xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/InstructionSimplify.cpp (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56                              const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58                             unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60                             const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62                               unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64                                const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68                                const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70                               unsigned);
71 
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73                                      Value *FalseVal) {
74   BinaryOperator::BinaryOps BinOpCode;
75   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76     BinOpCode = BO->getOpcode();
77   else
78     return nullptr;
79 
80   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81   if (BinOpCode == BinaryOperator::Or) {
82     ExpectedPred = ICmpInst::ICMP_NE;
83   } else if (BinOpCode == BinaryOperator::And) {
84     ExpectedPred = ICmpInst::ICMP_EQ;
85   } else
86     return nullptr;
87 
88   // %A = icmp eq %TV, %FV
89   // %B = icmp eq %X, %Y (and one of these is a select operand)
90   // %C = and %A, %B
91   // %D = select %C, %TV, %FV
92   // -->
93   // %FV
94 
95   // %A = icmp ne %TV, %FV
96   // %B = icmp ne %X, %Y (and one of these is a select operand)
97   // %C = or %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %TV
101   Value *X, *Y;
102   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103                                       m_Specific(FalseVal)),
104                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105       Pred1 != Pred2 || Pred1 != ExpectedPred)
106     return nullptr;
107 
108   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
110 
111   return nullptr;
112 }
113 
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117   return ConstantInt::getFalse(Ty);
118 }
119 
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123   return ConstantInt::getTrue(Ty);
124 }
125 
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128                           Value *RHS) {
129   CmpInst *Cmp = dyn_cast<CmpInst>(V);
130   if (!Cmp)
131     return false;
132   CmpInst::Predicate CPred = Cmp->getPredicate();
133   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135     return true;
136   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137     CRHS == LHS;
138 }
139 
140 /// Simplify comparison with true or false branch of select:
141 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
142 ///  %cmp = icmp sle i32 %sel, %rhs
143 /// Compose new comparison by substituting %sel with either %tv or %fv
144 /// and see if it simplifies.
145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
146                                  Value *RHS, Value *Cond,
147                                  const SimplifyQuery &Q, unsigned MaxRecurse,
148                                  Constant *TrueOrFalse) {
149   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
150   if (SimplifiedCmp == Cond) {
151     // %cmp simplified to the select condition (%cond).
152     return TrueOrFalse;
153   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
154     // It didn't simplify. However, if composed comparison is equivalent
155     // to the select condition (%cond) then we can replace it.
156     return TrueOrFalse;
157   }
158   return SimplifiedCmp;
159 }
160 
161 /// Simplify comparison with true branch of select
162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
163                                      Value *RHS, Value *Cond,
164                                      const SimplifyQuery &Q,
165                                      unsigned MaxRecurse) {
166   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
167                             getTrue(Cond->getType()));
168 }
169 
170 /// Simplify comparison with false branch of select
171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
172                                       Value *RHS, Value *Cond,
173                                       const SimplifyQuery &Q,
174                                       unsigned MaxRecurse) {
175   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
176                             getFalse(Cond->getType()));
177 }
178 
179 /// We know comparison with both branches of select can be simplified, but they
180 /// are not equal. This routine handles some logical simplifications.
181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
182                                                Value *Cond,
183                                                const SimplifyQuery &Q,
184                                                unsigned MaxRecurse) {
185   // If the false value simplified to false, then the result of the compare
186   // is equal to "Cond && TCmp".  This also catches the case when the false
187   // value simplified to false and the true value to true, returning "Cond".
188   if (match(FCmp, m_Zero()))
189     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
190       return V;
191   // If the true value simplified to true, then the result of the compare
192   // is equal to "Cond || FCmp".
193   if (match(TCmp, m_One()))
194     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
195       return V;
196   // Finally, if the false value simplified to true and the true value to
197   // false, then the result of the compare is equal to "!Cond".
198   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
199     if (Value *V = SimplifyXorInst(
200             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
201       return V;
202   return nullptr;
203 }
204 
205 /// Does the given value dominate the specified phi node?
206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
207   Instruction *I = dyn_cast<Instruction>(V);
208   if (!I)
209     // Arguments and constants dominate all instructions.
210     return true;
211 
212   // If we are processing instructions (and/or basic blocks) that have not been
213   // fully added to a function, the parent nodes may still be null. Simply
214   // return the conservative answer in these cases.
215   if (!I->getParent() || !P->getParent() || !I->getFunction())
216     return false;
217 
218   // If we have a DominatorTree then do a precise test.
219   if (DT)
220     return DT->dominates(I, P);
221 
222   // Otherwise, if the instruction is in the entry block and is not an invoke,
223   // then it obviously dominates all phi nodes.
224   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
225       !isa<InvokeInst>(I) && !isa<CallBrInst>(I))
226     return true;
227 
228   return false;
229 }
230 
231 /// Try to simplify a binary operator of form "V op OtherOp" where V is
232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
233 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
235                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
236                           const SimplifyQuery &Q, unsigned MaxRecurse) {
237   auto *B = dyn_cast<BinaryOperator>(V);
238   if (!B || B->getOpcode() != OpcodeToExpand)
239     return nullptr;
240   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
241   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
242                            MaxRecurse);
243   if (!L)
244     return nullptr;
245   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
246                            MaxRecurse);
247   if (!R)
248     return nullptr;
249 
250   // Does the expanded pair of binops simplify to the existing binop?
251   if ((L == B0 && R == B1) ||
252       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
253     ++NumExpand;
254     return B;
255   }
256 
257   // Otherwise, return "L op' R" if it simplifies.
258   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
259   if (!S)
260     return nullptr;
261 
262   ++NumExpand;
263   return S;
264 }
265 
266 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
267 /// distributing op over op'.
268 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
269                                      Value *L, Value *R,
270                                      Instruction::BinaryOps OpcodeToExpand,
271                                      const SimplifyQuery &Q,
272                                      unsigned MaxRecurse) {
273   // Recursion is always used, so bail out at once if we already hit the limit.
274   if (!MaxRecurse--)
275     return nullptr;
276 
277   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
278     return V;
279   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
280     return V;
281   return nullptr;
282 }
283 
284 /// Generic simplifications for associative binary operations.
285 /// Returns the simpler value, or null if none was found.
286 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
287                                        Value *LHS, Value *RHS,
288                                        const SimplifyQuery &Q,
289                                        unsigned MaxRecurse) {
290   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
291 
292   // Recursion is always used, so bail out at once if we already hit the limit.
293   if (!MaxRecurse--)
294     return nullptr;
295 
296   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
297   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
298 
299   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
300   if (Op0 && Op0->getOpcode() == Opcode) {
301     Value *A = Op0->getOperand(0);
302     Value *B = Op0->getOperand(1);
303     Value *C = RHS;
304 
305     // Does "B op C" simplify?
306     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
307       // It does!  Return "A op V" if it simplifies or is already available.
308       // If V equals B then "A op V" is just the LHS.
309       if (V == B) return LHS;
310       // Otherwise return "A op V" if it simplifies.
311       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
312         ++NumReassoc;
313         return W;
314       }
315     }
316   }
317 
318   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
319   if (Op1 && Op1->getOpcode() == Opcode) {
320     Value *A = LHS;
321     Value *B = Op1->getOperand(0);
322     Value *C = Op1->getOperand(1);
323 
324     // Does "A op B" simplify?
325     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
326       // It does!  Return "V op C" if it simplifies or is already available.
327       // If V equals B then "V op C" is just the RHS.
328       if (V == B) return RHS;
329       // Otherwise return "V op C" if it simplifies.
330       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
331         ++NumReassoc;
332         return W;
333       }
334     }
335   }
336 
337   // The remaining transforms require commutativity as well as associativity.
338   if (!Instruction::isCommutative(Opcode))
339     return nullptr;
340 
341   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
342   if (Op0 && Op0->getOpcode() == Opcode) {
343     Value *A = Op0->getOperand(0);
344     Value *B = Op0->getOperand(1);
345     Value *C = RHS;
346 
347     // Does "C op A" simplify?
348     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
349       // It does!  Return "V op B" if it simplifies or is already available.
350       // If V equals A then "V op B" is just the LHS.
351       if (V == A) return LHS;
352       // Otherwise return "V op B" if it simplifies.
353       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
354         ++NumReassoc;
355         return W;
356       }
357     }
358   }
359 
360   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
361   if (Op1 && Op1->getOpcode() == Opcode) {
362     Value *A = LHS;
363     Value *B = Op1->getOperand(0);
364     Value *C = Op1->getOperand(1);
365 
366     // Does "C op A" simplify?
367     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
368       // It does!  Return "B op V" if it simplifies or is already available.
369       // If V equals C then "B op V" is just the RHS.
370       if (V == C) return RHS;
371       // Otherwise return "B op V" if it simplifies.
372       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
373         ++NumReassoc;
374         return W;
375       }
376     }
377   }
378 
379   return nullptr;
380 }
381 
382 /// In the case of a binary operation with a select instruction as an operand,
383 /// try to simplify the binop by seeing whether evaluating it on both branches
384 /// of the select results in the same value. Returns the common value if so,
385 /// otherwise returns null.
386 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
387                                     Value *RHS, const SimplifyQuery &Q,
388                                     unsigned MaxRecurse) {
389   // Recursion is always used, so bail out at once if we already hit the limit.
390   if (!MaxRecurse--)
391     return nullptr;
392 
393   SelectInst *SI;
394   if (isa<SelectInst>(LHS)) {
395     SI = cast<SelectInst>(LHS);
396   } else {
397     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
398     SI = cast<SelectInst>(RHS);
399   }
400 
401   // Evaluate the BinOp on the true and false branches of the select.
402   Value *TV;
403   Value *FV;
404   if (SI == LHS) {
405     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
406     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
407   } else {
408     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
409     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
410   }
411 
412   // If they simplified to the same value, then return the common value.
413   // If they both failed to simplify then return null.
414   if (TV == FV)
415     return TV;
416 
417   // If one branch simplified to undef, return the other one.
418   if (TV && Q.isUndefValue(TV))
419     return FV;
420   if (FV && Q.isUndefValue(FV))
421     return TV;
422 
423   // If applying the operation did not change the true and false select values,
424   // then the result of the binop is the select itself.
425   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
426     return SI;
427 
428   // If one branch simplified and the other did not, and the simplified
429   // value is equal to the unsimplified one, return the simplified value.
430   // For example, select (cond, X, X & Z) & Z -> X & Z.
431   if ((FV && !TV) || (TV && !FV)) {
432     // Check that the simplified value has the form "X op Y" where "op" is the
433     // same as the original operation.
434     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
435     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
436       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
437       // We already know that "op" is the same as for the simplified value.  See
438       // if the operands match too.  If so, return the simplified value.
439       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
440       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
441       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
442       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
443           Simplified->getOperand(1) == UnsimplifiedRHS)
444         return Simplified;
445       if (Simplified->isCommutative() &&
446           Simplified->getOperand(1) == UnsimplifiedLHS &&
447           Simplified->getOperand(0) == UnsimplifiedRHS)
448         return Simplified;
449     }
450   }
451 
452   return nullptr;
453 }
454 
455 /// In the case of a comparison with a select instruction, try to simplify the
456 /// comparison by seeing whether both branches of the select result in the same
457 /// value. Returns the common value if so, otherwise returns null.
458 /// For example, if we have:
459 ///  %tmp = select i1 %cmp, i32 1, i32 2
460 ///  %cmp1 = icmp sle i32 %tmp, 3
461 /// We can simplify %cmp1 to true, because both branches of select are
462 /// less than 3. We compose new comparison by substituting %tmp with both
463 /// branches of select and see if it can be simplified.
464 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
465                                   Value *RHS, const SimplifyQuery &Q,
466                                   unsigned MaxRecurse) {
467   // Recursion is always used, so bail out at once if we already hit the limit.
468   if (!MaxRecurse--)
469     return nullptr;
470 
471   // Make sure the select is on the LHS.
472   if (!isa<SelectInst>(LHS)) {
473     std::swap(LHS, RHS);
474     Pred = CmpInst::getSwappedPredicate(Pred);
475   }
476   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
477   SelectInst *SI = cast<SelectInst>(LHS);
478   Value *Cond = SI->getCondition();
479   Value *TV = SI->getTrueValue();
480   Value *FV = SI->getFalseValue();
481 
482   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
483   // Does "cmp TV, RHS" simplify?
484   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
485   if (!TCmp)
486     return nullptr;
487 
488   // Does "cmp FV, RHS" simplify?
489   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
490   if (!FCmp)
491     return nullptr;
492 
493   // If both sides simplified to the same value, then use it as the result of
494   // the original comparison.
495   if (TCmp == FCmp)
496     return TCmp;
497 
498   // The remaining cases only make sense if the select condition has the same
499   // type as the result of the comparison, so bail out if this is not so.
500   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
501     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
502 
503   return nullptr;
504 }
505 
506 /// In the case of a binary operation with an operand that is a PHI instruction,
507 /// try to simplify the binop by seeing whether evaluating it on the incoming
508 /// phi values yields the same result for every value. If so returns the common
509 /// value, otherwise returns null.
510 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
511                                  Value *RHS, const SimplifyQuery &Q,
512                                  unsigned MaxRecurse) {
513   // Recursion is always used, so bail out at once if we already hit the limit.
514   if (!MaxRecurse--)
515     return nullptr;
516 
517   PHINode *PI;
518   if (isa<PHINode>(LHS)) {
519     PI = cast<PHINode>(LHS);
520     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
521     if (!valueDominatesPHI(RHS, PI, Q.DT))
522       return nullptr;
523   } else {
524     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
525     PI = cast<PHINode>(RHS);
526     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
527     if (!valueDominatesPHI(LHS, PI, Q.DT))
528       return nullptr;
529   }
530 
531   // Evaluate the BinOp on the incoming phi values.
532   Value *CommonValue = nullptr;
533   for (Value *Incoming : PI->incoming_values()) {
534     // If the incoming value is the phi node itself, it can safely be skipped.
535     if (Incoming == PI) continue;
536     Value *V = PI == LHS ?
537       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
538       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
539     // If the operation failed to simplify, or simplified to a different value
540     // to previously, then give up.
541     if (!V || (CommonValue && V != CommonValue))
542       return nullptr;
543     CommonValue = V;
544   }
545 
546   return CommonValue;
547 }
548 
549 /// In the case of a comparison with a PHI instruction, try to simplify the
550 /// comparison by seeing whether comparing with all of the incoming phi values
551 /// yields the same result every time. If so returns the common result,
552 /// otherwise returns null.
553 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
554                                const SimplifyQuery &Q, unsigned MaxRecurse) {
555   // Recursion is always used, so bail out at once if we already hit the limit.
556   if (!MaxRecurse--)
557     return nullptr;
558 
559   // Make sure the phi is on the LHS.
560   if (!isa<PHINode>(LHS)) {
561     std::swap(LHS, RHS);
562     Pred = CmpInst::getSwappedPredicate(Pred);
563   }
564   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
565   PHINode *PI = cast<PHINode>(LHS);
566 
567   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
568   if (!valueDominatesPHI(RHS, PI, Q.DT))
569     return nullptr;
570 
571   // Evaluate the BinOp on the incoming phi values.
572   Value *CommonValue = nullptr;
573   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
574     Value *Incoming = PI->getIncomingValue(u);
575     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
576     // If the incoming value is the phi node itself, it can safely be skipped.
577     if (Incoming == PI) continue;
578     // Change the context instruction to the "edge" that flows into the phi.
579     // This is important because that is where incoming is actually "evaluated"
580     // even though it is used later somewhere else.
581     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
582                                MaxRecurse);
583     // If the operation failed to simplify, or simplified to a different value
584     // to previously, then give up.
585     if (!V || (CommonValue && V != CommonValue))
586       return nullptr;
587     CommonValue = V;
588   }
589 
590   return CommonValue;
591 }
592 
593 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
594                                        Value *&Op0, Value *&Op1,
595                                        const SimplifyQuery &Q) {
596   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
597     if (auto *CRHS = dyn_cast<Constant>(Op1))
598       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
599 
600     // Canonicalize the constant to the RHS if this is a commutative operation.
601     if (Instruction::isCommutative(Opcode))
602       std::swap(Op0, Op1);
603   }
604   return nullptr;
605 }
606 
607 /// Given operands for an Add, see if we can fold the result.
608 /// If not, this returns null.
609 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
610                               const SimplifyQuery &Q, unsigned MaxRecurse) {
611   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
612     return C;
613 
614   // X + undef -> undef
615   if (Q.isUndefValue(Op1))
616     return Op1;
617 
618   // X + 0 -> X
619   if (match(Op1, m_Zero()))
620     return Op0;
621 
622   // If two operands are negative, return 0.
623   if (isKnownNegation(Op0, Op1))
624     return Constant::getNullValue(Op0->getType());
625 
626   // X + (Y - X) -> Y
627   // (Y - X) + X -> Y
628   // Eg: X + -X -> 0
629   Value *Y = nullptr;
630   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
631       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
632     return Y;
633 
634   // X + ~X -> -1   since   ~X = -X-1
635   Type *Ty = Op0->getType();
636   if (match(Op0, m_Not(m_Specific(Op1))) ||
637       match(Op1, m_Not(m_Specific(Op0))))
638     return Constant::getAllOnesValue(Ty);
639 
640   // add nsw/nuw (xor Y, signmask), signmask --> Y
641   // The no-wrapping add guarantees that the top bit will be set by the add.
642   // Therefore, the xor must be clearing the already set sign bit of Y.
643   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
644       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
645     return Y;
646 
647   // add nuw %x, -1  ->  -1, because %x can only be 0.
648   if (IsNUW && match(Op1, m_AllOnes()))
649     return Op1; // Which is -1.
650 
651   /// i1 add -> xor.
652   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
653     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
654       return V;
655 
656   // Try some generic simplifications for associative operations.
657   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
658                                           MaxRecurse))
659     return V;
660 
661   // Threading Add over selects and phi nodes is pointless, so don't bother.
662   // Threading over the select in "A + select(cond, B, C)" means evaluating
663   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
664   // only if B and C are equal.  If B and C are equal then (since we assume
665   // that operands have already been simplified) "select(cond, B, C)" should
666   // have been simplified to the common value of B and C already.  Analysing
667   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
668   // for threading over phi nodes.
669 
670   return nullptr;
671 }
672 
673 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
674                              const SimplifyQuery &Query) {
675   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
676 }
677 
678 /// Compute the base pointer and cumulative constant offsets for V.
679 ///
680 /// This strips all constant offsets off of V, leaving it the base pointer, and
681 /// accumulates the total constant offset applied in the returned constant. It
682 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
683 /// no constant offsets applied.
684 ///
685 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
686 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
687 /// folding.
688 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
689                                                 bool AllowNonInbounds = false) {
690   assert(V->getType()->isPtrOrPtrVectorTy());
691 
692   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
693   APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth());
694 
695   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
696   // As that strip may trace through `addrspacecast`, need to sext or trunc
697   // the offset calculated.
698   IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
699   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
700 
701   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
702   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
703     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
704   return OffsetIntPtr;
705 }
706 
707 /// Compute the constant difference between two pointer values.
708 /// If the difference is not a constant, returns zero.
709 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
710                                           Value *RHS) {
711   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
712   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
713 
714   // If LHS and RHS are not related via constant offsets to the same base
715   // value, there is nothing we can do here.
716   if (LHS != RHS)
717     return nullptr;
718 
719   // Otherwise, the difference of LHS - RHS can be computed as:
720   //    LHS - RHS
721   //  = (LHSOffset + Base) - (RHSOffset + Base)
722   //  = LHSOffset - RHSOffset
723   return ConstantExpr::getSub(LHSOffset, RHSOffset);
724 }
725 
726 /// Given operands for a Sub, see if we can fold the result.
727 /// If not, this returns null.
728 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
729                               const SimplifyQuery &Q, unsigned MaxRecurse) {
730   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
731     return C;
732 
733   // X - undef -> undef
734   // undef - X -> undef
735   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
736     return UndefValue::get(Op0->getType());
737 
738   // X - 0 -> X
739   if (match(Op1, m_Zero()))
740     return Op0;
741 
742   // X - X -> 0
743   if (Op0 == Op1)
744     return Constant::getNullValue(Op0->getType());
745 
746   // Is this a negation?
747   if (match(Op0, m_Zero())) {
748     // 0 - X -> 0 if the sub is NUW.
749     if (isNUW)
750       return Constant::getNullValue(Op0->getType());
751 
752     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
753     if (Known.Zero.isMaxSignedValue()) {
754       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
755       // Op1 must be 0 because negating the minimum signed value is undefined.
756       if (isNSW)
757         return Constant::getNullValue(Op0->getType());
758 
759       // 0 - X -> X if X is 0 or the minimum signed value.
760       return Op1;
761     }
762   }
763 
764   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
765   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
766   Value *X = nullptr, *Y = nullptr, *Z = Op1;
767   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
768     // See if "V === Y - Z" simplifies.
769     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
770       // It does!  Now see if "X + V" simplifies.
771       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
772         // It does, we successfully reassociated!
773         ++NumReassoc;
774         return W;
775       }
776     // See if "V === X - Z" simplifies.
777     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
778       // It does!  Now see if "Y + V" simplifies.
779       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
780         // It does, we successfully reassociated!
781         ++NumReassoc;
782         return W;
783       }
784   }
785 
786   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
787   // For example, X - (X + 1) -> -1
788   X = Op0;
789   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
790     // See if "V === X - Y" simplifies.
791     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
792       // It does!  Now see if "V - Z" simplifies.
793       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
794         // It does, we successfully reassociated!
795         ++NumReassoc;
796         return W;
797       }
798     // See if "V === X - Z" simplifies.
799     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
800       // It does!  Now see if "V - Y" simplifies.
801       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
802         // It does, we successfully reassociated!
803         ++NumReassoc;
804         return W;
805       }
806   }
807 
808   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
809   // For example, X - (X - Y) -> Y.
810   Z = Op0;
811   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
812     // See if "V === Z - X" simplifies.
813     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
814       // It does!  Now see if "V + Y" simplifies.
815       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
816         // It does, we successfully reassociated!
