
5581   // interesting for all targets, especially GPUs.
5582   if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5583       FMAMI->getOpcode() == PreferredFusedOpcode) {
5584     MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5585     if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5586         TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5587                             MRI.getType(FMAMI->getOperand(0).getReg()))) {
5588       MatchInfo = [=](MachineIRBuilder &B) {
5589         Register X = FMAMI->getOperand(1).getReg();
5590         Register Y = FMAMI->getOperand(2).getReg();
5591         X = B.buildFPExt(DstType, X).getReg(0);
5592         Y = B.buildFPExt(DstType, Y).getReg(0);
5593         buildMatchInfo(FMulMI->getOperand(1).getReg(),
5594                        FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
5595       };
5596 
5597       return true;
5598     }
5599   }
5600 
5601   // fold (fadd z, (fma x, y, (fpext (fmul u, v)))
5602   //   -> (fma x, y, (fma (fpext u), (fpext v), z))
5603   if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5604       mi_match(RHS.MI->getOperand(3).getReg(), MRI,
5605                m_GFPExt(m_MInstr(FMulMI))) &&
5606       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5607       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5608                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5609     MatchInfo = [=](MachineIRBuilder &B) {
5610       buildMatchInfo(FMulMI->getOperand(1).getReg(),
5611                      FMulMI->getOperand(2).getReg(), LHS.Reg,
5612                      RHS.MI->getOperand(1).getReg(),
5613                      RHS.MI->getOperand(2).getReg(), B);
5614     };
5615     return true;
5616   }
5617 
5618   // fold (fadd z, (fpext (fma x, y, (fmul u, v)))
5619   //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5620   // FIXME: This turns two single-precision and one double-precision
5621   // operation into two double-precision operations, which might not be
5622   // interesting for all targets, especially GPUs.
5623   if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5624       FMAMI->getOpcode() == PreferredFusedOpcode) {
5625     MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5626     if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5627         TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5628                             MRI.getType(FMAMI->getOperand(0).getReg()))) {
5629       MatchInfo = [=](MachineIRBuilder &B) {
5630         Register X = FMAMI->getOperand(1).getReg();
5631         Register Y = FMAMI->getOperand(2).getReg();
5632         X = B.buildFPExt(DstType, X).getReg(0);
5633         Y = B.buildFPExt(DstType, Y).getReg(0);
5634         buildMatchInfo(FMulMI->getOperand(1).getReg(),
5635                        FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
5636       };
5637       return true;
5638     }
5639   }
5640 
5641   return false;
5642 }
5643 
5644 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
5645     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5646   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5647 
5648   bool AllowFusionGlobally, HasFMAD, Aggressive;
5649   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5650     return false;
5651 
5652   Register Op1 = MI.getOperand(1).getReg();
5653   Register Op2 = MI.getOperand(2).getReg();
5654   DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5655   DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5656   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5657 
5658   // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5659   // prefer to fold the multiply with fewer uses.
