//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/LowLevelType.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterBankInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/InstrTypes.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DivisionByConstantInfo.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetMachine.h" #include #include #include #define DEBUG_TYPE "gi-combiner" using namespace llvm; using namespace MIPatternMatch; // Option to allow testing of the combiner while no targets know about indexed // addressing. static cl::opt ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), cl::desc("Force all indexed operations to be " "legal for the GlobalISel combiner")); CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, MachineIRBuilder &B, bool IsPreLegalize, GISelKnownBits *KB, MachineDominatorTree *MDT, const LegalizerInfo *LI) : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI), RBI(Builder.getMF().getSubtarget().getRegBankInfo()), TRI(Builder.getMF().getSubtarget().getRegisterInfo()) { (void)this->KB; } const TargetLowering &CombinerHelper::getTargetLowering() const { return *Builder.getMF().getSubtarget().getTargetLowering(); } /// \returns The little endian in-memory byte position of byte \p I in a /// \p ByteWidth bytes wide type. /// /// E.g. Given a 4-byte type x, x[0] -> byte 0 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { assert(I < ByteWidth && "I must be in [0, ByteWidth)"); return I; } /// Determines the LogBase2 value for a non-null input value using the /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). static Register buildLogBase2(Register V, MachineIRBuilder &MIB) { auto &MRI = *MIB.getMRI(); LLT Ty = MRI.getType(V); auto Ctlz = MIB.buildCTLZ(Ty, V); auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1); return MIB.buildSub(Ty, Base, Ctlz).getReg(0); } /// \returns The big endian in-memory byte position of byte \p I in a /// \p ByteWidth bytes wide type. /// /// E.g. Given a 4-byte type x, x[0] -> byte 3 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { assert(I < ByteWidth && "I must be in [0, ByteWidth)"); return ByteWidth - I - 1; } /// Given a map from byte offsets in memory to indices in a load/store, /// determine if that map corresponds to a little or big endian byte pattern. /// /// \param MemOffset2Idx maps memory offsets to address offsets. /// \param LowestIdx is the lowest index in \p MemOffset2Idx. /// /// \returns true if the map corresponds to a big endian byte pattern, false if /// it corresponds to a little endian byte pattern, and std::nullopt otherwise. /// /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns /// are as follows: /// /// AddrOffset Little endian Big endian /// 0 0 3 /// 1 1 2 /// 2 2 1 /// 3 3 0 static std::optional isBigEndian(const SmallDenseMap &MemOffset2Idx, int64_t LowestIdx) { // Need at least two byte positions to decide on endianness. unsigned Width = MemOffset2Idx.size(); if (Width < 2) return std::nullopt; bool BigEndian = true, LittleEndian = true; for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); if (MemOffsetAndIdx == MemOffset2Idx.end()) return std::nullopt; const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; assert(Idx >= 0 && "Expected non-negative byte offset?"); LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); if (!BigEndian && !LittleEndian) return std::nullopt; } assert((BigEndian != LittleEndian) && "Pattern cannot be both big and little endian!"); return BigEndian; } bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; } bool CombinerHelper::isLegal(const LegalityQuery &Query) const { assert(LI && "Must have LegalizerInfo to query isLegal!"); return LI->getAction(Query).Action == LegalizeActions::Legal; } bool CombinerHelper::isLegalOrBeforeLegalizer( const LegalityQuery &Query) const { return isPreLegalize() || isLegal(Query); } bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const { if (!Ty.isVector()) return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}}); // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs. if (isPreLegalize()) return true; LLT EltTy = Ty.getElementType(); return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) && isLegal({TargetOpcode::G_CONSTANT, {EltTy}}); } void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, Register ToReg) const { Observer.changingAllUsesOfReg(MRI, FromReg); if (MRI.constrainRegAttrs(ToReg, FromReg)) MRI.replaceRegWith(FromReg, ToReg); else Builder.buildCopy(ToReg, FromReg); Observer.finishedChangingAllUsesOfReg(); } void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, MachineOperand &FromRegOp, Register ToReg) const { assert(FromRegOp.getParent() && "Expected an operand in an MI"); Observer.changingInstr(*FromRegOp.getParent()); FromRegOp.setReg(ToReg); Observer.changedInstr(*FromRegOp.getParent()); } void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI, unsigned ToOpcode) const { Observer.changingInstr(FromMI); FromMI.setDesc(Builder.getTII().get(ToOpcode)); Observer.changedInstr(FromMI); } const RegisterBank *CombinerHelper::getRegBank(Register Reg) const { return RBI->getRegBank(Reg, MRI, *TRI); } void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) { if (RegBank) MRI.setRegBank(Reg, *RegBank); } bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { if (matchCombineCopy(MI)) { applyCombineCopy(MI); return true; } return false; } bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { if (MI.getOpcode() != TargetOpcode::COPY) return false; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); return canReplaceReg(DstReg, SrcReg, MRI); } void CombinerHelper::applyCombineCopy(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, SrcReg); } bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { bool IsUndef = false; SmallVector Ops; if (matchCombineConcatVectors(MI, IsUndef, Ops)) { applyCombineConcatVectors(MI, IsUndef, Ops); return true; } return false; } bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, SmallVectorImpl &Ops) { assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && "Invalid instruction"); IsUndef = true; MachineInstr *Undef = nullptr; // Walk over all the operands of concat vectors and check if they are // build_vector themselves or undef. // Then collect their operands in Ops. for (const MachineOperand &MO : MI.uses()) { Register Reg = MO.getReg(); MachineInstr *Def = MRI.getVRegDef(Reg); assert(Def && "Operand not defined"); switch (Def->getOpcode()) { case TargetOpcode::G_BUILD_VECTOR: IsUndef = false; // Remember the operands of the build_vector to fold // them into the yet-to-build flattened concat vectors. for (const MachineOperand &BuildVecMO : Def->uses()) Ops.push_back(BuildVecMO.getReg()); break; case TargetOpcode::G_IMPLICIT_DEF: { LLT OpType = MRI.getType(Reg); // Keep one undef value for all the undef operands. if (!Undef) { Builder.setInsertPt(*MI.getParent(), MI); Undef = Builder.buildUndef(OpType.getScalarType()); } assert(MRI.getType(Undef->getOperand(0).getReg()) == OpType.getScalarType() && "All undefs should have the same type"); // Break the undef vector in as many scalar elements as needed // for the flattening. for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); EltIdx != EltEnd; ++EltIdx) Ops.push_back(Undef->getOperand(0).getReg()); break; } default: return false; } } return true; } void CombinerHelper::applyCombineConcatVectors( MachineInstr &MI, bool IsUndef, const ArrayRef Ops) { // We determined that the concat_vectors can be flatten. // Generate the flattened build_vector. Register DstReg = MI.getOperand(0).getReg(); Builder.setInsertPt(*MI.getParent(), MI); Register NewDstReg = MRI.cloneVirtualRegister(DstReg); // Note: IsUndef is sort of redundant. We could have determine it by // checking that at all Ops are undef. Alternatively, we could have // generate a build_vector of undefs and rely on another combine to // clean that up. For now, given we already gather this information // in tryCombineConcatVectors, just save compile time and issue the // right thing. if (IsUndef) Builder.buildUndef(NewDstReg); else Builder.buildBuildVector(NewDstReg, Ops); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, NewDstReg); } bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { SmallVector Ops; if (matchCombineShuffleVector(MI, Ops)) { applyCombineShuffleVector(MI, Ops); return true; } return false; } bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, SmallVectorImpl &Ops) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && "Invalid instruction kind"); LLT DstType = MRI.getType(MI.getOperand(0).getReg()); Register Src1 = MI.getOperand(1).getReg(); LLT SrcType = MRI.getType(Src1); // As bizarre as it may look, shuffle vector can actually produce // scalar! This is because at the IR level a <1 x ty> shuffle // vector is perfectly valid. unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; // If the resulting vector is smaller than the size of the source // vectors being concatenated, we won't be able to replace the // shuffle vector into a concat_vectors. // // Note: We may still be able to produce a concat_vectors fed by // extract_vector_elt and so on. It is less clear that would // be better though, so don't bother for now. // // If the destination is a scalar, the size of the sources doesn't // matter. we will lower the shuffle to a plain copy. This will // work only if the source and destination have the same size. But // that's covered by the next condition. // // TODO: If the size between the source and destination don't match // we could still emit an extract vector element in that case. if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) return false; // Check that the shuffle mask can be broken evenly between the // different sources. if (DstNumElts % SrcNumElts != 0) return false; // Mask length is a multiple of the source vector length. // Check if the shuffle is some kind of concatenation of the input // vectors. unsigned NumConcat = DstNumElts / SrcNumElts; SmallVector ConcatSrcs(NumConcat, -1); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); for (unsigned i = 0; i != DstNumElts; ++i) { int Idx = Mask[i]; // Undef value. if (Idx < 0) continue; // Ensure the indices in each SrcType sized piece are sequential and that // the same source is used for the whole piece. if ((Idx % SrcNumElts != (i % SrcNumElts)) || (ConcatSrcs[i / SrcNumElts] >= 0 && ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) return false; // Remember which source this index came from. ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; } // The shuffle is concatenating multiple vectors together. // Collect the different operands for that. Register UndefReg; Register Src2 = MI.getOperand(2).getReg(); for (auto Src : ConcatSrcs) { if (Src < 0) { if (!UndefReg) { Builder.setInsertPt(*MI.getParent(), MI); UndefReg = Builder.buildUndef(SrcType).getReg(0); } Ops.push_back(UndefReg); } else if (Src == 0) Ops.push_back(Src1); else Ops.push_back(Src2); } return true; } void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, const ArrayRef Ops) { Register DstReg = MI.getOperand(0).getReg(); Builder.setInsertPt(*MI.getParent(), MI); Register NewDstReg = MRI.cloneVirtualRegister(DstReg); if (Ops.size() == 1) Builder.buildCopy(NewDstReg, Ops[0]); else Builder.buildMergeLikeInstr(NewDstReg, Ops); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, NewDstReg); } namespace { /// Select a preference between two uses. CurrentUse is the current preference /// while *ForCandidate is attributes of the candidate under consideration. PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, const LLT TyForCandidate, unsigned OpcodeForCandidate, MachineInstr *MIForCandidate) { if (!CurrentUse.Ty.isValid()) { if (CurrentUse.ExtendOpcode == OpcodeForCandidate || CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; return CurrentUse; } // We permit the extend to hoist through basic blocks but this is only // sensible if the target has extending loads. If you end up lowering back // into a load and extend during the legalizer then the end result is // hoisting the extend up to the load. // Prefer defined extensions to undefined extensions as these are more // likely to reduce the number of instructions. if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) return CurrentUse; else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && OpcodeForCandidate != TargetOpcode::G_ANYEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; // Prefer sign extensions to zero extensions as sign-extensions tend to be // more expensive. if (CurrentUse.Ty == TyForCandidate) { if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && OpcodeForCandidate == TargetOpcode::G_ZEXT) return CurrentUse; else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && OpcodeForCandidate == TargetOpcode::G_SEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; } // This is potentially target specific. We've chosen the largest type // because G_TRUNC is usually free. One potential catch with this is that // some targets have a reduced number of larger registers than smaller // registers and this choice potentially increases the live-range for the // larger value. if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; } return CurrentUse; } /// Find a suitable place to insert some instructions and insert them. This /// function accounts for special cases like inserting before a PHI node. /// The current strategy for inserting before PHI's is to duplicate the /// instructions for each predecessor. However, while that's ok for G_TRUNC /// on most targets since it generally requires no code, other targets/cases may /// want to try harder to find a dominating block. static void InsertInsnsWithoutSideEffectsBeforeUse( MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, std::function Inserter) { MachineInstr &UseMI = *UseMO.getParent(); MachineBasicBlock *InsertBB = UseMI.getParent(); // If the use is a PHI then we want the predecessor block instead. if (UseMI.isPHI()) { MachineOperand *PredBB = std::next(&UseMO); InsertBB = PredBB->getMBB(); } // If the block is the same block as the def then we want to insert just after // the def instead of at the start of the block. if (InsertBB == DefMI.getParent()) { MachineBasicBlock::iterator InsertPt = &DefMI; Inserter(InsertBB, std::next(InsertPt), UseMO); return; } // Otherwise we want the start of the BB Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); } } // end anonymous namespace bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { PreferredTuple Preferred; if (matchCombineExtendingLoads(MI, Preferred)) { applyCombineExtendingLoads(MI, Preferred); return true; } return false; } static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) { unsigned CandidateLoadOpc; switch (ExtOpc) { case TargetOpcode::G_ANYEXT: CandidateLoadOpc = TargetOpcode::G_LOAD; break; case TargetOpcode::G_SEXT: CandidateLoadOpc = TargetOpcode::G_SEXTLOAD; break; case TargetOpcode::G_ZEXT: CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD; break; default: llvm_unreachable("Unexpected extend opc"); } return CandidateLoadOpc; } bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, PreferredTuple &Preferred) { // We match the loads and follow the uses to the extend instead of matching // the extends and following the def to the load. This is because the load // must remain in the same position for correctness (unless we also add code // to find a safe place to sink it) whereas the extend is freely movable. // It also prevents us from duplicating the load for the volatile case or just // for performance. GAnyLoad *LoadMI = dyn_cast(&MI); if (!LoadMI) return false; Register LoadReg = LoadMI->getDstReg(); LLT LoadValueTy = MRI.getType(LoadReg); if (!LoadValueTy.isScalar()) return false; // Most architectures are going to legalize (&MI) ? TargetOpcode::G_ANYEXT : isa(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; Preferred = {LLT(), PreferredOpcode, nullptr}; for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) { if (UseMI.getOpcode() == TargetOpcode::G_SEXT || UseMI.getOpcode() == TargetOpcode::G_ZEXT || (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) { const auto &MMO = LoadMI->getMMO(); // For atomics, only form anyextending loads. if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT) continue; // Check for legality. if (!isPreLegalize()) { LegalityQuery::MemDesc MMDesc(MMO); unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode()); LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg()); LLT SrcTy = MRI.getType(LoadMI->getPointerReg()); if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}}) .Action != LegalizeActions::Legal) continue; } Preferred = ChoosePreferredUse(Preferred, MRI.getType(UseMI.getOperand(0).getReg()), UseMI.getOpcode(), &UseMI); } } // There were no extends if (!Preferred.MI) return false; // It should be impossible to chose an extend without selecting a different // type since by definition the result of an extend is larger. assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI); return true; } void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI, PreferredTuple &Preferred) { // Rewrite the load to the chosen extending load. Register ChosenDstReg = Preferred.MI->getOperand(0).getReg(); // Inserter to insert a truncate back to the original type at a given point // with some basic CSE to limit truncate duplication to one per BB. DenseMap EmittedInsns; auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, MachineBasicBlock::iterator InsertBefore, MachineOperand &UseMO) { MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); if (PreviouslyEmitted) { Observer.changingInstr(*UseMO.getParent()); UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); Observer.changedInstr(*UseMO.getParent()); return; } Builder.setInsertPt(*InsertIntoBB, InsertBefore); Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); EmittedInsns[InsertIntoBB] = NewMI; replaceRegOpWith(MRI, UseMO, NewDstReg); }; Observer.changingInstr(MI); unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode); MI.setDesc(Builder.getTII().get(LoadOpc)); // Rewrite all the uses to fix up the types. auto &LoadValue = MI.getOperand(0); SmallVector Uses; for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) Uses.push_back(&UseMO); for (auto *UseMO : Uses) { MachineInstr *UseMI = UseMO->getParent(); // If the extend is compatible with the preferred extend then we should fix // up the type and extend so that it uses the preferred use. if (UseMI->getOpcode() == Preferred.ExtendOpcode || UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { Register UseDstReg = UseMI->getOperand(0).getReg(); MachineOperand &UseSrcMO = UseMI->getOperand(1); const LLT UseDstTy = MRI.getType(UseDstReg); if (UseDstReg != ChosenDstReg) { if (Preferred.Ty == UseDstTy) { // If the use has the same type as the preferred use, then merge // the vregs and erase the extend. For example: // %1:_(s8) = G_LOAD ... // %2:_(s32) = G_SEXT %1(s8) // %3:_(s32) = G_ANYEXT %1(s8) // ... = ... %3(s32) // rewrites to: // %2:_(s32) = G_SEXTLOAD ... // ... = ... %2(s32) replaceRegWith(MRI, UseDstReg, ChosenDstReg); Observer.erasingInstr(*UseMO->getParent()); UseMO->getParent()->eraseFromParent(); } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { // If the preferred size is smaller, then keep the extend but extend // from the result of the extending load. For example: // %1:_(s8) = G_LOAD ... // %2:_(s32) = G_SEXT %1(s8) // %3:_(s64) = G_ANYEXT %1(s8) // ... = ... %3(s64) /// rewrites to: // %2:_(s32) = G_SEXTLOAD ... // %3:_(s64) = G_ANYEXT %2:_(s32) // ... = ... %3(s64) replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); } else { // If the preferred size is large, then insert a truncate. For // example: // %1:_(s8) = G_LOAD ... // %2:_(s64) = G_SEXT %1(s8) // %3:_(s32) = G_ZEXT %1(s8) // ... = ... %3(s32) /// rewrites to: // %2:_(s64) = G_SEXTLOAD ... // %4:_(s8) = G_TRUNC %2:_(s32) // %3:_(s64) = G_ZEXT %2:_(s8) // ... = ... %3(s64) InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); } continue; } // The use is (one of) the uses of the preferred use we chose earlier. // We're going to update the load to def this value later so just erase // the old extend. Observer.erasingInstr(*UseMO->getParent()); UseMO->getParent()->eraseFromParent(); continue; } // The use isn't an extend. Truncate back to the type we originally loaded. // This is free on many targets. InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); } MI.getOperand(0).setReg(ChosenDstReg); Observer.changedInstr(MI); } bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI, BuildFnTy &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_AND); // If we have the following code: // %mask = G_CONSTANT 255 // %ld = G_LOAD %ptr, (load s16) // %and = G_AND %ld, %mask // // Try to fold it into // %ld = G_ZEXTLOAD %ptr, (load s8) Register Dst = MI.getOperand(0).getReg(); if (MRI.getType(Dst).isVector()) return false; auto MaybeMask = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); if (!MaybeMask) return false; APInt MaskVal = MaybeMask->Value; if (!MaskVal.isMask()) return false; Register SrcReg = MI.getOperand(1).getReg(); // Don't use getOpcodeDef() here since intermediate instructions may have // multiple users. GAnyLoad *LoadMI = dyn_cast(MRI.getVRegDef(SrcReg)); if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg())) return false; Register LoadReg = LoadMI->getDstReg(); LLT RegTy = MRI.getType(LoadReg); Register PtrReg = LoadMI->getPointerReg(); unsigned RegSize = RegTy.getSizeInBits(); uint64_t LoadSizeBits = LoadMI->getMemSizeInBits(); unsigned MaskSizeBits = MaskVal.countTrailingOnes(); // The mask may not be larger than the in-memory type, as it might cover sign // extended bits if (MaskSizeBits > LoadSizeBits) return false; // If the mask covers the whole destination register, there's nothing to // extend if (MaskSizeBits >= RegSize) return false; // Most targets cannot deal with loads of size < 8 and need to re-legalize to // at least byte loads. Avoid creating such loads here if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits)) return false; const MachineMemOperand &MMO = LoadMI->getMMO(); LegalityQuery::MemDesc MemDesc(MMO); // Don't modify the memory access size if this is atomic/volatile, but we can // still adjust the opcode to indicate the high bit behavior. if (LoadMI->isSimple()) MemDesc.MemoryTy = LLT::scalar(MaskSizeBits); else if (LoadSizeBits > MaskSizeBits || LoadSizeBits == RegSize) return false; // TODO: Could check if it's legal with the reduced or original memory size. if (!isLegalOrBeforeLegalizer( {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}})) return false; MatchInfo = [=](MachineIRBuilder &B) { B.setInstrAndDebugLoc(*LoadMI); auto &MF = B.getMF(); auto PtrInfo = MMO.getPointerInfo(); auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy); B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO); LoadMI->eraseFromParent(); }; return true; } bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, const MachineInstr &UseMI) { assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && "shouldn't consider debug uses"); assert(DefMI.getParent() == UseMI.getParent()); if (&DefMI == &UseMI) return true; const MachineBasicBlock &MBB = *DefMI.getParent(); auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { return &MI == &DefMI || &MI == &UseMI; }); if (DefOrUse == MBB.end()) llvm_unreachable("Block must contain both DefMI and UseMI!"); return &*DefOrUse == &DefMI; } bool CombinerHelper::dominates(const MachineInstr &DefMI, const MachineInstr &UseMI) { assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() && "shouldn't consider debug uses"); if (MDT) return MDT->dominates(&DefMI, &UseMI); else if (DefMI.getParent() != UseMI.getParent()) return false; return isPredecessor(DefMI, UseMI); } bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Register SrcReg = MI.getOperand(1).getReg(); Register LoadUser = SrcReg; if (MRI.getType(SrcReg).isVector()) return false; Register TruncSrc; if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) LoadUser = TruncSrc; uint64_t SizeInBits = MI.getOperand(2).getImm(); // If the source is a G_SEXTLOAD from the same bit width, then we don't // need any extend at all, just a truncate. if (auto *LoadMI = getOpcodeDef(LoadUser, MRI)) { // If truncating more than the original extended value, abort. auto LoadSizeBits = LoadMI->getMemSizeInBits(); if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits) return false; if (LoadSizeBits == SizeInBits) return true; } return false; } void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Builder.setInstrAndDebugLoc(MI); Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); MI.eraseFromParent(); } bool CombinerHelper::matchSextInRegOfLoad( MachineInstr &MI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Register DstReg = MI.getOperand(0).getReg(); LLT RegTy = MRI.getType(DstReg); // Only supports scalars for now. if (RegTy.isVector()) return false; Register SrcReg = MI.getOperand(1).getReg(); auto *LoadDef = getOpcodeDef(SrcReg, MRI); if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg)) return false; uint64_t MemBits = LoadDef->getMemSizeInBits(); // If the sign extend extends from a narrower width than the load's width, // then we can narrow the load width when we combine to a G_SEXTLOAD. // Avoid widening the load at all. unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits); // Don't generate G_SEXTLOADs with a < 1 byte width. if (NewSizeBits < 8) return false; // Don't bother creating a non-power-2 sextload, it will likely be broken up // anyway for most targets. if (!isPowerOf2_32(NewSizeBits)) return false; const MachineMemOperand &MMO = LoadDef->getMMO(); LegalityQuery::MemDesc MMDesc(MMO); // Don't modify the memory access size if this is atomic/volatile, but we can // still adjust the opcode to indicate the high bit behavior. if (LoadDef->isSimple()) MMDesc.MemoryTy = LLT::scalar(NewSizeBits); else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits()) return false; // TODO: Could check if it's legal with the reduced or original memory size. if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD, {MRI.getType(LoadDef->getDstReg()), MRI.getType(LoadDef->getPointerReg())}, {MMDesc}})) return false; MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits); return true; } void CombinerHelper::applySextInRegOfLoad( MachineInstr &MI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Register LoadReg; unsigned ScalarSizeBits; std::tie(LoadReg, ScalarSizeBits) = MatchInfo; GLoad *LoadDef = cast(MRI.getVRegDef(LoadReg)); // If we have the following: // %ld = G_LOAD %ptr, (load 2) // %ext = G_SEXT_INREG %ld, 8 // ==> // %ld = G_SEXTLOAD %ptr (load 1) auto &MMO = LoadDef->getMMO(); Builder.setInstrAndDebugLoc(*LoadDef); auto &MF = Builder.getMF(); auto PtrInfo = MMO.getPointerInfo(); auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), LoadDef->getPointerReg(), *NewMMO); MI.eraseFromParent(); } bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, Register &Base, Register &Offset) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); #ifndef NDEBUG unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); #endif Base = MI.getOperand(1).getReg(); MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) return false; LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); // FIXME: The following use traversal needs a bail out for patholigical cases. for (auto &Use : MRI.use_nodbg_instructions(Base)) { if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) continue; Offset = Use.getOperand(2).getReg(); if (!ForceLegalIndexing && !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " << Use); continue; } // Make sure the offset calculation is before the potentially indexed op. // FIXME: we really care about dependency here. The offset calculation might // be movable. MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); if (!OffsetDef || !dominates(*OffsetDef, MI)) { LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " << Use); continue; } // FIXME: check whether all uses of Base are load/store with foldable // addressing modes. If so, using the normal addr-modes is better than // forming an indexed one. bool MemOpDominatesAddrUses = true; for (auto &PtrAddUse : MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) { if (!dominates(MI, PtrAddUse)) { MemOpDominatesAddrUses = false; break; } } if (!MemOpDominatesAddrUses) { LLVM_DEBUG( dbgs() << " Ignoring candidate as memop does not dominate uses: " << Use); continue; } LLVM_DEBUG(dbgs() << " Found match: " << Use); Addr = Use.getOperand(0).getReg(); return true; } return false; } bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, Register &Base, Register &Offset) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); #ifndef NDEBUG unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); #endif Addr = MI.getOperand(1).getReg(); MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); if (!AddrDef || MRI.hasOneNonDBGUse(Addr)) return false; Base = AddrDef->getOperand(1).getReg(); Offset = AddrDef->getOperand(2).getReg(); LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); if (!ForceLegalIndexing && !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); return false; } MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); return false; } if (MI.getOpcode() == TargetOpcode::G_STORE) { // Would require a copy. if (Base == MI.getOperand(0).getReg()) { LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); return false; } // We're expecting one use of Addr in MI, but it could also be the // value stored, which isn't actually dominated by the instruction. if (MI.getOperand(0).getReg() == Addr) { LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); return false; } } // FIXME: check whether all uses of the base pointer are constant PtrAdds. // That might allow us to end base's liveness here by adjusting the constant. for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) { if (!dominates(MI, UseMI)) { LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); return false; } } return true; } bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { IndexedLoadStoreMatchInfo MatchInfo; if (matchCombineIndexedLoadStore(MI, MatchInfo)) { applyCombineIndexedLoadStore(MI, MatchInfo); return true; } return false; } bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { unsigned Opcode = MI.getOpcode(); if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) return false; // For now, no targets actually support these opcodes so don't waste time // running these unless we're forced to for testing. if (!ForceLegalIndexing) return false; MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, MatchInfo.Offset); if (!MatchInfo.IsPre && !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, MatchInfo.Offset)) return false; return true; } void CombinerHelper::applyCombineIndexedLoadStore( MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); MachineIRBuilder MIRBuilder(MI); unsigned Opcode = MI.getOpcode(); bool IsStore = Opcode == TargetOpcode::G_STORE; unsigned NewOpcode; switch (Opcode) { case TargetOpcode::G_LOAD: NewOpcode = TargetOpcode::G_INDEXED_LOAD; break; case TargetOpcode::G_SEXTLOAD: NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; break; case TargetOpcode::G_ZEXTLOAD: NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; break; case TargetOpcode::G_STORE: NewOpcode = TargetOpcode::G_INDEXED_STORE; break; default: llvm_unreachable("Unknown load/store opcode"); } auto MIB = MIRBuilder.buildInstr(NewOpcode); if (IsStore) { MIB.addDef(MatchInfo.Addr); MIB.addUse(MI.getOperand(0).getReg()); } else { MIB.addDef(MI.getOperand(0).getReg()); MIB.addDef(MatchInfo.Addr); } MIB.addUse(MatchInfo.Base); MIB.addUse(MatchInfo.Offset); MIB.addImm(MatchInfo.IsPre); MI.eraseFromParent(); AddrDef.eraseFromParent(); LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); } bool CombinerHelper::matchCombineDivRem(MachineInstr &MI, MachineInstr *&OtherMI) { unsigned Opcode = MI.getOpcode(); bool IsDiv, IsSigned; switch (Opcode) { default: llvm_unreachable("Unexpected opcode!"); case TargetOpcode::G_SDIV: case TargetOpcode::G_UDIV: { IsDiv = true; IsSigned = Opcode == TargetOpcode::G_SDIV; break; } case TargetOpcode::G_SREM: case TargetOpcode::G_UREM: { IsDiv = false; IsSigned = Opcode == TargetOpcode::G_SREM; break; } } Register Src1 = MI.getOperand(1).getReg(); unsigned DivOpcode, RemOpcode, DivremOpcode; if (IsSigned) { DivOpcode = TargetOpcode::G_SDIV; RemOpcode = TargetOpcode::G_SREM; DivremOpcode = TargetOpcode::G_SDIVREM; } else { DivOpcode = TargetOpcode::G_UDIV; RemOpcode = TargetOpcode::G_UREM; DivremOpcode = TargetOpcode::G_UDIVREM; } if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}})) return false; // Combine: // %div:_ = G_[SU]DIV %src1:_, %src2:_ // %rem:_ = G_[SU]REM %src1:_, %src2:_ // into: // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ // Combine: // %rem:_ = G_[SU]REM %src1:_, %src2:_ // %div:_ = G_[SU]DIV %src1:_, %src2:_ // into: // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_ for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) { if (MI.getParent() == UseMI.getParent() && ((IsDiv && UseMI.getOpcode() == RemOpcode) || (!IsDiv && UseMI.getOpcode() == DivOpcode)) && matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) && matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) { OtherMI = &UseMI; return true; } } return false; } void CombinerHelper::applyCombineDivRem(MachineInstr &MI, MachineInstr *&OtherMI) { unsigned Opcode = MI.getOpcode(); assert(OtherMI && "OtherMI shouldn't be empty."); Register DestDivReg, DestRemReg; if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) { DestDivReg = MI.getOperand(0).getReg(); DestRemReg = OtherMI->getOperand(0).getReg(); } else { DestDivReg = OtherMI->getOperand(0).getReg(); DestRemReg = MI.getOperand(0).getReg(); } bool IsSigned = Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM; // Check which instruction is first in the block so we don't break def-use // deps by "moving" the instruction incorrectly. if (dominates(MI, *OtherMI)) Builder.setInstrAndDebugLoc(MI); else Builder.setInstrAndDebugLoc(*OtherMI); Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM : TargetOpcode::G_UDIVREM, {DestDivReg, DestRemReg}, {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()}); MI.eraseFromParent(); OtherMI->eraseFromParent(); } bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI, MachineInstr *&BrCond) { assert(MI.getOpcode() == TargetOpcode::G_BR); // Try to match the following: // bb1: // G_BRCOND %c1, %bb2 // G_BR %bb3 // bb2: // ... // bb3: // The above pattern does not have a fall through to the successor bb2, always // resulting in a branch no matter which path is taken. Here we try to find // and replace that pattern with conditional branch to bb3 and otherwise // fallthrough to bb2. This is generally better for branch predictors. MachineBasicBlock *MBB = MI.getParent(); MachineBasicBlock::iterator BrIt(MI); if (BrIt == MBB->begin()) return false; assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); BrCond = &*std::prev(BrIt); if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) return false; // Check that the next block is the conditional branch target. Also make sure // that it isn't the same as the G_BR's target (otherwise, this will loop.) MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); return BrCondTarget != MI.getOperand(0).getMBB() && MBB->isLayoutSuccessor(BrCondTarget); } void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI, MachineInstr *&BrCond) { MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); Builder.setInstrAndDebugLoc(*BrCond); LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); // FIXME: Does int/fp matter for this? If so, we might need to restrict // this to i1 only since we might not know for sure what kind of // compare generated the condition value. auto True = Builder.buildConstant( Ty, getICmpTrueVal(getTargetLowering(), false, false)); auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); auto *FallthroughBB = BrCond->getOperand(1).getMBB(); Observer.changingInstr(MI); MI.getOperand(0).setMBB(FallthroughBB); Observer.changedInstr(MI); // Change the conditional branch to use the inverted condition and // new target block. Observer.changingInstr(*BrCond); BrCond->getOperand(0).setReg(Xor.getReg(0)); BrCond->getOperand(1).setMBB(BrTarget); Observer.changedInstr(*BrCond); } static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { if (Ty.isVector()) return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), Ty.getNumElements()); return IntegerType::get(C, Ty.getSizeInBits()); } bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) { MachineIRBuilder HelperBuilder(MI); GISelObserverWrapper DummyObserver; LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); return Helper.lowerMemcpyInline(MI) == LegalizerHelper::LegalizeResult::Legalized; } bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { MachineIRBuilder HelperBuilder(MI); GISelObserverWrapper DummyObserver; LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder); return Helper.lowerMemCpyFamily(MI, MaxLen) == LegalizerHelper::LegalizeResult::Legalized; } static std::optional constantFoldFpUnary(unsigned Opcode, LLT DstTy, const Register Op, const MachineRegisterInfo &MRI) { const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); if (!MaybeCst) return std::nullopt; APFloat V = MaybeCst->getValueAPF(); switch (Opcode) { default: llvm_unreachable("Unexpected opcode!"); case TargetOpcode::G_FNEG: { V.changeSign(); return V; } case TargetOpcode::G_FABS: { V.clearSign(); return V; } case TargetOpcode::G_FPTRUNC: break; case TargetOpcode::G_FSQRT: { bool Unused; V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); V = APFloat(sqrt(V.convertToDouble())); break; } case TargetOpcode::G_FLOG2: { bool Unused; V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); V = APFloat(log2(V.convertToDouble())); break; } } // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, // and `G_FLOG2` reach here. bool Unused; V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); return V; } bool CombinerHelper::matchCombineConstantFoldFpUnary( MachineInstr &MI, std::optional &Cst) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); return Cst.has_value(); } void CombinerHelper::applyCombineConstantFoldFpUnary( MachineInstr &MI, std::optional &Cst) { assert(Cst && "Optional is unexpectedly empty!"); Builder.setInstrAndDebugLoc(MI); MachineFunction &MF = Builder.getMF(); auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); Register DstReg = MI.getOperand(0).getReg(); Builder.buildFConstant(DstReg, *FPVal); MI.eraseFromParent(); } bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, PtrAddChain &MatchInfo) { // We're trying to match the following pattern: // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 // --> // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) return false; Register Add2 = MI.getOperand(1).getReg(); Register Imm1 = MI.getOperand(2).getReg(); auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); if (!MaybeImmVal) return false; MachineInstr *Add2Def = MRI.getVRegDef(Add2); if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) return false; Register Base = Add2Def->getOperand(1).getReg(); Register Imm2 = Add2Def->getOperand(2).getReg(); auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); if (!MaybeImm2Val) return false; // Check if the new combined immediate forms an illegal addressing mode. // Do not combine if it was legal before but would get illegal. // To do so, we need to find a load/store user of the pointer to get // the access type. Type *AccessTy = nullptr; auto &MF = *MI.getMF(); for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) { if (auto *LdSt = dyn_cast(&UseMI)) { AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)), MF.getFunction().getContext()); break; } } TargetLoweringBase::AddrMode AMNew; APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value; AMNew.BaseOffs = CombinedImm.getSExtValue(); if (AccessTy) { AMNew.HasBaseReg = true; TargetLoweringBase::AddrMode AMOld; AMOld.BaseOffs = MaybeImm2Val->Value.getSExtValue(); AMOld.HasBaseReg = true; unsigned AS = MRI.getType(Add2).getAddressSpace(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) && !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS)) return false; } // Pass the combined immediate to the apply function. MatchInfo.Imm = AMNew.BaseOffs; MatchInfo.Base = Base; MatchInfo.Bank = getRegBank(Imm2); return true; } void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, PtrAddChain &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); MachineIRBuilder MIB(MI); LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); setRegBank(NewOffset.getReg(0), MatchInfo.Bank); Observer.changingInstr(MI); MI.getOperand(1).setReg(MatchInfo.Base); MI.getOperand(2).setReg(NewOffset.getReg(0)); Observer.changedInstr(MI); } bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, RegisterImmPair &MatchInfo) { // We're trying to match the following pattern with any of // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: // %t1 = SHIFT %base, G_CONSTANT imm1 // %root = SHIFT %t1, G_CONSTANT imm2 // --> // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) unsigned Opcode = MI.getOpcode(); assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); Register Shl2 = MI.getOperand(1).getReg(); Register Imm1 = MI.getOperand(2).getReg(); auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI); if (!MaybeImmVal) return false; MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); if (Shl2Def->getOpcode() != Opcode) return false; Register Base = Shl2Def->getOperand(1).getReg(); Register Imm2 = Shl2Def->getOperand(2).getReg(); auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI); if (!MaybeImm2Val) return false; // Pass the combined immediate to the apply function. MatchInfo.Imm = (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); MatchInfo.Reg = Base; // There is no simple replacement for a saturating unsigned left shift that // exceeds the scalar size. if (Opcode == TargetOpcode::G_USHLSAT && MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) return false; return true; } void CombinerHelper::applyShiftImmedChain(MachineInstr &MI, RegisterImmPair &MatchInfo) { unsigned Opcode = MI.getOpcode(); assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || Opcode == TargetOpcode::G_USHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); Builder.setInstrAndDebugLoc(MI); LLT Ty = MRI.getType(MI.getOperand(1).getReg()); unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); auto Imm = MatchInfo.Imm; if (Imm >= ScalarSizeInBits) { // Any logical shift that exceeds scalar size will produce zero. if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { Builder.buildConstant(MI.getOperand(0), 0); MI.eraseFromParent(); return; } // Arithmetic shift and saturating signed left shift have no effect beyond // scalar size. Imm = ScalarSizeInBits - 1; } LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); Observer.changingInstr(MI); MI.getOperand(1).setReg(MatchInfo.Reg); MI.getOperand(2).setReg(NewImm); Observer.changedInstr(MI); } bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, ShiftOfShiftedLogic &MatchInfo) { // We're trying to match the following pattern with any of // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination // with any of G_AND/G_OR/G_XOR logic instructions. // %t1 = SHIFT %X, G_CONSTANT C0 // %t2 = LOGIC %t1, %Y // %root = SHIFT %t2, G_CONSTANT C1 // --> // %t3 = SHIFT %X, G_CONSTANT (C0+C1) // %t4 = SHIFT %Y, G_CONSTANT C1 // %root = LOGIC %t3, %t4 unsigned ShiftOpcode = MI.getOpcode(); assert((ShiftOpcode == TargetOpcode::G_SHL || ShiftOpcode == TargetOpcode::G_ASHR || ShiftOpcode == TargetOpcode::G_LSHR || ShiftOpcode == TargetOpcode::G_USHLSAT || ShiftOpcode == TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); // Match a one-use bitwise logic op. Register LogicDest = MI.getOperand(1).getReg(); if (!MRI.hasOneNonDBGUse(LogicDest)) return false; MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); unsigned LogicOpcode = LogicMI->getOpcode(); if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && LogicOpcode != TargetOpcode::G_XOR) return false; // Find a matching one-use shift by constant. const Register C1 = MI.getOperand(2).getReg(); auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI); if (!MaybeImmVal) return false; const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { // Shift should match previous one and should be a one-use. if (MI->getOpcode() != ShiftOpcode || !