//===- InstructionSimplify.cpp - Fold instruction operands ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements routines for folding instructions into simpler forms // that do not require creating new instructions. This does constant folding // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either // returning a constant ("and i32 %x, 0" -> "0") or an already existing value // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been // simplified: This is usually true and assuming it simplifies the logic (if // they have not been simplified then results are correct but maybe suboptimal). // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CaptureTracking.h" #include "llvm/Analysis/CmpInstAnalysis.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/KnownBits.h" #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "instsimplify" enum { RecursionLimit = 3 }; STATISTIC(NumExpand, "Number of expansions"); STATISTIC(NumReassoc, "Number of reassociations"); static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, const SimplifyQuery &, unsigned); static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, unsigned); static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, const SimplifyQuery &, unsigned); static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, unsigned); static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse); static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); static Value *SimplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, unsigned); static Value *SimplifyGEPInst(Type *, ArrayRef, const SimplifyQuery &, unsigned); static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, Value *FalseVal) { BinaryOperator::BinaryOps BinOpCode; if (auto *BO = dyn_cast(Cond)) BinOpCode = BO->getOpcode(); else return nullptr; CmpInst::Predicate ExpectedPred, Pred1, Pred2; if (BinOpCode == BinaryOperator::Or) { ExpectedPred = ICmpInst::ICMP_NE; } else if (BinOpCode == BinaryOperator::And) { ExpectedPred = ICmpInst::ICMP_EQ; } else return nullptr; // %A = icmp eq %TV, %FV // %B = icmp eq %X, %Y (and one of these is a select operand) // %C = and %A, %B // %D = select %C, %TV, %FV // --> // %FV // %A = icmp ne %TV, %FV // %B = icmp ne %X, %Y (and one of these is a select operand) // %C = or %A, %B // %D = select %C, %TV, %FV // --> // %TV Value *X, *Y; if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), m_Specific(FalseVal)), m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || Pred1 != Pred2 || Pred1 != ExpectedPred) return nullptr; if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; return nullptr; } /// For a boolean type or a vector of boolean type, return false or a vector /// with every element false. static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } /// For a boolean type or a vector of boolean type, return true or a vector /// with every element true. static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS) { CmpInst *Cmp = dyn_cast(V); if (!Cmp) return false; CmpInst::Predicate CPred = Cmp->getPredicate(); Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); if (CPred == Pred && CLHS == LHS && CRHS == RHS) return true; return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && CRHS == LHS; } /// Simplify comparison with true or false branch of select: /// %sel = select i1 %cond, i32 %tv, i32 %fv /// %cmp = icmp sle i32 %sel, %rhs /// Compose new comparison by substituting %sel with either %tv or %fv /// and see if it simplifies. static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse, Constant *TrueOrFalse) { Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); if (SimplifiedCmp == Cond) { // %cmp simplified to the select condition (%cond). return TrueOrFalse; } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { // It didn't simplify. However, if composed comparison is equivalent // to the select condition (%cond) then we can replace it. return TrueOrFalse; } return SimplifiedCmp; } /// Simplify comparison with true branch of select static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse) { return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, getTrue(Cond->getType())); } /// Simplify comparison with false branch of select static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse) { return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, getFalse(Cond->getType())); } /// We know comparison with both branches of select can be simplified, but they /// are not equal. This routine handles some logical simplifications. static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse) { // If the false value simplified to false, then the result of the compare // is equal to "Cond && TCmp". This also catches the case when the false // value simplified to false and the true value to true, returning "Cond". if (match(FCmp, m_Zero())) if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) return V; // If the true value simplified to true, then the result of the compare // is equal to "Cond || FCmp". if (match(TCmp, m_One())) if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) return V; // Finally, if the false value simplified to true and the true value to // false, then the result of the compare is equal to "!Cond". if (match(FCmp, m_One()) && match(TCmp, m_Zero())) if (Value *V = SimplifyXorInst( Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) return V; return nullptr; } /// Does the given value dominate the specified phi node? static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { Instruction *I = dyn_cast(V); if (!I) // Arguments and constants dominate all instructions. return true; // If we are processing instructions (and/or basic blocks) that have not been // fully