5660   int FirstMulHasFewerUses = true;
5661   if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5662       isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5663       hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5664     FirstMulHasFewerUses = false;
5665 
5666   unsigned PreferredFusedOpcode =
5667       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5668 
5669   // fold (fsub (fmul x, y), z) -> (fma x, y, -z)
5670   if (FirstMulHasFewerUses &&
5671       (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5672        (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
5673     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5674       Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
5675       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5676                    {LHS.MI->getOperand(1).getReg(),
5677                     LHS.MI->getOperand(2).getReg(), NegZ});
5678     };
5679     return true;
5680   }
5681   // fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
5682   else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5683             (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
5684     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5685       Register NegY =
5686           B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
5687       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5688                    {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
5689     };
5690     return true;
5691   }
5692 
5693   return false;
5694 }
5695 
5696 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
5697     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5698   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5699 
5700   bool AllowFusionGlobally, HasFMAD, Aggressive;
5701   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5702     return false;
5703 
5704   Register LHSReg = MI.getOperand(1).getReg();
5705   Register RHSReg = MI.getOperand(2).getReg();
5706   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5707 
5708   unsigned PreferredFusedOpcode =
5709       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5710 
5711   MachineInstr *FMulMI;
5712   // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
5713   if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5714       (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
5715                       MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5716       isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5717     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5718       Register NegX =
5719           B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5720       Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5721       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5722                    {NegX, FMulMI->getOperand(2).getReg(), NegZ});
5723     };
5724     return true;
5725   }
5726 
5727   // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
5728   if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
5729       (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
5730                       MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
5731       isContractableFMul(*FMulMI, AllowFusionGlobally)) {
5732     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5733       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5734                    {FMulMI->getOperand(1).getReg(),
5735                     FMulMI->getOperand(2).getReg(), LHSReg});
5736     };
5737     return true;
5738   }
5739 
5740   return false;
5741 }
5742 
5743 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA(
5744     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5745   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5746 
5747   bool AllowFusionGlobally, HasFMAD, Aggressive;
5748   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5749     return false;
5750 
5751   Register LHSReg = MI.getOperand(1).getReg();
5752   Register RHSReg = MI.getOperand(2).getReg();
5753   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5754 
5755   unsigned PreferredFusedOpcode =
5756       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5757 
5758   MachineInstr *FMulMI;
5759   // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z))
5760   if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
5761       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5762       (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) {
5763     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5764       Register FpExtX =
5765           B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5766       Register FpExtY =
5767           B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
5768       Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
5769       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5770                    {FpExtX, FpExtY, NegZ});
5771     };
5772     return true;
5773   }
5774 
5775   // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x)
5776   if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
5777       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5778       (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) {
5779     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5780       Register FpExtY =
5781           B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
5782       Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0);
5783       Register FpExtZ =
5784           B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
5785       B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5786                    {NegY, FpExtZ, LHSReg});
5787     };
5788     return true;
5789   }
5790 
5791   return false;
5792 }
5793 
5794 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA(
5795     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5796   assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5797 
5798   bool AllowFusionGlobally, HasFMAD, Aggressive;
5799   if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5800     return false;
5801 
5802   const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5803   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5804   Register LHSReg = MI.getOperand(1).getReg();
5805   Register RHSReg = MI.getOperand(2).getReg();
5806 
5807   unsigned PreferredFusedOpcode =
5808       HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5809 
5810   auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z,
5811                             MachineIRBuilder &B) {
5812     Register FpExtX = B.buildFPExt(DstTy, X).getReg(0);
5813     Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0);
5814     B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z});
5815   };
5816 
5817   MachineInstr *FMulMI;
5818   // fold (fsub (fpext (fneg (fmul x, y))), z) ->
5819   //      (fneg (fma (fpext x), (fpext y), z))
5820   // fold (fsub (fneg (fpext (fmul x, y))), z) ->
5821   //      (fneg (fma (fpext x), (fpext y), z))
5822   if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
5823        mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
5824       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5825       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
5826                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5827     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5828       Register FMAReg = MRI.createGenericVirtualRegister(DstTy);
5829       buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(),
5830                      FMulMI->getOperand(2).getReg(), RHSReg, B);
5831       B.buildFNeg(MI.getOperand(0).getReg(), FMAReg);
5832     };
5833     return true;
5834   }
5835 
5836   // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
5837   // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
5838   if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
5839        mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
5840       isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5841       TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
5842                           MRI.getType(FMulMI->getOperand(0).getReg()))) {
5843     MatchInfo = [=, &MI](MachineIRBuilder &B) {
5844       buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(),
5845                      FMulMI->getOperand(2).getReg(), LHSReg, B);
5846     };
5847     return true;
5848   }
5849 
5850   return false;
5851 }
5852 
5853 bool CombinerHelper::matchSelectToLogical(MachineInstr &MI,
5854                                           BuildFnTy &MatchInfo) {
5855   GSelect &Sel = cast<GSelect>(MI);
5856   Register DstReg = Sel.getReg(0);
5857   Register Cond = Sel.getCondReg();
5858   Register TrueReg = Sel.getTrueReg();
5859   Register FalseReg = Sel.getFalseReg();
5860 
5861   auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI);
5862   auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI);
5863 
5864   const LLT CondTy = MRI.getType(Cond);
5865   const LLT OpTy = MRI.getType(TrueReg);
5866   if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1)
5867     return false;
5868 
5869   // We have a boolean select.
