xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CCState class, used for lowering and implementing
10 // calling conventions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/MC/MCRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/SaveAndRestore.h"
24 #include "llvm/Support/raw_ostream.h"
25 
26 using namespace llvm;
27 
28 CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf,
29                  SmallVectorImpl<CCValAssign> &locs, LLVMContext &C)
30     : CallingConv(CC), IsVarArg(isVarArg), MF(mf),
31       TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) {
32   // No stack is used.
33   StackOffset = 0;
34 
35   clearByValRegsInfo();
36   UsedRegs.resize((TRI.getNumRegs()+31)/32);
37 }
38 
39 /// Allocate space on the stack large enough to pass an argument by value.
40 /// The size and alignment information of the argument is encoded in
41 /// its parameter attribute.
42 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
43                           CCValAssign::LocInfo LocInfo, int MinSize,
44                           Align MinAlign, ISD::ArgFlagsTy ArgFlags) {
45   Align Alignment = ArgFlags.getNonZeroByValAlign();
46   unsigned Size  = ArgFlags.getByValSize();
47   if (MinSize > (int)Size)
48     Size = MinSize;
49   if (MinAlign > Alignment)
50     Alignment = MinAlign;
51   ensureMaxAlignment(Alignment);
52   MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment);
53   Size = unsigned(alignTo(Size, MinAlign));
54   unsigned Offset = AllocateStack(Size, Alignment);
55   addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
56 }
57 
58 /// Mark a register and all of its aliases as allocated.
59 void CCState::MarkAllocated(MCPhysReg Reg) {
60   for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
61     UsedRegs[*AI / 32] |= 1 << (*AI & 31);
62 }
63 
64 void CCState::MarkUnallocated(MCPhysReg Reg) {
65   for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
66     UsedRegs[*AI / 32] &= ~(1 << (*AI & 31));
67 }
68 
69 bool CCState::IsShadowAllocatedReg(MCRegister Reg) const {
70   if (!isAllocated(Reg))
71     return false;
72 
73   for (auto const &ValAssign : Locs)
74     if (ValAssign.isRegLoc() && TRI.regsOverlap(ValAssign.getLocReg(), Reg))
75       return false;
76   return true;
77 }
78 
79 /// Analyze an array of argument values,
80 /// incorporating info about the formals into this state.
81 void
82 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
83                                 CCAssignFn Fn) {
84   unsigned NumArgs = Ins.size();
85 
86   for (unsigned i = 0; i != NumArgs; ++i) {
87     MVT ArgVT = Ins[i].VT;
88     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
89     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this))
90       report_fatal_error("unable to allocate function argument #" + Twine(i));
91   }
92 }
93 
94 /// Analyze the return values of a function, returning true if the return can
95 /// be performed without sret-demotion and false otherwise.
96 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
97                           CCAssignFn Fn) {
98   // Determine which register each value should be copied into.
99   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
100     MVT VT = Outs[i].VT;
101     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
102     if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
103       return false;
104   }
105   return true;
106 }
107 
108 /// Analyze the returned values of a return,
109 /// incorporating info about the result values into this state.
110 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
111                             CCAssignFn Fn) {
112   // Determine which register each value should be copied into.
113   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
114     MVT VT = Outs[i].VT;
115     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
116     if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
117       report_fatal_error("unable to allocate function return #" + Twine(i));
118   }
119 }
120 
121 /// Analyze the outgoing arguments to a call,
122 /// incorporating info about the passed values into this state.
123 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
124                                   CCAssignFn Fn) {
125   unsigned NumOps = Outs.size();
126   for (unsigned i = 0; i != NumOps; ++i) {
127     MVT ArgVT = Outs[i].VT;
128     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
129     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
130 #ifndef NDEBUG
131       dbgs() << "Call operand #" << i << " has unhandled type "
132              << EVT(ArgVT).getEVTString() << '\n';
133 #endif
134       llvm_unreachable(nullptr);
135     }
136   }
137 }
138 
139 /// Same as above except it takes vectors of types and argument flags.
140 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
141                                   SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
142                                   CCAssignFn Fn) {
143   unsigned NumOps = ArgVTs.size();
144   for (unsigned i = 0; i != NumOps; ++i) {
145     MVT ArgVT = ArgVTs[i];
146     ISD::ArgFlagsTy ArgFlags = Flags[i];
147     if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
148 #ifndef NDEBUG
149       dbgs() << "Call operand #" << i << " has unhandled type "
150              << EVT(ArgVT).getEVTString() << '\n';
151 #endif
152       llvm_unreachable(nullptr);
153     }
154   }
155 }
156 
157 /// Analyze the return values of a call, incorporating info about the passed
158 /// values into this state.
159 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
160                                 CCAssignFn Fn) {
161   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
162     MVT VT = Ins[i].VT;
163     ISD::ArgFlagsTy Flags = Ins[i].Flags;
164     if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
165 #ifndef NDEBUG
166       dbgs() << "Call result #" << i << " has unhandled type "
167              << EVT(VT).getEVTString() << '\n';
168 #endif
169       llvm_unreachable(nullptr);
170     }
171   }
172 }
173 
174 /// Same as above except it's specialized for calls that produce a single value.