added to a function, the parent nodes may still be null. Simply // return the conservative answer in these cases. if (!I->getParent() || !P->getParent() || !I->getFunction()) return false; // If we have a DominatorTree then do a precise test. if (DT) return DT->dominates(I, P); // Otherwise, if the instruction is in the entry block and is not an invoke, // then it obviously dominates all phi nodes. if (I->getParent() == &I->getFunction()->getEntryBlock() && !isa(I) && !isa(I)) return true; return false; } /// Try to simplify a binary operator of form "V op OtherOp" where V is /// "(B0 opex B1)" by distributing 'op' across 'opex' as /// "(B0 op OtherOp) opex (B1 op OtherOp)". static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse) { auto *B = dyn_cast(V); if (!B || B->getOpcode() != OpcodeToExpand) return nullptr; Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); if (!L) return nullptr; Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); if (!R) return nullptr; // Does the expanded pair of binops simplify to the existing binop? if ((L == B0 && R == B1) || (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { ++NumExpand; return B; } // Otherwise, return "L op' R" if it simplifies. Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); if (!S) return nullptr; ++NumExpand; return S; } /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by /// distributing op over op'. static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, Value *R, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return nullptr; if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) return V; if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) return V; return nullptr; } /// Generic simplifications for associative binary operations. /// Returns the simpler value, or null if none was found. static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return nullptr; BinaryOperator *Op0 = dyn_cast(LHS); BinaryOperator *Op1 = dyn_cast(RHS); // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. if (Op0 && Op0->getOpcode() == Opcode) { Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1); Value *C = RHS; // Does "B op C" simplify? if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { // It does! Return "A op V" if it simplifies or is already available. // If V equals B then "A op V" is just the LHS. if (V == B) return LHS; // Otherwise return "A op V" if it simplifies. if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { ++NumReassoc; return W; } } } // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. if (Op1 && Op1->getOpcode() == Opcode) { Value *A = LHS; Value *B = Op1->getOperand(0); Value *C = Op1->getOperand(1); // Does "A op B" simplify? if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { // It does! Return "V op C" if it simplifies or is already available. // If V equals B then "V op C" is just the RHS. if (V == B) return RHS; // Otherwise return "V op C" if it simplifies. if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { ++NumReassoc; return W; } } } // The remaining transforms require commutativity as well as associativity. if (!Instruction::isCommutative(Opcode)) return nullptr; // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. if (Op0 && Op0->getOpcode() == Opcode) { Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1); Value *C = RHS; // Does "C op A" simplify? if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { // It does! Return "V op B" if it simplifies or is already available. // If V equals A then "V op B" is just the LHS. if (V == A) return LHS; // Otherwise return "V op B" if it simplifies. if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { ++NumReassoc; return W; } } } // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. if (Op1 && Op1->getOpcode() == Opcode) { Value *A = LHS; Value *B = Op1->getOperand(0); Value *C = Op1->getOperand(1); // Does "C op A" simplify? if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { // It does! Return "B op V" if it simplifies or is already available. // If V equals C then "B op V" is just the RHS. if (V == C) return RHS; // Otherwise return "B op V" if it simplifies. if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { ++NumReassoc; return W; } } } return nullptr; } /// In the case of a binary operation with a select instruction as an operand, /// try to simplify the binop by seeing whether evaluating it on both branches /// of the select results in the same value. Returns the common value if so, /// otherwise returns null. static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return nullptr; SelectInst *SI; if (isa(LHS)) { SI = cast(LHS); } else { assert(isa(RHS) && "No select instruction operand!"); SI = cast(RHS); } // Evaluate the BinOp on the true and false branches of the select. Value *TV; Value *FV; if (SI == LHS) { TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); } else { TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); } // If they simplified to the same value, then return the common value. // If they both failed to simplify then return null. if (TV == FV) return TV; // If one branch simplified to undef, return the other one. if (TV && Q.isUndefValue(TV)) return FV; if (FV && Q.isUndefValue(FV)) return TV; // If applying the operation did not change the true and false select values, // then the result of the binop is the select itself. if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) return SI; // If one branch simplified and the other did not, and the simplified // value is equal to the unsimplified one, return the simplified value. // For example, select (cond, X, X & Z) & Z -> X & Z. if ((FV && !TV) || (TV && !FV)) { // Check that the simplified value has the form "X op Y" where "op" is the // same as the original operation. Instruction *Simplified = dyn_cast(FV ? FV : TV); if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". // We already know that "op" is the same as for the simplified value. See // if the operands match too. If so, return the simplified value. Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; if (Simplified->getOperand(0) == UnsimplifiedLHS && Simplified->getOperand(1) == UnsimplifiedRHS) return Simplified; if (Simplified->isCommutative() && Simplified->getOperand(1) == UnsimplifiedLHS && Simplified->getOperand(0) == UnsimplifiedRHS) return Simplified; } } return nullptr; } /// In the case of a comparison with a select instruction, try to simplify the /// comparison by seeing whether both branches of the select result in the same /// value. Returns the common value if so, otherwise returns null. /// For example, if we have: /// %tmp = select i1 %cmp, i32 1, i32 2 /// %cmp1 = icmp sle i32 %tmp, 3 /// We can simplify %cmp1 to true, because both branches of select are /// less than 3. We compose new comparison by substituting %tmp with both /// branches of select and see if it can be simplified. static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return nullptr; // Make sure the select is on the LHS. if (!isa(LHS)) { std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } assert(isa(LHS) && "Not comparing with a select instruction!"); SelectInst *SI = cast(LHS); Value *Cond = SI->getCondition(); Value *TV = SI->getTrueValue(); Value *FV = SI->getFalseValue(); // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. // Does "cmp TV, RHS" simplify? Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); if (!TCmp) return nullptr; // Does "cmp FV, RHS" simplify? Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); if (!FCmp) return nullptr; // If both sides simplified to the same value, then use it as the result of // the original comparison. if (TCmp == FCmp) return TCmp; // The remaining cases only make sense if the select condition has the same // type as the result of the comparison, so bail out if this is not so. if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); return nullptr; } /// In the case of a binary operation with an operand that is a PHI instruction, /// try to simplify the binop by seeing whether evaluating it on the incoming /// phi values yields the same result for every value. If so returns the common /// value, otherwise returns null. static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return nullptr; PHINode *PI; if (isa(LHS)) { PI = cast(LHS); // Bail out if RHS and the phi may be mutually interdependent due to a loop. if (!valueDominatesPHI(RHS, PI, Q.DT)) return nullptr; } else { assert(isa(RHS) && "No PHI instruction operand!"); PI = cast(RHS); // Bail out if LHS and the phi may be mutually interdependent due to a loop. if (!valueDominatesPHI(LHS, PI, Q.DT)) return nullptr; } // Evaluate the BinOp on the incoming phi values. Value *CommonValue = nullptr; for (Value *Incoming : PI->incoming_values()) { // If the incoming value is the phi node itself, it can safely be skipped. if (Incoming == PI) continue; Value *V = PI == LHS ? SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); // If the operation failed to simplify, or simplified to a different value // to previously, then give up. if (!V || (CommonValue && V != CommonValue)) return nullptr; CommonValue = V; } return CommonValue; } /// In the case of a comparison with a PHI instruction, try to simplify the /// comparison by seeing whether comparing with all of the incoming phi values /// yields the same result every time. If so returns the common result, /// otherwise returns null. static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return nullptr; // Make sure the phi is on the LHS. if (!isa(LHS)) { std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } assert(isa(LHS) && "Not comparing with a phi instruction!"); PHINode *PI = cast(LHS); // Bail out if RHS and the phi may be mutually interdependent due to a loop. if (!valueDominatesPHI(RHS, PI, Q.DT)) return nullptr; // Evaluate the BinOp on the incoming phi values. Value *CommonValue = nullptr; for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { Value *Incoming = PI->getIncomingValue(u); Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); // If the incoming value is the phi node itself, it can safely be skipped. if (Incoming == PI) continue; // Change the context instruction to the "edge" that flows into the phi. // This is important because that is where incoming is actually "evaluated" // even though it is used later somewhere else. Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), MaxRecurse); // If the operation failed to simplify, or simplified to a different value // to previously, then give up. if (!V || (CommonValue && V != CommonValue)) return nullptr; CommonValue = V; } return CommonValue; } static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, Value *&Op0, Value *&Op1, const SimplifyQuery &Q) { if (auto *CLHS = dyn_cast(Op0)) { if (auto *CRHS = dyn_cast(Op1)) return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); // Canonicalize the constant to the RHS if this is a commutative operation. if (Instruction::isCommutative(Opcode)) std::swap(Op0, Op1); } return nullptr; } /// Given operands for an Add, see if we can fold the result. /// If not, this returns null. static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) return C; // X + undef -> undef if (Q.isUndefValue(Op1)) return Op1; // X + 0 -> X if (match(Op1, m_Zero())) return Op0; // If two operands are negative, return 0. if (isKnownNegation(Op0, Op1)) return