5870 
5871   // select Cond, Cond, F --> or Cond, F
5872   // select Cond, 1, F    --> or Cond, F
5873   auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI);
5874   if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) {
5875     MatchInfo = [=](MachineIRBuilder &MIB) {
5876       MIB.buildOr(DstReg, Cond, FalseReg);
5877     };
5878     return true;
5879   }
5880 
5881   // select Cond, T, Cond --> and Cond, T
5882   // select Cond, T, 0    --> and Cond, T
5883   auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI);
5884   if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) {
5885     MatchInfo = [=](MachineIRBuilder &MIB) {
5886       MIB.buildAnd(DstReg, Cond, TrueReg);
5887     };
5888     return true;
5889   }
5890 
5891  // select Cond, T, 1 --> or (not Cond), T
5892   if (MaybeCstFalse && MaybeCstFalse->isOne()) {
5893     MatchInfo = [=](MachineIRBuilder &MIB) {
5894       MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg);
5895     };
5896     return true;
5897   }
5898 
5899   // select Cond, 0, F --> and (not Cond), F
5900   if (MaybeCstTrue && MaybeCstTrue->isZero()) {
5901     MatchInfo = [=](MachineIRBuilder &MIB) {
5902       MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg);
5903     };
5904     return true;
5905   }
5906   return false;
5907 }
5908 
5909 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI,
5910                                             unsigned &IdxToPropagate) {
5911   bool PropagateNaN;
5912   switch (MI.getOpcode()) {
5913   default:
5914     return false;
5915   case TargetOpcode::G_FMINNUM:
5916   case TargetOpcode::G_FMAXNUM:
5917     PropagateNaN = false;
5918     break;
5919   case TargetOpcode::G_FMINIMUM:
5920   case TargetOpcode::G_FMAXIMUM:
5921     PropagateNaN = true;
5922     break;
5923   }
5924 
5925   auto MatchNaN = [&](unsigned Idx) {
5926     Register MaybeNaNReg = MI.getOperand(Idx).getReg();
5927     const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI);
5928     if (!MaybeCst || !MaybeCst->getValueAPF().isNaN())
5929       return false;
5930     IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1);
5931     return true;
5932   };
5933 
5934   return MatchNaN(1) || MatchNaN(2);
5935 }
5936 
5937 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) {
5938   assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD");
5939   Register LHS = MI.getOperand(1).getReg();
5940   Register RHS = MI.getOperand(2).getReg();
5941 
5942   // Helper lambda to check for opportunities for
5943   // A + (B - A) -> B
5944   // (B - A) + A -> B
5945   auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) {
5946     Register Reg;
5947     return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) &&
5948            Reg == MaybeSameReg;
5949   };
5950   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
5951 }
5952 
5953 bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI,
5954                                                   Register &MatchInfo) {
5955   // This combine folds the following patterns:
5956   //
5957   //  G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k))
5958   //  G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k)))
5959   //    into
5960   //      x
5961   //    if
5962   //      k == sizeof(VecEltTy)/2
5963   //      type(x) == type(dst)
5964   //
5965   //  G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef)
5966   //    into
5967   //      x
5968   //    if
5969   //      type(x) == type(dst)
5970 
5971   LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg());
5972   LLT DstEltTy = DstVecTy.getElementType();
5973 
5974   Register Lo, Hi;
5975 
5976   if (mi_match(
5977           MI, MRI,
5978           m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) {
5979     MatchInfo = Lo;
5980     return MRI.getType(MatchInfo) == DstVecTy;
5981   }
5982 
5983   std::optional<ValueAndVReg> ShiftAmount;
5984   const auto LoPattern = m_GBitcast(m_Reg(Lo));
5985   const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount));
5986   if (mi_match(
5987           MI, MRI,
5988           m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern),
5989                    m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) {
5990     if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) {
5991       MatchInfo = Lo;
5992       return MRI.getType(MatchInfo) == DstVecTy;
5993     }