817         ++NumReassoc;
818         return W;
819       }
820 
821   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
822   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
823       match(Op1, m_Trunc(m_Value(Y))))
824     if (X->getType() == Y->getType())
825       // See if "V === X - Y" simplifies.
826       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
827         // It does!  Now see if "trunc V" simplifies.
828         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
829                                         Q, MaxRecurse - 1))
830           // It does, return the simplified "trunc V".
831           return W;
832 
833   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
834   if (match(Op0, m_PtrToInt(m_Value(X))) &&
835       match(Op1, m_PtrToInt(m_Value(Y))))
836     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
837       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
838 
839   // i1 sub -> xor.
840   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
841     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
842       return V;
843 
844   // Threading Sub over selects and phi nodes is pointless, so don't bother.
845   // Threading over the select in "A - select(cond, B, C)" means evaluating
846   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
847   // only if B and C are equal.  If B and C are equal then (since we assume
848   // that operands have already been simplified) "select(cond, B, C)" should
849   // have been simplified to the common value of B and C already.  Analysing
850   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
851   // for threading over phi nodes.
852 
853   return nullptr;
854 }
855 
856 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
857                              const SimplifyQuery &Q) {
858   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
859 }
860 
861 /// Given operands for a Mul, see if we can fold the result.
862 /// If not, this returns null.
863 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
864                               unsigned MaxRecurse) {
865   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
866     return C;
867 
868   // X * undef -> 0
869   // X * 0 -> 0
870   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
871     return Constant::getNullValue(Op0->getType());
872 
873   // X * 1 -> X
874   if (match(Op1, m_One()))
875     return Op0;
876 
877   // (X / Y) * Y -> X if the division is exact.
878   Value *X = nullptr;
879   if (Q.IIQ.UseInstrInfo &&
880       (match(Op0,
881              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
882        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
883     return X;
884 
885   // i1 mul -> and.
886   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
887     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
888       return V;
889 
890   // Try some generic simplifications for associative operations.
891   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
892                                           MaxRecurse))
893     return V;
894 
895   // Mul distributes over Add. Try some generic simplifications based on this.
896   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
897                                         Instruction::Add, Q, MaxRecurse))
898     return V;
899 
900   // If the operation is with the result of a select instruction, check whether
901   // operating on either branch of the select always yields the same value.
902   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
903     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
904                                          MaxRecurse))
905       return V;
906 
907   // If the operation is with the result of a phi instruction, check whether
908   // operating on all incoming values of the phi always yields the same value.
909   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
910     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
911                                       MaxRecurse))
912       return V;
913 
914   return nullptr;
915 }
916 
917 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
918   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
919 }
920 
921 /// Check for common or similar folds of integer division or integer remainder.
922 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
923 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv,
924                              const SimplifyQuery &Q) {
925   Type *Ty = Op0->getType();
926 
927   // X / undef -> poison
928   // X % undef -> poison
929   if (Q.isUndefValue(Op1))
930     return PoisonValue::get(Ty);
931 
932   // X / 0 -> poison
933   // X % 0 -> poison
934   // We don't need to preserve faults!
935   if (match(Op1, m_Zero()))
936     return PoisonValue::get(Ty);
937 
938   // If any element of a constant divisor fixed width vector is zero or undef
939   // the behavior is undefined and we can fold the whole op to poison.
940   auto *Op1C = dyn_cast<Constant>(Op1);
941   auto *VTy = dyn_cast<FixedVectorType>(Ty);
942   if (Op1C && VTy) {
943     unsigned NumElts = VTy->getNumElements();
944     for (unsigned i = 0; i != NumElts; ++i) {
945       Constant *Elt = Op1C->getAggregateElement(i);
946       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
947         return PoisonValue::get(Ty);
948     }
949   }
950 
951   // undef / X -> 0
952   // undef % X -> 0
953   if (Q.isUndefValue(Op0))
954     return Constant::getNullValue(Ty);
955 
956   // 0 / X -> 0
957   // 0 % X -> 0
958   if (match(Op0, m_Zero()))
959     return Constant::getNullValue(Op0->getType());
960 
961   // X / X -> 1
962   // X % X -> 0
963   if (Op0 == Op1)
964     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
965 
966   // X / 1 -> X
967   // X % 1 -> 0
968   // If this is a boolean op (single-bit element type), we can't have
969   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
970   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
971   Value *X;
972   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
973       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
974     return IsDiv ? Op0 : Constant::getNullValue(Ty);
975 
976   return nullptr;
977 }
978 
979 /// Given a predicate and two operands, return true if the comparison is true.
980 /// This is a helper for div/rem simplification where we return some other value
981 /// when we can prove a relationship between the operands.
982 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
983                        const SimplifyQuery &Q, unsigned MaxRecurse) {
984   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
985   Constant *C = dyn_cast_or_null<Constant>(V);
986   return (C && C->isAllOnesValue());
987 }
988 
989 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
990 /// to simplify X % Y to X.
991 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
992                       unsigned MaxRecurse, bool IsSigned) {
993   // Recursion is always used, so bail out at once if we already hit the limit.
994   if (!MaxRecurse--)
995     return false;
996 
997   if (IsSigned) {
998     // |X| / |Y| --> 0
999     //
1000     // We require that 1 operand is a simple constant. That could be extended to
1001     // 2 variables if we computed the sign bit for each.
1002     //
1003     // Make sure that a constant is not the minimum signed value because taking
1004     // the abs() of that is undefined.
1005     Type *Ty = X->getType();
1006     const APInt *C;
1007     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1008       // Is the variable divisor magnitude always greater than the constant
1009       // dividend magnitude?
1010       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1011       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1012       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1013       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1014           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1015         return true;
1016     }
1017     if (match(Y, m_APInt(C))) {
1018       // Special-case: we can't take the abs() of a minimum signed value. If
1019       // that's the divisor, then all we have to do is prove that the dividend
1020       // is also not the minimum signed value.
1021       if (C->isMinSignedValue())
1022         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1023 
1024       // Is the variable dividend magnitude always less than the constant
1025       // divisor magnitude?
1026       // |X| < |C| --> X > -abs(C) and X < abs(C)
1027       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1028       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1029       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1030           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1031         return true;
1032     }
1033     return false;
1034   }
1035 
1036   // IsSigned == false.
1037   // Is the dividend unsigned less than the divisor?
1038   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1039 }
1040 
1041 /// These are simplifications common to SDiv and UDiv.
1042 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1043                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1044   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1045     return C;
1046 
1047   if (Value *V = simplifyDivRem(Op0, Op1, true, Q))
1048     return V;
1049 
1050   bool IsSigned = Opcode == Instruction::SDiv;
1051 
1052   // (X * Y) / Y -> X if the multiplication does not overflow.
1053   Value *X;
1054   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1055     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1056     // If the Mul does not overflow, then we are good to go.
1057     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1058         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1059       return X;
1060     // If X has the form X = A / Y, then X * Y cannot overflow.
1061     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1062         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1063       return X;
1064   }
1065 
1066   // (X rem Y) / Y -> 0
1067   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1068       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1069     return Constant::getNullValue(Op0->getType());
1070 
1071   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1072   ConstantInt *C1, *C2;
1073   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1074       match(Op1, m_ConstantInt(C2))) {
1075     bool Overflow;
1076     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1077     if (Overflow)
1078       return Constant::getNullValue(Op0->getType());
1079   }
1080 
1081   // If the operation is with the result of a select instruction, check whether
1082   // operating on either branch of the select always yields the same value.
1083   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1084     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1085       return V;
1086 
1087   // If the operation is with the result of a phi instruction, check whether
1088   // operating on all incoming values of the phi always yields the same value.
1089   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1090     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1091       return V;
1092 
1093   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1094     return Constant::getNullValue(Op0->getType());
1095 
1096   return nullptr;
1097 }
1098 
1099 /// These are simplifications common to SRem and URem.
1100 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1101                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1102   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1103     return C;
1104 
1105   if (Value *V = simplifyDivRem(Op0, Op1, false, Q))
1106     return V;
1107 
1108   // (X % Y) % Y -> X % Y
1109   if ((Opcode == Instruction::SRem &&
1110        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1111       (Opcode == Instruction::URem &&
1112        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1113     return Op0;
1114 
1115   // (X << Y) % X -> 0
1116   if (Q.IIQ.UseInstrInfo &&
1117       ((Opcode == Instruction::SRem &&
1118         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1119        (Opcode == Instruction::URem &&
1120         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1121     return Constant::getNullValue(Op0->getType());
1122 
1123   // If the operation is with the result of a select instruction, check whether
1124   // operating on either branch of the select always yields the same value.
1125   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1126     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1127       return V;
1128 
1129   // If the operation is with the result of a phi instruction, check whether
1130   // operating on all incoming values of the phi always yields the same value.
1131   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1132     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1133       return V;
1134 
1135   // If X / Y == 0, then X % Y == X.
1136   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1137     return Op0;
1138 
1139   return nullptr;
1140 }
1141 
1142 /// Given operands for an SDiv, see if we can fold the result.
1143 /// If not, this returns null.
1144 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1145                                unsigned MaxRecurse) {
1146   // If two operands are negated and no signed overflow, return -1.
1147   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1148     return Constant::getAllOnesValue(Op0->getType());
1149 
1150   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1151 }
1152 
1153 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1154   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1155 }
1156 
1157 /// Given operands for a UDiv, see if we can fold the result.
1158 /// If not, this returns null.
1159 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1160                                unsigned MaxRecurse) {
1161   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1162 }
1163 
1164 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1165   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1166 }
1167 
1168 /// Given operands for an SRem, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1173   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1174   Value *X;
1175   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1176     return ConstantInt::getNullValue(Op0->getType());
1177 
1178   // If the two operands are negated, return 0.
1179   if (isKnownNegation(Op0, Op1))
1180     return ConstantInt::getNullValue(Op0->getType());
1181 
1182   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1183 }
1184 
1185 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1186   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1187 }
1188 
1189 /// Given operands for a URem, see if we can fold the result.
1190 /// If not, this returns null.
1191 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1192                                unsigned MaxRecurse) {
1193   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1194 }
1195 
1196 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1197   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1198 }
1199 
1200 /// Returns true if a shift by \c Amount always yields poison.
1201 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1202   Constant *C = dyn_cast<Constant>(Amount);
1203   if (!C)
1204     return false;
1205 
1206   // X shift by undef -> poison because it may shift by the bitwidth.
1207   if (Q.isUndefValue(C))
1208     return true;
1209 
1210   // Shifting by the bitwidth or more is undefined.
1211   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1212     if (CI->getValue().getLimitedValue() >=
1213         CI->getType()->getScalarSizeInBits())
1214       return true;
1215 
1216   // If all lanes of a vector shift are undefined the whole shift is.
1217   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1218     for (unsigned I = 0,
1219                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1220          I != E; ++I)
1221       if (!isPoisonShift(C->getAggregateElement(I), Q))
1222         return false;
1223     return true;
1224   }
1225 
1226   return false;
1227 }
1228 
1229 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1230 /// If not, this returns null.
1231 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1232                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1233   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1234     return C;
1235 
1236   // 0 shift by X -> 0
1237   if (match(Op0, m_Zero()))
1238     return Constant::getNullValue(Op0->getType());
1239 
1240   // X shift by 0 -> X
1241   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1242   // would be poison.
1243   Value *X;
1244   if (match(Op1, m_Zero()) ||
1245       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1246     return Op0;
1247 
1248   // Fold undefined shifts.
1249   if (isPoisonShift(Op1, Q))
1250     return PoisonValue::get(Op0->getType());
1251 
1252   // If the operation is with the result of a select instruction, check whether
1253   // operating on either branch of the select always yields the same value.
1254   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1255     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1256       return V;
1257 
1258   // If the operation is with the result of a phi instruction, check whether
1259   // operating on all incoming values of the phi always yields the same value.
1260   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1261     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1262       return V;
1263 
1264   // If any bits in the shift amount make that value greater than or equal to
1265   // the number of bits in the type, the shift is undefined.
1266   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1267   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1268     return PoisonValue::get(Op0->getType());
1269 
1270   // If all valid bits in the shift amount are known zero, the first operand is
1271   // unchanged.
1272   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1273   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1274     return Op0;
1275 
1276   return nullptr;
1277 }
1278 
1279 /// Given operands for an Shl, LShr or AShr, see if we can
1280 /// fold the result.  If not, this returns null.
1281 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1282                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1283                                  unsigned MaxRecurse) {
1284   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1285     return V;
1286 
1287   // X >> X -> 0
1288   if (Op0 == Op1)
1289     return Constant::getNullValue(Op0->getType());
1290 
1291   // undef >> X -> 0
1292   // undef >> X -> undef (if it's exact)
1293   if (Q.isUndefValue(Op0))
1294     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1295 
1296   // The low bit cannot be shifted out of an exact shift if it is set.
1297   if (isExact) {
1298     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1299     if (Op0Known.One[0])
1300       return Op0;
1301   }
1302 
1303   return nullptr;
1304 }
1305 
1306 /// Given operands for an Shl, see if we can fold the result.
1307 /// If not, this returns null.
1308 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1309                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1310   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1311     return V;
1312 
1313   // undef << X -> 0
1314   // undef << X -> undef if (if it's NSW/NUW)
1315   if (Q.isUndefValue(Op0))
1316     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1317 
1318   // (X >> A) << A -> X
1319   Value *X;
1320   if (Q.IIQ.UseInstrInfo &&
1321       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1322     return X;
1323 
1324   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1325   if (isNUW && match(Op0, m_Negative()))
1326     return Op0;
1327   // NOTE: could use computeKnownBits() / LazyValueInfo,
1328   // but the cost-benefit analysis suggests it isn't worth it.
1329 
1330   return nullptr;
1331 }
1332 
1333 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1334                              const SimplifyQuery &Q) {
1335   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1336 }
1337 
1338 /// Given operands for an LShr, see if we can fold the result.
1339 /// If not, this returns null.
1340 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1341                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1342   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1343                                     MaxRecurse))
1344       return V;
1345 
1346   // (X << A) >> A -> X
1347   Value *X;
1348   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1349     return X;
1350 
1351   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1352   // We can return X as we do in the above case since OR alters no bits in X.
1353   // SimplifyDemandedBits in InstCombine can do more general optimization for
1354   // bit manipulation. This pattern aims to provide opportunities for other
1355   // optimizers by supporting a simple but common case in InstSimplify.
1356   Value *Y;
1357   const APInt *ShRAmt, *ShLAmt;
1358   if (match(Op1, m_APInt(ShRAmt)) &&
1359       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1360       *ShRAmt == *ShLAmt) {
1361     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1362     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1363     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1364     if (ShRAmt->uge(EffWidthY))
1365       return X;
1366   }
1367 
1368   return nullptr;
1369 }
1370 
1371 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1372                               const SimplifyQuery &Q) {
1373   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1374 }
1375 
1376 /// Given operands for an AShr, see if we can fold the result.
1377 /// If not, this returns null.
1378 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1379                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1380   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1381                                     MaxRecurse))
1382     return V;
1383 
1384   // all ones >>a X -> -1
1385   // Do not return Op0 because it may contain undef elements if it's a vector.
1386   if (match(Op0, m_AllOnes()))
1387     return Constant::getAllOnesValue(Op0->getType());
1388 
1389   // (X << A) >> A -> X
1390   Value *X;
1391   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1392     return X;
1393 
1394   // Arithmetic shifting an all-sign-bit value is a no-op.
1395   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1396   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1397     return Op0;
1398 
1399   return nullptr;
1400 }
1401 
1402 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1403                               const SimplifyQuery &Q) {
1404   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1405 }
1406 
1407 /// Commuted variants are assumed to be handled by calling this function again
1408 /// with the parameters swapped.
1409 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1410                                          ICmpInst *UnsignedICmp, bool IsAnd,
1411                                          const SimplifyQuery &Q) {
1412   Value *X, *Y;
1413 
1414   ICmpInst::Predicate EqPred;
1415   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1416       !ICmpInst::isEquality(EqPred))
1417     return nullptr;
1418 
1419   ICmpInst::Predicate UnsignedPred;
1420 
1421   Value *A, *B;
1422   // Y = (A - B);
1423   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1424     if (match(UnsignedICmp,
1425               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1426         ICmpInst::isUnsigned(UnsignedPred)) {
1427       // A >=/<= B || (A - B) != 0  <-->  true
1428       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1429            UnsignedPred == ICmpInst::ICMP_ULE) &&
1430           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1431         return ConstantInt::getTrue(UnsignedICmp->getType());
1432       // A </> B && (A - B) == 0  <-->  false
1433       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1434            UnsignedPred == ICmpInst::ICMP_UGT) &&
1435           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1436         return ConstantInt::getFalse(UnsignedICmp->getType());
1437 
1438       // A </> B && (A - B) != 0  <-->  A </> B
1439       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1440       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1441                                           UnsignedPred == ICmpInst::ICMP_UGT))
1442         return IsAnd ? UnsignedICmp : ZeroICmp;
1443 
1444       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1445       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1446       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1447                                           UnsignedPred == ICmpInst::ICMP_UGE))
1448         return IsAnd ? ZeroICmp : UnsignedICmp;
1449     }
1450 
1451     // Given  Y = (A - B)
1452     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1453     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1454     if (match(UnsignedICmp,
1455               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1456       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1457           EqPred == ICmpInst::ICMP_NE &&
1458           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1459         return UnsignedICmp;
1460       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1461           EqPred == ICmpInst::ICMP_EQ &&
1462           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1463         return UnsignedICmp;
1464     }
1465   }
1466 
1467   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1468       ICmpInst::isUnsigned(UnsignedPred))
1469     ;
1470   else if (match(UnsignedICmp,
1471                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1472            ICmpInst::isUnsigned(UnsignedPred))
1473     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1474   else
1475     return nullptr;
1476 
1477   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1478   // X > Y || Y == 0  -->  X > Y   iff X != 0
1479   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1480       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1481     return IsAnd ? ZeroICmp : UnsignedICmp;
1482 
1483   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1484   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1485   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1486       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1487     return IsAnd ? UnsignedICmp : ZeroICmp;
1488 
1489   // The transforms below here are expected to be handled more generally with
1490   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1491   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1492   // these are candidates for removal.
1493 
1494   // X < Y && Y != 0  -->  X < Y
1495   // X < Y || Y != 0  -->  Y != 0
1496   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1497     return IsAnd ? UnsignedICmp : ZeroICmp;
1498 
1499   // X >= Y && Y == 0  -->  Y == 0
1500   // X >= Y || Y == 0  -->  X >= Y
1501   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1502     return IsAnd ? ZeroICmp : UnsignedICmp;
1503 
1504   // X < Y && Y == 0  -->  false
1505   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1506       IsAnd)
1507     return getFalse(UnsignedICmp->getType());
1508 
1509   // X >= Y || Y != 0  -->  true
1510   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1511       !IsAnd)
1512     return getTrue(UnsignedICmp->getType());
1513 
1514   return nullptr;
1515 }
1516 
1517 /// Commuted variants are assumed to be handled by calling this function again
1518 /// with the parameters swapped.
1519 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1520   ICmpInst::Predicate Pred0, Pred1;
1521   Value *A ,*B;
1522   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1523       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1524     return nullptr;
1525 
1526   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1527   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1528   // can eliminate Op1 from this 'and'.
1529   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1530     return Op0;
1531 
1532   // Check for any combination of predicates that are guaranteed to be disjoint.
1533   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1534       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1535       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1536       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1537     return getFalse(Op0->getType());
1538 
1539   return nullptr;
1540 }
1541 
1542 /// Commuted variants are assumed to be handled by calling this function again
1543 /// with the parameters swapped.
1544 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1545   ICmpInst::Predicate Pred0, Pred1;
1546   Value *A ,*B;
1547   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1548       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1549     return nullptr;
1550 
1551   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1552   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1553   // can eliminate Op0 from this 'or'.
1554   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1555     return Op1;
1556 
1557   // Check for any combination of predicates that cover the entire range of
1558   // possibilities.
1559   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1560       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1561       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1562       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1563     return getTrue(Op0->getType());
1564 
1565   return nullptr;
1566 }
1567 
1568 /// Test if a pair of compares with a shared operand and 2 constants has an
1569 /// empty set intersection, full set union, or if one compare is a superset of
1570 /// the other.
1571 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1572                                                 bool IsAnd) {
1573   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1574   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1575     return nullptr;
1576 
1577   const APInt *C0, *C1;
1578   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1579       !match(Cmp1->getOperand(1), m_APInt(C1)))
1580     return nullptr;
1581 
1582   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1583   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1584 
1585   // For and-of-compares, check if the intersection is empty:
1586   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1587   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1588     return getFalse(Cmp0->getType());
1589 
1590   // For or-of-compares, check if the union is full:
1591   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1592   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1593     return getTrue(Cmp0->getType());
1594 
1595   // Is one range a superset of the other?
1596   // If this is and-of-compares, take the smaller set:
1597   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1598   // If this is or-of-compares, take the larger set:
1599   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1600   if (Range0.contains(Range1))
1601     return IsAnd ? Cmp1 : Cmp0;
1602   if (Range1.contains(Range0))
1603     return IsAnd ? Cmp0 : Cmp1;
1604 
1605   return nullptr;
1606 }
1607 
1608 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1609                                            bool IsAnd) {
1610   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1611   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1612       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1613     return nullptr;
1614 
1615   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1616     return nullptr;
1617 
1618   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1619   Value *X = Cmp0->getOperand(0);
1620   Value *Y = Cmp1->getOperand(0);
1621 
1622   // If one of the compares is a masked version of a (not) null check, then
1623   // that compare implies the other, so we eliminate the other. Optionally, look
1624   // through a pointer-to-int cast to match a null check of a pointer type.