175 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
176   if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
177 #ifndef NDEBUG
178     dbgs() << "Call result has unhandled type "
179            << EVT(VT).getEVTString() << '\n';
180 #endif
181     llvm_unreachable(nullptr);
182   }
183 }
184 
185 void CCState::ensureMaxAlignment(Align Alignment) {
186   if (!AnalyzingMustTailForwardedRegs)
187     MF.getFrameInfo().ensureMaxAlignment(Alignment);
188 }
189 
190 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
191   if (VT.isVector())
192     return true; // Assume -msse-regparm might be in effect.
193   if (!VT.isInteger())
194     return false;
195   return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall);
196 }
197 
198 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
199                                           MVT VT, CCAssignFn Fn) {
200   unsigned SavedStackOffset = StackOffset;
201   Align SavedMaxStackArgAlign = MaxStackArgAlign;
202   unsigned NumLocs = Locs.size();
203 
204   // Set the 'inreg' flag if it is used for this calling convention.
205   ISD::ArgFlagsTy Flags;
206   if (isValueTypeInRegForCC(CallingConv, VT))
207     Flags.setInReg();
208 
209   // Allocate something of this value type repeatedly until we get assigned a
210   // location in memory.
211   bool HaveRegParm;
212   do {
213     if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
214 #ifndef NDEBUG
215       dbgs() << "Call has unhandled type " << EVT(VT).getEVTString()
216              << " while computing remaining regparms\n";
217 #endif
218       llvm_unreachable(nullptr);
219     }
220     HaveRegParm = Locs.back().isRegLoc();
221   } while (HaveRegParm);
222 
223   // Copy all the registers from the value locations we added.
224   assert(NumLocs < Locs.size() && "CC assignment failed to add location");
225   for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
226     if (Locs[I].isRegLoc())
227       Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
228 
229   // Clear the assigned values and stack memory. We leave the registers marked
230   // as allocated so that future queries don't return the same registers, i.e.
231   // when i64 and f64 are both passed in GPRs.
232   StackOffset = SavedStackOffset;
233   MaxStackArgAlign = SavedMaxStackArgAlign;
234   Locs.truncate(NumLocs);
235 }
236 
237 void CCState::analyzeMustTailForwardedRegisters(
238     SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
239     CCAssignFn Fn) {
240   // Oftentimes calling conventions will not user register parameters for
241   // variadic functions, so we need to assume we're not variadic so that we get
242   // all the registers that might be used in a non-variadic call.
243   SaveAndRestore SavedVarArg(IsVarArg, false);
244   SaveAndRestore SavedMustTail(AnalyzingMustTailForwardedRegs, true);
245 
246   for (MVT RegVT : RegParmTypes) {
247     SmallVector<MCPhysReg, 8> RemainingRegs;
248     getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
249     const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
250     const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
251     for (MCPhysReg PReg : RemainingRegs) {
252       Register VReg = MF.addLiveIn(PReg, RC);
253       Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
254     }
255   }
256 }
257 
258 bool CCState::resultsCompatible(CallingConv::ID CalleeCC,
259                                 CallingConv::ID CallerCC, MachineFunction &MF,
260                                 LLVMContext &C,
261                                 const SmallVectorImpl<ISD::InputArg> &Ins,
262                                 CCAssignFn CalleeFn, CCAssignFn CallerFn) {
263   if (CalleeCC == CallerCC)
264     return true;
265   SmallVector<CCValAssign, 4> RVLocs1;
266   CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C);
267   CCInfo1.AnalyzeCallResult(Ins, CalleeFn);
268 
269   SmallVector<CCValAssign, 4> RVLocs2;
270   CCState CCInfo2(CallerCC, false, MF, RVLocs2, C);
271   CCInfo2.AnalyzeCallResult(Ins, CallerFn);
272 
273   auto AreCompatible = [](const CCValAssign &Loc1, const CCValAssign &Loc2) {
274     assert(!Loc1.isPendingLoc() && !Loc2.isPendingLoc() &&
275            "The location must have been decided by now");
276     // Must fill the same part of their locations.
277     if (Loc1.getLocInfo() != Loc2.getLocInfo())
278       return false;
279     // Must both be in the same registers, or both in memory at the same offset.
280     if (Loc1.isRegLoc() && Loc2.isRegLoc())
281       return Loc1.getLocReg() == Loc2.getLocReg();
282     if (Loc1.isMemLoc() && Loc2.isMemLoc())
283       return Loc1.getLocMemOffset() == Loc2.getLocMemOffset();
284     llvm_unreachable("Unknown location kind");
285   };
286 
287   return std::equal(RVLocs1.begin(), RVLocs1.end(), RVLocs2.begin(),
288                     RVLocs2.end(), AreCompatible);
289 }
290