5994   }
5995 
5996   return false;
5997 }
5998 
5999 bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI,
6000                                                Register &MatchInfo) {
6001   // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x
6002   // if type(x) == type(G_TRUNC)
6003   if (!mi_match(MI.getOperand(1).getReg(), MRI,
6004                 m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg()))))
6005     return false;
6006 
6007   return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg());
6008 }
6009 
6010 bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI,
6011                                                    Register &MatchInfo) {
6012   // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with
6013   //    y if K == size of vector element type
6014   std::optional<ValueAndVReg> ShiftAmt;
6015   if (!mi_match(MI.getOperand(1).getReg(), MRI,
6016                 m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))),
6017                         m_GCst(ShiftAmt))))
6018     return false;
6019 
6020   LLT MatchTy = MRI.getType(MatchInfo);
6021   return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() &&
6022          MatchTy == MRI.getType(MI.getOperand(0).getReg());
6023 }
6024 
6025 unsigned CombinerHelper::getFPMinMaxOpcForSelect(
6026     CmpInst::Predicate Pred, LLT DstTy,
6027     SelectPatternNaNBehaviour VsNaNRetVal) const {
6028   assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE &&
6029          "Expected a NaN behaviour?");
6030   // Choose an opcode based off of legality or the behaviour when one of the
6031   // LHS/RHS may be NaN.
6032   switch (Pred) {
6033   default:
6034     return 0;
6035   case CmpInst::FCMP_UGT:
6036   case CmpInst::FCMP_UGE:
6037   case CmpInst::FCMP_OGT:
6038   case CmpInst::FCMP_OGE:
6039     if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
6040       return TargetOpcode::G_FMAXNUM;
6041     if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
6042       return TargetOpcode::G_FMAXIMUM;
6043     if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}}))
6044       return TargetOpcode::G_FMAXNUM;
6045     if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}}))
6046       return TargetOpcode::G_FMAXIMUM;
6047     return 0;
6048   case CmpInst::FCMP_ULT:
6049   case CmpInst::FCMP_ULE:
6050   case CmpInst::FCMP_OLT:
6051   case CmpInst::FCMP_OLE:
6052     if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
6053       return TargetOpcode::G_FMINNUM;
6054     if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
6055       return TargetOpcode::G_FMINIMUM;
6056     if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}}))
6057       return TargetOpcode::G_FMINNUM;
6058     if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}}))
6059       return 0;
6060     return TargetOpcode::G_FMINIMUM;
6061   }
6062 }
6063 
6064 CombinerHelper::SelectPatternNaNBehaviour
6065 CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS,
6066                                         bool IsOrderedComparison) const {
6067   bool LHSSafe = isKnownNeverNaN(LHS, MRI);
6068   bool RHSSafe = isKnownNeverNaN(RHS, MRI);
6069   // Completely unsafe.
6070   if (!LHSSafe && !RHSSafe)
6071     return SelectPatternNaNBehaviour::NOT_APPLICABLE;
6072   if (LHSSafe && RHSSafe)
6073     return SelectPatternNaNBehaviour::RETURNS_ANY;
6074   // An ordered comparison will return false when given a NaN, so it
6075   // returns the RHS.
6076   if (IsOrderedComparison)
6077     return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN
6078                    : SelectPatternNaNBehaviour::RETURNS_OTHER;
6079   // An unordered comparison will return true when given a NaN, so it
6080   // returns the LHS.
6081   return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER
6082                  : SelectPatternNaNBehaviour::RETURNS_NAN;
6083 }
6084 
6085 bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond,
6086                                            Register TrueVal, Register FalseVal,
6087                                            BuildFnTy &MatchInfo) {
6088   // Match: select (fcmp cond x, y) x, y
6089   //        select (fcmp cond x, y) y, x
6090   // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition.
6091   LLT DstTy = MRI.getType(Dst);
6092   // Bail out early on pointers, since we'll never want to fold to a min/max.