1625 
1626   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1627   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1628   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1629   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1630   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1631       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1632     return Cmp1;
1633 
1634   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1635   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1636   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1637   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1638   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1639       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1640     return Cmp0;
1641 
1642   return nullptr;
1643 }
1644 
1645 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1646                                         const InstrInfoQuery &IIQ) {
1647   // (icmp (add V, C0), C1) & (icmp V, C0)
1648   ICmpInst::Predicate Pred0, Pred1;
1649   const APInt *C0, *C1;
1650   Value *V;
1651   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1652     return nullptr;
1653 
1654   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1655     return nullptr;
1656 
1657   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1658   if (AddInst->getOperand(1) != Op1->getOperand(1))
1659     return nullptr;
1660 
1661   Type *ITy = Op0->getType();
1662   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1663   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1664 
1665   const APInt Delta = *C1 - *C0;
1666   if (C0->isStrictlyPositive()) {
1667     if (Delta == 2) {
1668       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1669         return getFalse(ITy);
1670       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1671         return getFalse(ITy);
1672     }
1673     if (Delta == 1) {
1674       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1675         return getFalse(ITy);
1676       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1677         return getFalse(ITy);
1678     }
1679   }
1680   if (C0->getBoolValue() && isNUW) {
1681     if (Delta == 2)
1682       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1683         return getFalse(ITy);
1684     if (Delta == 1)
1685       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1686         return getFalse(ITy);
1687   }
1688 
1689   return nullptr;
1690 }
1691 
1692 /// Try to eliminate compares with signed or unsigned min/max constants.
1693 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1694                                                  bool IsAnd) {
1695   // Canonicalize an equality compare as Cmp0.
1696   if (Cmp1->isEquality())
1697     std::swap(Cmp0, Cmp1);
1698   if (!Cmp0->isEquality())
1699     return nullptr;
1700 
1701   // The non-equality compare must include a common operand (X). Canonicalize
1702   // the common operand as operand 0 (the predicate is swapped if the common
1703   // operand was operand 1).
1704   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1705   Value *X = Cmp0->getOperand(0);
1706   ICmpInst::Predicate Pred1;
1707   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1708   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1709     return nullptr;
1710   if (ICmpInst::isEquality(Pred1))
1711     return nullptr;
1712 
1713   // The equality compare must be against a constant. Flip bits if we matched
1714   // a bitwise not. Convert a null pointer constant to an integer zero value.
1715   APInt MinMaxC;
1716   const APInt *C;
1717   if (match(Cmp0->getOperand(1), m_APInt(C)))
1718     MinMaxC = HasNotOp ? ~*C : *C;
1719   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1720     MinMaxC = APInt::getNullValue(8);
1721   else
1722     return nullptr;
1723 
1724   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1725   if (!IsAnd) {
1726     Pred0 = ICmpInst::getInversePredicate(Pred0);
1727     Pred1 = ICmpInst::getInversePredicate(Pred1);
1728   }
1729 
1730   // Normalize to unsigned compare and unsigned min/max value.
1731   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1732   if (ICmpInst::isSigned(Pred1)) {
1733     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1734     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1735   }
1736 
1737   // (X != MAX) && (X < Y) --> X < Y
1738   // (X == MAX) || (X >= Y) --> X >= Y
1739   if (MinMaxC.isMaxValue())
1740     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1741       return Cmp1;
1742 
1743   // (X != MIN) && (X > Y) -->  X > Y
1744   // (X == MIN) || (X <= Y) --> X <= Y
1745   if (MinMaxC.isMinValue())
1746     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1747       return Cmp1;
1748 
1749   return nullptr;
1750 }
1751 
1752 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1753                                  const SimplifyQuery &Q) {
1754   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1755     return X;
1756   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1757     return X;
1758 
1759   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1760     return X;
1761   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1762     return X;
1763 
1764   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1765     return X;
1766 
1767   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1768     return X;
1769 
1770   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1771     return X;
1772 
1773   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1774     return X;
1775   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1776     return X;
1777 
1778   return nullptr;
1779 }
1780 
1781 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1782                                        const InstrInfoQuery &IIQ) {
1783   // (icmp (add V, C0), C1) | (icmp V, C0)
1784   ICmpInst::Predicate Pred0, Pred1;
1785   const APInt *C0, *C1;
1786   Value *V;
1787   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1788     return nullptr;
1789 
1790   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1791     return nullptr;
1792 
1793   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1794   if (AddInst->getOperand(1) != Op1->getOperand(1))
1795     return nullptr;
1796 
1797   Type *ITy = Op0->getType();
1798   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1799   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1800 
1801   const APInt Delta = *C1 - *C0;
1802   if (C0->isStrictlyPositive()) {
1803     if (Delta == 2) {
1804       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1805         return getTrue(ITy);
1806       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1807         return getTrue(ITy);
1808     }
1809     if (Delta == 1) {
1810       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1811         return getTrue(ITy);
1812       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1813         return getTrue(ITy);
1814     }
1815   }
1816   if (C0->getBoolValue() && isNUW) {
1817     if (Delta == 2)
1818       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1819         return getTrue(ITy);
1820     if (Delta == 1)
1821       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1822         return getTrue(ITy);
1823   }
1824 
1825   return nullptr;
1826 }
1827 
1828 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1829                                 const SimplifyQuery &Q) {
1830   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1831     return X;
1832   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1833     return X;
1834 
1835   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1836     return X;
1837   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1838     return X;
1839 
1840   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1841     return X;
1842 
1843   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1844     return X;
1845 
1846   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1847     return X;
1848 
1849   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1850     return X;
1851   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1852     return X;
1853 
1854   return nullptr;
1855 }
1856 
1857 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1858                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1859   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1860   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1861   if (LHS0->getType() != RHS0->getType())
1862     return nullptr;
1863 
1864   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1865   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1866       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1867     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1868     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1869     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1870     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1871     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1872     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1873     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1874     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1875     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1876         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1877       return RHS;
1878 
1879     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1880     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1881     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1882     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1883     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1884     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1885     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1886     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1887     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1888         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1889       return LHS;
1890   }
1891 
1892   return nullptr;
1893 }
1894 
1895 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1896                                   Value *Op0, Value *Op1, bool IsAnd) {
1897   // Look through casts of the 'and' operands to find compares.
1898   auto *Cast0 = dyn_cast<CastInst>(Op0);
1899   auto *Cast1 = dyn_cast<CastInst>(Op1);
1900   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1901       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1902     Op0 = Cast0->getOperand(0);
1903     Op1 = Cast1->getOperand(0);
1904   }
1905 
1906   Value *V = nullptr;
1907   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1908   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1909   if (ICmp0 && ICmp1)
1910     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1911               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1912 
1913   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1914   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1915   if (FCmp0 && FCmp1)
1916     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1917 
1918   if (!V)
1919     return nullptr;
1920   if (!Cast0)
1921     return V;
1922 
1923   // If we looked through casts, we can only handle a constant simplification
1924   // because we are not allowed to create a cast instruction here.
1925   if (auto *C = dyn_cast<Constant>(V))
1926     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1927 
1928   return nullptr;
1929 }
1930 
1931 /// Check that the Op1 is in expected form, i.e.:
1932 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1933 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1934 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
1935                                                           Value *X) {
1936   auto *Extract = dyn_cast<ExtractValueInst>(Op1);
1937   // We should only be extracting the overflow bit.
1938   if (!Extract || !Extract->getIndices().equals(1))
1939     return false;
1940   Value *Agg = Extract->getAggregateOperand();
1941   // This should be a multiplication-with-overflow intrinsic.
1942   if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
1943                               m_Intrinsic<Intrinsic::smul_with_overflow>())))
1944     return false;
1945   // One of its multipliers should be the value we checked for zero before.
1946   if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
1947                               m_Argument<1>(m_Specific(X)))))
1948     return false;
1949   return true;
1950 }
1951 
1952 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1953 /// other form of check, e.g. one that was using division; it may have been
1954 /// guarded against division-by-zero. We can drop that check now.
1955 /// Look for:
1956 ///   %Op0 = icmp ne i4 %X, 0
1957 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1958 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1959 ///   %??? = and i1 %Op0, %Op1
1960 /// We can just return  %Op1
1961 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
1962   ICmpInst::Predicate Pred;
1963   Value *X;
1964   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1965       Pred != ICmpInst::Predicate::ICMP_NE)
1966     return nullptr;
1967   // Is Op1 in expected form?
1968   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1969     return nullptr;
1970   // Can omit 'and', and just return the overflow bit.
1971   return Op1;
1972 }
1973 
1974 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1975 /// other form of check, e.g. one that was using division; it may have been
1976 /// guarded against division-by-zero. We can drop that check now.
1977 /// Look for:
1978 ///   %Op0 = icmp eq i4 %X, 0
1979 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1980 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1981 ///   %NotOp1 = xor i1 %Op1, true
1982 ///   %or = or i1 %Op0, %NotOp1
1983 /// We can just return  %NotOp1
1984 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
1985                                                             Value *NotOp1) {
1986   ICmpInst::Predicate Pred;
1987   Value *X;
1988   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1989       Pred != ICmpInst::Predicate::ICMP_EQ)
1990     return nullptr;
1991   // We expect the other hand of an 'or' to be a 'not'.
1992   Value *Op1;
1993   if (!match(NotOp1, m_Not(m_Value(Op1))))
1994     return nullptr;
1995   // Is Op1 in expected form?
1996   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1997     return nullptr;
1998   // Can omit 'and', and just return the inverted overflow bit.
1999   return NotOp1;
2000 }
2001 
2002 /// Given a bitwise logic op, check if the operands are add/sub with a common
2003 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
2004 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
2005                                     Instruction::BinaryOps Opcode) {
2006   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
2007   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
2008   Value *X;
2009   Constant *C1, *C2;
2010   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
2011        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
2012       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
2013        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
2014     if (ConstantExpr::getNot(C1) == C2) {
2015       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
2016       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
2017       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
2018       Type *Ty = Op0->getType();
2019       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2020                                         : ConstantInt::getAllOnesValue(Ty);
2021     }
2022   }
2023   return nullptr;
2024 }
2025 
2026 /// Given operands for an And, see if we can fold the result.
2027 /// If not, this returns null.
2028 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2029                               unsigned MaxRecurse) {
2030   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2031     return C;
2032 
2033   // X & undef -> 0
2034   if (Q.isUndefValue(Op1))
2035     return Constant::getNullValue(Op0->getType());
2036 
2037   // X & X = X
2038   if (Op0 == Op1)
2039     return Op0;
2040 
2041   // X & 0 = 0
2042   if (match(Op1, m_Zero()))
2043     return Constant::getNullValue(Op0->getType());
2044 
2045   // X & -1 = X
2046   if (match(Op1, m_AllOnes()))
2047     return Op0;
2048 
2049   // A & ~A  =  ~A & A  =  0
2050   if (match(Op0, m_Not(m_Specific(Op1))) ||
2051       match(Op1, m_Not(m_Specific(Op0))))
2052     return Constant::getNullValue(Op0->getType());
2053 
2054   // (A | ?) & A = A
2055   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2056     return Op1;
2057 
2058   // A & (A | ?) = A
2059   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2060     return Op0;
2061 
2062   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2063     return V;
2064 
2065   // A mask that only clears known zeros of a shifted value is a no-op.
2066   Value *X;
2067   const APInt *Mask;
2068   const APInt *ShAmt;
2069   if (match(Op1, m_APInt(Mask))) {
2070     // If all bits in the inverted and shifted mask are clear:
2071     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2072     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2073         (~(*Mask)).lshr(*ShAmt).isNullValue())
2074       return Op0;
2075 
2076     // If all bits in the inverted and shifted mask are clear:
2077     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2078     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2079         (~(*Mask)).shl(*ShAmt).isNullValue())
2080       return Op0;
2081   }
2082 
2083   // If we have a multiplication overflow check that is being 'and'ed with a
2084   // check that one of the multipliers is not zero, we can omit the 'and', and
2085   // only keep the overflow check.
2086   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
2087     return V;
2088   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
2089     return V;
2090 
2091   // A & (-A) = A if A is a power of two or zero.
2092   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2093       match(Op1, m_Neg(m_Specific(Op0)))) {
2094     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2095                                Q.DT))
2096       return Op0;
2097     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2098                                Q.DT))
2099       return Op1;
2100   }
2101 
2102   // This is a similar pattern used for checking if a value is a power-of-2:
2103   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2104   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2105   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2106       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2107     return Constant::getNullValue(Op1->getType());
2108   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2109       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2110     return Constant::getNullValue(Op0->getType());
2111 
2112   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2113     return V;
2114 
2115   // Try some generic simplifications for associative operations.
2116   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2117                                           MaxRecurse))
2118     return V;
2119 
2120   // And distributes over Or.  Try some generic simplifications based on this.
2121   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2122                                         Instruction::Or, Q, MaxRecurse))
2123     return V;
2124 
2125   // And distributes over Xor.  Try some generic simplifications based on this.
2126   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2127                                         Instruction::Xor, Q, MaxRecurse))
2128     return V;
2129 
2130   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2131     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2132       // A & (A && B) -> A && B
2133       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2134         return Op1;
2135       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2136         return Op0;
2137     }
2138     // If the operation is with the result of a select instruction, check
2139     // whether operating on either branch of the select always yields the same
2140     // value.
2141     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2142                                          MaxRecurse))
2143       return V;
2144   }
2145 
2146   // If the operation is with the result of a phi instruction, check whether
2147   // operating on all incoming values of the phi always yields the same value.
2148   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2149     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2150                                       MaxRecurse))
2151       return V;
2152 
2153   // Assuming the effective width of Y is not larger than A, i.e. all bits
2154   // from X and Y are disjoint in (X << A) | Y,
2155   // if the mask of this AND op covers all bits of X or Y, while it covers
2156   // no bits from the other, we can bypass this AND op. E.g.,
2157   // ((X << A) | Y) & Mask -> Y,
2158   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2159   // ((X << A) | Y) & Mask -> X << A,
2160   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2161   // SimplifyDemandedBits in InstCombine can optimize the general case.
2162   // This pattern aims to help other passes for a common case.
2163   Value *Y, *XShifted;
2164   if (match(Op1, m_APInt(Mask)) &&
2165       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2166                                      m_Value(XShifted)),
2167                         m_Value(Y)))) {
2168     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2169     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2170     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2171     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2172     if (EffWidthY <= ShftCnt) {
2173       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2174                                                 Q.DT);
2175       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2176       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2177       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2178       // If the mask is extracting all bits from X or Y as is, we can skip
2179       // this AND op.
2180       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2181         return Y;
2182       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2183         return XShifted;
2184     }
2185   }
2186 
2187   return nullptr;
2188 }
2189 
2190 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2191   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2192 }
2193 
2194 /// Given operands for an Or, see if we can fold the result.
2195 /// If not, this returns null.
2196 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2197                              unsigned MaxRecurse) {
2198   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2199     return C;
2200 
2201   // X | undef -> -1
2202   // X | -1 = -1
2203   // Do not return Op1 because it may contain undef elements if it's a vector.
2204   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2205     return Constant::getAllOnesValue(Op0->getType());
2206 
2207   // X | X = X
2208   // X | 0 = X
2209   if (Op0 == Op1 || match(Op1, m_Zero()))
2210     return Op0;
2211 
2212   // A | ~A  =  ~A | A  =  -1
2213   if (match(Op0, m_Not(m_Specific(Op1))) ||
2214       match(Op1, m_Not(m_Specific(Op0))))
2215     return Constant::getAllOnesValue(Op0->getType());
2216 
2217   // (A & ?) | A = A
2218   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2219     return Op1;
2220 
2221   // A | (A & ?) = A
2222   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2223     return Op0;
2224 
2225   // ~(A & ?) | A = -1
2226   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2227     return Constant::getAllOnesValue(Op1->getType());
2228 
2229   // A | ~(A & ?) = -1
2230   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2231     return Constant::getAllOnesValue(Op0->getType());
2232 
2233   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2234     return V;
2235 
2236   Value *A, *B, *NotA;
2237   // (A & ~B) | (A ^ B) -> (A ^ B)
2238   // (~B & A) | (A ^ B) -> (A ^ B)
2239   // (A & ~B) | (B ^ A) -> (B ^ A)
2240   // (~B & A) | (B ^ A) -> (B ^ A)
2241   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2242       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2243        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2244     return Op1;
2245 
2246   // Commute the 'or' operands.
2247   // (A ^ B) | (A & ~B) -> (A ^ B)
2248   // (A ^ B) | (~B & A) -> (A ^ B)
2249   // (B ^ A) | (A & ~B) -> (B ^ A)
2250   // (B ^ A) | (~B & A) -> (B ^ A)
2251   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2252       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2253        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2254     return Op0;
2255 
2256   // (A & B) | (~A ^ B) -> (~A ^ B)
2257   // (B & A) | (~A ^ B) -> (~A ^ B)
2258   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2259   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2260   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2261       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2262        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2263     return Op1;
2264 
2265   // Commute the 'or' operands.
2266   // (~A ^ B) | (A & B) -> (~A ^ B)
2267   // (~A ^ B) | (B & A) -> (~A ^ B)
2268   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2269   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2270   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2271       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2272        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2273     return Op0;
2274 
2275   // (~A & B) | ~(A | B) --> ~A
2276   // (~A & B) | ~(B | A) --> ~A
2277   // (B & ~A) | ~(A | B) --> ~A
2278   // (B & ~A) | ~(B | A) --> ~A
2279   if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2280                          m_Value(B))) &&
2281       match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2282     return NotA;
2283 
2284   // Commute the 'or' operands.
2285   // ~(A | B) | (~A & B) --> ~A
2286   // ~(B | A) | (~A & B) --> ~A
2287   // ~(A | B) | (B & ~A) --> ~A
2288   // ~(B | A) | (B & ~A) --> ~A
2289   if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2290                          m_Value(B))) &&
2291       match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2292     return NotA;
2293 
2294   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2295     return V;
2296 
2297   // If we have a multiplication overflow check that is being 'and'ed with a
2298   // check that one of the multipliers is not zero, we can omit the 'and', and
2299   // only keep the overflow check.
2300   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
2301     return V;
2302   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
2303     return V;
2304 
2305   // Try some generic simplifications for associative operations.
2306   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2307                                           MaxRecurse))
2308     return V;
2309 
2310   // Or distributes over And.  Try some generic simplifications based on this.
2311   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2312                                         Instruction::And, Q, MaxRecurse))
2313     return V;
2314 
2315   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2316     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2317       // A | (A || B) -> A || B
2318       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2319         return Op1;
2320       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2321         return Op0;
2322     }
2323     // If the operation is with the result of a select instruction, check
2324     // whether operating on either branch of the select always yields the same
2325     // value.
2326     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2327                                          MaxRecurse))
2328       return V;
2329   }
2330 
2331   // (A & C1)|(B & C2)
2332   const APInt *C1, *C2;
2333   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2334       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2335     if (*C1 == ~*C2) {
2336       // (A & C1)|(B & C2)
2337       // If we have: ((V + N) & C1) | (V & C2)
2338       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2339       // replace with V+N.
2340       Value *N;
2341       if (C2->isMask() && // C2 == 0+1+
2342           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2343         // Add commutes, try both ways.
2344         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2345           return A;
2346       }
2347       // Or commutes, try both ways.
2348       if (C1->isMask() &&
2349           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2350         // Add commutes, try both ways.
2351         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2352           return B;
2353       }
2354     }
2355   }
2356 
2357   // If the operation is with the result of a phi instruction, check whether
2358   // operating on all incoming values of the phi always yields the same value.
2359   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2360     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2361       return V;
2362 
2363   return nullptr;
2364 }
2365 
2366 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2367   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2368 }
2369 
2370 /// Given operands for a Xor, see if we can fold the result.
2371 /// If not, this returns null.
2372 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2373                               unsigned MaxRecurse) {
2374   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2375     return C;
2376 
2377   // A ^ undef -> undef
2378   if (Q.isUndefValue(Op1))
2379     return Op1;
2380 
2381   // A ^ 0 = A
2382   if (match(Op1, m_Zero()))
2383     return Op0;
2384 
2385   // A ^ A = 0
2386   if (Op0 == Op1)
2387     return Constant::getNullValue(Op0->getType());
2388 
2389   // A ^ ~A  =  ~A ^ A  =  -1
2390   if (match(Op0, m_Not(m_Specific(Op1))) ||
2391       match(Op1, m_Not(m_Specific(Op0))))
2392     return Constant::getAllOnesValue(Op0->getType());
2393 
2394   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2395     return V;
2396 
2397   // Try some generic simplifications for associative operations.
2398   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2399                                           MaxRecurse))
2400     return V;
2401 
2402   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2403   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2404   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2405   // only if B and C are equal.  If B and C are equal then (since we assume
2406   // that operands have already been simplified) "select(cond, B, C)" should
2407   // have been simplified to the common value of B and C already.  Analysing
2408   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2409   // for threading over phi nodes.
2410 
2411   return nullptr;
2412 }
2413 
2414 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2415   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2416 }
2417 
2418 
2419 static Type *GetCompareTy(Value *Op) {
2420   return CmpInst::makeCmpResultType(Op->getType());
2421 }
2422 
2423 /// Rummage around inside V looking for something equivalent to the comparison
2424 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2425 /// Helper function for analyzing max/min idioms.
2426 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2427                                          Value *LHS, Value *RHS) {
2428   SelectInst *SI = dyn_cast<SelectInst>(V);
2429   if (!SI)
2430     return nullptr;
2431   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2432   if (!Cmp)
2433     return nullptr;
2434   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2435   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2436     return Cmp;
2437   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2438       LHS == CmpRHS && RHS == CmpLHS)
2439     return Cmp;
2440   return nullptr;
2441 }
2442 
2443 // A significant optimization not implemented here is assuming that alloca
2444 // addresses are not equal to incoming argument values. They don't *alias*,
2445 // as we say, but that doesn't mean they aren't equal, so we take a
2446 // conservative approach.
2447 //
2448 // This is inspired in part by C++11 5.10p1:
2449 //   "Two pointers of the same type compare equal if and only if they are both
2450 //    null, both point to the same function, or both represent the same
2451 //    address."
2452 //
2453 // This is pretty permissive.
2454 //
2455 // It's also partly due to C11 6.5.9p6:
2456 //   "Two pointers compare equal if and only if both are null pointers, both are
2457 //    pointers to the same object (including a pointer to an object and a
2458 //    subobject at its beginning) or function, both are pointers to one past the
2459 //    last element of the same array object, or one is a pointer to one past the
2460 //    end of one array object and the other is a pointer to the start of a
2461 //    different array object that happens to immediately follow the first array
2462 //    object in the address space.)