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) return false; // Must be a constant. auto MaybeImmVal = getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); if (!MaybeImmVal) return false; ShiftVal = MaybeImmVal->Value.getSExtValue(); return true; }; // Logic ops are commutative, so check each operand for a match. Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); uint64_t C0Val; if (matchFirstShift(LogicMIOp1, C0Val)) { MatchInfo.LogicNonShiftReg = LogicMIReg2; MatchInfo.Shift2 = LogicMIOp1; } else if (matchFirstShift(LogicMIOp2, C0Val)) { MatchInfo.LogicNonShiftReg = LogicMIReg1; MatchInfo.Shift2 = LogicMIOp2; } else return false; MatchInfo.ValSum = C0Val + C1Val; // The fold is not valid if the sum of the shift values exceeds bitwidth. if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) return false; MatchInfo.Logic = LogicMI; return true; } void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, ShiftOfShiftedLogic &MatchInfo) { unsigned Opcode = MI.getOpcode(); assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || Opcode == TargetOpcode::G_SSHLSAT) && "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); LLT DestType = MRI.getType(MI.getOperand(0).getReg()); Builder.setInstrAndDebugLoc(MI); Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); Register Shift1 = Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we // remove old shift1. And it will cause crash later. So erase it earlier to // avoid the crash. MatchInfo.Shift2->eraseFromParent(); Register Shift2Const = MI.getOperand(2).getReg(); Register Shift2 = Builder .buildInstr(Opcode, {DestType}, {MatchInfo.LogicNonShiftReg, Shift2Const}) .getReg(0); Register Dest = MI.getOperand(0).getReg(); Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); // This was one use so it's safe to remove it. MatchInfo.Logic->eraseFromParent(); MI.eraseFromParent(); } bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, unsigned &ShiftVal) { assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); auto MaybeImmVal = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); if (!MaybeImmVal) return false; ShiftVal = MaybeImmVal->Value.exactLogBase2(); return (static_cast(ShiftVal) != -1); } void CombinerHelper::applyCombineMulToShl(MachineInstr &MI, unsigned &ShiftVal) { assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); MachineIRBuilder MIB(MI); LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg()); auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal); Observer.changingInstr(MI); MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL)); MI.getOperand(2).setReg(ShiftCst.getReg(0)); Observer.changedInstr(MI); } // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, RegisterImmPair &MatchData) { assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); Register LHS = MI.getOperand(1).getReg(); Register ExtSrc; if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) return false; // TODO: Should handle vector splat. Register RHS = MI.getOperand(2).getReg(); auto MaybeShiftAmtVal = getIConstantVRegValWithLookThrough(RHS, MRI); if (!MaybeShiftAmtVal) return false; if (LI) { LLT SrcTy = MRI.getType(ExtSrc); // We only really care about the legality with the shifted value. We can // pick any type the constant shift amount, so ask the target what to // use. Otherwise we would have to guess and hope it is reported as legal. LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) return false; } int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); MatchData.Reg = ExtSrc; MatchData.Imm = ShiftAmt; unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); return MinLeadingZeros >= ShiftAmt; } void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, const RegisterImmPair &MatchData) { Register ExtSrcReg = MatchData.Reg; int64_t ShiftAmtVal = MatchData.Imm; LLT ExtSrcTy = MRI.getType(ExtSrcReg); Builder.setInstrAndDebugLoc(MI); auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); auto NarrowShift = Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); Builder.buildZExt(MI.getOperand(0), NarrowShift); MI.eraseFromParent(); } bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI, Register &MatchInfo) { GMerge &Merge = cast(MI); SmallVector MergedValues; for (unsigned I = 0; I < Merge.getNumSources(); ++I) MergedValues.emplace_back(Merge.getSourceReg(I)); auto *Unmerge = getOpcodeDef(MergedValues[0], MRI); if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources()) return false; for (unsigned I = 0; I < MergedValues.size(); ++I) if (MergedValues[I] != Unmerge->getReg(I)) return false; MatchInfo = Unmerge->getSourceReg(); return true; } static Register peekThroughBitcast(Register Reg, const MachineRegisterInfo &MRI) { while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) ; return Reg; } bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( MachineInstr &MI, SmallVectorImpl &Operands) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); auto &Unmerge = cast(MI); Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI); auto *SrcInstr = getOpcodeDef(SrcReg, MRI); if (!SrcInstr) return false; // Check the source type of the merge. LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0)); LLT Dst0Ty = MRI.getType(Unmerge.getReg(0)); bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); if (SrcMergeTy != Dst0Ty && !SameSize) return false; // They are the same now (modulo a bitcast). // We can collect all the src registers. for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx) Operands.push_back(SrcInstr->getSourceReg(Idx)); return true; } void CombinerHelper::applyCombineUnmergeMergeToPlainValues( MachineInstr &MI, SmallVectorImpl &Operands) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); assert((MI.getNumOperands() - 1 == Operands.size()) && "Not enough operands to replace all defs"); unsigned NumElems = MI.getNumOperands() - 1; LLT SrcTy = MRI.getType(Operands[0]); LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); bool CanReuseInputDirectly = DstTy == SrcTy; Builder.setInstrAndDebugLoc(MI); for (unsigned Idx = 0; Idx < NumElems; ++Idx) { Register DstReg = MI.getOperand(Idx).getReg(); Register SrcReg = Operands[Idx]; if (CanReuseInputDirectly) replaceRegWith(MRI, DstReg, SrcReg); else Builder.buildCast(DstReg, SrcReg); } MI.eraseFromParent(); } bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, SmallVectorImpl &Csts) { unsigned SrcIdx = MI.getNumOperands() - 1; Register SrcReg = MI.getOperand(SrcIdx).getReg(); MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) return false; // Break down the big constant in smaller ones. const MachineOperand &CstVal = SrcInstr->getOperand(1); APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT ? CstVal.getCImm()->getValue() : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); unsigned ShiftAmt = Dst0Ty.getSizeInBits(); // Unmerge a constant. for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { Csts.emplace_back(Val.trunc(ShiftAmt)); Val = Val.lshr(ShiftAmt); } return true; } void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, SmallVectorImpl &Csts) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); assert((MI.getNumOperands() - 1 == Csts.size()) && "Not enough operands to replace all defs"); unsigned NumElems = MI.getNumOperands() - 1; Builder.setInstrAndDebugLoc(MI); for (unsigned Idx = 0; Idx < NumElems; ++Idx) { Register DstReg = MI.getOperand(Idx).getReg(); Builder.buildConstant(DstReg, Csts[Idx]); } MI.eraseFromParent(); } bool CombinerHelper::matchCombineUnmergeUndef( MachineInstr &MI, std::function &MatchInfo) { unsigned SrcIdx = MI.getNumOperands() - 1; Register SrcReg = MI.getOperand(SrcIdx).getReg(); MatchInfo = [&MI](MachineIRBuilder &B) { unsigned NumElems = MI.getNumOperands() - 1; for (unsigned Idx = 0; Idx < NumElems; ++Idx) { Register DstReg = MI.getOperand(Idx).getReg(); B.buildUndef(DstReg); } }; return isa(MRI.getVRegDef(SrcReg)); } bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); // Check that all the lanes are dead except the first one. for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) return false; } return true; } void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { Builder.setInstrAndDebugLoc(MI); Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); // Truncating a vector is going to truncate every single lane, // whereas we want the full lowbits. // Do the operation on a scalar instead. LLT SrcTy = MRI.getType(SrcReg); if (SrcTy.isVector()) SrcReg = Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); Register Dst0Reg = MI.getOperand(0).getReg(); LLT Dst0Ty = MRI.getType(Dst0Reg); if (Dst0Ty.isVector()) { auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); Builder.buildCast(Dst0Reg, MIB); } else Builder.buildTrunc(Dst0Reg, SrcReg); MI.eraseFromParent(); } bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); Register Dst0Reg = MI.getOperand(0).getReg(); LLT Dst0Ty = MRI.getType(Dst0Reg); // G_ZEXT on vector applies to each lane, so it will // affect all destinations. Therefore we won't be able // to simplify the unmerge to just the first definition. if (Dst0Ty.isVector()) return false; Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); LLT SrcTy = MRI.getType(SrcReg); if (SrcTy.isVector()) return false; Register ZExtSrcReg; if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) return false; // Finally we can replace the first definition with // a zext of the source if the definition is big enough to hold // all of ZExtSrc bits. LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); } void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && "Expected an unmerge"); Register Dst0Reg = MI.getOperand(0).getReg(); MachineInstr *ZExtInstr = MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && "Expecting a G_ZEXT"); Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); LLT Dst0Ty = MRI.getType(Dst0Reg); LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); Builder.setInstrAndDebugLoc(MI); if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { Builder.buildZExt(Dst0Reg, ZExtSrcReg); } else { assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && "ZExt src doesn't fit in destination"); replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); } Register ZeroReg; for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { if (!ZeroReg) ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); } MI.eraseFromParent(); } bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, unsigned TargetShiftSize, unsigned &ShiftVal) { assert((MI.getOpcode() == TargetOpcode::G_SHL || MI.getOpcode() == TargetOpcode::G_LSHR || MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift"); LLT Ty = MRI.getType(MI.getOperand(0).getReg()); if (Ty.isVector()) // TODO: return false; // Don't narrow further than the requested size. unsigned Size = Ty.getSizeInBits(); if (Size <= TargetShiftSize) return false; auto MaybeImmVal = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); if (!MaybeImmVal) return false; ShiftVal = MaybeImmVal->Value.getSExtValue(); return ShiftVal >= Size / 2 && ShiftVal < Size; } void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI, const unsigned &ShiftVal) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(SrcReg); unsigned Size = Ty.getSizeInBits(); unsigned HalfSize = Size / 2; assert(ShiftVal >= HalfSize); LLT HalfTy = LLT::scalar(HalfSize); Builder.setInstr(MI); auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg); unsigned NarrowShiftAmt = ShiftVal - HalfSize; if (MI.getOpcode() == TargetOpcode::G_LSHR) { Register Narrowed = Unmerge.getReg(1); // dst = G_LSHR s64:x, C for C >= 32 // => // lo, hi = G_UNMERGE_VALUES x // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0 if (NarrowShiftAmt != 0) { Narrowed = Builder.buildLShr(HalfTy, Narrowed, Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); } auto Zero = Builder.buildConstant(HalfTy, 0); Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero}); } else if (MI.getOpcode() == TargetOpcode::G_SHL) { Register Narrowed = Unmerge.getReg(0); // dst = G_SHL s64:x, C for C >= 32 // => // lo, hi = G_UNMERGE_VALUES x // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32) if (NarrowShiftAmt != 0) { Narrowed = Builder.buildShl(HalfTy, Narrowed, Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0); } auto Zero = Builder.buildConstant(HalfTy, 0); Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed}); } else { assert(MI.getOpcode() == TargetOpcode::G_ASHR); auto Hi = Builder.buildAShr( HalfTy, Unmerge.getReg(1), Builder.buildConstant(HalfTy, HalfSize - 1)); if (ShiftVal == HalfSize) { // (G_ASHR i64:x, 32) -> // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31) Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi}); } else if (ShiftVal == Size - 1) { // Don't need a second shift. // (G_ASHR i64:x, 63) -> // %narrowed = (G_ASHR hi_32(x), 31) // G_MERGE_VALUES %narrowed, %narrowed Builder.buildMergeLikeInstr(DstReg, {Hi, Hi}); } else { auto Lo = Builder.buildAShr( HalfTy, Unmerge.getReg(1), Builder.buildConstant(HalfTy, ShiftVal - HalfSize)); // (G_ASHR i64:x, C) ->, for C >= 32 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31) Builder.buildMergeLikeInstr(DstReg, {Lo, Hi}); } } MI.eraseFromParent(); } bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, unsigned TargetShiftAmount) { unsigned ShiftAmt; if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) { applyCombineShiftToUnmerge(MI, ShiftAmt); return true; } return false; } bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); Register SrcReg = MI.getOperand(1).getReg(); return mi_match(SrcReg, MRI, m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); } void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); Register DstReg = MI.getOperand(0).getReg(); Builder.setInstr(MI); Builder.buildCopy(DstReg, Reg); MI.eraseFromParent(); } void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); Register DstReg = MI.getOperand(0).getReg(); Builder.setInstr(MI); Builder.buildZExtOrTrunc(DstReg, Reg); MI.eraseFromParent(); } bool CombinerHelper::matchCombineAddP2IToPtrAdd( MachineInstr &MI, std::pair &PtrReg) { assert(MI.getOpcode() == TargetOpcode::G_ADD); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); LLT IntTy = MRI.getType(LHS); // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the // instruction. PtrReg.second = false; for (Register SrcReg : {LHS, RHS}) { if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { // Don't handle cases where the integer is implicitly converted to the // pointer width. LLT PtrTy = MRI.getType(PtrReg.first); if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) return true; } PtrReg.second = true; } return false; } void CombinerHelper::applyCombineAddP2IToPtrAdd( MachineInstr &MI, std::pair &PtrReg) { Register Dst = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); const bool DoCommute = PtrReg.second; if (DoCommute) std::swap(LHS, RHS); LHS = PtrReg.first; LLT PtrTy = MRI.getType(LHS); Builder.setInstrAndDebugLoc(MI); auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); Builder.buildPtrToInt(Dst, PtrAdd); MI.eraseFromParent(); } bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, APInt &NewCst) { auto &PtrAdd = cast(MI); Register LHS = PtrAdd.getBaseReg(); Register RHS = PtrAdd.getOffsetReg(); MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) { APInt Cst; if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { auto DstTy = MRI.getType(PtrAdd.getReg(0)); // G_INTTOPTR uses zero-extension NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits()); NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits()); return true; } } return false; } void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, APInt &NewCst) { auto &PtrAdd = cast(MI); Register Dst = PtrAdd.getReg(0); Builder.setInstrAndDebugLoc(MI); Builder.buildConstant(Dst, NewCst); PtrAdd.eraseFromParent(); } bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); return mi_match(SrcReg, MRI, m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); } bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); if (mi_match(SrcReg, MRI, m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) { unsigned DstSize = DstTy.getScalarSizeInBits(); unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits(); return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize; } return false; } bool CombinerHelper::matchCombineExtOfExt( MachineInstr &MI, std::tuple &MatchInfo) { assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT"); Register SrcReg = MI.getOperand(1).getReg(); MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); // Match exts with the same opcode, anyext([sz]ext) and sext(zext). unsigned Opc = MI.getOpcode(); unsigned SrcOpc = SrcMI->getOpcode(); if (Opc == SrcOpc || (Opc == TargetOpcode::G_ANYEXT && (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); return true; } return false; } void CombinerHelper::applyCombineExtOfExt( MachineInstr &MI, std::tuple &MatchInfo) { assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || MI.getOpcode() == TargetOpcode::G_SEXT || MI.getOpcode() == TargetOpcode::G_ZEXT) && "Expected a G_[ASZ]EXT"); Register Reg = std::get<0>(MatchInfo); unsigned SrcExtOp = std::get<1>(MatchInfo); // Combine exts with the same opcode. if (MI.getOpcode() == SrcExtOp) { Observer.changingInstr(MI); MI.getOperand(1).setReg(Reg); Observer.changedInstr(MI); return; } // Combine: // - anyext([sz]ext x) to [sz]ext x // - sext(zext x) to zext x if (MI.getOpcode() == TargetOpcode::G_ANYEXT || (MI.getOpcode() == TargetOpcode::G_SEXT && SrcExtOp == TargetOpcode::G_ZEXT)) { Register DstReg = MI.getOperand(0).getReg(); Builder.setInstrAndDebugLoc(MI); Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); MI.eraseFromParent(); } } void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); Builder.setInstrAndDebugLoc(MI); Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, MI.getFlags()); MI.eraseFromParent(); } bool CombinerHelper::matchCombineFAbsOfFNeg(MachineInstr &MI, BuildFnTy &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); Register Src = MI.getOperand(1).getReg(); Register NegSrc; if (!mi_match(Src, MRI, m_GFNeg(m_Reg(NegSrc)))) return false; MatchInfo = [=, &MI](MachineIRBuilder &B) { Observer.changingInstr(MI); MI.getOperand(1).setReg(NegSrc); Observer.changedInstr(MI); }; return true; } bool CombinerHelper::matchCombineTruncOfExt( MachineInstr &MI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); Register SrcReg = MI.getOperand(1).getReg(); MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); unsigned SrcOpc = SrcMI->getOpcode(); if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT) { MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); return true; } return false; } void CombinerHelper::applyCombineTruncOfExt( MachineInstr &MI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); Register SrcReg = MatchInfo.first; unsigned SrcExtOp = MatchInfo.second; Register DstReg = MI.getOperand(0).getReg(); LLT SrcTy = MRI.getType(SrcReg); LLT DstTy = MRI.getType(DstReg); if (SrcTy == DstTy) { MI.eraseFromParent(); replaceRegWith(MRI, DstReg, SrcReg); return; } Builder.setInstrAndDebugLoc(MI); if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); else Builder.buildTrunc(DstReg, SrcReg); MI.eraseFromParent(); } static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) { const unsigned ShiftSize = ShiftTy.getScalarSizeInBits(); const unsigned TruncSize = TruncTy.getScalarSizeInBits(); // ShiftTy > 32 > TruncTy -> 32 if (ShiftSize > 32 && TruncSize < 32) return ShiftTy.changeElementSize(32); // TODO: We could also reduce to 16 bits, but that's more target-dependent. // Some targets like it, some don't, some only like it under certain // conditions/processor versions, etc. // A TL hook might be needed for this. // Don't combine return ShiftTy; } bool CombinerHelper::matchCombineTruncOfShift( MachineInstr &MI, std::pair &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); if (!MRI.hasOneNonDBGUse(SrcReg)) return false; LLT SrcTy = MRI.getType(SrcReg); LLT DstTy = MRI.getType(DstReg); MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI); const auto &TL = getTargetLowering(); LLT NewShiftTy; switch (SrcMI->getOpcode()) { default: return false; case TargetOpcode::G_SHL: { NewShiftTy = DstTy; // Make sure new shift amount is legal. KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits())) return false; break; } case TargetOpcode::G_LSHR: case TargetOpcode::G_ASHR: { // For right shifts, we conservatively do not do the transform if the TRUNC // has any STORE users. The reason is that if we change the type of the // shift, we may break the truncstore combine. // // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)). for (auto &User : MRI.use_instructions(DstReg)) if (User.getOpcode() == TargetOpcode::G_STORE) return false; NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy); if (NewShiftTy == SrcTy) return false; // Make sure we won't lose information by truncating the high bits. KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg()); if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() - DstTy.getScalarSizeInBits())) return false; break; } } if (!isLegalOrBeforeLegalizer( {SrcMI->getOpcode(), {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}})) return false; MatchInfo = std::make_pair(SrcMI, NewShiftTy); return true; } void CombinerHelper::applyCombineTruncOfShift( MachineInstr &MI, std::pair &MatchInfo) { Builder.setInstrAndDebugLoc(MI); MachineInstr *ShiftMI = MatchInfo.first; LLT NewShiftTy = MatchInfo.second; Register Dst = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(Dst); Register ShiftAmt = ShiftMI->getOperand(2).getReg(); Register ShiftSrc = ShiftMI->getOperand(1).getReg(); ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0); Register NewShift = Builder .