6093   if (DstTy.isPointer())
6094     return false;
6095   // Match a floating point compare with a less-than/greater-than predicate.
6096   // TODO: Allow multiple users of the compare if they are all selects.
6097   CmpInst::Predicate Pred;
6098   Register CmpLHS, CmpRHS;
6099   if (!mi_match(Cond, MRI,
6100                 m_OneNonDBGUse(
6101                     m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) ||
6102       CmpInst::isEquality(Pred))
6103     return false;
6104   SelectPatternNaNBehaviour ResWithKnownNaNInfo =
6105       computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred));
6106   if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE)
6107     return false;
6108   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6109     std::swap(CmpLHS, CmpRHS);
6110     Pred = CmpInst::getSwappedPredicate(Pred);
6111     if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN)
6112       ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER;
6113     else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER)
6114       ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN;
6115   }
6116   if (TrueVal != CmpLHS || FalseVal != CmpRHS)
6117     return false;
6118   // Decide what type of max/min this should be based off of the predicate.
6119   unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo);
6120   if (!Opc || !isLegal({Opc, {DstTy}}))
6121     return false;
6122   // Comparisons between signed zero and zero may have different results...
6123   // unless we have fmaximum/fminimum. In that case, we know -0 < 0.
6124   if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) {
6125     // We don't know if a comparison between two 0s will give us a consistent
6126     // result. Be conservative and only proceed if at least one side is
6127     // non-zero.
6128     auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI);
6129     if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) {
6130       KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI);
6131       if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero())
6132         return false;
6133     }
6134   }
6135   MatchInfo = [=](MachineIRBuilder &B) {
6136     B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS});
6137   };
6138   return true;
6139 }
6140 
6141 bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI,
6142                                                  BuildFnTy &MatchInfo) {
6143   // TODO: Handle integer cases.
6144   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
6145   // Condition may be fed by a truncated compare.
6146   Register Cond = MI.getOperand(1).getReg();
6147   Register MaybeTrunc;
6148   if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc)))))
6149     Cond = MaybeTrunc;
6150   Register Dst = MI.getOperand(0).getReg();
6151   Register TrueVal = MI.getOperand(2).getReg();
6152   Register FalseVal = MI.getOperand(3).getReg();
6153   return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo);
6154 }
6155 
6156 bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI,
6157                                                    BuildFnTy &MatchInfo) {
6158   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
6159   // (X + Y) == X --> Y == 0
6160   // (X + Y) != X --> Y != 0
6161   // (X - Y) == X --> Y == 0
6162   // (X - Y) != X --> Y != 0
6163   // (X ^ Y) == X --> Y == 0
6164   // (X ^ Y) != X --> Y != 0
6165   Register Dst = MI.getOperand(0).getReg();
6166   CmpInst::Predicate Pred;
6167   Register X, Y, OpLHS, OpRHS;
6168   bool MatchedSub = mi_match(
6169       Dst, MRI,
6170       m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y))));
6171   if (MatchedSub && X != OpLHS)
6172     return false;
6173   if (!MatchedSub) {
6174     if (!mi_match(Dst, MRI,
6175                   m_c_GICmp(m_Pred(Pred), m_Reg(X),
6176                             m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)),
6177                                      m_GXor(m_Reg(OpLHS), m_Reg(OpRHS))))))
6178       return false;
6179     Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register();
6180   }
6181   MatchInfo = [=](MachineIRBuilder &B) {
6182     auto Zero = B.buildConstant(MRI.getType(Y), 0);
6183     B.buildICmp(Pred, Dst, Y, Zero);
6184   };
6185   return CmpInst::isEquality(Pred) && Y.isValid();
6186 }
6187 
6188 bool CombinerHelper::tryCombine(MachineInstr &MI) {
6189   if (tryCombineCopy(MI))
6190     return true;
6191   if (tryCombineExtendingLoads(MI))
6192     return true;
6193   if (tryCombineIndexedLoadStore(MI))
6194     return true;
6195   return false;
6196 }
6197