2463 //
2464 // C11's version is more restrictive, however there's no reason why an argument
2465 // couldn't be a one-past-the-end value for a stack object in the caller and be
2466 // equal to the beginning of a stack object in the callee.
2467 //
2468 // If the C and C++ standards are ever made sufficiently restrictive in this
2469 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2470 // this optimization.
2471 static Constant *
2472 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2473                    const DominatorTree *DT, CmpInst::Predicate Pred,
2474                    AssumptionCache *AC, const Instruction *CxtI,
2475                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2476   // First, skip past any trivial no-ops.
2477   LHS = LHS->stripPointerCasts();
2478   RHS = RHS->stripPointerCasts();
2479 
2480   // A non-null pointer is not equal to a null pointer.
2481   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2482       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2483                            IIQ.UseInstrInfo))
2484     return ConstantInt::get(GetCompareTy(LHS),
2485                             !CmpInst::isTrueWhenEqual(Pred));
2486 
2487   // We can only fold certain predicates on pointer comparisons.
2488   switch (Pred) {
2489   default:
2490     return nullptr;
2491 
2492     // Equality comaprisons are easy to fold.
2493   case CmpInst::ICMP_EQ:
2494   case CmpInst::ICMP_NE:
2495     break;
2496 
2497     // We can only handle unsigned relational comparisons because 'inbounds' on
2498     // a GEP only protects against unsigned wrapping.
2499   case CmpInst::ICMP_UGT:
2500   case CmpInst::ICMP_UGE:
2501   case CmpInst::ICMP_ULT:
2502   case CmpInst::ICMP_ULE:
2503     // However, we have to switch them to their signed variants to handle
2504     // negative indices from the base pointer.
2505     Pred = ICmpInst::getSignedPredicate(Pred);
2506     break;
2507   }
2508 
2509   // Strip off any constant offsets so that we can reason about them.
2510   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2511   // here and compare base addresses like AliasAnalysis does, however there are
2512   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2513   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2514   // doesn't need to guarantee pointer inequality when it says NoAlias.
2515   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2516   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2517 
2518   // If LHS and RHS are related via constant offsets to the same base
2519   // value, we can replace it with an icmp which just compares the offsets.
2520   if (LHS == RHS)
2521     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2522 
2523   // Various optimizations for (in)equality comparisons.
2524   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2525     // Different non-empty allocations that exist at the same time have
2526     // different addresses (if the program can tell). Global variables always
2527     // exist, so they always exist during the lifetime of each other and all
2528     // allocas. Two different allocas usually have different addresses...
2529     //
2530     // However, if there's an @llvm.stackrestore dynamically in between two
2531     // allocas, they may have the same address. It's tempting to reduce the
2532     // scope of the problem by only looking at *static* allocas here. That would
2533     // cover the majority of allocas while significantly reducing the likelihood
2534     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2535     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2536     // an entry block. Also, if we have a block that's not attached to a
2537     // function, we can't tell if it's "static" under the current definition.
2538     // Theoretically, this problem could be fixed by creating a new kind of
2539     // instruction kind specifically for static allocas. Such a new instruction
2540     // could be required to be at the top of the entry block, thus preventing it
2541     // from being subject to a @llvm.stackrestore. Instcombine could even
2542     // convert regular allocas into these special allocas. It'd be nifty.
2543     // However, until then, this problem remains open.
2544     //
2545     // So, we'll assume that two non-empty allocas have different addresses
2546     // for now.
2547     //
2548     // With all that, if the offsets are within the bounds of their allocations
2549     // (and not one-past-the-end! so we can't use inbounds!), and their
2550     // allocations aren't the same, the pointers are not equal.
2551     //
2552     // Note that it's not necessary to check for LHS being a global variable
2553     // address, due to canonicalization and constant folding.
2554     if (isa<AllocaInst>(LHS) &&
2555         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2556       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2557       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2558       uint64_t LHSSize, RHSSize;
2559       ObjectSizeOpts Opts;
2560       Opts.NullIsUnknownSize =
2561           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2562       if (LHSOffsetCI && RHSOffsetCI &&
2563           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2564           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2565         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2566         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2567         if (!LHSOffsetValue.isNegative() &&
2568             !RHSOffsetValue.isNegative() &&
2569             LHSOffsetValue.ult(LHSSize) &&
2570             RHSOffsetValue.ult(RHSSize)) {
2571           return ConstantInt::get(GetCompareTy(LHS),
2572                                   !CmpInst::isTrueWhenEqual(Pred));
2573         }
2574       }
2575 
2576       // Repeat the above check but this time without depending on DataLayout
2577       // or being able to compute a precise size.
2578       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2579           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2580           LHSOffset->isNullValue() &&
2581           RHSOffset->isNullValue())
2582         return ConstantInt::get(GetCompareTy(LHS),
2583                                 !CmpInst::isTrueWhenEqual(Pred));
2584     }
2585 
2586     // Even if an non-inbounds GEP occurs along the path we can still optimize
2587     // equality comparisons concerning the result. We avoid walking the whole
2588     // chain again by starting where the last calls to
2589     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2590     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2591     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2592     if (LHS == RHS)
2593       return ConstantExpr::getICmp(Pred,
2594                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2595                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2596 
2597     // If one side of the equality comparison must come from a noalias call
2598     // (meaning a system memory allocation function), and the other side must
2599     // come from a pointer that cannot overlap with dynamically-allocated
2600     // memory within the lifetime of the current function (allocas, byval
2601     // arguments, globals), then determine the comparison result here.
2602     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2603     getUnderlyingObjects(LHS, LHSUObjs);
2604     getUnderlyingObjects(RHS, RHSUObjs);
2605 
2606     // Is the set of underlying objects all noalias calls?
2607     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2608       return all_of(Objects, isNoAliasCall);
2609     };
2610 
2611     // Is the set of underlying objects all things which must be disjoint from
2612     // noalias calls. For allocas, we consider only static ones (dynamic
2613     // allocas might be transformed into calls to malloc not simultaneously
2614     // live with the compared-to allocation). For globals, we exclude symbols
2615     // that might be resolve lazily to symbols in another dynamically-loaded
2616     // library (and, thus, could be malloc'ed by the implementation).
2617     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2618       return all_of(Objects, [](const Value *V) {
2619         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2620           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2621         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2622           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2623                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2624                  !GV->isThreadLocal();
2625         if (const Argument *A = dyn_cast<Argument>(V))
2626           return A->hasByValAttr();
2627         return false;
2628       });
2629     };
2630 
2631     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2632         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2633         return ConstantInt::get(GetCompareTy(LHS),
2634                                 !CmpInst::isTrueWhenEqual(Pred));
2635 
2636     // Fold comparisons for non-escaping pointer even if the allocation call
2637     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2638     // dynamic allocation call could be either of the operands.
2639     Value *MI = nullptr;
2640     if (isAllocLikeFn(LHS, TLI) &&
2641         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2642       MI = LHS;
2643     else if (isAllocLikeFn(RHS, TLI) &&
2644              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2645       MI = RHS;
2646     // FIXME: We should also fold the compare when the pointer escapes, but the
2647     // compare dominates the pointer escape
2648     if (MI && !PointerMayBeCaptured(MI, true, true))
2649       return ConstantInt::get(GetCompareTy(LHS),
2650                               CmpInst::isFalseWhenEqual(Pred));
2651   }
2652 
2653   // Otherwise, fail.
2654   return nullptr;
2655 }
2656 
2657 /// Fold an icmp when its operands have i1 scalar type.
2658 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2659                                   Value *RHS, const SimplifyQuery &Q) {
2660   Type *ITy = GetCompareTy(LHS); // The return type.
2661   Type *OpTy = LHS->getType();   // The operand type.
2662   if (!OpTy->isIntOrIntVectorTy(1))
2663     return nullptr;
2664 
2665   // A boolean compared to true/false can be simplified in 14 out of the 20
2666   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2667   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2668   if (match(RHS, m_Zero())) {
2669     switch (Pred) {
2670     case CmpInst::ICMP_NE:  // X !=  0 -> X
2671     case CmpInst::ICMP_UGT: // X >u  0 -> X
2672     case CmpInst::ICMP_SLT: // X <s  0 -> X
2673       return LHS;
2674 
2675     case CmpInst::ICMP_ULT: // X <u  0 -> false
2676     case CmpInst::ICMP_SGT: // X >s  0 -> false
2677       return getFalse(ITy);
2678 
2679     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2680     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2681       return getTrue(ITy);
2682 
2683     default: break;
2684     }
2685   } else if (match(RHS, m_One())) {
2686     switch (Pred) {
2687     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2688     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2689     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2690       return LHS;
2691 
2692     case CmpInst::ICMP_UGT: // X >u   1 -> false
2693     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2694       return getFalse(ITy);
2695 
2696     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2697     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2698       return getTrue(ITy);
2699 
2700     default: break;
2701     }
2702   }
2703 
2704   switch (Pred) {
2705   default:
2706     break;
2707   case ICmpInst::ICMP_UGE:
2708     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2709       return getTrue(ITy);
2710     break;
2711   case ICmpInst::ICMP_SGE:
2712     /// For signed comparison, the values for an i1 are 0 and -1
2713     /// respectively. This maps into a truth table of:
2714     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2715     ///  0  |  0  |  1 (0 >= 0)   |  1
2716     ///  0  |  1  |  1 (0 >= -1)  |  1
2717     ///  1  |  0  |  0 (-1 >= 0)  |  0
2718     ///  1  |  1  |  1 (-1 >= -1) |  1
2719     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2720       return getTrue(ITy);
2721     break;
2722   case ICmpInst::ICMP_ULE:
2723     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2724       return getTrue(ITy);
2725     break;
2726   }
2727 
2728   return nullptr;
2729 }
2730 
2731 /// Try hard to fold icmp with zero RHS because this is a common case.
2732 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2733                                    Value *RHS, const SimplifyQuery &Q) {
2734   if (!match(RHS, m_Zero()))
2735     return nullptr;
2736 
2737   Type *ITy = GetCompareTy(LHS); // The return type.
2738   switch (Pred) {
2739   default:
2740     llvm_unreachable("Unknown ICmp predicate!");
2741   case ICmpInst::ICMP_ULT:
2742     return getFalse(ITy);
2743   case ICmpInst::ICMP_UGE:
2744     return getTrue(ITy);
2745   case ICmpInst::ICMP_EQ:
2746   case ICmpInst::ICMP_ULE:
2747     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2748       return getFalse(ITy);
2749     break;
2750   case ICmpInst::ICMP_NE:
2751   case ICmpInst::ICMP_UGT:
2752     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2753       return getTrue(ITy);
2754     break;
2755   case ICmpInst::ICMP_SLT: {
2756     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2757     if (LHSKnown.isNegative())
2758       return getTrue(ITy);
2759     if (LHSKnown.isNonNegative())
2760       return getFalse(ITy);
2761     break;
2762   }
2763   case ICmpInst::ICMP_SLE: {
2764     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2765     if (LHSKnown.isNegative())
2766       return getTrue(ITy);
2767     if (LHSKnown.isNonNegative() &&
2768         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2769       return getFalse(ITy);
2770     break;
2771   }
2772   case ICmpInst::ICMP_SGE: {
2773     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2774     if (LHSKnown.isNegative())
2775       return getFalse(ITy);
2776     if (LHSKnown.isNonNegative())
2777       return getTrue(ITy);
2778     break;
2779   }
2780   case ICmpInst::ICMP_SGT: {
2781     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2782     if (LHSKnown.isNegative())
2783       return getFalse(ITy);
2784     if (LHSKnown.isNonNegative() &&
2785         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2786       return getTrue(ITy);
2787     break;
2788   }
2789   }
2790 
2791   return nullptr;
2792 }
2793 
2794 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2795                                        Value *RHS, const InstrInfoQuery &IIQ) {
2796   Type *ITy = GetCompareTy(RHS); // The return type.
2797 
2798   Value *X;
2799   // Sign-bit checks can be optimized to true/false after unsigned
2800   // floating-point casts:
2801   // icmp slt (bitcast (uitofp X)),  0 --> false
2802   // icmp sgt (bitcast (uitofp X)), -1 --> true
2803   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2804     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2805       return ConstantInt::getFalse(ITy);
2806     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2807       return ConstantInt::getTrue(ITy);
2808   }
2809 
2810   const APInt *C;
2811   if (!match(RHS, m_APIntAllowUndef(C)))
2812     return nullptr;
2813 
2814   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2815   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2816   if (RHS_CR.isEmptySet())
2817     return ConstantInt::getFalse(ITy);
2818   if (RHS_CR.isFullSet())
2819     return ConstantInt::getTrue(ITy);
2820 
2821   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2822   if (!LHS_CR.isFullSet()) {
2823     if (RHS_CR.contains(LHS_CR))
2824       return ConstantInt::getTrue(ITy);
2825     if (RHS_CR.inverse().contains(LHS_CR))
2826       return ConstantInt::getFalse(ITy);
2827   }
2828 
2829   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2830   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2831   const APInt *MulC;
2832   if (ICmpInst::isEquality(Pred) &&
2833       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2834         *MulC != 0 && C->urem(*MulC) != 0) ||
2835        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2836         *MulC != 0 && C->srem(*MulC) != 0)))
2837     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2838 
2839   return nullptr;
2840 }
2841 
2842 static Value *simplifyICmpWithBinOpOnLHS(
2843     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2844     const SimplifyQuery &Q, unsigned MaxRecurse) {
2845   Type *ITy = GetCompareTy(RHS); // The return type.
2846 
2847   Value *Y = nullptr;
2848   // icmp pred (or X, Y), X
2849   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2850     if (Pred == ICmpInst::ICMP_ULT)
2851       return getFalse(ITy);
2852     if (Pred == ICmpInst::ICMP_UGE)
2853       return getTrue(ITy);
2854 
2855     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2856       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2857       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2858       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2859         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2860       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2861         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2862     }
2863   }
2864 
2865   // icmp pred (and X, Y), X
2866   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2867     if (Pred == ICmpInst::ICMP_UGT)
2868       return getFalse(ITy);
2869     if (Pred == ICmpInst::ICMP_ULE)
2870       return getTrue(ITy);
2871   }
2872 
2873   // icmp pred (urem X, Y), Y
2874   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2875     switch (Pred) {
2876     default:
2877       break;
2878     case ICmpInst::ICMP_SGT:
2879     case ICmpInst::ICMP_SGE: {
2880       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2881       if (!Known.isNonNegative())
2882         break;
2883       LLVM_FALLTHROUGH;
2884     }
2885     case ICmpInst::ICMP_EQ:
2886     case ICmpInst::ICMP_UGT:
2887     case ICmpInst::ICMP_UGE:
2888       return getFalse(ITy);
2889     case ICmpInst::ICMP_SLT:
2890     case ICmpInst::ICMP_SLE: {
2891       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2892       if (!Known.isNonNegative())
2893         break;
2894       LLVM_FALLTHROUGH;
2895     }
2896     case ICmpInst::ICMP_NE:
2897     case ICmpInst::ICMP_ULT:
2898     case ICmpInst::ICMP_ULE:
2899       return getTrue(ITy);
2900     }
2901   }
2902 
2903   // icmp pred (urem X, Y), X
2904   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2905     if (Pred == ICmpInst::ICMP_ULE)
2906       return getTrue(ITy);
2907     if (Pred == ICmpInst::ICMP_UGT)
2908       return getFalse(ITy);
2909   }
2910 
2911   // x >> y <=u x
2912   // x udiv y <=u x.
2913   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2914       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2915     // icmp pred (X op Y), X
2916     if (Pred == ICmpInst::ICMP_UGT)
2917       return getFalse(ITy);
2918     if (Pred == ICmpInst::ICMP_ULE)
2919       return getTrue(ITy);
2920   }
2921 
2922   // (x*C1)/C2 <= x for C1 <= C2.
2923   // This holds even if the multiplication overflows: Assume that x != 0 and
2924   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
2925   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
2926   //
2927   // Additionally, either the multiplication and division might be represented
2928   // as shifts:
2929   // (x*C1)>>C2 <= x for C1 < 2**C2.
2930   // (x<<C1)/C2 <= x for 2**C1 < C2.
2931   const APInt *C1, *C2;
2932   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2933        C1->ule(*C2)) ||
2934       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2935        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
2936       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
2937        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
2938     if (Pred == ICmpInst::ICMP_UGT)
2939       return getFalse(ITy);
2940     if (Pred == ICmpInst::ICMP_ULE)
2941       return getTrue(ITy);
2942   }
2943 
2944   return nullptr;
2945 }
2946 
2947 
2948 // If only one of the icmp's operands has NSW flags, try to prove that:
2949 //
2950 //   icmp slt (x + C1), (x +nsw C2)
2951 //
2952 // is equivalent to:
2953 //
2954 //   icmp slt C1, C2
2955 //
2956 // which is true if x + C2 has the NSW flags set and:
2957 // *) C1 < C2 && C1 >= 0, or
2958 // *) C2 < C1 && C1 <= 0.
2959 //
2960 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2961                                     Value *RHS) {
2962   // TODO: only support icmp slt for now.
2963   if (Pred != CmpInst::ICMP_SLT)
2964     return false;
2965 
2966   // Canonicalize nsw add as RHS.
2967   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2968     std::swap(LHS, RHS);
2969   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2970     return false;
2971 
2972   Value *X;
2973   const APInt *C1, *C2;
2974   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
2975       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
2976     return false;
2977 
2978   return (C1->slt(*C2) && C1->isNonNegative()) ||
2979          (C2->slt(*C1) && C1->isNonPositive());
2980 }
2981 
2982 
2983 /// TODO: A large part of this logic is duplicated in InstCombine's
2984 /// foldICmpBinOp(). We should be able to share that and avoid the code
2985 /// duplication.
2986 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2987                                     Value *RHS, const SimplifyQuery &Q,
2988                                     unsigned MaxRecurse) {
2989   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2990   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2991   if (MaxRecurse && (LBO || RBO)) {
2992     // Analyze the case when either LHS or RHS is an add instruction.
2993     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2994     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2995     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2996     if (LBO && LBO->getOpcode() == Instruction::Add) {
2997       A = LBO->getOperand(0);
2998       B = LBO->getOperand(1);
2999       NoLHSWrapProblem =
3000           ICmpInst::isEquality(Pred) ||
3001           (CmpInst::isUnsigned(Pred) &&
3002            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3003           (CmpInst::isSigned(Pred) &&
3004            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3005     }
3006     if (RBO && RBO->getOpcode() == Instruction::Add) {
3007       C = RBO->getOperand(0);
3008       D = RBO->getOperand(1);
3009       NoRHSWrapProblem =
3010           ICmpInst::isEquality(Pred) ||
3011           (CmpInst::isUnsigned(Pred) &&
3012            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3013           (CmpInst::isSigned(Pred) &&
3014            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3015     }
3016 
3017     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3018     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3019       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
3020                                       Constant::getNullValue(RHS->getType()), Q,
3021                                       MaxRecurse - 1))
3022         return V;
3023 
3024     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3025     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3026       if (Value *V =
3027               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3028                                C == LHS ? D : C, Q, MaxRecurse - 1))
3029         return V;
3030 
3031     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3032     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3033                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
3034     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3035       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3036       Value *Y, *Z;
3037       if (A == C) {
3038         // C + B == C + D  ->  B == D
3039         Y = B;
3040         Z = D;
3041       } else if (A == D) {
3042         // D + B == C + D  ->  B == C
3043         Y = B;
3044         Z = C;
3045       } else if (B == C) {
3046         // A + C == C + D  ->  A == D
3047         Y = A;
3048         Z = D;
3049       } else {
3050         assert(B == D);
3051         // A + D == C + D  ->  A == C
3052         Y = A;
3053         Z = C;
3054       }
3055       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3056         return V;
3057     }
3058   }
3059 
3060   if (LBO)
3061     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3062       return V;
3063 
3064   if (RBO)
3065     if (Value *V = simplifyICmpWithBinOpOnLHS(
3066             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3067       return V;
3068 
3069   // 0 - (zext X) pred C
3070   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3071     const APInt *C;
3072     if (match(RHS, m_APInt(C))) {
3073       if (C->isStrictlyPositive()) {
3074         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3075           return ConstantInt::getTrue(GetCompareTy(RHS));
3076         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3077           return ConstantInt::getFalse(GetCompareTy(RHS));
3078       }
3079       if (C->isNonNegative()) {
3080         if (Pred == ICmpInst::ICMP_SLE)
3081           return ConstantInt::getTrue(GetCompareTy(RHS));
3082         if (Pred == ICmpInst::ICMP_SGT)
3083           return ConstantInt::getFalse(GetCompareTy(RHS));
3084       }
3085     }
3086   }
3087 
3088   //   If C2 is a power-of-2 and C is not:
3089   //   (C2 << X) == C --> false
3090   //   (C2 << X) != C --> true
3091   const APInt *C;
3092   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3093       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3094     // C2 << X can equal zero in some circumstances.
3095     // This simplification might be unsafe if C is zero.
3096     //
3097     // We know it is safe if:
3098     // - The shift is nsw. We can't shift out the one bit.
3099     // - The shift is nuw. We can't shift out the one bit.
3100     // - C2 is one.
3101     // - C isn't zero.
3102     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3103         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3104         match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) {
3105       if (Pred == ICmpInst::ICMP_EQ)
3106         return ConstantInt::getFalse(GetCompareTy(RHS));
3107       if (Pred == ICmpInst::ICMP_NE)
3108         return ConstantInt::getTrue(GetCompareTy(RHS));
3109     }
3110   }
3111 
3112   // TODO: This is overly constrained. LHS can be any power-of-2.