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt}) .getReg(0); if (NewShiftTy == DstTy) replaceRegWith(MRI, Dst, NewShift); else Builder.buildTrunc(Dst, NewShift); eraseInst(MI); } bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { return MO.isReg() && getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); }); } bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) { return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) { return !MO.isReg() || getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); }); } bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); return all_of(Mask, [](int Elt) { return Elt < 0; }); } bool CombinerHelper::matchUndefStore(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_STORE); return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(), MRI); } bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SELECT); return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), MRI); } bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) { assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT || MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) && "Expected an insert/extract element op"); LLT VecTy = MRI.getType(MI.getOperand(1).getReg()); unsigned IdxIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI); if (!Idx) return false; return Idx->getZExtValue() >= VecTy.getNumElements(); } bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { GSelect &SelMI = cast(MI); auto Cst = isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI); if (!Cst) return false; OpIdx = Cst->isZero() ? 3 : 2; return true; } bool CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); return true; } bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1, const MachineOperand &MOP2) { if (!MOP1.isReg() || !MOP2.isReg()) return false; auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI); if (!InstAndDef1) return false; auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI); if (!InstAndDef2) return false; MachineInstr *I1 = InstAndDef1->MI; MachineInstr *I2 = InstAndDef2->MI; // Handle a case like this: // // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>) // // Even though %0 and %1 are produced by the same instruction they are not // the same values. if (I1 == I2) return MOP1.getReg() == MOP2.getReg(); // If we have an instruction which loads or stores, we can't guarantee that // it is identical. // // For example, we may have // // %x1 = G_LOAD %addr (load N from @somewhere) // ... // call @foo // ... // %x2 = G_LOAD %addr (load N from @somewhere) // ... // %or = G_OR %x1, %x2 // // It's possible that @foo will modify whatever lives at the address we're // loading from. To be safe, let's just assume that all loads and stores // are different (unless we have something which is guaranteed to not // change.) if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad()) return false; // If both instructions are loads or stores, they are equal only if both // are dereferenceable invariant loads with the same number of bits. if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) { GLoadStore *LS1 = dyn_cast(I1); GLoadStore *LS2 = dyn_cast(I2); if (!LS1 || !LS2) return false; if (!I2->isDereferenceableInvariantLoad() || (LS1->getMemSizeInBits() != LS2->getMemSizeInBits())) return false; } // Check for physical registers on the instructions first to avoid cases // like this: // // %a = COPY $physreg // ... // SOMETHING implicit-def $physreg // ... // %b = COPY $physreg // // These copies are not equivalent. if (any_of(I1->uses(), [](const MachineOperand &MO) { return MO.isReg() && MO.getReg().isPhysical(); })) { // Check if we have a case like this: // // %a = COPY $physreg // %b = COPY %a // // In this case, I1 and I2 will both be equal to %a = COPY $physreg. // From that, we know that they must have the same value, since they must // have come from the same COPY. return I1->isIdenticalTo(*I2); } // We don't have any physical registers, so we don't necessarily need the // same vreg defs. // // On the off-chance that there's some target instruction feeding into the // instruction, let's use produceSameValue instead of isIdenticalTo. if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) { // Handle instructions with multiple defs that produce same values. Values // are same for operands with same index. // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>) // I1 and I2 are different instructions but produce same values, // %1 and %6 are same, %1 and %7 are not the same value. return I1->findRegisterDefOperandIdx(InstAndDef1->Reg) == I2->findRegisterDefOperandIdx(InstAndDef2->Reg); } return false; } bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) { if (!MOP.isReg()) return false; auto *MI = MRI.getVRegDef(MOP.getReg()); auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI); return MaybeCst && MaybeCst->getBitWidth() <= 64 && MaybeCst->getSExtValue() == C; } bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, unsigned OpIdx) { assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); Register OldReg = MI.getOperand(0).getReg(); Register Replacement = MI.getOperand(OpIdx).getReg(); assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); MI.eraseFromParent(); replaceRegWith(MRI, OldReg, Replacement); return true; } bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, Register Replacement) { assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); Register OldReg = MI.getOperand(0).getReg(); assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); MI.eraseFromParent(); replaceRegWith(MRI, OldReg, Replacement); return true; } bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SELECT); // Match (cond ? x : x) return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) && canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(), MRI); } bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) { return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) && canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), MRI); } bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { return matchConstantOp(MI.getOperand(OpIdx), 0) && canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(), MRI); } bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); return MO.isReg() && getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); } bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); } bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); Builder.buildFConstant(MI.getOperand(0), C); MI.eraseFromParent(); return true; } bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); Builder.buildConstant(MI.getOperand(0), C); MI.eraseFromParent(); return true; } bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); Builder.buildConstant(MI.getOperand(0), C); MI.eraseFromParent(); return true; } bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); Builder.buildUndef(MI.getOperand(0)); MI.eraseFromParent(); return true; } bool CombinerHelper::matchSimplifyAddToSub( MachineInstr &MI, std::tuple &MatchInfo) { Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); Register &NewLHS = std::get<0>(MatchInfo); Register &NewRHS = std::get<1>(MatchInfo); // Helper lambda to check for opportunities for // ((0-A) + B) -> B - A // (A + (0-B)) -> A - B auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) return false; NewLHS = MaybeNewLHS; return true; }; return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); } bool CombinerHelper::matchCombineInsertVecElts( MachineInstr &MI, SmallVectorImpl &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && "Invalid opcode"); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); unsigned NumElts = DstTy.getNumElements(); // If this MI is part of a sequence of insert_vec_elts, then // don't do the combine in the middle of the sequence. if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) return false; MachineInstr *CurrInst = &MI; MachineInstr *TmpInst; int64_t IntImm; Register TmpReg; MatchInfo.resize(NumElts); while (mi_match( CurrInst->getOperand(0).getReg(), MRI, m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { if (IntImm >= NumElts || IntImm < 0) return false; if (!MatchInfo[IntImm]) MatchInfo[IntImm] = TmpReg; CurrInst = TmpInst; } // Variable index. if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) return false; if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { if (!MatchInfo[I - 1].isValid()) MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); } return true; } // If we didn't end in a G_IMPLICIT_DEF, bail out. return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; } void CombinerHelper::applyCombineInsertVecElts( MachineInstr &MI, SmallVectorImpl &MatchInfo) { Builder.setInstr(MI); Register UndefReg; auto GetUndef = [&]() { if (UndefReg) return UndefReg; LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); return UndefReg; }; for (unsigned I = 0; I < MatchInfo.size(); ++I) { if (!MatchInfo[I]) MatchInfo[I] = GetUndef(); } Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); MI.eraseFromParent(); } void CombinerHelper::applySimplifyAddToSub( MachineInstr &MI, std::tuple &MatchInfo) { Builder.setInstr(MI); Register SubLHS, SubRHS; std::tie(SubLHS, SubRHS) = MatchInfo; Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS); MI.eraseFromParent(); } bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... // // Creates the new hand + logic instruction (but does not insert them.) // // On success, MatchInfo is populated with the new instructions. These are // inserted in applyHoistLogicOpWithSameOpcodeHands. unsigned LogicOpcode = MI.getOpcode(); assert(LogicOpcode == TargetOpcode::G_AND || LogicOpcode == TargetOpcode::G_OR || LogicOpcode == TargetOpcode::G_XOR); MachineIRBuilder MIB(MI); Register Dst = MI.getOperand(0).getReg(); Register LHSReg = MI.getOperand(1).getReg(); Register RHSReg = MI.getOperand(2).getReg(); // Don't recompute anything. if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) return false; // Make sure we have (hand x, ...), (hand y, ...) MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); if (!LeftHandInst || !RightHandInst) return false; unsigned HandOpcode = LeftHandInst->getOpcode(); if (HandOpcode != RightHandInst->getOpcode()) return false; if (!LeftHandInst->getOperand(1).isReg() || !RightHandInst->getOperand(1).isReg()) return false; // Make sure the types match up, and if we're doing this post-legalization, // we end up with legal types. Register X = LeftHandInst->getOperand(1).getReg(); Register Y = RightHandInst->getOperand(1).getReg(); LLT XTy = MRI.getType(X); LLT YTy = MRI.getType(Y); if (XTy != YTy) return false; if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) return false; // Optional extra source register. Register ExtraHandOpSrcReg; switch (HandOpcode) { default: return false; case TargetOpcode::G_ANYEXT: case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: { // Match: logic (ext X), (ext Y) --> ext (logic X, Y) break; } case TargetOpcode::G_AND: case TargetOpcode::G_ASHR: case TargetOpcode::G_LSHR: case TargetOpcode::G_SHL: { // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z MachineOperand &ZOp = LeftHandInst->getOperand(2); if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) return false; ExtraHandOpSrcReg = ZOp.getReg(); break; } } // Record the steps to build the new instructions. // // Steps to build (logic x, y) auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); OperandBuildSteps LogicBuildSteps = { [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); // Steps to build hand (logic x, y), ...z OperandBuildSteps HandBuildSteps = { [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; if (ExtraHandOpSrcReg.isValid()) HandBuildSteps.push_back( [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); return true; } void CombinerHelper::applyBuildInstructionSteps( MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { assert(MatchInfo.InstrsToBuild.size() && "Expected at least one instr to build?"); Builder.setInstr(MI); for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { assert(InstrToBuild.Opcode && "Expected a valid opcode?"); assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); for (auto &OperandFn : InstrToBuild.OperandFns) OperandFn(Instr); } MI.eraseFromParent(); } bool CombinerHelper::matchAshrShlToSextInreg( MachineInstr &MI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ASHR); int64_t ShlCst, AshrCst; Register Src; if (!mi_match(MI.getOperand(0).getReg(), MRI, m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)), m_ICstOrSplat(AshrCst)))) return false; if (ShlCst != AshrCst) return false; if (!isLegalOrBeforeLegalizer( {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) return false; MatchInfo = std::make_tuple(Src, ShlCst); return true; } void CombinerHelper::applyAshShlToSextInreg( MachineInstr &MI, std::tuple &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ASHR); Register Src; int64_t ShiftAmt; std::tie(Src, ShiftAmt) = MatchInfo; unsigned Size = MRI.getType(Src).getScalarSizeInBits(); Builder.setInstrAndDebugLoc(MI); Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); MI.eraseFromParent(); } /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0 bool CombinerHelper::matchOverlappingAnd( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_AND); Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); Register R; int64_t C1; int64_t C2; if (!mi_match( Dst, MRI, m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2)))) return false; MatchInfo = [=](MachineIRBuilder &B) { if (C1 & C2) { B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2)); return; } auto Zero = B.buildConstant(Ty, 0); replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg()); }; return true; } bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, Register &Replacement) { // Given // // %y:_(sN) = G_SOMETHING // %x:_(sN) = G_SOMETHING // %res:_(sN) = G_AND %x, %y // // Eliminate the G_AND when it is known that x & y == x or x & y == y. // // Patterns like this can appear as a result of legalization. E.g. // // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y // %one:_(s32) = G_CONSTANT i32 1 // %and:_(s32) = G_AND %cmp, %one // // In this case, G_ICMP only produces a single bit, so x & 1 == x. assert(MI.getOpcode() == TargetOpcode::G_AND); if (!KB) return false; Register AndDst = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); KnownBits LHSBits = KB->getKnownBits(LHS); KnownBits RHSBits = KB->getKnownBits(RHS); // Check that x & Mask == x. // x & 1 == x, always // x & 0 == x, only if x is also 0 // Meaning Mask has no effect if every bit is either one in Mask or zero in x. // // Check if we can replace AndDst with the LHS of the G_AND if (canReplaceReg(AndDst, LHS, MRI) && (LHSBits.Zero | RHSBits.One).isAllOnes()) { Replacement = LHS; return true; } // Check if we can replace AndDst with the RHS of the G_AND if (canReplaceReg(AndDst, RHS, MRI) && (LHSBits.One | RHSBits.Zero).isAllOnes()) { Replacement = RHS; return true; } return false; } bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { // Given // // %y:_(sN) = G_SOMETHING // %x:_(sN) = G_SOMETHING // %res:_(sN) = G_OR %x, %y // // Eliminate the G_OR when it is known that x | y == x or x | y == y. assert(MI.getOpcode() == TargetOpcode::G_OR); if (!KB) return false; Register OrDst = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); KnownBits LHSBits = KB->getKnownBits(LHS); KnownBits RHSBits = KB->getKnownBits(RHS); // Check that x | Mask == x. // x | 0 == x, always // x | 1 == x, only if x is also 1 // Meaning Mask has no effect if every bit is either zero in Mask or one in x. // // Check if we can replace OrDst with the LHS of the G_OR if (canReplaceReg(OrDst, LHS, MRI) && (LHSBits.One | RHSBits.Zero).isAllOnes()) { Replacement = LHS; return true; } // Check if we can replace OrDst with the RHS of the G_OR if (canReplaceReg(OrDst, RHS, MRI) && (LHSBits.Zero | RHSBits.One).isAllOnes()) { Replacement = RHS; return true; } return false; } bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { // If the input is already sign extended, just drop the extension. Register Src = MI.getOperand(1).getReg(); unsigned ExtBits = MI.getOperand(2).getImm(); unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); } static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, int64_t Cst, bool IsVector, bool IsFP) { // For i1, Cst will always be -1 regardless of boolean contents. return (ScalarSizeBits == 1 && Cst == -1) || isConstTrueVal(TLI, Cst, IsVector, IsFP); } bool CombinerHelper::matchNotCmp(MachineInstr &MI, SmallVectorImpl &RegsToNegate) { assert(MI.getOpcode() == TargetOpcode::G_XOR); LLT Ty = MRI.getType(MI.getOperand(0).getReg()); const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); Register XorSrc; Register CstReg; // We match xor(src, true) here. if (!mi_match(MI.getOperand(0).getReg(), MRI, m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) return false; if (!MRI.hasOneNonDBGUse(XorSrc)) return false; // Check that XorSrc is the root of a tree of comparisons combined with ANDs // and ORs. The suffix of RegsToNegate starting from index I is used a work // list of tree nodes to visit. RegsToNegate.push_back(XorSrc); // Remember whether the comparisons are all integer or all floating point. bool IsInt = false; bool IsFP = false; for (unsigned I = 0; I < RegsToNegate.size(); ++I) { Register Reg = RegsToNegate[I]; if (!MRI.hasOneNonDBGUse(Reg)) return false; MachineInstr *Def = MRI.getVRegDef(Reg); switch (Def->getOpcode()) { default: // Don't match if the tree contains anything other than ANDs, ORs and // comparisons. return false; case TargetOpcode::G_ICMP: if (IsFP) return false; IsInt = true; // When we apply the combine we will invert the predicate. break; case TargetOpcode::G_FCMP: if (IsInt) return false; IsFP = true; // When we apply the combine we will invert the predicate. break; case TargetOpcode::G_AND: case TargetOpcode::G_OR: // Implement De Morgan's laws: // ~(x & y) -> ~x | ~y // ~(x | y) -> ~x & ~y // When we apply the combine we will change the opcode and recursively // negate the operands. RegsToNegate.push_back(Def->getOperand(1).getReg()); RegsToNegate.push_back(Def->getOperand(2).getReg()); break; } } // Now we know whether the comparisons are integer or floating point, check // the constant in the xor. int64_t Cst; if (Ty.isVector()) { MachineInstr *CstDef = MRI.getVRegDef(CstReg); auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI); if (!MaybeCst) return false; if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) return false; } else { if (!mi_match(CstReg, MRI, m_ICst(Cst))) return false; if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) return false; } return true; } void CombinerHelper::applyNotCmp(MachineInstr &MI, SmallVectorImpl &RegsToNegate) { for (Register Reg : RegsToNegate) { MachineInstr *Def = MRI.getVRegDef(Reg); Observer.changingInstr(*Def); // For each comparison, invert the opcode. For each AND and OR, change the // opcode. switch (Def->getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case TargetOpcode::G_ICMP: case TargetOpcode::G_FCMP: { MachineOperand &PredOp = Def->getOperand(1); CmpInst::Predicate NewP = CmpInst::getInversePredicate( (CmpInst::Predicate)PredOp.getPredicate()); PredOp.setPredicate(NewP); break; } case TargetOpcode::G_AND: Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); break; case TargetOpcode::G_OR: Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); break; } Observer.changedInstr(*Def); } replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); MI.eraseFromParent(); } bool CombinerHelper::matchXorOfAndWithSameReg( MachineInstr &MI, std::pair &MatchInfo) { // Match (xor (and x, y), y) (or any of its commuted cases) assert(MI.getOpcode() == TargetOpcode::G_XOR); Register &X = MatchInfo.first; Register &Y = MatchInfo.second; Register AndReg = MI.getOperand(1).getReg(); Register SharedReg = MI.getOperand(2).getReg(); // Find a G_AND on either side of the G_XOR. // Look for one of // // (xor (and x, y), SharedReg) // (xor SharedReg, (and x, y)) if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { std::swap(AndReg, SharedReg); if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) return false; } // Only do this if we'll eliminate the G_AND. if (!MRI.hasOneNonDBGUse(AndReg)) return false; // We can combine if SharedReg is the same as either the LHS or RHS of the // G_AND. if (Y != SharedReg) std::swap(X, Y); return Y == SharedReg; } void CombinerHelper::applyXorOfAndWithSameReg( MachineInstr &MI, std::pair &MatchInfo) { // Fold (xor (and x, y), y) -> (and (not x), y) Builder.setInstrAndDebugLoc(MI); Register X, Y; std::tie(X, Y) = MatchInfo; auto Not = Builder.buildNot(MRI.getType(X), X); Observer.changingInstr(MI); MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); MI.getOperand(1).setReg(Not->getOperand(0).getReg()); MI.getOperand(2).setReg(Y); Observer.changedInstr(MI); } bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { auto &PtrAdd = cast(MI); Register DstReg = PtrAdd.getReg(0); LLT Ty = MRI.getType(DstReg); const DataLayout &DL = Builder.getMF().getDataLayout(); if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) return false; if (Ty.isPointer()) { auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI); return ConstVal && *ConstVal == 0; } assert(Ty.isVector() && "Expecting a vector type"); const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg()); return isBuildVectorAllZeros(*VecMI, MRI); } void CombinerHelper::applyPtrAddZero(MachineInstr &MI) { auto &PtrAdd = cast(MI); Builder.setInstrAndDebugLoc(PtrAdd); Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg()); PtrAdd.eraseFromParent(); } /// The second source operand is known to be a power of 2. void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Pow2Src1 = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(DstReg); Builder.setInstrAndDebugLoc(MI); // Fold (urem x, pow2) -> (and x, pow2-1) auto NegOne = Builder.buildConstant(Ty, -1); auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); Builder.buildAnd(DstReg, Src0, Add); MI.eraseFromParent(); } bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI, unsigned &SelectOpNo) { Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); Register OtherOperandReg = RHS; SelectOpNo = 1; MachineInstr *Select = MRI.getVRegDef(LHS); // Don't do this unless the old select is going away. We want to eliminate the // binary operator, not replace a binop with a select. if (Select->getOpcode() != TargetOpcode::G_SELECT || !MRI.hasOneNonDBGUse(LHS)) { OtherOperandReg = LHS; SelectOpNo = 2; Select = MRI.getVRegDef(RHS); if (Select->getOpcode() != TargetOpcode::G_SELECT || !MRI.hasOneNonDBGUse(RHS)) return false; } MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg()); MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg()); if (!isConstantOrConstantVector(*SelectLHS, MRI, /*AllowFP*/ true, /*AllowOpaqueConstants*/ false)) return false; if (!isConstantOrConstantVector(*SelectRHS, MRI, /*AllowFP*/ true, /*AllowOpaqueConstants*/ false)) return false; unsigned BinOpcode = MI.getOpcode(); // We know know one of the operands is a select of constants. Now verify that // the other binary operator operand is either a constant, or we can handle a // variable. bool CanFoldNonConst = (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) && (isNullOrNullSplat(*SelectLHS, MRI) || isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) && (isNullOrNullSplat(*SelectRHS, MRI) || isAllOnesOrAllOnesSplat(*SelectRHS, MRI)); if (CanFoldNonConst) return true; return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI, /*AllowFP*/ true, /*AllowOpaqueConstants*/ false); } /// \p SelectOperand is the operand in binary operator \p MI that is the select /// to fold. bool CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI, const unsigned &SelectOperand) { Builder.setInstrAndDebugLoc(MI); Register Dst = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg()); Register SelectCond = Select->getOperand(1).getReg(); Register SelectTrue = Select->getOperand(2).getReg(); Register SelectFalse = Select->getOperand(3).getReg(); LLT Ty = MRI.getType(Dst); unsigned BinOpcode = MI.getOpcode(); Register FoldTrue, FoldFalse; // We have a select-of-constants followed by a binary operator with a // constant. Eliminate the binop by pulling the constant math into the select. // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO if (SelectOperand == 1) { // TODO: SelectionDAG verifies this actually constant folds before // committing to the combine. FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0); FoldFalse = Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0); } else { FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0); FoldFalse = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0); } Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags()); MI.eraseFromParent(); return true; } std::optional> CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); // We want to detect if Root is part of a tree which represents a bunch // of loads being merged into a larger load. We'll try to recognize patterns // like, for example: // // Reg Reg // \ / // OR_1 Reg // \ / // OR_2 // \ Reg // .. / // Root // // Reg Reg Reg Reg // \ / \ / // OR_1 OR_2 // \ / // \ / // ... // Root // // Each "Reg" may have been produced by a load + some arithmetic. This // function will save each of them. SmallVector RegsToVisit; SmallVector Ors = {Root}; // In the "worst" case, we're dealing with a load for each byte. So, there // are at most #bytes - 1 ORs. const unsigned MaxIter = MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { if (Ors.empty()) break; const MachineInstr *Curr = Ors.pop_back_val(); Register OrLHS = Curr->getOperand(1).getReg(); Register OrRHS = Curr->getOperand(2).getReg(); // In the combine, we want to elimate the entire tree. if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) return std::nullopt; // If it's a G_OR, save it and continue to walk. If it's not, then it's // something that may be a load + arithmetic. if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) Ors.push_back(Or); else RegsToVisit.push_back(OrLHS); if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) Ors.push_back(Or); else RegsToVisit.push_back(OrRHS); } // We're going to try and merge each register into a wider power-of-2 type, // so we ought to have an even number of registers. if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) return std::nullopt; return RegsToVisit; } /// Helper function for findLoadOffsetsForLoadOrCombine. /// /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, /// and then moving that value into a specific byte offset. /// /// e.g. x[i] << 24 /// /// \returns The load instruction and the byte offset it is moved into. static std::optional> matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, const MachineRegisterInfo &MRI) { assert(MRI.hasOneNonDBGUse(Reg) && "Expected Reg to only have one non-debug use?"); Register MaybeLoad; int64_t Shift; if (!mi_match(Reg, MRI, m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { Shift = 0; MaybeLoad = Reg; } if (Shift % MemSizeInBits != 0) return std::nullopt; // TODO: Handle other types of loads. auto *Load = getOpcodeDef(MaybeLoad, MRI); if (!Load) return std::nullopt; if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits) return std::nullopt; return std::make_pair(Load, Shift / MemSizeInBits); } std::optional> CombinerHelper::findLoadOffsetsForLoadOrCombine( SmallDenseMap &MemOffset2Idx, const SmallVector &RegsToVisit, const unsigned MemSizeInBits) { // Each load found for the pattern. There should be one for each RegsToVisit. SmallSetVector Loads; // The lowest index used in any load. (The lowest "i" for each x[i].) int64_t LowestIdx = INT64_MAX; // The load which uses the lowest index. GZExtLoad *LowestIdxLoad = nullptr; // Keeps track of the load indices we see. We shouldn't see any indices twice. SmallSet SeenIdx; // Ensure each load is in the same MBB. // TODO: Support multiple MachineBasicBlocks. MachineBasicBlock *MBB = nullptr; const MachineMemOperand *MMO = nullptr; // Earliest instruction-order load in the pattern. GZExtLoad *EarliestLoad = nullptr; // Latest instruction-order load in the pattern. GZExtLoad *LatestLoad = nullptr; // Base pointer which every load should share. Register BasePtr; // We want to find a load for each register. Each load should have some // appropriate bit twiddling arithmetic. During this loop, we will also keep // track of the load which uses the lowest index. Later, we will check if we // can use its pointer in the final, combined load. for (auto Reg : RegsToVisit) { // Find the load, and find the position that it will end up in (e.g. a // shifted) value. auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); if (!LoadAndPos) return std::nullopt; GZExtLoad *Load; int64_t DstPos; std::tie(Load, DstPos) = *LoadAndPos; // TODO: Handle multiple MachineBasicBlocks. Currently not handled because // it is difficult to check for stores/calls/etc between loads. MachineBasicBlock *LoadMBB = Load->getParent(); if (!MBB) MBB = LoadMBB; if (LoadMBB != MBB) return std::nullopt; // Make sure that the MachineMemOperands of every seen load are compatible. auto &LoadMMO = Load->getMMO(); if (!MMO) MMO = &LoadMMO; if (MMO->getAddrSpace() != LoadMMO.getAddrSpace()) return std::nullopt; // Find out what the base pointer and index for the load is. Register LoadPtr; int64_t Idx; if (!mi_match(Load->getOperand(1).getReg(), MRI, m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { LoadPtr = Load->getOperand(1).getReg(); Idx = 0; } // Don't combine things like a[i], a[i] -> a bigger load. if (!SeenIdx.insert(Idx).second) return std::nullopt; // Every load must share the same base pointer; don't combine things like: // // a[i], b[i + 1] -> a bigger load. if (!BasePtr.isValid()) BasePtr = LoadPtr; if (BasePtr != LoadPtr) return std::nullopt; if (Idx < LowestIdx) { LowestIdx = Idx; LowestIdxLoad = Load; } // Keep track of the byte offset that this load ends up at. If we have seen // the byte offset, then stop here. We do not want to combine: // // a[i] << 16, a[i + k] << 16 -> a bigger load. if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) return std::nullopt; Loads.insert(Load); // Keep track of the position of the earliest/latest loads in the pattern. // We will check that there are no load fold barriers between them later // on. // // FIXME: Is there a better way to check for load fold barriers? if (!EarliestLoad || dominates(*Load, *EarliestLoad)) EarliestLoad = Load; if (!LatestLoad || dominates(*LatestLoad, *Load)) LatestLoad = Load; } // We found a load for each register. Let's check if each load satisfies the // pattern. assert(Loads.size() == RegsToVisit.size() && "Expected to find a load for each register?"); assert(EarliestLoad != LatestLoad && EarliestLoad && LatestLoad && "Expected at least two loads?"); // Check if there are any stores, calls, etc. between any of the loads. If // there are, then we can't safely perform the combine. // // MaxIter is chosen based off the (worst case) number of iterations it // typically takes to succeed in the LLVM test suite plus some padding. // // FIXME: Is there a better way to check for load fold barriers? const unsigned MaxIter = 20; unsigned Iter = 0; for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), LatestLoad->getIterator())) { if (Loads.count(&MI)) continue; if (MI.isLoadFoldBarrier()) return std::nullopt; if (Iter++ == MaxIter) return std::nullopt; } return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad); } bool CombinerHelper::matchLoadOrCombine( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_OR); MachineFunction &MF = *MI.getMF(); // Assuming a little-endian target, transform: // s8 *a = ... // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) // => // s32 val = *((i32)a) // // s8 *a = ... // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] // => // s32 val = BSWAP(*((s32)a)) Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); if (Ty.isVector()) return false; // We need to combine at least two loads into this type. Since the smallest // possible load is into a byte, we need at least a 16-bit wide type. const unsigned WideMemSizeInBits = Ty.getSizeInBits(); if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) return false; // Match a collection of non-OR instructions in the pattern. auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); if (!RegsToVisit) return false; // We have a collection of non-OR instructions. Figure out how wide each of // the small loads should be based off of the number of potential loads we // found. const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); if (NarrowMemSizeInBits % 8 != 0) return false; // Check if each register feeding into each OR is a load from the same // base pointer + some arithmetic. // // e.g. a[0], a[1] << 8, a[2] << 16, etc. // // Also verify that each of these ends up putting a[i] into the same memory // offset as a load into a wide type would. SmallDenseMap MemOffset2Idx; GZExtLoad *LowestIdxLoad, *LatestLoad; int64_t LowestIdx; auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); if (!MaybeLoadInfo) return false; std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo; // We have a bunch of loads being OR'd together. Using the addresses + offsets // we found before, check if this corresponds to a big or little endian byte // pattern. If it does, then we can represent it using a load + possibly a // BSWAP. bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); std::optional IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); if (!IsBigEndian) return false; bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) return false; // Make sure that the load from the lowest index produces offset 0 in the // final value. // // This ensures that we won't combine something like this: // // load x[i] -> byte 2 // load x[i+1] -> byte 0 ---> wide_load x[i] // load x[i+2] -> byte 1 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; const unsigned ZeroByteOffset = *IsBigEndian ? bigEndianByteAt(NumLoadsInTy, 0) : littleEndianByteAt(NumLoadsInTy, 0); auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); if (ZeroOffsetIdx == MemOffset2Idx.end() || ZeroOffsetIdx->second != LowestIdx) return false; // We wil reuse the pointer from the load which ends up at byte offset 0. It // may not use index 0. Register Ptr = LowestIdxLoad->getPointerReg(); const MachineMemOperand &MMO = LowestIdxLoad->getMMO(); LegalityQuery::MemDesc MMDesc(MMO); MMDesc.MemoryTy = Ty; if (!isLegalOrBeforeLegalizer( {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) return false; auto PtrInfo = MMO.getPointerInfo(); auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); // Load must be allowed and fast on the target. LLVMContext &C = MF.getFunction().getContext(); auto &DL = MF.getDataLayout(); unsigned Fast = 0; if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || !Fast) return false; MatchInfo = [=](MachineIRBuilder &MIB) { MIB.setInstrAndDebugLoc(*LatestLoad); Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; MIB.buildLoad(LoadDst, Ptr, *NewMMO); if (NeedsBSwap) MIB.buildBSwap(Dst, LoadDst); }; return true; } /// Check if the store \p Store is a truncstore that can be merged. That is, /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty /// Register then it does not need to match and SrcVal is set to the source /// value found. /// On match, returns the start byte offset of the \p SrcVal that is being /// stored. static std::optional getTruncStoreByteOffset(GStore &Store, Register &SrcVal, MachineRegisterInfo &MRI) { Register TruncVal; if (!mi_match(Store.getValueReg(), MRI, m_GTrunc(m_Reg(TruncVal)))) return std::nullopt; // The shift amount must be a constant multiple of the narrow type. // It is translated to the offset address in the wide source value "y". // // x = G_LSHR y, ShiftAmtC // s8 z = G_TRUNC x // store z, ... Register FoundSrcVal; int64_t ShiftAmt; if (!mi_match(TruncVal, MRI, m_any_of(m_GLShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt)), m_GAShr(m_Reg(FoundSrcVal), m_ICst(ShiftAmt))))) { if (!SrcVal.isValid() || TruncVal == SrcVal) { if (!SrcVal.isValid()) SrcVal = TruncVal; return 0; // If it's the lowest index store. } return std::nullopt; } unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); if (ShiftAmt % NarrowBits!= 0) return std::nullopt; const unsigned Offset = ShiftAmt / NarrowBits; if (SrcVal.isValid() && FoundSrcVal != SrcVal) return std::nullopt; if (!SrcVal.isValid()) SrcVal = FoundSrcVal; else if (MRI.getType(SrcVal) != MRI.getType(FoundSrcVal)) return std::nullopt; return Offset; } /// Match a pattern where a wide type scalar value is stored by several narrow /// stores. Fold it into a single store or a BSWAP and a store if the targets /// supports it. /// /// Assuming little endian target: /// i8 *p = ... /// i32 val = ... /// p[0] = (val >> 0) & 0xFF; /// p[1] = (val >> 8) & 0xFF; /// p[2] = (val >> 16) & 0xFF; /// p[3] = (val >> 24) & 0xFF; /// => /// *((i32)p) = val; /// /// i8 *p = ... /// i32 val = ... /// p[0] = (val >> 24) & 0xFF; /// p[1] = (val >> 16) & 0xFF; /// p[2] = (val >> 8) & 0xFF; /// p[3] = (val >> 0) & 0xFF; /// => /// *((i32)p) = BSWAP(val); bool CombinerHelper::matchTruncStoreMerge(MachineInstr &MI, MergeTruncStoresInfo &MatchInfo) { auto &StoreMI = cast(MI); LLT MemTy = StoreMI.getMMO().getMemoryType(); // We only handle merging simple stores of 1-4 bytes. if (!MemTy.isScalar()) return false; switch (MemTy.getSizeInBits()) { case 8: case 16: case 32: break; default: return false; } if (!StoreMI.isSimple()) return false; // We do a simple search for mergeable stores prior to this one. // Any potential alias hazard along the way terminates the search. SmallVector FoundStores; // We're looking for: // 1) a (store(trunc(...))) // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get // the partial value stored. // 3) where the offsets form either a little or big-endian sequence. auto &LastStore = StoreMI; // The single base pointer that all stores must use. Register BaseReg; int64_t LastOffset; if (!mi_match(LastStore.getPointerReg(), MRI, m_GPtrAdd(m_Reg(BaseReg), m_ICst(LastOffset)))) { BaseReg = LastStore.getPointerReg(); LastOffset = 0; } GStore *LowestIdxStore = &LastStore; int64_t LowestIdxOffset = LastOffset; Register WideSrcVal; auto LowestShiftAmt = getTruncStoreByteOffset(LastStore, WideSrcVal, MRI); if (!LowestShiftAmt) return false; // Didn't match a trunc. assert(WideSrcVal.isValid()); LLT WideStoreTy = MRI.getType(WideSrcVal); // The wide type might not be a multiple of the memory type, e.g. s48 and s32. if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) return false; const unsigned NumStoresRequired = WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); SmallVector OffsetMap(NumStoresRequired, INT64_MAX); OffsetMap[*LowestShiftAmt] = LastOffset; FoundStores.emplace_back(&LastStore); // Search the block up for more stores. // We use a search threshold of 10 instructions here because the combiner // works top-down within a block, and we don't want to search an unbounded // number of predecessor instructions trying to find matching stores. // If we moved this optimization into a separate pass then we could probably // use a more efficient search without having a hard-coded threshold. const int MaxInstsToCheck = 10; int NumInstsChecked = 0; for (auto II = ++LastStore.getReverseIterator(); II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; ++II) { NumInstsChecked++; GStore *NewStore; if ((NewStore = dyn_cast(&*II))) { if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) break; } else if (II->isLoadFoldBarrier() || II->mayLoad()) { break; } else { continue; // This is a safe instruction we can look past. } Register NewBaseReg; int64_t MemOffset; // Check we're storing to the same base + some offset. if (!mi_match(NewStore->getPointerReg(), MRI, m_GPtrAdd(m_Reg(NewBaseReg), m_ICst(MemOffset)))) { NewBaseReg = NewStore->getPointerReg(); MemOffset = 0; } if (BaseReg != NewBaseReg) break; auto ShiftByteOffset = getTruncStoreByteOffset(*NewStore, WideSrcVal, MRI); if (!ShiftByteOffset) break; if (MemOffset < LowestIdxOffset) { LowestIdxOffset = MemOffset; LowestIdxStore = NewStore; } // Map the offset in the store and the offset in the combined value, and // early return if it has been set before. if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || OffsetMap[*ShiftByteOffset] != INT64_MAX) break; OffsetMap[*ShiftByteOffset] = MemOffset; FoundStores.emplace_back(NewStore); // Reset counter since we've found a matching inst. NumInstsChecked = 0; if (FoundStores.size() == NumStoresRequired) break; } if (FoundStores.size() != NumStoresRequired) { return false; } const auto &DL = LastStore.getMF()->getDataLayout(); auto &C = LastStore.getMF()->getFunction().getContext(); // Check that a store of the wide type is both allowed and fast on the target unsigned Fast = 0; bool Allowed = getTargetLowering().allowsMemoryAccess( C, DL, WideStoreTy, LowestIdxStore->getMMO(), &Fast); if (!Allowed || !Fast) return false; // Check if the pieces of the value are going to the expected places in memory // to merge the stores. unsigned NarrowBits = MemTy.getScalarSizeInBits(); auto checkOffsets = [&](bool MatchLittleEndian) { if (MatchLittleEndian) { for (unsigned i = 0; i != NumStoresRequired; ++i) if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) return false; } else { // MatchBigEndian by reversing loop counter. for (unsigned i = 0, j = NumStoresRequired - 1; i != NumStoresRequired; ++i, --j) if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) return false; } return true; }; // Check if the offsets line up for the native data layout of this target. bool NeedBswap = false; bool NeedRotate = false; if (!checkOffsets(DL.isLittleEndian())) { // Special-case: check if byte offsets line up for the opposite endian. if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) NeedBswap = true; else if (NumStoresRequired == 2 && checkOffsets(DL.isBigEndian())) NeedRotate = true; else return false; } if (NeedBswap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {WideStoreTy}})) return false; if (NeedRotate && !isLegalOrBeforeLegalizer({TargetOpcode::G_ROTR, {WideStoreTy}})) return false; MatchInfo.NeedBSwap = NeedBswap; MatchInfo.NeedRotate = NeedRotate; MatchInfo.LowestIdxStore = LowestIdxStore; MatchInfo.WideSrcVal = WideSrcVal; MatchInfo.FoundStores = std::move(FoundStores); return true; } void CombinerHelper::applyTruncStoreMerge(MachineInstr &MI, MergeTruncStoresInfo &MatchInfo) { Builder.setInstrAndDebugLoc(MI); Register WideSrcVal = MatchInfo.WideSrcVal; LLT WideStoreTy = MRI.getType(WideSrcVal); if (MatchInfo.NeedBSwap) { WideSrcVal = Builder.buildBSwap(WideStoreTy, WideSrcVal).getReg(0); } else if (MatchInfo.NeedRotate) { assert(WideStoreTy.getSizeInBits() % 2 == 0 && "Unexpected type for rotate"); auto RotAmt = Builder.buildConstant(WideStoreTy, WideStoreTy.getSizeInBits() / 2); WideSrcVal = Builder.buildRotateRight(WideStoreTy, WideSrcVal, RotAmt).getReg(0); } Builder.buildStore(WideSrcVal, MatchInfo.LowestIdxStore->getPointerReg(), MatchInfo.LowestIdxStore->getMMO().getPointerInfo(), MatchInfo.LowestIdxStore->getMMO().getAlign()); // Erase the old stores. for (auto *ST : MatchInfo.FoundStores) ST->eraseFromParent(); } bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI, MachineInstr *&ExtMI) { assert(MI.getOpcode() == TargetOpcode::G_PHI); Register DstReg = MI.getOperand(0).getReg(); // TODO: Extending a vector may be expensive, don't do this until heuristics // are better. if (MRI.getType(DstReg).isVector()) return false; // Try to match a phi, whose only use is an extend. if (!MRI.hasOneNonDBGUse(DstReg)) return false; ExtMI = &*MRI.use_instr_nodbg_begin(DstReg); switch (ExtMI->getOpcode()) { case TargetOpcode::G_ANYEXT: return true; // G_ANYEXT is usually free. case TargetOpcode::G_ZEXT: case TargetOpcode::G_SEXT: break; default: return false; } // If the target is likely to fold this extend away, don't propagate. if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI)) return false; // We don't want to propagate the extends unless there's a good chance that // they'll be optimized in some way. // Collect the unique incoming values. SmallPtrSet InSrcs; for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI); switch (DefMI->getOpcode()) { case TargetOpcode::G_LOAD: case TargetOpcode::G_TRUNC: case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: case TargetOpcode::G_CONSTANT: InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI)); // Don't try to propagate if there are too many places to create new // extends, chances are it'll increase code size. if (InSrcs.size() > 2) return false; break; default: return false; } } return true; } void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI, MachineInstr *&ExtMI) { assert(MI.getOpcode() == TargetOpcode::G_PHI); Register DstReg = ExtMI->getOperand(0).getReg(); LLT ExtTy = MRI.getType(DstReg); // Propagate the extension into the block of each incoming reg's block. // Use a SetVector here because PHIs can have duplicate edges, and we want // deterministic iteration order. SmallSetVector SrcMIs; SmallDenseMap OldToNewSrcMap; for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) { auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg()); if (!SrcMIs.insert(SrcMI)) continue; // Build an extend after each src inst. auto *MBB = SrcMI->getParent(); MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator(); if (InsertPt != MBB->end() && InsertPt->isPHI()) InsertPt = MBB->getFirstNonPHI(); Builder.setInsertPt(*SrcMI->getParent(), InsertPt); Builder.setDebugLoc(MI.getDebugLoc()); auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, SrcMI->getOperand(0).getReg()); OldToNewSrcMap[SrcMI] = NewExt; } // Create a new phi with the extended inputs. Builder.setInstrAndDebugLoc(MI); auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI); NewPhi.addDef(DstReg); for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { if (!MO.isReg()) { NewPhi.addMBB(MO.getMBB()); continue; } auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())]; NewPhi.addUse(NewSrc->getOperand(0).getReg()); } Builder.insertInstr(NewPhi); ExtMI->eraseFromParent(); } bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI, Register &Reg) { assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT); // If we have a constant index, look for a G_BUILD_VECTOR source // and find the source register that the index maps to. Register SrcVec = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(SrcVec); auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements()) return false; unsigned VecIdx = Cst->Value.getZExtValue(); // Check if we have a build_vector or build_vector_trunc with an optional // trunc in front. MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec); if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) { SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg()); } if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR && SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC) return false; EVT Ty(getMVTForLLT(SrcTy)); if (!MRI.hasOneNonDBGUse(SrcVec) && !