//===-- CallingConvLower.cpp - Calling Conventions ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the CCState class, used for lowering and implementing // calling conventions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; CCState::CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &mf, SmallVectorImpl &locs, LLVMContext &C) : CallingConv(CC), IsVarArg(isVarArg), MF(mf), TRI(*MF.getSubtarget().getRegisterInfo()), Locs(locs), Context(C) { // No stack is used. StackOffset = 0; clearByValRegsInfo(); UsedRegs.resize((TRI.getNumRegs()+31)/32); } /// Allocate space on the stack large enough to pass an argument by value. /// The size and alignment information of the argument is encoded in /// its parameter attribute. void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, int MinSize, Align MinAlign, ISD::ArgFlagsTy ArgFlags) { Align Alignment = ArgFlags.getNonZeroByValAlign(); unsigned Size = ArgFlags.getByValSize(); if (MinSize > (int)Size) Size = MinSize; if (MinAlign > Alignment) Alignment = MinAlign; ensureMaxAlignment(Alignment); MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment); Size = unsigned(alignTo(Size, MinAlign)); unsigned Offset = AllocateStack(Size, Alignment); addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); } /// Mark a register and all of its aliases as allocated. void CCState::MarkAllocated(MCPhysReg Reg) { for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) UsedRegs[*AI / 32] |= 1 << (*AI & 31); } void CCState::MarkUnallocated(MCPhysReg Reg) { for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) UsedRegs[*AI / 32] &= ~(1 << (*AI & 31)); } bool CCState::IsShadowAllocatedReg(MCRegister Reg) const { if (!isAllocated(Reg)) return false; for (auto const &ValAssign : Locs) if (ValAssign.isRegLoc() && TRI.regsOverlap(ValAssign.getLocReg(), Reg)) return false; return true; } /// Analyze an array of argument values, /// incorporating info about the formals into this state. void CCState::AnalyzeFormalArguments(const SmallVectorImpl &Ins, CCAssignFn Fn) { unsigned NumArgs = Ins.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ArgVT = Ins[i].VT; ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) report_fatal_error("unable to allocate function argument #" + Twine(i)); } } /// Analyze the return values of a function, returning true if the return can /// be performed without sret-demotion and false otherwise. bool CCState::CheckReturn(const SmallVectorImpl &Outs, CCAssignFn Fn) { // Determine which register each value should be copied into. for (unsigned i = 0, e = Outs.size(); i != e; ++i) { MVT VT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) return false; } return true; } /// Analyze the returned values of a return, /// incorporating info about the result values into this state. void CCState::AnalyzeReturn(const SmallVectorImpl &Outs, CCAssignFn Fn) { // Determine which register each value should be copied into. for (unsigned i = 0, e = Outs.size(); i != e; ++i) { MVT VT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) report_fatal_error("unable to allocate function return #" + Twine(i)); } } /// Analyze the outgoing arguments to a call, /// incorporating info about the passed values into this state. void CCState::AnalyzeCallOperands(const SmallVectorImpl &Outs, CCAssignFn Fn) { unsigned NumOps = Outs.size(); for (unsigned i = 0; i != NumOps; ++i) { MVT ArgVT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { #ifndef NDEBUG dbgs() << "Call operand #" << i << " has unhandled type " << EVT(ArgVT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } } /// Same as above except it takes vectors of types and argument flags. void CCState::AnalyzeCallOperands(SmallVectorImpl &ArgVTs, SmallVectorImpl &Flags, CCAssignFn Fn) { unsigned NumOps = ArgVTs.size(); for (unsigned i = 0; i != NumOps; ++i) { MVT ArgVT = ArgVTs[i]; ISD::ArgFlagsTy ArgFlags = Flags[i]; if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { #ifndef NDEBUG dbgs() << "Call operand #" << i << " has unhandled type " << EVT(ArgVT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } } /// Analyze the return values of a call, incorporating info about the passed /// values into this state. void