3113   // (1 << X)  >u 0x8000 --> false
3114   // (1 << X) <=u 0x8000 --> true
3115   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3116     if (Pred == ICmpInst::ICMP_UGT)
3117       return ConstantInt::getFalse(GetCompareTy(RHS));
3118     if (Pred == ICmpInst::ICMP_ULE)
3119       return ConstantInt::getTrue(GetCompareTy(RHS));
3120   }
3121 
3122   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3123       LBO->getOperand(1) == RBO->getOperand(1)) {
3124     switch (LBO->getOpcode()) {
3125     default:
3126       break;
3127     case Instruction::UDiv:
3128     case Instruction::LShr:
3129       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3130           !Q.IIQ.isExact(RBO))
3131         break;
3132       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3133                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3134           return V;
3135       break;
3136     case Instruction::SDiv:
3137       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3138           !Q.IIQ.isExact(RBO))
3139         break;
3140       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3141                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3142         return V;
3143       break;
3144     case Instruction::AShr:
3145       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3146         break;
3147       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3148                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3149         return V;
3150       break;
3151     case Instruction::Shl: {
3152       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3153       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3154       if (!NUW && !NSW)
3155         break;
3156       if (!NSW && ICmpInst::isSigned(Pred))
3157         break;
3158       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3159                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3160         return V;
3161       break;
3162     }
3163     }
3164   }
3165   return nullptr;
3166 }
3167 
3168 /// Simplify integer comparisons where at least one operand of the compare
3169 /// matches an integer min/max idiom.
3170 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3171                                      Value *RHS, const SimplifyQuery &Q,
3172                                      unsigned MaxRecurse) {
3173   Type *ITy = GetCompareTy(LHS); // The return type.
3174   Value *A, *B;
3175   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3176   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3177 
3178   // Signed variants on "max(a,b)>=a -> true".
3179   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3180     if (A != RHS)
3181       std::swap(A, B);       // smax(A, B) pred A.
3182     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3183     // We analyze this as smax(A, B) pred A.
3184     P = Pred;
3185   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3186              (A == LHS || B == LHS)) {
3187     if (A != LHS)
3188       std::swap(A, B);       // A pred smax(A, B).
3189     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3190     // We analyze this as smax(A, B) swapped-pred A.
3191     P = CmpInst::getSwappedPredicate(Pred);
3192   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3193              (A == RHS || B == RHS)) {
3194     if (A != RHS)
3195       std::swap(A, B);       // smin(A, B) pred A.
3196     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3197     // We analyze this as smax(-A, -B) swapped-pred -A.
3198     // Note that we do not need to actually form -A or -B thanks to EqP.
3199     P = CmpInst::getSwappedPredicate(Pred);
3200   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3201              (A == LHS || B == LHS)) {
3202     if (A != LHS)
3203       std::swap(A, B);       // A pred smin(A, B).
3204     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3205     // We analyze this as smax(-A, -B) pred -A.
3206     // Note that we do not need to actually form -A or -B thanks to EqP.
3207     P = Pred;
3208   }
3209   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3210     // Cases correspond to "max(A, B) p A".
3211     switch (P) {
3212     default:
3213       break;
3214     case CmpInst::ICMP_EQ:
3215     case CmpInst::ICMP_SLE:
3216       // Equivalent to "A EqP B".  This may be the same as the condition tested
3217       // in the max/min; if so, we can just return that.
3218       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3219         return V;
3220       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3221         return V;
3222       // Otherwise, see if "A EqP B" simplifies.
3223       if (MaxRecurse)
3224         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3225           return V;
3226       break;
3227     case CmpInst::ICMP_NE:
3228     case CmpInst::ICMP_SGT: {
3229       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3230       // Equivalent to "A InvEqP B".  This may be the same as the condition
3231       // tested in the max/min; if so, we can just return that.
3232       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3233         return V;
3234       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3235         return V;
3236       // Otherwise, see if "A InvEqP B" simplifies.
3237       if (MaxRecurse)
3238         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3239           return V;
3240       break;
3241     }
3242     case CmpInst::ICMP_SGE:
3243       // Always true.
3244       return getTrue(ITy);
3245     case CmpInst::ICMP_SLT:
3246       // Always false.
3247       return getFalse(ITy);
3248     }
3249   }
3250 
3251   // Unsigned variants on "max(a,b)>=a -> true".
3252   P = CmpInst::BAD_ICMP_PREDICATE;
3253   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3254     if (A != RHS)
3255       std::swap(A, B);       // umax(A, B) pred A.
3256     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3257     // We analyze this as umax(A, B) pred A.
3258     P = Pred;
3259   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3260              (A == LHS || B == LHS)) {
3261     if (A != LHS)
3262       std::swap(A, B);       // A pred umax(A, B).
3263     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3264     // We analyze this as umax(A, B) swapped-pred A.
3265     P = CmpInst::getSwappedPredicate(Pred);
3266   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3267              (A == RHS || B == RHS)) {
3268     if (A != RHS)
3269       std::swap(A, B);       // umin(A, B) pred A.
3270     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3271     // We analyze this as umax(-A, -B) swapped-pred -A.
3272     // Note that we do not need to actually form -A or -B thanks to EqP.
3273     P = CmpInst::getSwappedPredicate(Pred);
3274   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3275              (A == LHS || B == LHS)) {
3276     if (A != LHS)
3277       std::swap(A, B);       // A pred umin(A, B).
3278     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3279     // We analyze this as umax(-A, -B) pred -A.
3280     // Note that we do not need to actually form -A or -B thanks to EqP.
3281     P = Pred;
3282   }
3283   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3284     // Cases correspond to "max(A, B) p A".
3285     switch (P) {
3286     default:
3287       break;
3288     case CmpInst::ICMP_EQ:
3289     case CmpInst::ICMP_ULE:
3290       // Equivalent to "A EqP B".  This may be the same as the condition tested
3291       // in the max/min; if so, we can just return that.
3292       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3293         return V;
3294       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3295         return V;
3296       // Otherwise, see if "A EqP B" simplifies.
3297       if (MaxRecurse)
3298         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3299           return V;
3300       break;
3301     case CmpInst::ICMP_NE:
3302     case CmpInst::ICMP_UGT: {
3303       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3304       // Equivalent to "A InvEqP B".  This may be the same as the condition
3305       // tested in the max/min; if so, we can just return that.
3306       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3307         return V;
3308       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3309         return V;
3310       // Otherwise, see if "A InvEqP B" simplifies.
3311       if (MaxRecurse)
3312         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3313           return V;
3314       break;
3315     }
3316     case CmpInst::ICMP_UGE:
3317       return getTrue(ITy);
3318     case CmpInst::ICMP_ULT:
3319       return getFalse(ITy);
3320     }
3321   }
3322 
3323   // Comparing 1 each of min/max with a common operand?
3324   // Canonicalize min operand to RHS.
3325   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3326       match(LHS, m_SMin(m_Value(), m_Value()))) {
3327     std::swap(LHS, RHS);
3328     Pred = ICmpInst::getSwappedPredicate(Pred);
3329   }
3330 
3331   Value *C, *D;
3332   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3333       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3334       (A == C || A == D || B == C || B == D)) {
3335     // smax(A, B) >=s smin(A, D) --> true
3336     if (Pred == CmpInst::ICMP_SGE)
3337       return getTrue(ITy);
3338     // smax(A, B) <s smin(A, D) --> false
3339     if (Pred == CmpInst::ICMP_SLT)
3340       return getFalse(ITy);
3341   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3342              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3343              (A == C || A == D || B == C || B == D)) {
3344     // umax(A, B) >=u umin(A, D) --> true
3345     if (Pred == CmpInst::ICMP_UGE)
3346       return getTrue(ITy);
3347     // umax(A, B) <u umin(A, D) --> false
3348     if (Pred == CmpInst::ICMP_ULT)
3349       return getFalse(ITy);
3350   }
3351 
3352   return nullptr;
3353 }
3354 
3355 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3356                                                Value *LHS, Value *RHS,
3357                                                const SimplifyQuery &Q) {
3358   // Gracefully handle instructions that have not been inserted yet.
3359   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3360     return nullptr;
3361 
3362   for (Value *AssumeBaseOp : {LHS, RHS}) {
3363     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3364       if (!AssumeVH)
3365         continue;
3366 
3367       CallInst *Assume = cast<CallInst>(AssumeVH);
3368       if (Optional<bool> Imp =
3369               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3370                                  Q.DL))
3371         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3372           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3373     }
3374   }
3375 
3376   return nullptr;
3377 }
3378 
3379 /// Given operands for an ICmpInst, see if we can fold the result.
3380 /// If not, this returns null.
3381 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3382                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3383   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3384   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3385 
3386   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3387     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3388       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3389 
3390     // If we have a constant, make sure it is on the RHS.
3391     std::swap(LHS, RHS);
3392     Pred = CmpInst::getSwappedPredicate(Pred);
3393   }
3394   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3395 
3396   Type *ITy = GetCompareTy(LHS); // The return type.
3397 
3398   // For EQ and NE, we can always pick a value for the undef to make the
3399   // predicate pass or fail, so we can return undef.
3400   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3401   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3402     return UndefValue::get(ITy);
3403 
3404   // icmp X, X -> true/false
3405   // icmp X, undef -> true/false because undef could be X.
3406   if (LHS == RHS || Q.isUndefValue(RHS))
3407     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3408 
3409   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3410     return V;
3411 
3412   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3413     return V;
3414 
3415   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3416     return V;
3417 
3418   // If both operands have range metadata, use the metadata
3419   // to simplify the comparison.
3420   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3421     auto RHS_Instr = cast<Instruction>(RHS);
3422     auto LHS_Instr = cast<Instruction>(LHS);
3423 
3424     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3425         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3426       auto RHS_CR = getConstantRangeFromMetadata(
3427           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3428       auto LHS_CR = getConstantRangeFromMetadata(
3429           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3430 
3431       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3432       if (Satisfied_CR.contains(LHS_CR))
3433         return ConstantInt::getTrue(RHS->getContext());
3434 
3435       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3436                 CmpInst::getInversePredicate(Pred), RHS_CR);
3437       if (InversedSatisfied_CR.contains(LHS_CR))
3438         return ConstantInt::getFalse(RHS->getContext());
3439     }
3440   }
3441 
3442   // Compare of cast, for example (zext X) != 0 -> X != 0
3443   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3444     Instruction *LI = cast<CastInst>(LHS);
3445     Value *SrcOp = LI->getOperand(0);
3446     Type *SrcTy = SrcOp->getType();
3447     Type *DstTy = LI->getType();
3448 
3449     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3450     // if the integer type is the same size as the pointer type.
3451     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3452         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3453       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3454         // Transfer the cast to the constant.
3455         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3456                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3457                                         Q, MaxRecurse-1))
3458           return V;
3459       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3460         if (RI->getOperand(0)->getType() == SrcTy)
3461           // Compare without the cast.
3462           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3463                                           Q, MaxRecurse-1))
3464             return V;
3465       }
3466     }
3467 
3468     if (isa<ZExtInst>(LHS)) {
3469       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3470       // same type.
3471       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3472         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3473           // Compare X and Y.  Note that signed predicates become unsigned.
3474           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3475                                           SrcOp, RI->getOperand(0), Q,
3476                                           MaxRecurse-1))
3477             return V;
3478       }
3479       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3480       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3481         if (SrcOp == RI->getOperand(0)) {
3482           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3483             return ConstantInt::getTrue(ITy);
3484           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3485             return ConstantInt::getFalse(ITy);
3486         }
3487       }
3488       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3489       // too.  If not, then try to deduce the result of the comparison.
3490       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3491         // Compute the constant that would happen if we truncated to SrcTy then
3492         // reextended to DstTy.
3493         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3494         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3495 
3496         // If the re-extended constant didn't change then this is effectively
3497         // also a case of comparing two zero-extended values.
3498         if (RExt == CI && MaxRecurse)
3499           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3500                                         SrcOp, Trunc, Q, MaxRecurse-1))
3501             return V;
3502 
3503         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3504         // there.  Use this to work out the result of the comparison.
3505         if (RExt != CI) {
3506           switch (Pred) {
3507           default: llvm_unreachable("Unknown ICmp predicate!");
3508           // LHS <u RHS.
3509           case ICmpInst::ICMP_EQ:
3510           case ICmpInst::ICMP_UGT:
3511           case ICmpInst::ICMP_UGE:
3512             return ConstantInt::getFalse(CI->getContext());
3513 
3514           case ICmpInst::ICMP_NE:
3515           case ICmpInst::ICMP_ULT:
3516           case ICmpInst::ICMP_ULE:
3517             return ConstantInt::getTrue(CI->getContext());
3518 
3519           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3520           // is non-negative then LHS <s RHS.
3521           case ICmpInst::ICMP_SGT:
3522           case ICmpInst::ICMP_SGE:
3523             return CI->getValue().isNegative() ?
3524               ConstantInt::getTrue(CI->getContext()) :
3525               ConstantInt::getFalse(CI->getContext());
3526 
3527           case ICmpInst::ICMP_SLT:
3528           case ICmpInst::ICMP_SLE:
3529             return CI->getValue().isNegative() ?
3530               ConstantInt::getFalse(CI->getContext()) :
3531               ConstantInt::getTrue(CI->getContext());
3532           }
3533         }
3534       }
3535     }
3536 
3537     if (isa<SExtInst>(LHS)) {
3538       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3539       // same type.
3540       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3541         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3542           // Compare X and Y.  Note that the predicate does not change.
3543           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3544                                           Q, MaxRecurse-1))
3545             return V;
3546       }
3547       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3548       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3549         if (SrcOp == RI->getOperand(0)) {
3550           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3551             return ConstantInt::getTrue(ITy);
3552           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3553             return ConstantInt::getFalse(ITy);
3554         }
3555       }
3556       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3557       // too.  If not, then try to deduce the result of the comparison.
3558       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3559         // Compute the constant that would happen if we truncated to SrcTy then
3560         // reextended to DstTy.
3561         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3562         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3563 
3564         // If the re-extended constant didn't change then this is effectively
3565         // also a case of comparing two sign-extended values.
3566         if (RExt == CI && MaxRecurse)
3567           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3568             return V;
3569 
3570         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3571         // bits there.  Use this to work out the result of the comparison.
3572         if (RExt != CI) {
3573           switch (Pred) {
3574           default: llvm_unreachable("Unknown ICmp predicate!");
3575           case ICmpInst::ICMP_EQ:
3576             return ConstantInt::getFalse(CI->getContext());
3577           case ICmpInst::ICMP_NE:
3578             return ConstantInt::getTrue(CI->getContext());
3579 
3580           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3581           // LHS >s RHS.
3582           case ICmpInst::ICMP_SGT:
3583           case ICmpInst::ICMP_SGE:
3584             return CI->getValue().isNegative() ?
3585               ConstantInt::getTrue(CI->getContext()) :
3586               ConstantInt::getFalse(CI->getContext());
3587           case ICmpInst::ICMP_SLT:
3588           case ICmpInst::ICMP_SLE:
3589             return CI->getValue().isNegative() ?
3590               ConstantInt::getFalse(CI->getContext()) :
3591               ConstantInt::getTrue(CI->getContext());
3592 
3593           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3594           // LHS >u RHS.
3595           case ICmpInst::ICMP_UGT:
3596           case ICmpInst::ICMP_UGE:
3597             // Comparison is true iff the LHS <s 0.
3598             if (MaxRecurse)
3599               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3600                                               Constant::getNullValue(SrcTy),
3601                                               Q, MaxRecurse-1))
3602                 return V;
3603             break;
3604           case ICmpInst::ICMP_ULT:
3605           case ICmpInst::ICMP_ULE:
3606             // Comparison is true iff the LHS >=s 0.
3607             if (MaxRecurse)
3608               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3609                                               Constant::getNullValue(SrcTy),
3610                                               Q, MaxRecurse-1))
3611                 return V;
3612             break;
3613           }
3614         }
3615       }
3616     }
3617   }
3618 
3619   // icmp eq|ne X, Y -> false|true if X != Y
3620   if (ICmpInst::isEquality(Pred) &&
3621       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3622     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3623   }
3624 
3625   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3626     return V;
3627 
3628   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3629     return V;
3630 
3631   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3632     return V;
3633 
3634   // Simplify comparisons of related pointers using a powerful, recursive
3635   // GEP-walk when we have target data available..
3636   if (LHS->getType()->isPointerTy())
3637     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3638                                      Q.IIQ, LHS, RHS))
3639       return C;
3640   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3641     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3642       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3643               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3644           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3645               Q.DL.getTypeSizeInBits(CRHS->getType()))
3646         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3647                                          Q.IIQ, CLHS->getPointerOperand(),
3648                                          CRHS->getPointerOperand()))
3649           return C;
3650 
3651   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3652     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3653       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3654           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3655           (ICmpInst::isEquality(Pred) ||
3656            (GLHS->isInBounds() && GRHS->isInBounds() &&
3657             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3658         // The bases are equal and the indices are constant.  Build a constant
3659         // expression GEP with the same indices and a null base pointer to see
3660         // what constant folding can make out of it.
3661         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3662         SmallVector<Value *, 4> IndicesLHS(GLHS->indices());
3663         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3664             GLHS->getSourceElementType(), Null, IndicesLHS);
3665 
3666         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3667         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3668             GLHS->getSourceElementType(), Null, IndicesRHS);
3669         Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3670         return ConstantFoldConstant(NewICmp, Q.DL);
3671       }
3672     }
3673   }
3674 
3675   // If the comparison is with the result of a select instruction, check whether
3676   // comparing with either branch of the select always yields the same value.
3677   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3678     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3679       return V;
3680 
3681   // If the comparison is with the result of a phi instruction, check whether
3682   // doing the compare with each incoming phi value yields a common result.
3683   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3684     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3685       return V;
3686 
3687   return nullptr;
3688 }
3689 
3690 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3691                               const SimplifyQuery &Q) {
3692   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3693 }
3694 
3695 /// Given operands for an FCmpInst, see if we can fold the result.
3696 /// If not, this returns null.
3697 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3698                                FastMathFlags FMF, const SimplifyQuery &Q,
3699                                unsigned MaxRecurse) {
3700   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3701   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3702 
3703   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3704     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3705       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3706 
3707     // If we have a constant, make sure it is on the RHS.
3708     std::swap(LHS, RHS);
3709     Pred = CmpInst::getSwappedPredicate(Pred);
3710   }
3711 
3712   // Fold trivial predicates.
3713   Type *RetTy = GetCompareTy(LHS);
3714   if (Pred == FCmpInst::FCMP_FALSE)
3715     return getFalse(RetTy);
3716   if (Pred == FCmpInst::FCMP_TRUE)
3717     return getTrue(RetTy);
3718 
3719   // Fold (un)ordered comparison if we can determine there are no NaNs.
3720   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3721     if (FMF.noNaNs() ||
3722         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3723       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3724 
3725   // NaN is unordered; NaN is not ordered.
3726   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3727          "Comparison must be either ordered or unordered");
3728   if (match(RHS, m_NaN()))
3729     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3730 
3731   // fcmp pred x, undef  and  fcmp pred undef, x
3732   // fold to true if unordered, false if ordered
3733   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3734     // Choosing NaN for the undef will always make unordered comparison succeed
3735     // and ordered comparison fail.
3736     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3737   }
3738 
3739   // fcmp x,x -> true/false.  Not all compares are foldable.
3740   if (LHS == RHS) {
3741     if (CmpInst::isTrueWhenEqual(Pred))
3742       return getTrue(RetTy);
3743     if (CmpInst::isFalseWhenEqual(Pred))
3744       return getFalse(RetTy);
3745   }
3746 
3747   // Handle fcmp with constant RHS.
3748   // TODO: Use match with a specific FP value, so these work with vectors with
3749   // undef lanes.
3750   const APFloat *C;
3751   if (match(RHS, m_APFloat(C))) {
3752     // Check whether the constant is an infinity.
3753     if (C->isInfinity()) {
3754       if (C->isNegative()) {
3755         switch (Pred) {
3756         case FCmpInst::FCMP_OLT:
3757           // No value is ordered and less than negative infinity.
3758           return getFalse(RetTy);
3759         case FCmpInst::FCMP_UGE:
3760           // All values are unordered with or at least negative infinity.
3761           return getTrue(RetTy);
3762         default:
3763           break;
3764         }
3765       } else {
3766         switch (Pred) {
3767         case FCmpInst::FCMP_OGT:
3768           // No value is ordered and greater than infinity.
3769           return getFalse(RetTy);
3770         case FCmpInst::FCMP_ULE:
3771           // All values are unordered with and at most infinity.
3772           return getTrue(RetTy);
3773         default:
3774           break;
3775         }
3776       }
3777 
3778       // LHS == Inf
3779       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3780         return getFalse(RetTy);
3781       // LHS != Inf
3782       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3783         return getTrue(RetTy);
3784       // LHS == Inf || LHS == NaN
3785       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3786           isKnownNeverNaN(LHS, Q.TLI))
3787         return getFalse(RetTy);
3788       // LHS != Inf && LHS != NaN
3789       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3790           isKnownNeverNaN(LHS, Q.TLI))
3791         return getTrue(RetTy);
3792     }
3793     if (C->isNegative() && !C->isNegZero()) {
3794       assert(!C->isNaN() && "Unexpected NaN constant!");
3795       // TODO: We can catch more cases by using a range check rather than
3796       //       relying on CannotBeOrderedLessThanZero.
3797       switch (Pred) {
3798       case FCmpInst::FCMP_UGE:
3799       case FCmpInst::FCMP_UGT:
3800       case FCmpInst::FCMP_UNE:
3801         // (X >= 0) implies (X > C) when (C < 0)
3802         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3803           return getTrue(RetTy);
3804         break;
3805       case FCmpInst::FCMP_OEQ:
3806       case FCmpInst::FCMP_OLE:
3807       case FCmpInst::FCMP_OLT:
3808         // (X >= 0) implies !(X < C) when (C < 0)
3809         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3810           return getFalse(RetTy);
3811         break;
3812       default:
3813         break;
3814       }
3815     }
3816 
3817     // Check comparison of [minnum/maxnum with constant] with other constant.
3818     const APFloat *C2;
3819     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3820          *C2 < *C) ||
3821         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3822          *C2 > *C)) {
3823       bool IsMaxNum =
3824           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3825       // The ordered relationship and minnum/maxnum guarantee that we do not
3826       // have NaN constants, so ordered/unordered preds are handled the same.