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty)) return false; Reg = SrcVecMI->getOperand(VecIdx + 1).getReg(); return true; } void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI, Register &Reg) { // Check the type of the register, since it may have come from a // G_BUILD_VECTOR_TRUNC. LLT ScalarTy = MRI.getType(Reg); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); Builder.setInstrAndDebugLoc(MI); if (ScalarTy != DstTy) { assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits()); Builder.buildTrunc(DstReg, Reg); MI.eraseFromParent(); return; } replaceSingleDefInstWithReg(MI, Reg); } bool CombinerHelper::matchExtractAllEltsFromBuildVector( MachineInstr &MI, SmallVectorImpl> &SrcDstPairs) { assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); // This combine tries to find build_vector's which have every source element // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like // the masked load scalarization is run late in the pipeline. There's already // a combine for a similar pattern starting from the extract, but that // doesn't attempt to do it if there are multiple uses of the build_vector, // which in this case is true. Starting the combine from the build_vector // feels more natural than trying to find sibling nodes of extracts. // E.g. // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3 // ==> // replace ext{1,2,3,4} with %s{1,2,3,4} Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); unsigned NumElts = DstTy.getNumElements(); SmallBitVector ExtractedElts(NumElts); for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) { if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT) return false; auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI); if (!Cst) return false; unsigned Idx = Cst->getZExtValue(); if (Idx >= NumElts) return false; // Out of range. ExtractedElts.set(Idx); SrcDstPairs.emplace_back( std::make_pair(MI.getOperand(Idx + 1).getReg(), &II)); } // Match if every element was extracted. return ExtractedElts.all(); } void CombinerHelper::applyExtractAllEltsFromBuildVector( MachineInstr &MI, SmallVectorImpl> &SrcDstPairs) { assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR); for (auto &Pair : SrcDstPairs) { auto *ExtMI = Pair.second; replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first); ExtMI->eraseFromParent(); } MI.eraseFromParent(); } void CombinerHelper::applyBuildFn( MachineInstr &MI, std::function &MatchInfo) { Builder.setInstrAndDebugLoc(MI); MatchInfo(Builder); MI.eraseFromParent(); } void CombinerHelper::applyBuildFnNoErase( MachineInstr &MI, std::function &MatchInfo) { Builder.setInstrAndDebugLoc(MI); MatchInfo(Builder); } bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI, BuildFnTy &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_OR); Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); unsigned BitWidth = Ty.getScalarSizeInBits(); Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt; unsigned FshOpc = 0; // Match (or (shl ...), (lshr ...)). if (!mi_match(Dst, MRI, // m_GOr() handles the commuted version as well. m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)), m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt))))) return false; // Given constants C0 and C1 such that C0 + C1 is bit-width: // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1) int64_t CstShlAmt, CstLShrAmt; if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) && mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) && CstShlAmt + CstLShrAmt == BitWidth) { FshOpc = TargetOpcode::G_FSHR; Amt = LShrAmt; } else if (mi_match(LShrAmt, MRI, m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && ShlAmt == Amt) { // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt) FshOpc = TargetOpcode::G_FSHL; } else if (mi_match(ShlAmt, MRI, m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) && LShrAmt == Amt) { // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt) FshOpc = TargetOpcode::G_FSHR; } else { return false; } LLT AmtTy = MRI.getType(Amt); if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}})) return false; MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt}); }; return true; } /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate. bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); Register X = MI.getOperand(1).getReg(); Register Y = MI.getOperand(2).getReg(); if (X != Y) return false; unsigned RotateOpc = Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR; return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}}); } void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR); bool IsFSHL = Opc == TargetOpcode::G_FSHL; Observer.changingInstr(MI); MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR)); MI.removeOperand(2); Observer.changedInstr(MI); } // Fold (rot x, c) -> (rot x, c % BitSize) bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_ROTL || MI.getOpcode() == TargetOpcode::G_ROTR); unsigned Bitsize = MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); Register AmtReg = MI.getOperand(2).getReg(); bool OutOfRange = false; auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) { if (auto *CI = dyn_cast(C)) OutOfRange |= CI->getValue().uge(Bitsize); return true; }; return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange; } void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_ROTL || MI.getOpcode() == TargetOpcode::G_ROTR); unsigned Bitsize = MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits(); Builder.setInstrAndDebugLoc(MI); Register Amt = MI.getOperand(2).getReg(); LLT AmtTy = MRI.getType(Amt); auto Bits = Builder.buildConstant(AmtTy, Bitsize); Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0); Observer.changingInstr(MI); MI.getOperand(2).setReg(Amt); Observer.changedInstr(MI); } bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI, int64_t &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ICMP); auto Pred = static_cast(MI.getOperand(1).getPredicate()); auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg()); auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg()); std::optional KnownVal; switch (Pred) { default: llvm_unreachable("Unexpected G_ICMP predicate?"); case CmpInst::ICMP_EQ: KnownVal = KnownBits::eq(KnownLHS, KnownRHS); break; case CmpInst::ICMP_NE: KnownVal = KnownBits::ne(KnownLHS, KnownRHS); break; case CmpInst::ICMP_SGE: KnownVal = KnownBits::sge(KnownLHS, KnownRHS); break; case CmpInst::ICMP_SGT: KnownVal = KnownBits::sgt(KnownLHS, KnownRHS); break; case CmpInst::ICMP_SLE: KnownVal = KnownBits::sle(KnownLHS, KnownRHS); break; case CmpInst::ICMP_SLT: KnownVal = KnownBits::slt(KnownLHS, KnownRHS); break; case CmpInst::ICMP_UGE: KnownVal = KnownBits::uge(KnownLHS, KnownRHS); break; case CmpInst::ICMP_UGT: KnownVal = KnownBits::ugt(KnownLHS, KnownRHS); break; case CmpInst::ICMP_ULE: KnownVal = KnownBits::ule(KnownLHS, KnownRHS); break; case CmpInst::ICMP_ULT: KnownVal = KnownBits::ult(KnownLHS, KnownRHS); break; } if (!KnownVal) return false; MatchInfo = *KnownVal ? getICmpTrueVal(getTargetLowering(), /*IsVector = */ MRI.getType(MI.getOperand(0).getReg()).isVector(), /* IsFP = */ false) : 0; return true; } bool CombinerHelper::matchICmpToLHSKnownBits( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ICMP); // Given: // // %x = G_WHATEVER (... x is known to be 0 or 1 ...) // %cmp = G_ICMP ne %x, 0 // // Or: // // %x = G_WHATEVER (... x is known to be 0 or 1 ...) // %cmp = G_ICMP eq %x, 1 // // We can replace %cmp with %x assuming true is 1 on the target. auto Pred = static_cast(MI.getOperand(1).getPredicate()); if (!CmpInst::isEquality(Pred)) return false; Register Dst = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(Dst); if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(), /* IsFP = */ false) != 1) return false; int64_t OneOrZero = Pred == CmpInst::ICMP_EQ; if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero))) return false; Register LHS = MI.getOperand(2).getReg(); auto KnownLHS = KB->getKnownBits(LHS); if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1) return false; // Make sure replacing Dst with the LHS is a legal operation. LLT LHSTy = MRI.getType(LHS); unsigned LHSSize = LHSTy.getSizeInBits(); unsigned DstSize = DstTy.getSizeInBits(); unsigned Op = TargetOpcode::COPY; if (DstSize != LHSSize) Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT; if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}})) return false; MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); }; return true; } // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0 bool CombinerHelper::matchAndOrDisjointMask( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_AND); // Ignore vector types to simplify matching the two constants. // TODO: do this for vectors and scalars via a demanded bits analysis. LLT Ty = MRI.getType(MI.getOperand(0).getReg()); if (Ty.isVector()) return false; Register Src; Register AndMaskReg; int64_t AndMaskBits; int64_t OrMaskBits; if (!mi_match(MI, MRI, m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)), m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg))))) return false; // Check if OrMask could turn on any bits in Src. if (AndMaskBits & OrMaskBits) return false; MatchInfo = [=, &MI](MachineIRBuilder &B) { Observer.changingInstr(MI); // Canonicalize the result to have the constant on the RHS. if (MI.getOperand(1).getReg() == AndMaskReg) MI.getOperand(2).setReg(AndMaskReg); MI.getOperand(1).setReg(Src); Observer.changedInstr(MI); }; return true; } /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift. bool CombinerHelper::matchBitfieldExtractFromSExtInReg( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(Src); LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}})) return false; int64_t Width = MI.getOperand(2).getImm(); Register ShiftSrc; int64_t ShiftImm; if (!mi_match( Src, MRI, m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)), m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)))))) return false; if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits()) return false; MatchInfo = [=](MachineIRBuilder &B) { auto Cst1 = B.buildConstant(ExtractTy, ShiftImm); auto Cst2 = B.buildConstant(ExtractTy, Width); B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2); }; return true; } /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants. bool CombinerHelper::matchBitfieldExtractFromAnd( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_AND); Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( TargetOpcode::G_UBFX, Ty, ExtractTy)) return false; int64_t AndImm, LSBImm; Register ShiftSrc; const unsigned Size = Ty.getScalarSizeInBits(); if (!mi_match(MI.getOperand(0).getReg(), MRI, m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))), m_ICst(AndImm)))) return false; // The mask is a mask of the low bits iff imm & (imm+1) == 0. auto MaybeMask = static_cast(AndImm); if (MaybeMask & (MaybeMask + 1)) return false; // LSB must fit within the register. if (static_cast(LSBImm) >= Size) return false; uint64_t Width = APInt(Size, AndImm).countTrailingOnes(); MatchInfo = [=](MachineIRBuilder &B) { auto WidthCst = B.buildConstant(ExtractTy, Width); auto LSBCst = B.buildConstant(ExtractTy, LSBImm); B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst}); }; return true; } bool CombinerHelper::matchBitfieldExtractFromShr( MachineInstr &MI, std::function &MatchInfo) { const unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR); const Register Dst = MI.getOperand(0).getReg(); const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR ? TargetOpcode::G_SBFX : TargetOpcode::G_UBFX; // Check if the type we would use for the extract is legal LLT Ty = MRI.getType(Dst); LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}})) return false; Register ShlSrc; int64_t ShrAmt; int64_t ShlAmt; const unsigned Size = Ty.getScalarSizeInBits(); // Try to match shr (shl x, c1), c2 if (!mi_match(Dst, MRI, m_BinOp(Opcode, m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))), m_ICst(ShrAmt)))) return false; // Make sure that the shift sizes can fit a bitfield extract if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size) return false; // Skip this combine if the G_SEXT_INREG combine could handle it if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt) return false; // Calculate start position and width of the extract const int64_t Pos = ShrAmt - ShlAmt; const int64_t Width = Size - ShrAmt; MatchInfo = [=](MachineIRBuilder &B) { auto WidthCst = B.buildConstant(ExtractTy, Width); auto PosCst = B.buildConstant(ExtractTy, Pos); B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst}); }; return true; } bool CombinerHelper::matchBitfieldExtractFromShrAnd( MachineInstr &MI, std::function &MatchInfo) { const unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR); const Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty); if (!getTargetLowering().isConstantUnsignedBitfieldExtractLegal( TargetOpcode::G_UBFX, Ty, ExtractTy)) return false; // Try to match shr (and x, c1), c2 Register AndSrc; int64_t ShrAmt; int64_t SMask; if (!mi_match(Dst, MRI, m_BinOp(Opcode, m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))), m_ICst(ShrAmt)))) return false; const unsigned Size = Ty.getScalarSizeInBits(); if (ShrAmt < 0 || ShrAmt >= Size) return false; // If the shift subsumes the mask, emit the 0 directly. if (0 == (SMask >> ShrAmt)) { MatchInfo = [=](MachineIRBuilder &B) { B.buildConstant(Dst, 0); }; return true; } // Check that ubfx can do the extraction, with no holes in the mask. uint64_t UMask = SMask; UMask |= maskTrailingOnes(ShrAmt); UMask &= maskTrailingOnes(Size); if (!isMask_64(UMask)) return false; // Calculate start position and width of the extract. const int64_t Pos = ShrAmt; const int64_t Width = countTrailingOnes(UMask) - ShrAmt; // It's preferable to keep the shift, rather than form G_SBFX. // TODO: remove the G_AND via demanded bits analysis. if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size) return false; MatchInfo = [=](MachineIRBuilder &B) { auto WidthCst = B.buildConstant(ExtractTy, Width); auto PosCst = B.buildConstant(ExtractTy, Pos); B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst}); }; return true; } bool CombinerHelper::reassociationCanBreakAddressingModePattern( MachineInstr &PtrAdd) { assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD); Register Src1Reg = PtrAdd.getOperand(1).getReg(); MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI); if (!Src1Def) return false; Register Src2Reg = PtrAdd.getOperand(2).getReg(); if (MRI.hasOneNonDBGUse(Src1Reg)) return false; auto C1 = getIConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI); if (!C1) return false; auto C2 = getIConstantVRegVal(Src2Reg, MRI); if (!C2) return false; const APInt &C1APIntVal = *C1; const APInt &C2APIntVal = *C2; const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue(); for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) { // This combine may end up running before ptrtoint/inttoptr combines // manage to eliminate redundant conversions, so try to look through them. MachineInstr *ConvUseMI = &UseMI; unsigned ConvUseOpc = ConvUseMI->getOpcode(); while (ConvUseOpc == TargetOpcode::G_INTTOPTR || ConvUseOpc == TargetOpcode::G_PTRTOINT) { Register DefReg = ConvUseMI->getOperand(0).getReg(); if (!MRI.hasOneNonDBGUse(DefReg)) break; ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg); ConvUseOpc = ConvUseMI->getOpcode(); } auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD || ConvUseOpc == TargetOpcode::G_STORE; if (!LoadStore) continue; // Is x[offset2] already not a legal addressing mode? If so then // reassociating the constants breaks nothing (we test offset2 because // that's the one we hope to fold into the load or store). TargetLoweringBase::AddrMode AM; AM.HasBaseReg = true; AM.BaseOffs = C2APIntVal.getSExtValue(); unsigned AS = MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace(); Type *AccessTy = getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()), PtrAdd.getMF()->getFunction().getContext()); const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering(); if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, AccessTy, AS)) continue; // Would x[offset1+offset2] still be a legal addressing mode? AM.BaseOffs = CombinedValue; if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM, AccessTy, AS)) return true; } return false; } bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI, MachineInstr *RHS, BuildFnTy &MatchInfo) { // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) Register Src1Reg = MI.getOperand(1).getReg(); if (RHS->getOpcode() != TargetOpcode::G_ADD) return false; auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI); if (!C2) return false; MatchInfo = [=, &MI](MachineIRBuilder &B) { LLT PtrTy = MRI.getType(MI.getOperand(0).getReg()); auto NewBase = Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg()); Observer.changingInstr(MI); MI.getOperand(1).setReg(NewBase.getReg(0)); MI.getOperand(2).setReg(RHS->getOperand(2).getReg()); Observer.changedInstr(MI); }; return !reassociationCanBreakAddressingModePattern(MI); } bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI, MachineInstr *LHS, MachineInstr *RHS, BuildFnTy &MatchInfo) { // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C) // if and only if (G_PTR_ADD X, C) has one use. Register LHSBase; std::optional LHSCstOff; if (!mi_match(MI.getBaseReg(), MRI, m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff))))) return false; auto *LHSPtrAdd = cast(LHS); MatchInfo = [=, &MI](MachineIRBuilder &B) { // When we change LHSPtrAdd's offset register we might cause it to use a reg // before its def. Sink the instruction so the outer PTR_ADD to ensure this // doesn't happen. LHSPtrAdd->moveBefore(&MI); Register RHSReg = MI.getOffsetReg(); // set VReg will cause type mismatch if it comes from extend/trunc auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value); Observer.changingInstr(MI); MI.getOperand(2).setReg(NewCst.getReg(0)); Observer.changedInstr(MI); Observer.changingInstr(*LHSPtrAdd); LHSPtrAdd->getOperand(2).setReg(RHSReg); Observer.changedInstr(*LHSPtrAdd); }; return !reassociationCanBreakAddressingModePattern(MI); } bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI, MachineInstr *LHS, MachineInstr *RHS, BuildFnTy &MatchInfo) { // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) auto *LHSPtrAdd = dyn_cast(LHS); if (!LHSPtrAdd) return false; Register Src2Reg = MI.getOperand(2).getReg(); Register LHSSrc1 = LHSPtrAdd->getBaseReg(); Register LHSSrc2 = LHSPtrAdd->getOffsetReg(); auto C1 = getIConstantVRegVal(LHSSrc2, MRI); if (!C1) return false; auto C2 = getIConstantVRegVal(Src2Reg, MRI); if (!C2) return false; MatchInfo = [=, &MI](MachineIRBuilder &B) { auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2); Observer.changingInstr(MI); MI.getOperand(1).setReg(LHSSrc1); MI.getOperand(2).setReg(NewCst.getReg(0)); Observer.changedInstr(MI); }; return !reassociationCanBreakAddressingModePattern(MI); } bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI, BuildFnTy &MatchInfo) { auto &PtrAdd = cast(MI); // We're trying to match a few pointer computation patterns here for // re-association opportunities. // 1) Isolating a constant operand to be on the RHS, e.g.: // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C) // // 2) Folding two constants in each sub-tree as long as such folding // doesn't break a legal addressing mode. // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2) // // 3) Move a constant from the LHS of an inner op to the RHS of the outer. // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C) // iif (G_PTR_ADD X, C) has one use. MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg()); MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg()); // Try to match example 2. if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo)) return true; // Try to match example 3. if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo)) return true; // Try to match example 1. if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo)) return true; return false; } bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) { Register Op1 = MI.getOperand(1).getReg(); Register Op2 = MI.getOperand(2).getReg(); auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI); if (!MaybeCst) return false; MatchInfo = *MaybeCst; return true; } bool CombinerHelper::matchNarrowBinopFeedingAnd( MachineInstr &MI, std::function &MatchInfo) { // Look for a binop feeding into an AND with a mask: // // %add = G_ADD %lhs, %rhs // %and = G_AND %add, 000...11111111 // // Check if it's possible to perform the binop at a narrower width and zext // back to the original width like so: // // %narrow_lhs = G_TRUNC %lhs // %narrow_rhs = G_TRUNC %rhs // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs // %new_add = G_ZEXT %narrow_add // %and = G_AND %new_add, 000...11111111 // // This can allow later combines to eliminate the G_AND if it turns out // that the mask is irrelevant. assert(MI.getOpcode() == TargetOpcode::G_AND); Register Dst = MI.getOperand(0).getReg(); Register AndLHS = MI.getOperand(1).getReg(); Register AndRHS = MI.getOperand(2).getReg(); LLT WideTy = MRI.getType(Dst); // If the potential binop has more than one use, then it's possible that one // of those uses will need its full width. if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS)) return false; // Check if the LHS feeding the AND is impacted by the high bits that we're // masking out. // // e.g. for 64-bit x, y: // // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI); if (!LHSInst) return false; unsigned LHSOpc = LHSInst->getOpcode(); switch (LHSOpc) { default: return false; case TargetOpcode::G_ADD: case TargetOpcode::G_SUB: case TargetOpcode::G_MUL: case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: break; } // Find the mask on the RHS. auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI); if (!Cst) return false; auto Mask = Cst->Value; if (!Mask.isMask()) return false; // No point in combining if there's nothing to truncate. unsigned NarrowWidth = Mask.countTrailingOnes(); if (NarrowWidth == WideTy.getSizeInBits()) return false; LLT NarrowTy = LLT::scalar(NarrowWidth); // Check if adding the zext + truncates could be harmful. auto &MF = *MI.getMF(); const auto &TLI = getTargetLowering(); LLVMContext &Ctx = MF.getFunction().getContext(); auto &DL = MF.getDataLayout(); if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) || !