CCState::AnalyzeCallResult(const SmallVectorImpl &Ins, CCAssignFn Fn) { for (unsigned i = 0, e = Ins.size(); i != e; ++i) { MVT VT = Ins[i].VT; ISD::ArgFlagsTy Flags = Ins[i].Flags; if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { #ifndef NDEBUG dbgs() << "Call result #" << i << " has unhandled type " << EVT(VT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } } /// Same as above except it's specialized for calls that produce a single value. void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { #ifndef NDEBUG dbgs() << "Call result has unhandled type " << EVT(VT).getEVTString() << '\n'; #endif llvm_unreachable(nullptr); } } void CCState::ensureMaxAlignment(Align Alignment) { if (!AnalyzingMustTailForwardedRegs) MF.getFrameInfo().ensureMaxAlignment(Alignment); } static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { if (VT.isVector()) return true; // Assume -msse-regparm might be in effect. if (!VT.isInteger()) return false; return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall); } void CCState::getRemainingRegParmsForType(SmallVectorImpl &Regs, MVT VT, CCAssignFn Fn) { unsigned SavedStackOffset = StackOffset; Align SavedMaxStackArgAlign = MaxStackArgAlign; unsigned NumLocs = Locs.size(); // Set the 'inreg' flag if it is used for this calling convention. ISD::ArgFlagsTy Flags; if (isValueTypeInRegForCC(CallingConv, VT)) Flags.setInReg(); // Allocate something of this value type repeatedly until we get assigned a // location in memory. bool HaveRegParm; do { if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { #ifndef NDEBUG dbgs() << "Call has unhandled type " << EVT(VT).getEVTString() << " while computing remaining regparms\n"; #endif llvm_unreachable(nullptr); } HaveRegParm = Locs.back().isRegLoc(); } while (HaveRegParm); // Copy all the registers from the value locations we added. assert(NumLocs < Locs.size() && "CC assignment failed to add location"); for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) if (Locs[I].isRegLoc()) Regs.push_back(MCPhysReg(Locs[I].getLocReg())); // Clear the assigned values and stack memory. We leave the registers marked // as allocated so that future queries don't return the same registers, i.e. // when i64 and f64 are both passed in GPRs. StackOffset = SavedStackOffset; MaxStackArgAlign = SavedMaxStackArgAlign; Locs.truncate(NumLocs); } void CCState::analyzeMustTailForwardedRegisters( SmallVectorImpl &Forwards, ArrayRef RegParmTypes, CCAssignFn Fn) { // Oftentimes calling conventions will not user register parameters for // variadic functions, so we need to assume we're not variadic so that we get // all the registers that might be used in a non-variadic call. SaveAndRestore SavedVarArg(IsVarArg, false); SaveAndRestore SavedMustTail(AnalyzingMustTailForwardedRegs, true); for (MVT RegVT : RegParmTypes) { SmallVector RemainingRegs; getRemainingRegParmsForType(RemainingRegs, RegVT, Fn); const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); const TargetRegisterClass *RC = TL->getRegClassFor(RegVT); for (MCPhysReg PReg : RemainingRegs) { Register VReg = MF.addLiveIn(PReg, RC); Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT)); } } } bool CCState::resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn) { if (CalleeCC == CallerCC) return true; SmallVector RVLocs1; CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); CCInfo1.AnalyzeCallResult(Ins, CalleeFn); SmallVector RVLocs2; CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); CCInfo2.AnalyzeCallResult(Ins, CallerFn); auto AreCompatible = [](const CCValAssign &Loc1, const CCValAssign &Loc2) { assert(!Loc1.isPendingLoc() && !Loc2.isPendingLoc() && "The location must have been decided by now"); // Must fill the same part of their locations. if (Loc1.getLocInfo() != Loc2.getLocInfo()) return false; // Must both be in the same registers, or both in memory at the same offset. if (Loc1.isRegLoc() && Loc2.isRegLoc()) return Loc1.getLocReg() == Loc2.getLocReg(); if (Loc1.isMemLoc() && Loc2.isMemLoc()) return Loc1.getLocMemOffset() == Loc2.getLocMemOffset(); llvm_unreachable("Unknown location kind"); }; return std::equal(RVLocs1.begin(), RVLocs1.end(), RVLocs2.begin(), RVLocs2.end(), AreCompatible); }