3827       switch (Pred) {
3828       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3829         // minnum(X, LesserC)  == C --> false
3830         // maxnum(X, GreaterC) == C --> false
3831         return getFalse(RetTy);
3832       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3833         // minnum(X, LesserC)  != C --> true
3834         // maxnum(X, GreaterC) != C --> true
3835         return getTrue(RetTy);
3836       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3837       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3838         // minnum(X, LesserC)  >= C --> false
3839         // minnum(X, LesserC)  >  C --> false
3840         // maxnum(X, GreaterC) >= C --> true
3841         // maxnum(X, GreaterC) >  C --> true
3842         return ConstantInt::get(RetTy, IsMaxNum);
3843       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3844       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3845         // minnum(X, LesserC)  <= C --> true
3846         // minnum(X, LesserC)  <  C --> true
3847         // maxnum(X, GreaterC) <= C --> false
3848         // maxnum(X, GreaterC) <  C --> false
3849         return ConstantInt::get(RetTy, !IsMaxNum);
3850       default:
3851         // TRUE/FALSE/ORD/UNO should be handled before this.
3852         llvm_unreachable("Unexpected fcmp predicate");
3853       }
3854     }
3855   }
3856 
3857   if (match(RHS, m_AnyZeroFP())) {
3858     switch (Pred) {
3859     case FCmpInst::FCMP_OGE:
3860     case FCmpInst::FCMP_ULT:
3861       // Positive or zero X >= 0.0 --> true
3862       // Positive or zero X <  0.0 --> false
3863       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3864           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3865         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3866       break;
3867     case FCmpInst::FCMP_UGE:
3868     case FCmpInst::FCMP_OLT:
3869       // Positive or zero or nan X >= 0.0 --> true
3870       // Positive or zero or nan X <  0.0 --> false
3871       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3872         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3873       break;
3874     default:
3875       break;
3876     }
3877   }
3878 
3879   // If the comparison is with the result of a select instruction, check whether
3880   // comparing with either branch of the select always yields the same value.
3881   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3882     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3883       return V;
3884 
3885   // If the comparison is with the result of a phi instruction, check whether
3886   // doing the compare with each incoming phi value yields a common result.
3887   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3888     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3889       return V;
3890 
3891   return nullptr;
3892 }
3893 
3894 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3895                               FastMathFlags FMF, const SimplifyQuery &Q) {
3896   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3897 }
3898 
3899 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3900                                      const SimplifyQuery &Q,
3901                                      bool AllowRefinement,
3902                                      unsigned MaxRecurse) {
3903   // Trivial replacement.
3904   if (V == Op)
3905     return RepOp;
3906 
3907   // We cannot replace a constant, and shouldn't even try.
3908   if (isa<Constant>(Op))
3909     return nullptr;
3910 
3911   auto *I = dyn_cast<Instruction>(V);
3912   if (!I)
3913     return nullptr;
3914 
3915   // Consider:
3916   //   %cmp = icmp eq i32 %x, 2147483647
3917   //   %add = add nsw i32 %x, 1
3918   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3919   //
3920   // We can't replace %sel with %add unless we strip away the flags (which will
3921   // be done in InstCombine).
3922   // TODO: This is unsound, because it only catches some forms of refinement.
3923   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
3924     return nullptr;
3925 
3926   // The simplification queries below may return the original value. Consider:
3927   //   %div = udiv i32 %arg, %arg2
3928   //   %mul = mul nsw i32 %div, %arg2
3929   //   %cmp = icmp eq i32 %mul, %arg
3930   //   %sel = select i1 %cmp, i32 %div, i32 undef
3931   // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3932   // simplifies back to %arg. This can only happen because %mul does not
3933   // dominate %div. To ensure a consistent return value contract, we make sure
3934   // that this case returns nullptr as well.
3935   auto PreventSelfSimplify = [V](Value *Simplified) {
3936     return Simplified != V ? Simplified : nullptr;
3937   };
3938 
3939   // If this is a binary operator, try to simplify it with the replaced op.
3940   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3941     if (MaxRecurse) {
3942       if (B->getOperand(0) == Op)
3943         return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp,
3944                                                  B->getOperand(1), Q,
3945                                                  MaxRecurse - 1));
3946       if (B->getOperand(1) == Op)
3947         return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(),
3948                                                  B->getOperand(0), RepOp, Q,
3949                                                  MaxRecurse - 1));
3950     }
3951   }
3952 
3953   // Same for CmpInsts.
3954   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3955     if (MaxRecurse) {
3956       if (C->getOperand(0) == Op)
3957         return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp,
3958                                                    C->getOperand(1), Q,
3959                                                    MaxRecurse - 1));
3960       if (C->getOperand(1) == Op)
3961         return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(),
3962                                                    C->getOperand(0), RepOp, Q,
3963                                                    MaxRecurse - 1));
3964     }
3965   }
3966 
3967   // Same for GEPs.
3968   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3969     if (MaxRecurse) {
3970       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3971       transform(GEP->operands(), NewOps.begin(),
3972                 [&](Value *V) { return V == Op ? RepOp : V; });
3973       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3974                                                  NewOps, Q, MaxRecurse - 1));
3975     }
3976   }
3977 
3978   // TODO: We could hand off more cases to instsimplify here.
3979 
3980   // If all operands are constant after substituting Op for RepOp then we can
3981   // constant fold the instruction.
3982   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3983     // Build a list of all constant operands.
3984     SmallVector<Constant *, 8> ConstOps;
3985     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3986       if (I->getOperand(i) == Op)
3987         ConstOps.push_back(CRepOp);
3988       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3989         ConstOps.push_back(COp);
3990       else
3991         break;
3992     }
3993 
3994     // All operands were constants, fold it.
3995     if (ConstOps.size() == I->getNumOperands()) {
3996       if (CmpInst *C = dyn_cast<CmpInst>(I))
3997         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3998                                                ConstOps[1], Q.DL, Q.TLI);
3999 
4000       if (LoadInst *LI = dyn_cast<LoadInst>(I))
4001         if (!LI->isVolatile())
4002           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
4003 
4004       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4005     }
4006   }
4007 
4008   return nullptr;
4009 }
4010 
4011 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4012                                     const SimplifyQuery &Q,
4013                                     bool AllowRefinement) {
4014   return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
4015                                   RecursionLimit);
4016 }
4017 
4018 /// Try to simplify a select instruction when its condition operand is an
4019 /// integer comparison where one operand of the compare is a constant.
4020 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4021                                     const APInt *Y, bool TrueWhenUnset) {
4022   const APInt *C;
4023 
4024   // (X & Y) == 0 ? X & ~Y : X  --> X
4025   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4026   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4027       *Y == ~*C)
4028     return TrueWhenUnset ? FalseVal : TrueVal;
4029 
4030   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4031   // (X & Y) != 0 ? X : X & ~Y  --> X
4032   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4033       *Y == ~*C)
4034     return TrueWhenUnset ? FalseVal : TrueVal;
4035 
4036   if (Y->isPowerOf2()) {
4037     // (X & Y) == 0 ? X | Y : X  --> X | Y
4038     // (X & Y) != 0 ? X | Y : X  --> X
4039     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4040         *Y == *C)
4041       return TrueWhenUnset ? TrueVal : FalseVal;
4042 
4043     // (X & Y) == 0 ? X : X | Y  --> X
4044     // (X & Y) != 0 ? X : X | Y  --> X | Y
4045     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4046         *Y == *C)
4047       return TrueWhenUnset ? TrueVal : FalseVal;
4048   }
4049 
4050   return nullptr;
4051 }
4052 
4053 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4054 /// eq/ne.
4055 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4056                                            ICmpInst::Predicate Pred,
4057                                            Value *TrueVal, Value *FalseVal) {
4058   Value *X;
4059   APInt Mask;
4060   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4061     return nullptr;
4062 
4063   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4064                                Pred == ICmpInst::ICMP_EQ);
4065 }
4066 
4067 /// Try to simplify a select instruction when its condition operand is an
4068 /// integer comparison.
4069 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4070                                          Value *FalseVal, const SimplifyQuery &Q,
4071                                          unsigned MaxRecurse) {
4072   ICmpInst::Predicate Pred;
4073   Value *CmpLHS, *CmpRHS;
4074   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4075     return nullptr;
4076 
4077   // Canonicalize ne to eq predicate.
4078   if (Pred == ICmpInst::ICMP_NE) {
4079     Pred = ICmpInst::ICMP_EQ;
4080     std::swap(TrueVal, FalseVal);
4081   }
4082 
4083   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4084     Value *X;
4085     const APInt *Y;
4086     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4087       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4088                                            /*TrueWhenUnset=*/true))
4089         return V;
4090 
4091     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4092     Value *ShAmt;
4093     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4094                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4095     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4096     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4097     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4098       return X;
4099 
4100     // Test for a zero-shift-guard-op around rotates. These are used to
4101     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4102     // intrinsics do not have that problem.
4103     // We do not allow this transform for the general funnel shift case because
4104     // that would not preserve the poison safety of the original code.
4105     auto isRotate =
4106         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4107                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4108     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4109     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4110     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4111         Pred == ICmpInst::ICMP_EQ)
4112       return FalseVal;
4113 
4114     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4115     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4116     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4117         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4118       return FalseVal;
4119     if (match(TrueVal,
4120               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4121         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4122       return FalseVal;
4123   }
4124 
4125   // Check for other compares that behave like bit test.
4126   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4127                                               TrueVal, FalseVal))
4128     return V;
4129 
4130   // If we have a scalar equality comparison, then we know the value in one of
4131   // the arms of the select. See if substituting this value into the arm and
4132   // simplifying the result yields the same value as the other arm.
4133   // Note that the equivalence/replacement opportunity does not hold for vectors
4134   // because each element of a vector select is chosen independently.
4135   if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) {
4136     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4137                                /* AllowRefinement */ false, MaxRecurse) ==
4138             TrueVal ||
4139         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4140                                /* AllowRefinement */ false, MaxRecurse) ==
4141             TrueVal)
4142       return FalseVal;
4143     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4144                                /* AllowRefinement */ true, MaxRecurse) ==
4145             FalseVal ||
4146         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4147                                /* AllowRefinement */ true, MaxRecurse) ==
4148             FalseVal)
4149       return FalseVal;
4150   }
4151 
4152   return nullptr;
4153 }
4154 
4155 /// Try to simplify a select instruction when its condition operand is a
4156 /// floating-point comparison.
4157 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4158                                      const SimplifyQuery &Q) {
4159   FCmpInst::Predicate Pred;
4160   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4161       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4162     return nullptr;
4163 
4164   // This transform is safe if we do not have (do not care about) -0.0 or if
4165   // at least one operand is known to not be -0.0. Otherwise, the select can
4166   // change the sign of a zero operand.
4167   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4168                           Q.CxtI->hasNoSignedZeros();
4169   const APFloat *C;
4170   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4171                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4172     // (T == F) ? T : F --> F
4173     // (F == T) ? T : F --> F
4174     if (Pred == FCmpInst::FCMP_OEQ)
4175       return F;
4176 
4177     // (T != F) ? T : F --> T
4178     // (F != T) ? T : F --> T
4179     if (Pred == FCmpInst::FCMP_UNE)
4180       return T;
4181   }
4182 
4183   return nullptr;
4184 }
4185 
4186 /// Given operands for a SelectInst, see if we can fold the result.
4187 /// If not, this returns null.
4188 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4189                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4190   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4191     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4192       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4193         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4194 
4195     // select undef, X, Y -> X or Y
4196     if (Q.isUndefValue(CondC))
4197       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4198 
4199     // TODO: Vector constants with undef elements don't simplify.
4200 
4201     // select true, X, Y  -> X
4202     if (CondC->isAllOnesValue())
4203       return TrueVal;
4204     // select false, X, Y -> Y
4205     if (CondC->isNullValue())
4206       return FalseVal;
4207   }
4208 
4209   // select i1 Cond, i1 true, i1 false --> i1 Cond
4210   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4211          "Select must have bool or bool vector condition");
4212   assert(TrueVal->getType() == FalseVal->getType() &&
4213          "Select must have same types for true/false ops");
4214   if (Cond->getType() == TrueVal->getType() &&
4215       match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4216     return Cond;
4217 
4218   // select ?, X, X -> X
4219   if (TrueVal == FalseVal)
4220     return TrueVal;
4221 
4222   // If the true or false value is undef, we can fold to the other value as
4223   // long as the other value isn't poison.
4224   // select ?, undef, X -> X
4225   if (Q.isUndefValue(TrueVal) &&
4226       isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT))
4227     return FalseVal;
4228   // select ?, X, undef -> X
4229   if (Q.isUndefValue(FalseVal) &&
4230       isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT))
4231     return TrueVal;
4232 
4233   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4234   Constant *TrueC, *FalseC;
4235   if (isa<FixedVectorType>(TrueVal->getType()) &&
4236       match(TrueVal, m_Constant(TrueC)) &&
4237       match(FalseVal, m_Constant(FalseC))) {
4238     unsigned NumElts =
4239         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4240     SmallVector<Constant *, 16> NewC;
4241     for (unsigned i = 0; i != NumElts; ++i) {
4242       // Bail out on incomplete vector constants.
4243       Constant *TEltC = TrueC->getAggregateElement(i);
4244       Constant *FEltC = FalseC->getAggregateElement(i);
4245       if (!TEltC || !FEltC)
4246         break;
4247 
4248       // If the elements match (undef or not), that value is the result. If only
4249       // one element is undef, choose the defined element as the safe result.
4250       if (TEltC == FEltC)
4251         NewC.push_back(TEltC);
4252       else if (Q.isUndefValue(TEltC) &&
4253                isGuaranteedNotToBeUndefOrPoison(FEltC))
4254         NewC.push_back(FEltC);
4255       else if (Q.isUndefValue(FEltC) &&
4256                isGuaranteedNotToBeUndefOrPoison(TEltC))
4257         NewC.push_back(TEltC);
4258       else
4259         break;
4260     }
4261     if (NewC.size() == NumElts)
4262       return ConstantVector::get(NewC);
4263   }
4264 
4265   if (Value *V =
4266           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4267     return V;
4268 
4269   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4270     return V;
4271 
4272   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4273     return V;
4274 
4275   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4276   if (Imp)
4277     return *Imp ? TrueVal : FalseVal;
4278 
4279   return nullptr;
4280 }
4281 
4282 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4283                                 const SimplifyQuery &Q) {
4284   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4285 }
4286 
4287 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4288 /// If not, this returns null.
4289 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4290                               const SimplifyQuery &Q, unsigned) {
4291   // The type of the GEP pointer operand.
4292   unsigned AS =
4293       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4294 
4295   // getelementptr P -> P.
4296   if (Ops.size() == 1)
4297     return Ops[0];
4298 
4299   // Compute the (pointer) type returned by the GEP instruction.
4300   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4301   Type *GEPTy = PointerType::get(LastType, AS);
4302   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
4303     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4304   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
4305     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4306 
4307   // getelementptr poison, idx -> poison
4308   // getelementptr baseptr, poison -> poison
4309   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4310     return PoisonValue::get(GEPTy);
4311 
4312   if (Q.isUndefValue(Ops[0]))
4313     return UndefValue::get(GEPTy);
4314 
4315   bool IsScalableVec = isa<ScalableVectorType>(SrcTy);
4316 
4317   if (Ops.size() == 2) {
4318     // getelementptr P, 0 -> P.
4319     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4320       return Ops[0];
4321 
4322     Type *Ty = SrcTy;
4323     if (!IsScalableVec && Ty->isSized()) {
4324       Value *P;
4325       uint64_t C;
4326       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4327       // getelementptr P, N -> P if P points to a type of zero size.
4328       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4329         return Ops[0];
4330 
4331       // The following transforms are only safe if the ptrtoint cast
4332       // doesn't truncate the pointers.
4333       if (Ops[1]->getType()->getScalarSizeInBits() ==
4334           Q.DL.getPointerSizeInBits(AS)) {
4335         auto PtrToInt = [GEPTy](Value *P) -> Value * {
4336           Value *Temp;
4337           if (match(P, m_PtrToInt(m_Value(Temp))))
4338             if (Temp->getType() == GEPTy)
4339               return Temp;
4340           return nullptr;
4341         };
4342 
4343         // FIXME: The following transforms are only legal if P and V have the
4344         // same provenance (PR44403). Check whether getUnderlyingObject() is
4345         // the same?
4346 
4347         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4348         if (TyAllocSize == 1 &&
4349             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
4350           if (Value *R = PtrToInt(P))
4351             return R;
4352 
4353         // getelementptr V, (ashr (sub P, V), C) -> Q
4354         // if P points to a type of size 1 << C.
4355         if (match(Ops[1],
4356                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4357                          m_ConstantInt(C))) &&
4358             TyAllocSize == 1ULL << C)
4359           if (Value *R = PtrToInt(P))
4360             return R;
4361 
4362         // getelementptr V, (sdiv (sub P, V), C) -> Q
4363         // if P points to a type of size C.
4364         if (match(Ops[1],
4365                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4366                          m_SpecificInt(TyAllocSize))))
4367           if (Value *R = PtrToInt(P))
4368             return R;
4369       }
4370     }
4371   }
4372 
4373   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4374       all_of(Ops.slice(1).drop_back(1),
4375              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4376     unsigned IdxWidth =
4377         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4378     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4379       APInt BasePtrOffset(IdxWidth, 0);
4380       Value *StrippedBasePtr =
4381           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4382                                                             BasePtrOffset);
4383 
4384       // Avoid creating inttoptr of zero here: While LLVMs treatment of
4385       // inttoptr is generally conservative, this particular case is folded to
4386       // a null pointer, which will have incorrect provenance.
4387 
4388       // gep (gep V, C), (sub 0, V) -> C
4389       if (match(Ops.back(),
4390                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
4391           !BasePtrOffset.isNullValue()) {
4392         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4393         return ConstantExpr::getIntToPtr(CI, GEPTy);
4394       }
4395       // gep (gep V, C), (xor V, -1) -> C-1
4396       if (match(Ops.back(),
4397                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
4398           !BasePtrOffset.isOneValue()) {
4399         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4400         return ConstantExpr::getIntToPtr(CI, GEPTy);
4401       }
4402     }
4403   }
4404 
4405   // Check to see if this is constant foldable.
4406   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4407     return nullptr;
4408 
4409   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4410                                             Ops.slice(1));
4411   return ConstantFoldConstant(CE, Q.DL);
4412 }
4413 
4414 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4415                              const SimplifyQuery &Q) {
4416   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4417 }
4418 
4419 /// Given operands for an InsertValueInst, see if we can fold the result.
4420 /// If not, this returns null.
4421 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4422                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4423                                       unsigned) {
4424   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4425     if (Constant *CVal = dyn_cast<Constant>(Val))
4426       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4427 
4428   // insertvalue x, undef, n -> x
4429   if (Q.isUndefValue(Val))
4430     return Agg;
4431 
4432   // insertvalue x, (extractvalue y, n), n
4433   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4434     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4435         EV->getIndices() == Idxs) {
4436       // insertvalue undef, (extractvalue y, n), n -> y
4437       if (Q.isUndefValue(Agg))
4438         return EV->getAggregateOperand();
4439 
4440       // insertvalue y, (extractvalue y, n), n -> y
4441       if (Agg == EV->getAggregateOperand())
4442         return Agg;
4443     }
4444 
4445   return nullptr;
4446 }
4447 
4448 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4449                                      ArrayRef<unsigned> Idxs,
4450                                      const SimplifyQuery &Q) {
4451   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4452 }
4453 
4454 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4455                                        const SimplifyQuery &Q) {
4456   // Try to constant fold.
4457   auto *VecC = dyn_cast<Constant>(Vec);
4458   auto *ValC = dyn_cast<Constant>(Val);
4459   auto *IdxC = dyn_cast<Constant>(Idx);
4460   if (VecC && ValC && IdxC)
4461     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4462 
4463   // For fixed-length vector, fold into poison if index is out of bounds.
4464   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4465     if (isa<FixedVectorType>(Vec->getType()) &&
4466         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4467       return PoisonValue::get(Vec->getType());
4468   }
4469 
4470   // If index is undef, it might be out of bounds (see above case)
4471   if (Q.isUndefValue(Idx))
4472     return PoisonValue::get(Vec->getType());
4473 
4474   // If the scalar is poison, or it is undef and there is no risk of
4475   // propagating poison from the vector value, simplify to the vector value.
4476   if (isa<PoisonValue>(Val) ||
4477       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
4478     return Vec;
4479 
4480   // If we are extracting a value from a vector, then inserting it into the same
4481   // place, that's the input vector:
4482   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4483   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4484     return Vec;
4485 
4486   return nullptr;
4487 }
4488 
4489 /// Given operands for an ExtractValueInst, see if we can fold the result.
4490 /// If not, this returns null.
4491 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4492                                        const SimplifyQuery &, unsigned) {
4493   if (auto *CAgg = dyn_cast<Constant>(Agg))
4494     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4495 
4496   // extractvalue x, (insertvalue y, elt, n), n -> elt
4497   unsigned NumIdxs = Idxs.size();
4498   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4499        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4500     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4501     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4502     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4503     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4504         Idxs.slice(0, NumCommonIdxs)) {
4505       if (NumIdxs == NumInsertValueIdxs)
4506         return IVI->getInsertedValueOperand();
4507       break;
4508     }
4509   }
4510 
4511   return nullptr;
4512 }
4513 
4514 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4515                                       const SimplifyQuery &Q) {
4516   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4517 }
4518 
4519 /// Given operands for an ExtractElementInst, see if we can fold the result.
4520 /// If not, this returns null.
4521 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4522                                          const SimplifyQuery &Q, unsigned) {
4523   auto *VecVTy = cast<VectorType>(Vec->getType());
4524   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4525     if (auto *CIdx = dyn_cast<Constant>(Idx))
4526       return ConstantExpr::getExtractElement(CVec, CIdx);
4527 
4528     // The index is not relevant if our vector is a splat.
4529     if (auto *Splat = CVec->getSplatValue())
4530       return Splat;
4531 
4532     if (Q.isUndefValue(Vec))
4533       return UndefValue::get(VecVTy->getElementType());
4534   }
4535 
4536   // If extracting a specified index from the vector, see if we can recursively
4537   // find a previously computed scalar that was inserted into the vector.
4538   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4539     // For fixed-length vector, fold into undef if index is out of bounds.