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx)) return false; if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) || !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}})) return false; Register BinOpLHS = LHSInst->getOperand(1).getReg(); Register BinOpRHS = LHSInst->getOperand(2).getReg(); MatchInfo = [=, &MI](MachineIRBuilder &B) { auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS); auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS); auto NarrowBinOp = Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS}); auto Ext = Builder.buildZExt(WideTy, NarrowBinOp); Observer.changingInstr(MI); MI.getOperand(1).setReg(Ext.getReg(0)); Observer.changedInstr(MI); }; return true; } bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) { unsigned Opc = MI.getOpcode(); assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO); if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2))) return false; MatchInfo = [=, &MI](MachineIRBuilder &B) { Observer.changingInstr(MI); unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO : TargetOpcode::G_SADDO; MI.setDesc(Builder.getTII().get(NewOpc)); MI.getOperand(3).setReg(MI.getOperand(2).getReg()); Observer.changedInstr(MI); }; return true; } bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { // (G_*MULO x, 0) -> 0 + no carry out assert(MI.getOpcode() == TargetOpcode::G_UMULO || MI.getOpcode() == TargetOpcode::G_SMULO); if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) return false; Register Dst = MI.getOperand(0).getReg(); Register Carry = MI.getOperand(1).getReg(); if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) || !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) return false; MatchInfo = [=](MachineIRBuilder &B) { B.buildConstant(Dst, 0); B.buildConstant(Carry, 0); }; return true; } bool CombinerHelper::matchAddOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) { // (G_*ADDO x, 0) -> x + no carry out assert(MI.getOpcode() == TargetOpcode::G_UADDO || MI.getOpcode() == TargetOpcode::G_SADDO); if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0))) return false; Register Carry = MI.getOperand(1).getReg(); if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Carry))) return false; Register Dst = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(2).getReg(); MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, LHS); B.buildConstant(Carry, 0); }; return true; } bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) { // (G_*ADDE x, y, 0) -> (G_*ADDO x, y) // (G_*SUBE x, y, 0) -> (G_*SUBO x, y) assert(MI.getOpcode() == TargetOpcode::G_UADDE || MI.getOpcode() == TargetOpcode::G_SADDE || MI.getOpcode() == TargetOpcode::G_USUBE || MI.getOpcode() == TargetOpcode::G_SSUBE); if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0))) return false; MatchInfo = [&](MachineIRBuilder &B) { unsigned NewOpcode; switch (MI.getOpcode()) { case TargetOpcode::G_UADDE: NewOpcode = TargetOpcode::G_UADDO; break; case TargetOpcode::G_SADDE: NewOpcode = TargetOpcode::G_SADDO; break; case TargetOpcode::G_USUBE: NewOpcode = TargetOpcode::G_USUBO; break; case TargetOpcode::G_SSUBE: NewOpcode = TargetOpcode::G_SSUBO; break; } Observer.changingInstr(MI); MI.setDesc(B.getTII().get(NewOpcode)); MI.removeOperand(4); Observer.changedInstr(MI); }; return true; } bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI, BuildFnTy &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_SUB); Register Dst = MI.getOperand(0).getReg(); // (x + y) - z -> x (if y == z) // (x + y) - z -> y (if x == z) Register X, Y, Z; if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) { Register ReplaceReg; int64_t CstX, CstY; if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) && mi_match(Z, MRI, m_SpecificICstOrSplat(CstY)))) ReplaceReg = X; else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) ReplaceReg = Y; if (ReplaceReg) { MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); }; return true; } } // x - (y + z) -> 0 - y (if x == z) // x - (y + z) -> 0 - z (if x == y) if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) { Register ReplaceReg; int64_t CstX; if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && mi_match(Z, MRI, m_SpecificICstOrSplat(CstX)))) ReplaceReg = Y; else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) && mi_match(Y, MRI, m_SpecificICstOrSplat(CstX)))) ReplaceReg = Z; if (ReplaceReg) { MatchInfo = [=](MachineIRBuilder &B) { auto Zero = B.buildConstant(MRI.getType(Dst), 0); B.buildSub(Dst, Zero, ReplaceReg); }; return true; } } return false; } MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UDIV); auto &UDiv = cast(MI); Register Dst = UDiv.getReg(0); Register LHS = UDiv.getReg(1); Register RHS = UDiv.getReg(2); LLT Ty = MRI.getType(Dst); LLT ScalarTy = Ty.getScalarType(); const unsigned EltBits = ScalarTy.getScalarSizeInBits(); LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); auto &MIB = Builder; MIB.setInstrAndDebugLoc(MI); bool UseNPQ = false; SmallVector PreShifts, PostShifts, MagicFactors, NPQFactors; auto BuildUDIVPattern = [&](const Constant *C) { auto *CI = cast(C); const APInt &Divisor = CI->getValue(); bool SelNPQ = false; APInt Magic(Divisor.getBitWidth(), 0); unsigned PreShift = 0, PostShift = 0; // Magic algorithm doesn't work for division by 1. We need to emit a select // at the end. // TODO: Use undef values for divisor of 1. if (!Divisor.isOneValue()) { UnsignedDivisionByConstantInfo magics = UnsignedDivisionByConstantInfo::get(Divisor); Magic = std::move(magics.Magic); assert(magics.PreShift < Divisor.getBitWidth() && "We shouldn't generate an undefined shift!"); assert(magics.PostShift < Divisor.getBitWidth() && "We shouldn't generate an undefined shift!"); assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift"); PreShift = magics.PreShift; PostShift = magics.PostShift; SelNPQ = magics.IsAdd; } PreShifts.push_back( MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0)); MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0)); NPQFactors.push_back( MIB.buildConstant(ScalarTy, SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) : APInt::getZero(EltBits)) .getReg(0)); PostShifts.push_back( MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0)); UseNPQ |= SelNPQ; return true; }; // Collect the shifts/magic values from each element. bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern); (void)Matched; assert(Matched && "Expected unary predicate match to succeed"); Register PreShift, PostShift, MagicFactor, NPQFactor; auto *RHSDef = getOpcodeDef(RHS, MRI); if (RHSDef) { PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0); MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0); NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0); PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0); } else { assert(MRI.getType(RHS).isScalar() && "Non-build_vector operation should have been a scalar"); PreShift = PreShifts[0]; MagicFactor = MagicFactors[0]; PostShift = PostShifts[0]; } Register Q = LHS; Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0); // Multiply the numerator (operand 0) by the magic value. Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0); if (UseNPQ) { Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0); // For vectors we might have a mix of non-NPQ/NPQ paths, so use // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero. if (Ty.isVector()) NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0); else NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0); Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0); } Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0); auto One = MIB.buildConstant(Ty, 1); auto IsOne = MIB.buildICmp( CmpInst::Predicate::ICMP_EQ, Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One); return MIB.buildSelect(Ty, IsOne, LHS, Q); } bool CombinerHelper::matchUDivByConst(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UDIV); Register Dst = MI.getOperand(0).getReg(); Register RHS = MI.getOperand(2).getReg(); LLT DstTy = MRI.getType(Dst); auto *RHSDef = MRI.getVRegDef(RHS); if (!isConstantOrConstantVector(*RHSDef, MRI)) return false; auto &MF = *MI.getMF(); AttributeList Attr = MF.getFunction().getAttributes(); const auto &TLI = getTargetLowering(); LLVMContext &Ctx = MF.getFunction().getContext(); auto &DL = MF.getDataLayout(); if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) return false; // Don't do this for minsize because the instruction sequence is usually // larger. if (MF.getFunction().hasMinSize()) return false; // Don't do this if the types are not going to be legal. if (LI) { if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}})) return false; if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}})) return false; if (!isLegalOrBeforeLegalizer( {TargetOpcode::G_ICMP, {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1), DstTy}})) return false; } auto CheckEltValue = [&](const Constant *C) { if (auto *CI = dyn_cast_or_null(C)) return !CI->isZero(); return false; }; return matchUnaryPredicate(MRI, RHS, CheckEltValue); } void CombinerHelper::applyUDivByConst(MachineInstr &MI) { auto *NewMI = buildUDivUsingMul(MI); replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); } bool CombinerHelper::matchSDivByConst(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); Register Dst = MI.getOperand(0).getReg(); Register RHS = MI.getOperand(2).getReg(); LLT DstTy = MRI.getType(Dst); auto &MF = *MI.getMF(); AttributeList Attr = MF.getFunction().getAttributes(); const auto &TLI = getTargetLowering(); LLVMContext &Ctx = MF.getFunction().getContext(); auto &DL = MF.getDataLayout(); if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr)) return false; // Don't do this for minsize because the instruction sequence is usually // larger. if (MF.getFunction().hasMinSize()) return false; // If the sdiv has an 'exact' flag we can use a simpler lowering. if (MI.getFlag(MachineInstr::MIFlag::IsExact)) { return matchUnaryPredicate( MRI, RHS, [](const Constant *C) { return C && !C->isZeroValue(); }); } // Don't support the general case for now. return false; } void CombinerHelper::applySDivByConst(MachineInstr &MI) { auto *NewMI = buildSDivUsingMul(MI); replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg()); } MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV"); auto &SDiv = cast(MI); Register Dst = SDiv.getReg(0); Register LHS = SDiv.getReg(1); Register RHS = SDiv.getReg(2); LLT Ty = MRI.getType(Dst); LLT ScalarTy = Ty.getScalarType(); LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType(); auto &MIB = Builder; MIB.setInstrAndDebugLoc(MI); bool UseSRA = false; SmallVector Shifts, Factors; auto *RHSDef = cast(getDefIgnoringCopies(RHS, MRI)); bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value(); auto BuildSDIVPattern = [&](const Constant *C) { // Don't recompute inverses for each splat element. if (IsSplat && !Factors.empty()) { Shifts.push_back(Shifts[0]); Factors.push_back(Factors[0]); return true; } auto *CI = cast(C); APInt Divisor = CI->getValue(); unsigned Shift = Divisor.countTrailingZeros(); if (Shift) { Divisor.ashrInPlace(Shift); UseSRA = true; } // Calculate the multiplicative inverse modulo BW. // 2^W requires W + 1 bits, so we have to extend and then truncate. unsigned W = Divisor.getBitWidth(); APInt Factor = Divisor.zext(W + 1) .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) .trunc(W); Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0)); Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0)); return true; }; // Collect all magic values from the build vector. bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern); (void)Matched; assert(Matched && "Expected unary predicate match to succeed"); Register Shift, Factor; if (Ty.isVector()) { Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0); Factor = MIB.buildBuildVector(Ty, Factors).getReg(0); } else { Shift = Shifts[0]; Factor = Factors[0]; } Register Res = LHS; if (UseSRA) Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0); return MIB.buildMul(Ty, Res, Factor); } bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_UMULH); Register RHS = MI.getOperand(2).getReg(); Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); auto MatchPow2ExceptOne = [&](const Constant *C) { if (auto *CI = dyn_cast(C)) return CI->getValue().isPowerOf2() && !CI->getValue().isOne(); return false; }; if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false)) return false; return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}}); } void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) { Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); Register Dst = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(Dst); LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty); unsigned NumEltBits = Ty.getScalarSizeInBits(); Builder.setInstrAndDebugLoc(MI); auto LogBase2 = buildLogBase2(RHS, Builder); auto ShiftAmt = Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2); auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt); Builder.buildLShr(Dst, LHS, Trunc); MI.eraseFromParent(); } bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI, BuildFnTy &MatchInfo) { unsigned Opc = MI.getOpcode(); assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB || Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA); Register Dst = MI.getOperand(0).getReg(); Register X = MI.getOperand(1).getReg(); Register Y = MI.getOperand(2).getReg(); LLT Type = MRI.getType(Dst); // fold (fadd x, fneg(y)) -> (fsub x, y) // fold (fadd fneg(y), x) -> (fsub x, y) // G_ADD is commutative so both cases are checked by m_GFAdd if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) && isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) { Opc = TargetOpcode::G_FSUB; } /// fold (fsub x, fneg(y)) -> (fadd x, y) else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) && isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) { Opc = TargetOpcode::G_FADD; } // fold (fmul fneg(x), fneg(y)) -> (fmul x, y) // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y) // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z) // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z) else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV || Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) && mi_match(X, MRI, m_GFNeg(m_Reg(X))) && mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) { // no opcode change } else return false; MatchInfo = [=, &MI](MachineIRBuilder &B) { Observer.changingInstr(MI); MI.setDesc(B.getTII().get(Opc)); MI.getOperand(1).setReg(X); MI.getOperand(2).setReg(Y); Observer.changedInstr(MI); }; return true; } bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FSUB); Register LHS = MI.getOperand(1).getReg(); MatchInfo = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(MI.getOperand(0).getReg()); const auto LHSCst = Ty.isVector() ? getFConstantSplat(LHS, MRI, /* allowUndef */ true) : getFConstantVRegValWithLookThrough(LHS, MRI); if (!LHSCst) return false; // -0.0 is always allowed if (LHSCst->Value.isNegZero()) return true; // +0.0 is only allowed if nsz is set. if (LHSCst->Value.isPosZero()) return MI.getFlag(MachineInstr::FmNsz); return false; } void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) { Builder.setInstrAndDebugLoc(MI); Register Dst = MI.getOperand(0).getReg(); Builder.buildFNeg( Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0)); eraseInst(MI); } /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either /// due to global flags or MachineInstr flags. static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) { if (MI.getOpcode() != TargetOpcode::G_FMUL) return false; return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract); } static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo &MRI) { return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()), MRI.use_instr_nodbg_end()) > std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()), MRI.use_instr_nodbg_end()); } bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI, bool &AllowFusionGlobally, bool &HasFMAD, bool &Aggressive, bool CanReassociate) { auto *MF = MI.getMF(); const auto &TLI = *MF->getSubtarget().getTargetLowering(); const TargetOptions &Options = MF->getTarget().Options; LLT DstType = MRI.getType(MI.getOperand(0).getReg()); if (CanReassociate && !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc))) return false; // Floating-point multiply-add with intermediate rounding. HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType)); // Floating-point multiply-add without intermediate rounding. bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) && isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}}); // No valid opcode, do not combine. if (!HasFMAD && !HasFMA) return false; AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath || HasFMAD; // If the addition is not contractable, do not combine. if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract)) return false; Aggressive = TLI.enableAggressiveFMAFusion(DstType); return true; } bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FADD); bool AllowFusionGlobally, HasFMAD, Aggressive; if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) return false; Register Op1 = MI.getOperand(1).getReg(); Register Op2 = MI.getOperand(2).getReg(); DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; unsigned PreferredFusedOpcode = HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), // prefer to fold the multiply with fewer uses. if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && isContractableFMul(*RHS.MI, AllowFusionGlobally)) { if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) std::swap(LHS, RHS); } // fold (fadd (fmul x, y), z) -> (fma x, y, z) if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {LHS.MI->getOperand(1).getReg(), LHS.MI->getOperand(2).getReg(), RHS.Reg}); }; return true; } // fold (fadd x, (fmul y, z)) -> (fma y, z, x) if (isContractableFMul(*RHS.MI, AllowFusionGlobally) && (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {RHS.MI->getOperand(1).getReg(), RHS.MI->getOperand(2).getReg(), LHS.Reg}); }; return true; } return false; } bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FADD); bool AllowFusionGlobally, HasFMAD, Aggressive; if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) return false; const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); Register Op1 = MI.getOperand(1).getReg(); Register Op2 = MI.getOperand(2).getReg(); DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; LLT DstType = MRI.getType(MI.getOperand(0).getReg()); unsigned PreferredFusedOpcode = HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), // prefer to fold the multiply with fewer uses. if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && isContractableFMul(*RHS.MI, AllowFusionGlobally)) { if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) std::swap(LHS, RHS); } // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) MachineInstr *FpExtSrc; if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && isContractableFMul(*FpExtSrc, AllowFusionGlobally) && TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, MRI.getType(FpExtSrc->getOperand(1).getReg()))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg}); }; return true; } // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z) // Note: Commutes FADD operands. if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) && isContractableFMul(*FpExtSrc, AllowFusionGlobally) && TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, MRI.getType(FpExtSrc->getOperand(1).getReg()))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg()); auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg()); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg}); }; return true; } return false; } bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FADD); bool AllowFusionGlobally, HasFMAD, Aggressive; if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true)) return false; Register Op1 = MI.getOperand(1).getReg(); Register Op2 = MI.getOperand(2).getReg(); DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); unsigned PreferredFusedOpcode = HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), // prefer to fold the multiply with fewer uses. if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && isContractableFMul(*RHS.MI, AllowFusionGlobally)) { if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) std::swap(LHS, RHS); } MachineInstr *FMA = nullptr; Register Z; // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z)) if (LHS.MI->getOpcode() == PreferredFusedOpcode && (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() == TargetOpcode::G_FMUL) && MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) && MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) { FMA = LHS.MI; Z = RHS.Reg; } // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z)) else if (RHS.MI->getOpcode() == PreferredFusedOpcode && (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() == TargetOpcode::G_FMUL) && MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) && MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) { Z = LHS.Reg; FMA = RHS.MI; } if (FMA) { MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg()); Register X = FMA->getOperand(1).getReg(); Register Y = FMA->getOperand(2).getReg(); Register U = FMulMI->getOperand(1).getReg(); Register V = FMulMI->getOperand(2).getReg(); MatchInfo = [=, &MI](MachineIRBuilder &B) { Register InnerFMA = MRI.createGenericVirtualRegister(DstTy); B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z}); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {X, Y, InnerFMA}); }; return true; } return false; } bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FADD); bool AllowFusionGlobally, HasFMAD, Aggressive; if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) return false; if (!Aggressive) return false; const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); LLT DstType = MRI.getType(MI.getOperand(0).getReg()); Register Op1 = MI.getOperand(1).getReg(); Register Op2 = MI.getOperand(2).getReg(); DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; unsigned PreferredFusedOpcode = HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), // prefer to fold the multiply with fewer uses. if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) && isContractableFMul(*RHS.MI, AllowFusionGlobally)) { if (hasMoreUses(*LHS.MI, *RHS.MI, MRI)) std::swap(LHS, RHS); } // Builds: (fma x, y, (fma (fpext u), (fpext v), z)) auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X, Register Y, MachineIRBuilder &B) { Register FpExtU = B.buildFPExt(DstType, U).getReg(0); Register FpExtV = B.buildFPExt(DstType, V).getReg(0); Register InnerFMA = B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z}) .getReg(0); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {X, Y, InnerFMA}); }; MachineInstr *FMulMI, *FMAMI; // fold (fadd (fma x, y, (fpext (fmul u, v))), z) // -> (fma x, y, (fma (fpext u), (fpext v), z)) if (LHS.MI->getOpcode() == PreferredFusedOpcode && mi_match(LHS.MI->getOperand(3).getReg(), MRI, m_GFPExt(m_MInstr(FMulMI))) && isContractableFMul(*FMulMI, AllowFusionGlobally) && TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, MRI.getType(FMulMI->getOperand(0).getReg()))) { MatchInfo = [=](MachineIRBuilder &B) { buildMatchInfo(FMulMI->getOperand(1).getReg(), FMulMI->getOperand(2).getReg(), RHS.Reg, LHS.MI->getOperand(1).getReg(), LHS.MI->getOperand(2).getReg(), B); }; return true; } // fold (fadd (fpext (fma x, y, (fmul u, v))), z) // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) // FIXME: This turns two single-precision and one double-precision // operation into two double-precision operations, which might not be // interesting for all targets, especially GPUs. if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && FMAMI->getOpcode() == PreferredFusedOpcode) { MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); if (isContractableFMul(*FMulMI, AllowFusionGlobally) && TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, MRI.getType(FMAMI->getOperand(0).getReg()))) { MatchInfo = [=](MachineIRBuilder &B) { Register X = FMAMI->getOperand(1).getReg(); Register Y = FMAMI->getOperand(2).getReg(); X = B.buildFPExt(DstType, X).getReg(0); Y = B.buildFPExt(DstType, Y).getReg(0); buildMatchInfo(FMulMI->getOperand(1).getReg(), FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B); }; return true; } } // fold (fadd z, (fma x, y, (fpext (fmul u, v))) // -> (fma x, y, (fma (fpext u), (fpext v), z)) if (RHS.MI->getOpcode() == PreferredFusedOpcode && mi_match(RHS.MI->getOperand(3).getReg(), MRI, m_GFPExt(m_MInstr(FMulMI))) && isContractableFMul(*FMulMI, AllowFusionGlobally) && TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, MRI.getType(FMulMI->getOperand(0).getReg()))) { MatchInfo = [=](MachineIRBuilder &B) { buildMatchInfo(FMulMI->getOperand(1).getReg(), FMulMI->getOperand(2).getReg(), LHS.Reg, RHS.MI->getOperand(1).getReg(), RHS.MI->getOperand(2).getReg(), B); }; return true; } // fold (fadd z, (fpext (fma x, y, (fmul u, v))) // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) // FIXME: This turns two single-precision and one double-precision // operation into two double-precision operations, which might not be // interesting for all targets, especially GPUs. if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) && FMAMI->getOpcode() == PreferredFusedOpcode) { MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg()); if (isContractableFMul(*FMulMI, AllowFusionGlobally) && TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType, MRI.getType(FMAMI->getOperand(0).getReg()))) { MatchInfo = [=](MachineIRBuilder &B) { Register X = FMAMI->getOperand(1).getReg(); Register Y = FMAMI->getOperand(2).getReg(); X = B.buildFPExt(DstType, X).getReg(0); Y = B.buildFPExt(DstType, Y).getReg(0); buildMatchInfo(FMulMI->getOperand(1).getReg(), FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B); }; return true; } } return false; } bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FSUB); bool AllowFusionGlobally, HasFMAD, Aggressive; if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) return false; Register Op1 = MI.getOperand(1).getReg(); Register Op2 = MI.getOperand(2).getReg(); DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1}; DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2}; LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), // prefer to fold the multiply with fewer uses. int FirstMulHasFewerUses = true; if (isContractableFMul(*LHS.MI, AllowFusionGlobally) && isContractableFMul(*RHS.MI, AllowFusionGlobally) && hasMoreUses(*LHS.MI, *RHS.MI, MRI)) FirstMulHasFewerUses = false; unsigned PreferredFusedOpcode = HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; // fold (fsub (fmul x, y), z) -> (fma x, y, -z) if (FirstMulHasFewerUses && (isContractableFMul(*LHS.MI, AllowFusionGlobally) && (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {LHS.MI->getOperand(1).getReg(), LHS.MI->getOperand(2).getReg(), NegZ}); }; return true; } // fold (fsub x, (fmul y, z)) -> (fma -y, z, x) else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) && (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { Register NegY = B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg}); }; return true; } return false; } bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FSUB); bool AllowFusionGlobally, HasFMAD, Aggressive; if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) return false; Register LHSReg = MI.getOperand(1).getReg(); Register RHSReg = MI.getOperand(2).getReg(); LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); unsigned PreferredFusedOpcode = HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; MachineInstr *FMulMI; // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z)) if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) && MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && isContractableFMul(*FMulMI, AllowFusionGlobally)) { MatchInfo = [=, &MI](MachineIRBuilder &B) { Register NegX = B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {NegX, FMulMI->getOperand(2).getReg(), NegZ}); }; return true; } // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x) if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) && (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) && MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) && isContractableFMul(*FMulMI, AllowFusionGlobally)) { MatchInfo = [=, &MI](MachineIRBuilder &B) { B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {FMulMI->getOperand(1).getReg(), FMulMI->getOperand(2).getReg(), LHSReg}); }; return true; } return false; } bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FSUB); bool AllowFusionGlobally, HasFMAD, Aggressive; if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) return false; Register LHSReg = MI.getOperand(1).getReg(); Register RHSReg = MI.getOperand(2).getReg(); LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); unsigned PreferredFusedOpcode = HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; MachineInstr *FMulMI; // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z)) if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && isContractableFMul(*FMulMI, AllowFusionGlobally) && (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { Register FpExtX = B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); Register FpExtY = B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {FpExtX, FpExtY, NegZ}); }; return true; } // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x) if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) && isContractableFMul(*FMulMI, AllowFusionGlobally) && (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { Register FpExtY = B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0); Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0); Register FpExtZ = B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0); B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()}, {NegY, FpExtZ, LHSReg}); }; return true; } return false; } bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA( MachineInstr &MI, std::function &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_FSUB); bool AllowFusionGlobally, HasFMAD, Aggressive; if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive)) return false; const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering(); LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); Register LHSReg = MI.getOperand(1).getReg(); Register RHSReg = MI.getOperand(2).getReg(); unsigned PreferredFusedOpcode = HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA; auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z, MachineIRBuilder &B) { Register FpExtX = B.buildFPExt(DstTy, X).getReg(0); Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0); B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z}); }; MachineInstr *FMulMI; // fold (fsub (fpext (fneg (fmul x, y))), z) -> // (fneg (fma (fpext x), (fpext y), z)) // fold (fsub (fneg (fpext (fmul x, y))), z) -> // (fneg (fma (fpext x), (fpext y), z)) if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && isContractableFMul(*FMulMI, AllowFusionGlobally) && TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, MRI.getType(FMulMI->getOperand(0).getReg()))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { Register FMAReg = MRI.createGenericVirtualRegister(DstTy); buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(), FMulMI->getOperand(2).getReg(), RHSReg, B); B.buildFNeg(MI.getOperand(0).getReg(), FMAReg); }; return true; } // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x) // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x) if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) || mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) && isContractableFMul(*FMulMI, AllowFusionGlobally) && TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy, MRI.getType(FMulMI->getOperand(0).getReg()))) { MatchInfo = [=, &MI](MachineIRBuilder &B) { buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(), FMulMI->getOperand(2).getReg(), LHSReg, B); }; return true; } return false; } bool CombinerHelper::matchSelectToLogical(MachineInstr &MI, BuildFnTy &MatchInfo) { GSelect &Sel = cast(MI); Register DstReg = Sel.getReg(0); Register Cond = Sel.getCondReg(); Register TrueReg = Sel.getTrueReg(); Register FalseReg = Sel.getFalseReg(); auto *TrueDef = getDefIgnoringCopies(TrueReg, MRI); auto *FalseDef = getDefIgnoringCopies(FalseReg, MRI); const LLT CondTy = MRI.getType(Cond); const LLT OpTy = MRI.getType(TrueReg); if (CondTy != OpTy || OpTy.getScalarSizeInBits() != 1) return false; // We have a boolean select. // select Cond, Cond, F --> or Cond, F // select Cond, 1, F --> or Cond, F auto MaybeCstTrue = isConstantOrConstantSplatVector(*TrueDef, MRI); if (Cond == TrueReg || (MaybeCstTrue && MaybeCstTrue->isOne())) { MatchInfo = [=](MachineIRBuilder &MIB) { MIB.buildOr(DstReg, Cond, FalseReg); }; return true; } // select Cond, T, Cond --> and Cond, T // select Cond, T, 0 --> and Cond, T auto MaybeCstFalse = isConstantOrConstantSplatVector(*FalseDef, MRI); if (Cond == FalseReg || (MaybeCstFalse && MaybeCstFalse->isZero())) { MatchInfo = [=](MachineIRBuilder &MIB) { MIB.buildAnd(DstReg, Cond, TrueReg); }; return true; } // select Cond, T, 1 --> or (not Cond), T if (MaybeCstFalse && MaybeCstFalse->isOne()) { MatchInfo = [=](MachineIRBuilder &MIB) { MIB.buildOr(DstReg, MIB.buildNot(OpTy, Cond), TrueReg); }; return true; } // select Cond, 0, F --> and (not Cond), F if (MaybeCstTrue && MaybeCstTrue->isZero()) { MatchInfo = [=](MachineIRBuilder &MIB) { MIB.buildAnd(DstReg, MIB.buildNot(OpTy, Cond), FalseReg); }; return true; } return false; } bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI, unsigned &IdxToPropagate) { bool PropagateNaN; switch (MI.getOpcode()) { default: return false; case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMAXNUM: PropagateNaN = false; break; case TargetOpcode::G_FMINIMUM: case TargetOpcode::G_FMAXIMUM: PropagateNaN = true; break; } auto MatchNaN = [&](unsigned Idx) { Register MaybeNaNReg = MI.getOperand(Idx).getReg(); const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI); if (!MaybeCst || !MaybeCst->getValueAPF().isNaN()) return false; IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1); return true; }; return MatchNaN(1) || MatchNaN(2); } bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) { assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD"); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); // Helper lambda to check for opportunities for // A + (B - A) -> B // (B - A) + A -> B auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) { Register Reg; return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) && Reg == MaybeSameReg; }; return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); } bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI, Register &MatchInfo) { // This combine folds the following patterns: // // G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k)) // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k))) // into // x // if // k == sizeof(VecEltTy)/2 // type(x) == type(dst) // // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef) // into // x // if // type(x) == type(dst) LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg()); LLT DstEltTy = DstVecTy.getElementType(); Register Lo, Hi; if (mi_match( MI, MRI, m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) { MatchInfo = Lo; return MRI.getType(MatchInfo) == DstVecTy; } std::optional ShiftAmount; const auto LoPattern = m_GBitcast(m_Reg(Lo)); const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount)); if (mi_match( MI, MRI, m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern), m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) { if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) { MatchInfo = Lo; return MRI.getType(MatchInfo) == DstVecTy; } } return false; } bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI, Register &MatchInfo) { // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x // if type(x) == type(G_TRUNC) if (!mi_match(MI.getOperand(1).getReg(), MRI, m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg())))) return false; return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg()); } bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI, Register &MatchInfo) { // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with // y if K == size of vector element type std::optional ShiftAmt; if (!mi_match(MI.getOperand(1).getReg(), MRI, m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))), m_GCst(ShiftAmt)))) return false; LLT MatchTy = MRI.getType(MatchInfo); return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() && MatchTy == MRI.getType(MI.getOperand(0).getReg()); } unsigned CombinerHelper::getFPMinMaxOpcForSelect( CmpInst::Predicate Pred, LLT DstTy, SelectPatternNaNBehaviour VsNaNRetVal) const { assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE && "Expected a NaN behaviour?"); // Choose an opcode based off of legality or the behaviour when one of the // LHS/RHS may be NaN. switch (Pred) { default: return 0; case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: case CmpInst::FCMP_OGT: case CmpInst::FCMP_OGE: if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) return TargetOpcode::G_FMAXNUM; if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) return TargetOpcode::G_FMAXIMUM; if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}})) return TargetOpcode::G_FMAXNUM; if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}})) return TargetOpcode::G_FMAXIMUM; return 0; case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER) return TargetOpcode::G_FMINNUM; if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN) return TargetOpcode::G_FMINIMUM; if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}})) return TargetOpcode::G_FMINNUM; if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}})) return 0; return TargetOpcode::G_FMINIMUM; } } CombinerHelper::SelectPatternNaNBehaviour CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS, bool IsOrderedComparison) const { bool LHSSafe = isKnownNeverNaN(LHS, MRI); bool RHSSafe = isKnownNeverNaN(RHS, MRI); // Completely unsafe. if (!LHSSafe && !RHSSafe) return SelectPatternNaNBehaviour::NOT_APPLICABLE; if (LHSSafe && RHSSafe) return SelectPatternNaNBehaviour::RETURNS_ANY; // An ordered comparison will return false when given a NaN, so it // returns the RHS. if (IsOrderedComparison) return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN : SelectPatternNaNBehaviour::RETURNS_OTHER; // An unordered comparison will return true when given a NaN, so it // returns the LHS. return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER : SelectPatternNaNBehaviour::RETURNS_NAN; } bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond, Register TrueVal, Register FalseVal, BuildFnTy &MatchInfo) { // Match: select (fcmp cond x, y) x, y // select (fcmp cond x, y) y, x // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition. LLT DstTy = MRI.getType(Dst); // Bail out early on pointers, since we'll never want to fold to a min/max. if (DstTy.isPointer()) return false; // Match a floating point compare with a less-than/greater-than predicate. // TODO: Allow multiple users of the compare if they are all selects. CmpInst::Predicate Pred; Register CmpLHS, CmpRHS; if (!mi_match(Cond, MRI, m_OneNonDBGUse( m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) || CmpInst::isEquality(Pred)) return false; SelectPatternNaNBehaviour ResWithKnownNaNInfo = computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred)); if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE) return false; if (TrueVal == CmpRHS && FalseVal == CmpLHS) { std::swap(CmpLHS, CmpRHS); Pred = CmpInst::getSwappedPredicate(Pred); if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN) ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER; else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER) ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN; } if (TrueVal != CmpLHS || FalseVal != CmpRHS) return false; // Decide what type of max/min this should be based off of the predicate. unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo); if (!Opc || !isLegal({Opc, {DstTy}})) return false; // Comparisons between signed zero and zero may have different results... // unless we have fmaximum/fminimum. In that case, we know -0 < 0. if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) { // We don't know if a comparison between two 0s will give us a consistent // result. Be conservative and only proceed if at least one side is // non-zero. auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI); if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) { KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI); if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) return false; } } MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS}); }; return true; } bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI, BuildFnTy &MatchInfo) { // TODO: Handle integer cases. assert(MI.getOpcode() == TargetOpcode::G_SELECT); // Condition may be fed by a truncated compare. Register Cond = MI.getOperand(1).getReg(); Register MaybeTrunc; if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc))))) Cond = MaybeTrunc; Register Dst = MI.getOperand(0).getReg(); Register TrueVal = MI.getOperand(2).getReg(); Register FalseVal = MI.getOperand(3).getReg(); return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo); } bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI, BuildFnTy &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_ICMP); // (X + Y) == X --> Y == 0 // (X + Y) != X --> Y != 0 // (X - Y) == X --> Y == 0 // (X - Y) != X --> Y != 0 // (X ^ Y) == X --> Y == 0 // (X ^ Y) != X --> Y != 0 Register Dst = MI.getOperand(0).getReg(); CmpInst::Predicate Pred; Register X, Y, OpLHS, OpRHS; bool MatchedSub = mi_match( Dst, MRI, m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y)))); if (MatchedSub && X != OpLHS) return false; if (!MatchedSub) { if (!mi_match(Dst, MRI, m_c_GICmp(m_Pred(Pred), m_Reg(X), m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)), m_GXor(m_Reg(OpLHS), m_Reg(OpRHS)))))) return false; Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register(); } MatchInfo = [=](MachineIRBuilder &B) { auto Zero = B.buildConstant(MRI.getType(Y), 0); B.buildICmp(Pred, Dst, Y, Zero); }; return CmpInst::isEquality(Pred) && Y.isValid(); } bool CombinerHelper::tryCombine(MachineInstr &MI) { if (tryCombineCopy(MI)) return true; if (tryCombineExtendingLoads(MI)) return true; if (tryCombineIndexedLoadStore(MI)) return true; return false; }