4540     if (isa<FixedVectorType>(VecVTy) &&
4541         IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements()))
4542       return PoisonValue::get(VecVTy->getElementType());
4543     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4544       return Elt;
4545   }
4546 
4547   // An undef extract index can be arbitrarily chosen to be an out-of-range
4548   // index value, which would result in the instruction being poison.
4549   if (Q.isUndefValue(Idx))
4550     return PoisonValue::get(VecVTy->getElementType());
4551 
4552   return nullptr;
4553 }
4554 
4555 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4556                                         const SimplifyQuery &Q) {
4557   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4558 }
4559 
4560 /// See if we can fold the given phi. If not, returns null.
4561 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4562   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4563   //          here, because the PHI we may succeed simplifying to was not
4564   //          def-reachable from the original PHI!
4565 
4566   // If all of the PHI's incoming values are the same then replace the PHI node
4567   // with the common value.
4568   Value *CommonValue = nullptr;
4569   bool HasUndefInput = false;
4570   for (Value *Incoming : PN->incoming_values()) {
4571     // If the incoming value is the phi node itself, it can safely be skipped.
4572     if (Incoming == PN) continue;
4573     if (Q.isUndefValue(Incoming)) {
4574       // Remember that we saw an undef value, but otherwise ignore them.
4575       HasUndefInput = true;
4576       continue;
4577     }
4578     if (CommonValue && Incoming != CommonValue)
4579       return nullptr;  // Not the same, bail out.
4580     CommonValue = Incoming;
4581   }
4582 
4583   // If CommonValue is null then all of the incoming values were either undef or
4584   // equal to the phi node itself.
4585   if (!CommonValue)
4586     return UndefValue::get(PN->getType());
4587 
4588   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4589   // instruction, we cannot return X as the result of the PHI node unless it
4590   // dominates the PHI block.
4591   if (HasUndefInput)
4592     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4593 
4594   return CommonValue;
4595 }
4596 
4597 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4598                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4599   if (auto *C = dyn_cast<Constant>(Op))
4600     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4601 
4602   if (auto *CI = dyn_cast<CastInst>(Op)) {
4603     auto *Src = CI->getOperand(0);
4604     Type *SrcTy = Src->getType();
4605     Type *MidTy = CI->getType();
4606     Type *DstTy = Ty;
4607     if (Src->getType() == Ty) {
4608       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4609       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4610       Type *SrcIntPtrTy =
4611           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4612       Type *MidIntPtrTy =
4613           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4614       Type *DstIntPtrTy =
4615           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4616       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4617                                          SrcIntPtrTy, MidIntPtrTy,
4618                                          DstIntPtrTy) == Instruction::BitCast)
4619         return Src;
4620     }
4621   }
4622 
4623   // bitcast x -> x
4624   if (CastOpc == Instruction::BitCast)
4625     if (Op->getType() == Ty)
4626       return Op;
4627 
4628   return nullptr;
4629 }
4630 
4631 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4632                               const SimplifyQuery &Q) {
4633   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4634 }
4635 
4636 /// For the given destination element of a shuffle, peek through shuffles to
4637 /// match a root vector source operand that contains that element in the same
4638 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4639 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4640                                    int MaskVal, Value *RootVec,
4641                                    unsigned MaxRecurse) {
4642   if (!MaxRecurse--)
4643     return nullptr;
4644 
4645   // Bail out if any mask value is undefined. That kind of shuffle may be
4646   // simplified further based on demanded bits or other folds.
4647   if (MaskVal == -1)
4648     return nullptr;
4649 
4650   // The mask value chooses which source operand we need to look at next.
4651   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4652   int RootElt = MaskVal;
4653   Value *SourceOp = Op0;
4654   if (MaskVal >= InVecNumElts) {
4655     RootElt = MaskVal - InVecNumElts;
4656     SourceOp = Op1;
4657   }
4658 
4659   // If the source operand is a shuffle itself, look through it to find the
4660   // matching root vector.
4661   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4662     return foldIdentityShuffles(
4663         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4664         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4665   }
4666 
4667   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4668   // size?
4669 
4670   // The source operand is not a shuffle. Initialize the root vector value for
4671   // this shuffle if that has not been done yet.
4672   if (!RootVec)
4673     RootVec = SourceOp;
4674 
4675   // Give up as soon as a source operand does not match the existing root value.
4676   if (RootVec != SourceOp)
4677     return nullptr;
4678 
4679   // The element must be coming from the same lane in the source vector
4680   // (although it may have crossed lanes in intermediate shuffles).
4681   if (RootElt != DestElt)
4682     return nullptr;
4683 
4684   return RootVec;
4685 }
4686 
4687 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4688                                         ArrayRef<int> Mask, Type *RetTy,
4689                                         const SimplifyQuery &Q,
4690                                         unsigned MaxRecurse) {
4691   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4692     return UndefValue::get(RetTy);
4693 
4694   auto *InVecTy = cast<VectorType>(Op0->getType());
4695   unsigned MaskNumElts = Mask.size();
4696   ElementCount InVecEltCount = InVecTy->getElementCount();
4697 
4698   bool Scalable = InVecEltCount.isScalable();
4699 
4700   SmallVector<int, 32> Indices;
4701   Indices.assign(Mask.begin(), Mask.end());
4702 
4703   // Canonicalization: If mask does not select elements from an input vector,
4704   // replace that input vector with poison.
4705   if (!Scalable) {
4706     bool MaskSelects0 = false, MaskSelects1 = false;
4707     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4708     for (unsigned i = 0; i != MaskNumElts; ++i) {
4709       if (Indices[i] == -1)
4710         continue;
4711       if ((unsigned)Indices[i] < InVecNumElts)
4712         MaskSelects0 = true;
4713       else
4714         MaskSelects1 = true;
4715     }
4716     if (!MaskSelects0)
4717       Op0 = PoisonValue::get(InVecTy);
4718     if (!MaskSelects1)
4719       Op1 = PoisonValue::get(InVecTy);
4720   }
4721 
4722   auto *Op0Const = dyn_cast<Constant>(Op0);
4723   auto *Op1Const = dyn_cast<Constant>(Op1);
4724 
4725   // If all operands are constant, constant fold the shuffle. This
4726   // transformation depends on the value of the mask which is not known at
4727   // compile time for scalable vectors
4728   if (Op0Const && Op1Const)
4729     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4730 
4731   // Canonicalization: if only one input vector is constant, it shall be the
4732   // second one. This transformation depends on the value of the mask which
4733   // is not known at compile time for scalable vectors
4734   if (!Scalable && Op0Const && !Op1Const) {
4735     std::swap(Op0, Op1);
4736     ShuffleVectorInst::commuteShuffleMask(Indices,
4737                                           InVecEltCount.getKnownMinValue());
4738   }
4739 
4740   // A splat of an inserted scalar constant becomes a vector constant:
4741   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4742   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4743   //       original mask constant.
4744   // NOTE: This transformation depends on the value of the mask which is not
4745   // known at compile time for scalable vectors
4746   Constant *C;
4747   ConstantInt *IndexC;
4748   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4749                                           m_ConstantInt(IndexC)))) {
4750     // Match a splat shuffle mask of the insert index allowing undef elements.
4751     int InsertIndex = IndexC->getZExtValue();
4752     if (all_of(Indices, [InsertIndex](int MaskElt) {
4753           return MaskElt == InsertIndex || MaskElt == -1;
4754         })) {
4755       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4756 
4757       // Shuffle mask undefs become undefined constant result elements.
4758       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4759       for (unsigned i = 0; i != MaskNumElts; ++i)
4760         if (Indices[i] == -1)
4761           VecC[i] = UndefValue::get(C->getType());
4762       return ConstantVector::get(VecC);
4763     }
4764   }
4765 
4766   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4767   // value type is same as the input vectors' type.
4768   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4769     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4770         is_splat(OpShuf->getShuffleMask()))
4771       return Op0;
4772 
4773   // All remaining transformation depend on the value of the mask, which is
4774   // not known at compile time for scalable vectors.
4775   if (Scalable)
4776     return nullptr;
4777 
4778   // Don't fold a shuffle with undef mask elements. This may get folded in a
4779   // better way using demanded bits or other analysis.
4780   // TODO: Should we allow this?
4781   if (is_contained(Indices, -1))
4782     return nullptr;
4783 
4784   // Check if every element of this shuffle can be mapped back to the
4785   // corresponding element of a single root vector. If so, we don't need this
4786   // shuffle. This handles simple identity shuffles as well as chains of
4787   // shuffles that may widen/narrow and/or move elements across lanes and back.
4788   Value *RootVec = nullptr;
4789   for (unsigned i = 0; i != MaskNumElts; ++i) {
4790     // Note that recursion is limited for each vector element, so if any element
4791     // exceeds the limit, this will fail to simplify.
4792     RootVec =
4793         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4794 
4795     // We can't replace a widening/narrowing shuffle with one of its operands.
4796     if (!RootVec || RootVec->getType() != RetTy)
4797       return nullptr;
4798   }
4799   return RootVec;
4800 }
4801 
4802 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4803 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4804                                        ArrayRef<int> Mask, Type *RetTy,
4805                                        const SimplifyQuery &Q) {
4806   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4807 }
4808 
4809 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4810                               Value *&Op, const SimplifyQuery &Q) {
4811   if (auto *C = dyn_cast<Constant>(Op))
4812     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4813   return nullptr;
4814 }
4815 
4816 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4817 /// returns null.
4818 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4819                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4820   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4821     return C;
4822 
4823   Value *X;
4824   // fneg (fneg X) ==> X
4825   if (match(Op, m_FNeg(m_Value(X))))
4826     return X;
4827 
4828   return nullptr;
4829 }
4830 
4831 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4832                               const SimplifyQuery &Q) {
4833   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4834 }
4835 
4836 static Constant *propagateNaN(Constant *In) {
4837   // If the input is a vector with undef elements, just return a default NaN.
4838   if (!In->isNaN())
4839     return ConstantFP::getNaN(In->getType());
4840 
4841   // Propagate the existing NaN constant when possible.
4842   // TODO: Should we quiet a signaling NaN?
4843   return In;
4844 }
4845 
4846 /// Perform folds that are common to any floating-point operation. This implies
4847 /// transforms based on undef/NaN because the operation itself makes no
4848 /// difference to the result.
4849 static Constant *simplifyFPOp(ArrayRef<Value *> Ops,
4850                               FastMathFlags FMF,
4851                               const SimplifyQuery &Q) {
4852   for (Value *V : Ops) {
4853     bool IsNan = match(V, m_NaN());
4854     bool IsInf = match(V, m_Inf());
4855     bool IsUndef = Q.isUndefValue(V);
4856 
4857     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4858     // (an undef operand can be chosen to be Nan/Inf), then the result of
4859     // this operation is poison.
4860     if (FMF.noNaNs() && (IsNan || IsUndef))
4861       return PoisonValue::get(V->getType());
4862     if (FMF.noInfs() && (IsInf || IsUndef))
4863       return PoisonValue::get(V->getType());
4864 
4865     if (IsUndef || IsNan)
4866       return propagateNaN(cast<Constant>(V));
4867   }
4868   return nullptr;
4869 }
4870 
4871 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4872 /// returns null.
4873 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4874                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4875   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4876     return C;
4877 
4878   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4879     return C;
4880 
4881   // fadd X, -0 ==> X
4882   if (match(Op1, m_NegZeroFP()))
4883     return Op0;
4884 
4885   // fadd X, 0 ==> X, when we know X is not -0
4886   if (match(Op1, m_PosZeroFP()) &&
4887       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4888     return Op0;
4889 
4890   // With nnan: -X + X --> 0.0 (and commuted variant)
4891   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4892   // Negative zeros are allowed because we always end up with positive zero:
4893   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4894   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4895   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4896   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4897   if (FMF.noNaNs()) {
4898     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4899         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4900       return ConstantFP::getNullValue(Op0->getType());
4901 
4902     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4903         match(Op1, m_FNeg(m_Specific(Op0))))
4904       return ConstantFP::getNullValue(Op0->getType());
4905   }
4906 
4907   // (X - Y) + Y --> X
4908   // Y + (X - Y) --> X
4909   Value *X;
4910   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4911       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4912        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4913     return X;
4914 
4915   return nullptr;
4916 }
4917 
4918 /// Given operands for an FSub, see if we can fold the result.  If not, this
4919 /// returns null.
4920 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4921                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4922   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4923     return C;
4924 
4925   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4926     return C;
4927 
4928   // fsub X, +0 ==> X
4929   if (match(Op1, m_PosZeroFP()))
4930     return Op0;
4931 
4932   // fsub X, -0 ==> X, when we know X is not -0
4933   if (match(Op1, m_NegZeroFP()) &&
4934       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4935     return Op0;
4936 
4937   // fsub -0.0, (fsub -0.0, X) ==> X
4938   // fsub -0.0, (fneg X) ==> X
4939   Value *X;
4940   if (match(Op0, m_NegZeroFP()) &&
4941       match(Op1, m_FNeg(m_Value(X))))
4942     return X;
4943 
4944   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4945   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4946   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4947       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4948        match(Op1, m_FNeg(m_Value(X)))))
4949     return X;
4950 
4951   // fsub nnan x, x ==> 0.0
4952   if (FMF.noNaNs() && Op0 == Op1)
4953     return Constant::getNullValue(Op0->getType());
4954 
4955   // Y - (Y - X) --> X
4956   // (X + Y) - Y --> X
4957   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4958       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4959        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4960     return X;
4961 
4962   return nullptr;
4963 }
4964 
4965 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4966                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4967   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4968     return C;
4969 
4970   // fmul X, 1.0 ==> X
4971   if (match(Op1, m_FPOne()))
4972     return Op0;
4973 
4974   // fmul 1.0, X ==> X
4975   if (match(Op0, m_FPOne()))
4976     return Op1;
4977 
4978   // fmul nnan nsz X, 0 ==> 0
4979   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4980     return ConstantFP::getNullValue(Op0->getType());
4981 
4982   // fmul nnan nsz 0, X ==> 0
4983   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4984     return ConstantFP::getNullValue(Op1->getType());
4985 
4986   // sqrt(X) * sqrt(X) --> X, if we can:
4987   // 1. Remove the intermediate rounding (reassociate).
4988   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4989   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4990   Value *X;
4991   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4992       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4993     return X;
4994 
4995   return nullptr;
4996 }
4997 
4998 /// Given the operands for an FMul, see if we can fold the result
4999 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5000                                const SimplifyQuery &Q, unsigned MaxRecurse) {
5001   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5002     return C;
5003 
5004   // Now apply simplifications that do not require rounding.
5005   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
5006 }
5007 
5008 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5009                               const SimplifyQuery &Q) {
5010   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
5011 }
5012 
5013 
5014 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5015                               const SimplifyQuery &Q) {
5016   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
5017 }
5018 
5019 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5020                               const SimplifyQuery &Q) {
5021   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
5022 }
5023 
5024 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5025                              const SimplifyQuery &Q) {
5026   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
5027 }
5028 
5029 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5030                                const SimplifyQuery &Q, unsigned) {
5031   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5032     return C;
5033 
5034   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
5035     return C;
5036 
5037   // X / 1.0 -> X
5038   if (match(Op1, m_FPOne()))
5039     return Op0;
5040 
5041   // 0 / X -> 0
5042   // Requires that NaNs are off (X could be zero) and signed zeroes are
5043   // ignored (X could be positive or negative, so the output sign is unknown).
5044   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5045     return ConstantFP::getNullValue(Op0->getType());
5046 
5047   if (FMF.noNaNs()) {
5048     // X / X -> 1.0 is legal when NaNs are ignored.
5049     // We can ignore infinities because INF/INF is NaN.
5050     if (Op0 == Op1)
5051       return ConstantFP::get(Op0->getType(), 1.0);
5052 
5053     // (X * Y) / Y --> X if we can reassociate to the above form.
5054     Value *X;
5055     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5056       return X;
5057 
5058     // -X /  X -> -1.0 and
5059     //  X / -X -> -1.0 are legal when NaNs are ignored.
5060     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5061     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5062         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5063       return ConstantFP::get(Op0->getType(), -1.0);
5064   }
5065 
5066   return nullptr;
5067 }
5068 
5069 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5070                               const SimplifyQuery &Q) {
5071   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
5072 }
5073 
5074 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5075                                const SimplifyQuery &Q, unsigned) {
5076   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5077     return C;
5078 
5079   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
5080     return C;
5081 
5082   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5083   // The constant match may include undef elements in a vector, so return a full
5084   // zero constant as the result.
5085   if (FMF.noNaNs()) {
5086     // +0 % X -> 0
5087     if (match(Op0, m_PosZeroFP()))
5088       return ConstantFP::getNullValue(Op0->getType());
5089     // -0 % X -> -0
5090     if (match(Op0, m_NegZeroFP()))
5091       return ConstantFP::getNegativeZero(Op0->getType());
5092   }
5093 
5094   return nullptr;
5095 }
5096 
5097 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5098                               const SimplifyQuery &Q) {
5099   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
5100 }
5101 
5102 //=== Helper functions for higher up the class hierarchy.
5103 
5104 /// Given the operand for a UnaryOperator, see if we can fold the result.
5105 /// If not, this returns null.
5106 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5107                            unsigned MaxRecurse) {
5108   switch (Opcode) {
5109   case Instruction::FNeg:
5110     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5111   default:
5112     llvm_unreachable("Unexpected opcode");
5113   }
5114 }
5115 
5116 /// Given the operand for a UnaryOperator, see if we can fold the result.
5117 /// If not, this returns null.
5118 /// Try to use FastMathFlags when folding the result.
5119 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5120                              const FastMathFlags &FMF,
5121                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5122   switch (Opcode) {
5123   case Instruction::FNeg:
5124     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5125   default:
5126     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5127   }
5128 }
5129 
5130 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5131   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5132 }
5133 
5134 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5135                           const SimplifyQuery &Q) {
5136   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5137 }
5138 
5139 /// Given operands for a BinaryOperator, see if we can fold the result.
5140 /// If not, this returns null.
5141 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5142                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5143   switch (Opcode) {
5144   case Instruction::Add:
5145     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5146   case Instruction::Sub:
5147     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5148   case Instruction::Mul:
5149     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5150   case Instruction::SDiv:
5151     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5152   case Instruction::UDiv:
5153     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5154   case Instruction::SRem:
5155     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5156   case Instruction::URem:
5157     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5158   case Instruction::Shl:
5159     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5160   case Instruction::LShr:
5161     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5162   case Instruction::AShr:
5163     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5164   case Instruction::And:
5165     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5166   case Instruction::Or:
5167     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5168   case Instruction::Xor:
5169     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5170   case Instruction::FAdd:
5171     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5172   case Instruction::FSub:
5173     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5174   case Instruction::FMul:
5175     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5176   case Instruction::FDiv:
5177     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5178   case Instruction::FRem:
5179     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5180   default:
5181     llvm_unreachable("Unexpected opcode");
5182   }
5183 }
5184 
5185 /// Given operands for a BinaryOperator, see if we can fold the result.
5186 /// If not, this returns null.
5187 /// Try to use FastMathFlags when folding the result.
5188 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5189                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5190                             unsigned MaxRecurse) {
5191   switch (Opcode) {
5192   case Instruction::FAdd:
5193     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5194   case Instruction::FSub:
5195     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5196   case Instruction::FMul:
5197     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5198   case Instruction::FDiv:
5199     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5200   default:
5201     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5202   }
5203 }
5204 
5205 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5206                            const SimplifyQuery &Q) {
5207   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5208 }
5209 
5210 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5211                            FastMathFlags FMF, const SimplifyQuery &Q) {
5212   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5213 }
5214 
5215 /// Given operands for a CmpInst, see if we can fold the result.
5216 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5217                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5218   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5219     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5220   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5221 }
5222 
5223 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5224                              const SimplifyQuery &Q) {
5225   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5226 }
5227 
5228 static bool IsIdempotent(Intrinsic::ID ID) {
5229   switch (ID) {
5230   default: return false;
5231 
5232   // Unary idempotent: f(f(x)) = f(x)
5233   case Intrinsic::fabs:
5234   case Intrinsic::floor:
5235   case Intrinsic::ceil:
5236   case Intrinsic::trunc:
5237   case Intrinsic::rint:
5238   case Intrinsic::nearbyint:
5239   case Intrinsic::round:
5240   case Intrinsic::roundeven:
5241   case Intrinsic::canonicalize:
5242     return true;
5243   }
5244 }
5245 
5246 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5247                                    const DataLayout &DL) {
5248   GlobalValue *PtrSym;
5249   APInt PtrOffset;
5250   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5251     return nullptr;
5252 
5253   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5254   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5255   Type *Int32PtrTy = Int32Ty->getPointerTo();
5256   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5257 
5258   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5259   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5260     return nullptr;
5261 
5262   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5263   if (OffsetInt % 4 != 0)
5264     return nullptr;
5265 
5266   Constant *C = ConstantExpr::getGetElementPtr(
5267       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5268       ConstantInt::get(Int64Ty, OffsetInt / 4));
5269   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5270   if (!Loaded)
5271     return nullptr;
5272 
5273   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5274   if (!LoadedCE)
5275     return nullptr;
5276 
5277   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5278     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5279     if (!LoadedCE)
5280       return nullptr;
5281   }
5282 
5283   if (LoadedCE->getOpcode() != Instruction::Sub)
5284     return nullptr;
5285 
5286   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5287   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5288     return nullptr;
5289   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5290 
5291   Constant *LoadedRHS = LoadedCE->getOperand(1);
5292   GlobalValue *LoadedRHSSym;
5293   APInt LoadedRHSOffset;
5294   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5295                                   DL) ||
5296       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5297     return nullptr;
5298 
5299   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5300 }
5301 
5302 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5303                                      const SimplifyQuery &Q) {
5304   // Idempotent functions return the same result when called repeatedly.
5305   Intrinsic::ID IID = F->getIntrinsicID();
5306   if (IsIdempotent(IID))
5307     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5308       if (II->getIntrinsicID() == IID)
5309         return II;
5310 
5311   Value *X;
5312   switch (IID) {
5313   case Intrinsic::fabs:
5314     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5315     break;
5316   case Intrinsic::bswap:
5317     // bswap(bswap(x)) -> x
5318     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5319     break;
5320   case Intrinsic::bitreverse:
5321     // bitreverse(bitreverse(x)) -> x
5322     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5323     break;
5324   case Intrinsic::ctpop: {
5325     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5326     // ctpop(and X, 1) --> and X, 1
5327     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5328     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5329                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5330       return Op0;
5331     break;
5332   }
5333   case Intrinsic::exp:
5334     // exp(log(x)) -> x
5335     if (Q.CxtI->hasAllowReassoc() &&
5336         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5337     break;
5338   case Intrinsic::exp2:
5339     // exp2(log2(x)) -> x
5340     if (Q.CxtI->hasAllowReassoc() &&
5341         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5342     break;
5343   case Intrinsic::log:
5344     // log(exp(x)) -> x
5345     if (Q.CxtI->hasAllowReassoc() &&
5346         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5347     break;
5348   case Intrinsic::log2:
5349     // log2(exp2(x)) -> x
5350     if (Q.CxtI->hasAllowReassoc() &&
5351         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5352          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5353                                                 m_Value(X))))) return X;
5354     break;
5355   case Intrinsic::log10:
5356     // log10(pow(10.0, x)) -> x
5357     if (Q.CxtI->hasAllowReassoc() &&
5358         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5359                                                m_Value(X)))) return X;
5360     break;
5361   case Intrinsic::floor:
5362   case Intrinsic::trunc:
5363   case Intrinsic::ceil:
5364   case Intrinsic::round:
5365   case Intrinsic::roundeven:
5366   case Intrinsic::nearbyint:
5367   case Intrinsic::rint: {
5368     // floor (sitofp x) -> sitofp x
5369     // floor (uitofp x) -> uitofp x
5370     //
5371     // Converting from int always results in a finite integral number or
5372     // infinity. For either of those inputs, these rounding functions always
5373     // return the same value, so the rounding can be eliminated.
5374     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5375       return Op0;
5376     break;
5377   }
5378   default:
5379     break;
5380   }
5381 
5382   return nullptr;
5383 }
5384 
5385 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) {
5386   switch (IID) {
5387   case Intrinsic::smax: return Intrinsic::smin;
5388   case Intrinsic::smin: return Intrinsic::smax;
5389   case Intrinsic::umax: return Intrinsic::umin;
5390   case Intrinsic::umin: return Intrinsic::umax;
5391   default: llvm_unreachable("Unexpected intrinsic");
5392   }
5393 }
5394 
5395 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5396   switch (IID) {
5397   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5398   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5399   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5400   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5401   default: llvm_unreachable("Unexpected intrinsic");
5402   }
5403 }
5404 
5405 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5406   switch (IID) {
5407   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5408   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5409   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5410   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5411   default: llvm_unreachable("Unexpected intrinsic");
5412   }
5413 }
5414 
5415 /// Given a min/max intrinsic, see if it can be removed based on having an
5416 /// operand that is another min/max intrinsic with shared operand(s). The caller
5417 /// is expected to swap the operand arguments to handle commutation.
5418 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5419   Value *X, *Y;
5420   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5421     return nullptr;
5422 
5423   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5424   if (!MM0)
5425     return nullptr;
5426   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5427 
5428   if (Op1 == X || Op1 == Y ||
5429       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5430     // max (max X, Y), X --> max X, Y
5431     if (IID0 == IID)
5432       return MM0;
5433     // max (min X, Y), X --> X
5434     if (IID0 == getMaxMinOpposite(IID))
5435       return Op1;
5436   }
5437   return nullptr;
5438 }
5439 
5440 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5441                                       const SimplifyQuery &Q) {
5442   Intrinsic::ID IID = F->getIntrinsicID();
5443   Type *ReturnType = F->getReturnType();
5444   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5445   switch (IID) {
5446   case Intrinsic::abs:
5447     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5448     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5449     // on the outer abs.
5450     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5451       return Op0;
5452     break;
5453 
5454   case Intrinsic::smax:
5455   case Intrinsic::smin:
5456   case Intrinsic::umax:
5457   case Intrinsic::umin: {
5458     // If the arguments are the same, this is a no-op.
5459     if (Op0 == Op1)
5460       return Op0;
5461 
5462     // Canonicalize constant operand as Op1.
5463     if (isa<Constant>(Op0))
5464       std::swap(Op0, Op1);
5465 
5466     // Assume undef is the limit value.
5467     if (Q.isUndefValue(Op1))
5468       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5469 
5470     const APInt *C;
5471     if (match(Op1, m_APIntAllowUndef(C))) {
5472       // Clamp to limit value. For example:
5473       // umax(i8 %x, i8 255) --> 255
5474       if (*C == getMaxMinLimit(IID, BitWidth))
5475         return ConstantInt::get(ReturnType, *C);
5476 
5477       // If the constant op is the opposite of the limit value, the other must
5478       // be larger/smaller or equal. For example:
5479       // umin(i8 %x, i8 255) --> %x
5480       if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth))
5481         return Op0;
5482 
5483       // Remove nested call if constant operands allow it. Example:
5484       // max (max X, 7), 5 -> max X, 7
5485       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5486       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5487         // TODO: loosen undef/splat restrictions for vector constants.
5488         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5489         const APInt *InnerC;
5490         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5491             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5492              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5493              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5494              (IID == Intrinsic::umin && InnerC->ule(*C))))
5495           return Op0;
5496       }
5497     }
5498 
5499     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5500       return V;
5501     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5502       return V;
5503 
5504     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5505     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5506       return Op0;
5507     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5508       return Op1;
5509 
5510     if (Optional<bool> Imp =
5511             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5512       return *Imp ? Op0 : Op1;
5513     if (Optional<bool> Imp =
5514             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5515       return *Imp ? Op1 : Op0;
5516 
5517     break;
5518   }
5519   case Intrinsic::usub_with_overflow:
5520   case Intrinsic::ssub_with_overflow:
5521     // X - X -> { 0, false }
5522     // X - undef -> { 0, false }
5523     // undef - X -> { 0, false }
5524     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5525       return Constant::getNullValue(ReturnType);
5526     break;
5527   case Intrinsic::uadd_with_overflow:
5528   case Intrinsic::sadd_with_overflow:
5529     // X + undef -> { -1, false }
5530     // undef + x -> { -1, false }
5531     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5532       return ConstantStruct::get(
5533           cast<StructType>(ReturnType),
5534           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5535            Constant::getNullValue(ReturnType->getStructElementType(1))});
5536     }
5537     break;
5538   case Intrinsic::umul_with_overflow:
5539   case Intrinsic::smul_with_overflow:
5540     // 0 * X -> { 0, false }
5541     // X * 0 -> { 0, false }
5542     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5543       return Constant::getNullValue(ReturnType);
5544     // undef * X -> { 0, false }
5545     // X * undef -> { 0, false }
5546     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5547       return Constant::getNullValue(ReturnType);
5548     break;
5549   case Intrinsic::uadd_sat:
5550     // sat(MAX + X) -> MAX
5551     // sat(X + MAX) -> MAX
5552     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5553       return Constant::getAllOnesValue(ReturnType);
5554     LLVM_FALLTHROUGH;
5555   case Intrinsic::sadd_sat:
5556     // sat(X + undef) -> -1
5557     // sat(undef + X) -> -1
5558     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5559     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5560     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5561       return Constant::getAllOnesValue(ReturnType);
5562 
5563     // X + 0 -> X
5564     if (match(Op1, m_Zero()))
5565       return Op0;
5566     // 0 + X -> X
5567     if (match(Op0, m_Zero()))
5568       return Op1;
5569     break;
5570   case Intrinsic::usub_sat:
5571     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5572     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5573       return Constant::getNullValue(ReturnType);
5574     LLVM_FALLTHROUGH;
5575   case Intrinsic::ssub_sat:
5576     // X - X -> 0, X - undef -> 0, undef - X -> 0
5577     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5578       return Constant::getNullValue(ReturnType);
5579     // X - 0 -> X
5580     if (match(Op1, m_Zero()))
5581       return Op0;
5582     break;
5583   case Intrinsic::load_relative:
5584     if (auto *C0 = dyn_cast<Constant>(Op0))
5585       if (auto *C1 = dyn_cast<Constant>(Op1))
5586         return SimplifyRelativeLoad(C0, C1, Q.DL);
5587     break;
5588   case Intrinsic::powi:
5589     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5590       // powi(x, 0) -> 1.0
5591       if (Power->isZero())
5592         return ConstantFP::get(Op0->getType(), 1.0);
5593       // powi(x, 1) -> x
5594       if (Power->isOne())
5595         return Op0;
5596     }
5597     break;
5598   case Intrinsic::copysign:
5599     // copysign X, X --> X
5600     if (Op0 == Op1)
5601       return Op0;
5602     // copysign -X, X --> X
5603     // copysign X, -X --> -X
5604     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5605         match(Op1, m_FNeg(m_Specific(Op0))))
5606       return Op1;
5607     break;
5608   case Intrinsic::maxnum:
5609   case Intrinsic::minnum:
5610   case Intrinsic::maximum:
5611   case Intrinsic::minimum: {
5612     // If the arguments are the same, this is a no-op.
5613     if (Op0 == Op1) return Op0;
5614 
5615     // Canonicalize constant operand as Op1.
5616     if (isa<Constant>(Op0))
5617       std::swap(Op0, Op1);
5618 
5619     // If an argument is undef, return the other argument.
5620     if (Q.isUndefValue(Op1))
5621       return Op0;
5622 
5623     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5624     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5625 
5626     // minnum(X, nan) -> X
5627     // maxnum(X, nan) -> X
5628     // minimum(X, nan) -> nan
5629     // maximum(X, nan) -> nan
5630     if (match(Op1, m_NaN()))
5631       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5632 
5633     // In the following folds, inf can be replaced with the largest finite
5634     // float, if the ninf flag is set.
5635     const APFloat *C;
5636     if (match(Op1, m_APFloat(C)) &&
5637         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5638       // minnum(X, -inf) -> -inf
5639       // maxnum(X, +inf) -> +inf
5640       // minimum(X, -inf) -> -inf if nnan
5641       // maximum(X, +inf) -> +inf if nnan
5642       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5643         return ConstantFP::get(ReturnType, *C);
5644 
5645       // minnum(X, +inf) -> X if nnan
5646       // maxnum(X, -inf) -> X if nnan
5647       // minimum(X, +inf) -> X
5648       // maximum(X, -inf) -> X
5649       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5650         return Op0;
5651     }
5652 
5653     // Min/max of the same operation with common operand:
5654     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5655     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5656       if (M0->getIntrinsicID() == IID &&
5657           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5658         return Op0;
5659     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5660       if (M1->getIntrinsicID() == IID &&
5661           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5662         return Op1;
5663 
5664     break;
5665   }
5666   default:
5667     break;
5668   }
5669 
5670   return nullptr;
5671 }
5672 
5673 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5674 
5675   // Intrinsics with no operands have some kind of side effect. Don't simplify.
5676   unsigned NumOperands = Call->getNumArgOperands();
5677   if (!NumOperands)
5678     return nullptr;
5679 
5680   Function *F = cast<Function>(Call->getCalledFunction());
5681   Intrinsic::ID IID = F->getIntrinsicID();
5682   if (NumOperands == 1)
5683     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5684 
5685   if (NumOperands == 2)
5686     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5687                                    Call->getArgOperand(1), Q);
5688 
5689   // Handle intrinsics with 3 or more arguments.
5690   switch (IID) {
5691   case Intrinsic::masked_load:
5692   case Intrinsic::masked_gather: {
5693     Value *MaskArg = Call->getArgOperand(2);
5694     Value *PassthruArg = Call->getArgOperand(3);
5695     // If the mask is all zeros or undef, the "passthru" argument is the result.
5696     if (maskIsAllZeroOrUndef(MaskArg))
5697       return PassthruArg;
5698     return nullptr;
5699   }
5700   case Intrinsic::fshl:
5701   case Intrinsic::fshr: {
5702     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5703           *ShAmtArg = Call->getArgOperand(2);
5704 
5705     // If both operands are undef, the result is undef.
5706     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5707       return UndefValue::get(F->getReturnType());
5708 
5709     // If shift amount is undef, assume it is zero.
5710     if (Q.isUndefValue(ShAmtArg))
5711       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5712 
5713     const APInt *ShAmtC;
5714     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5715       // If there's effectively no shift, return the 1st arg or 2nd arg.
5716       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5717       if (ShAmtC->urem(BitWidth).isNullValue())
5718         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5719     }
5720     return nullptr;
5721   }
5722   case Intrinsic::fma:
5723   case Intrinsic::fmuladd: {
5724     Value *Op0 = Call->getArgOperand(0);
5725     Value *Op1 = Call->getArgOperand(1);
5726     Value *Op2 = Call->getArgOperand(2);
5727     if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q))
5728       return V;
5729     return nullptr;
5730   }
5731   default:
5732     return nullptr;
5733   }
5734 }
5735 
5736 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
5737   auto *F = dyn_cast<Function>(Call->getCalledOperand());
5738   if (!F || !canConstantFoldCallTo(Call, F))
5739     return nullptr;
5740 
5741   SmallVector<Constant *, 4> ConstantArgs;
5742   unsigned NumArgs = Call->getNumArgOperands();
5743   ConstantArgs.reserve(NumArgs);
5744   for (auto &Arg : Call->args()) {
5745     Constant *C = dyn_cast<Constant>(&Arg);
5746     if (!C) {
5747       if (isa<MetadataAsValue>(Arg.get()))
5748         continue;
5749       return nullptr;
5750     }
5751     ConstantArgs.push_back(C);
5752   }
5753 
5754   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5755 }
5756 
5757 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5758   // musttail calls can only be simplified if they are also DCEd.
5759   // As we can't guarantee this here, don't simplify them.
5760   if (Call->isMustTailCall())
5761     return nullptr;
5762 
5763   // call undef -> poison
5764   // call null -> poison
5765   Value *Callee = Call->getCalledOperand();
5766   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5767     return PoisonValue::get(Call->getType());
5768 
5769   if (Value *V = tryConstantFoldCall(Call, Q))
5770     return V;
5771 
5772   auto *F = dyn_cast<Function>(Callee);
5773   if (F && F->isIntrinsic())
5774     if (Value *Ret = simplifyIntrinsic(Call, Q))
5775       return Ret;
5776 
5777   return nullptr;
5778 }
5779 
5780 /// Given operands for a Freeze, see if we can fold the result.
5781 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5782   // Use a utility function defined in ValueTracking.
5783   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
5784     return Op0;
5785   // We have room for improvement.
5786   return nullptr;
5787 }
5788 
5789 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5790   return ::SimplifyFreezeInst(Op0, Q);
5791 }
5792 
5793 /// See if we can compute a simplified version of this instruction.
5794 /// If not, this returns null.
5795 
5796 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5797                                  OptimizationRemarkEmitter *ORE) {
5798   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5799   Value *Result;
5800 
5801   switch (I->getOpcode()) {
5802   default:
5803     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5804     break;
5805   case Instruction::FNeg:
5806     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5807     break;
5808   case Instruction::FAdd:
5809     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5810                               I->getFastMathFlags(), Q);
5811     break;
5812   case Instruction::Add:
5813     Result =
5814         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5815                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5816                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5817     break;
5818   case Instruction::FSub:
5819     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5820                               I->getFastMathFlags(), Q);
5821     break;
5822   case Instruction::Sub:
5823     Result =
5824         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5825                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5826                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5827     break;
5828   case Instruction::FMul:
5829     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5830                               I->getFastMathFlags(), Q);
5831     break;
5832   case Instruction::Mul:
5833     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5834     break;
5835   case Instruction::SDiv:
5836     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5837     break;
5838   case Instruction::UDiv:
5839     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5840     break;
5841   case Instruction::FDiv:
5842     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5843                               I->getFastMathFlags(), Q);
5844     break;
5845   case Instruction::SRem:
5846     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5847     break;
5848   case Instruction::URem:
5849     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5850     break;
5851   case Instruction::FRem:
5852     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5853                               I->getFastMathFlags(), Q);
5854     break;
5855   case Instruction::Shl:
5856     Result =
5857         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5858                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5859                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5860     break;
5861   case Instruction::LShr:
5862     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5863                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5864     break;
5865   case Instruction::AShr:
5866     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5867                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5868     break;
5869   case Instruction::And:
5870     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5871     break;
5872   case Instruction::Or:
5873     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5874     break;
5875   case Instruction::Xor:
5876     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5877     break;
5878   case Instruction::ICmp:
5879     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5880                               I->getOperand(0), I->getOperand(1), Q);
5881     break;
5882   case Instruction::FCmp:
5883     Result =
5884         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5885                          I->getOperand(1), I->getFastMathFlags(), Q);
5886     break;
5887   case Instruction::Select:
5888     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5889                                 I->getOperand(2), Q);
5890     break;
5891   case Instruction::GetElementPtr: {
5892     SmallVector<Value *, 8> Ops(I->operands());
5893     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5894                              Ops, Q);
5895     break;
5896   }
5897   case Instruction::InsertValue: {
5898     InsertValueInst *IV = cast<InsertValueInst>(I);
5899     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5900                                      IV->getInsertedValueOperand(),
5901                                      IV->getIndices(), Q);
5902     break;
5903   }
5904   case Instruction::InsertElement: {
5905     auto *IE = cast<InsertElementInst>(I);
5906     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5907                                        IE->getOperand(2), Q);
5908     break;
5909   }
5910   case Instruction::ExtractValue: {
5911     auto *EVI = cast<ExtractValueInst>(I);
5912     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5913                                       EVI->getIndices(), Q);
5914     break;
5915   }
5916   case Instruction::ExtractElement: {
5917     auto *EEI = cast<ExtractElementInst>(I);
5918     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5919                                         EEI->getIndexOperand(), Q);
5920     break;
5921   }
5922   case Instruction::ShuffleVector: {
5923     auto *SVI = cast<ShuffleVectorInst>(I);
5924     Result =
5925         SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5926                                   SVI->getShuffleMask(), SVI->getType(), Q);
5927     break;
5928   }
5929   case Instruction::PHI:
5930     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5931     break;
5932   case Instruction::Call: {
5933     Result = SimplifyCall(cast<CallInst>(I), Q);
5934     break;
5935   }
5936   case Instruction::Freeze:
5937     Result = SimplifyFreezeInst(I->getOperand(0), Q);
5938     break;
5939 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5940 #include "llvm/IR/Instruction.def"
5941 #undef HANDLE_CAST_INST
5942     Result =
5943         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5944     break;
5945   case Instruction::Alloca:
5946     // No simplifications for Alloca and it can't be constant folded.
5947     Result = nullptr;
5948     break;
5949   }
5950 
5951   /// If called on unreachable code, the above logic may report that the
5952   /// instruction simplified to itself.  Make life easier for users by
5953   /// detecting that case here, returning a safe value instead.
5954   return Result == I ? UndefValue::get(I->getType()) : Result;
5955 }
5956 
5957 /// Implementation of recursive simplification through an instruction's
5958 /// uses.
5959 ///
5960 /// This is the common implementation of the recursive simplification routines.
5961 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5962 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5963 /// instructions to process and attempt to simplify it using
5964 /// InstructionSimplify. Recursively visited users which could not be
5965 /// simplified themselves are to the optional UnsimplifiedUsers set for
5966 /// further processing by the caller.
5967 ///
5968 /// This routine returns 'true' only when *it* simplifies something. The passed
5969 /// in simplified value does not count toward this.
5970 static bool replaceAndRecursivelySimplifyImpl(
5971     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5972     const DominatorTree *DT, AssumptionCache *AC,
5973     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5974   bool Simplified = false;
5975   SmallSetVector<Instruction *, 8> Worklist;
5976   const DataLayout &DL = I->getModule()->getDataLayout();
5977 
5978   // If we have an explicit value to collapse to, do that round of the
5979   // simplification loop by hand initially.
5980   if (SimpleV) {
5981     for (User *U : I->users())
5982       if (U != I)
5983         Worklist.insert(cast<Instruction>(U));
5984 
5985     // Replace the instruction with its simplified value.
5986     I->replaceAllUsesWith(SimpleV);
5987 
5988     // Gracefully handle edge cases where the instruction is not wired into any
5989     // parent block.
5990     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5991         !I->mayHaveSideEffects())
5992       I->eraseFromParent();
5993   } else {
5994     Worklist.insert(I);
5995   }
5996 
5997   // Note that we must test the size on each iteration, the worklist can grow.
5998   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5999     I = Worklist[Idx];
6000 
6001     // See if this instruction simplifies.
6002     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
6003     if (!SimpleV) {
6004       if (UnsimplifiedUsers)
6005         UnsimplifiedUsers->insert(I);
6006       continue;
6007     }
6008 
6009     Simplified = true;
6010 
6011     // Stash away all the uses of the old instruction so we can check them for
6012     // recursive simplifications after a RAUW. This is cheaper than checking all
6013     // uses of To on the recursive step in most cases.
6014     for (User *U : I->users())
6015       Worklist.insert(cast<Instruction>(U));
6016 
6017     // Replace the instruction with its simplified value.
6018     I->replaceAllUsesWith(SimpleV);
6019 
6020     // Gracefully handle edge cases where the instruction is not wired into any
6021     // parent block.
6022     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
6023         !I->mayHaveSideEffects())
6024       I->eraseFromParent();
6025   }
6026   return Simplified;
6027 }
6028 
6029 bool llvm::replaceAndRecursivelySimplify(
6030     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
6031     const DominatorTree *DT, AssumptionCache *AC,
6032     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
6033   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
6034   assert(SimpleV && "Must provide a simplified value.");
6035   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
6036                                            UnsimplifiedUsers);
6037 }
6038 
6039 namespace llvm {
6040 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
6041   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
6042   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
6043   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
6044   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
6045   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
6046   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
6047   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6048 }
6049 
6050 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
6051                                          const DataLayout &DL) {
6052   return {DL, &AR.TLI, &AR.DT, &AR.AC};
6053 }
6054 
6055 template <class T, class... TArgs>
6056 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
6057                                          Function &F) {
6058   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
6059   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
6060   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
6061   return {F.getParent()->getDataLayout(), TLI, DT, AC};
6062 }
6063 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
6064                                                   Function &);
6065 }
6066