Constant::getNullValue(Op0->getType()); // X + (Y - X) -> Y // (Y - X) + X -> Y // Eg: X + -X -> 0 Value *Y = nullptr; if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) return Y; // X + ~X -> -1 since ~X = -X-1 Type *Ty = Op0->getType(); if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) return Constant::getAllOnesValue(Ty); // add nsw/nuw (xor Y, signmask), signmask --> Y // The no-wrapping add guarantees that the top bit will be set by the add. // Therefore, the xor must be clearing the already set sign bit of Y. if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && match(Op0, m_Xor(m_Value(Y), m_SignMask()))) return Y; // add nuw %x, -1 -> -1, because %x can only be 0. if (IsNUW && match(Op1, m_AllOnes())) return Op1; // Which is -1. /// i1 add -> xor. if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) return V; // Try some generic simplifications for associative operations. if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) return V; // Threading Add over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A + select(cond, B, C)" means evaluating // "A+B" and "A+C" and seeing if they are equal; but they are equal if and // only if B and C are equal. If B and C are equal then (since we assume // that operands have already been simplified) "select(cond, B, C)" should // have been simplified to the common value of B and C already. Analysing // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly // for threading over phi nodes. return nullptr; } Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Query) { return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); } /// Compute the base pointer and cumulative constant offsets for V. /// /// This strips all constant offsets off of V, leaving it the base pointer, and /// accumulates the total constant offset applied in the returned constant. It /// returns 0 if V is not a pointer, and returns the constant '0' if there are /// no constant offsets applied. /// /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. /// folding. static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, bool AllowNonInbounds = false) { assert(V->getType()->isPtrOrPtrVectorTy()); Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); // As that strip may trace through `addrspacecast`, need to sext or trunc // the offset calculated. IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); if (VectorType *VecTy = dyn_cast(V->getType())) return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); return OffsetIntPtr; } /// Compute the constant difference between two pointer values. /// If the difference is not a constant, returns zero. static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, Value *RHS) { Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); // If LHS and RHS are not related via constant offsets to the same base // value, there is nothing we can do here. if (LHS != RHS) return nullptr; // Otherwise, the difference of LHS - RHS can be computed as: // LHS - RHS // = (LHSOffset + Base) - (RHSOffset + Base) // = LHSOffset - RHSOffset return ConstantExpr::getSub(LHSOffset, RHSOffset); } /// Given operands for a Sub, see if we can fold the result. /// If not, this returns null. static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) return C; // X - undef -> undef // undef - X -> undef if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) return UndefValue::get(Op0->getType()); // X - 0 -> X if (match(Op1, m_Zero())) return Op0; // X - X -> 0 if (Op0 == Op1) return Constant::getNullValue(Op0->getType()); // Is this a negation? if (match(Op0, m_Zero())) { // 0 - X -> 0 if the sub is NUW. if (isNUW) return Constant::getNullValue(Op0->getType()); KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (Known.Zero.isMaxSignedValue()) { // Op1 is either 0 or the minimum signed value. If the sub is NSW, then // Op1 must be 0 because negating the minimum signed value is undefined. if (isNSW) return Constant::getNullValue(Op0->getType()); // 0 - X -> X if X is 0 or the minimum signed value. return Op1; } } // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. // For example, (X + Y) - Y -> X; (Y + X) - Y -> X Value *X = nullptr, *Y = nullptr, *Z = Op1; if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z // See if "V === Y - Z" simplifies. if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) // It does! Now see if "X + V" simplifies. if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; } // See if "V === X - Z" simplifies. if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) // It does! Now see if "Y + V" simplifies. if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; } } // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. // For example, X - (X + 1) -> -1 X = Op0; if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) // See if "V === X - Y" simplifies. if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) // It does! Now see if "V - Z" simplifies. if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; } // See if "V === X - Z" simplifies. if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) // It does! Now see if "V - Y" simplifies. if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; } } // Z - (X - Y) -> (Z - X) + Y if everything simplifies. // For example, X - (X - Y) -> Y. Z = Op0; if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) // See if "V === Z - X" simplifies. if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) // It does! Now see if "V + Y" simplifies. if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { // It does, we successfully reassociated! ++NumReassoc; return W; } // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && match(Op1, m_Trunc(m_Value(Y)))) if (X->getType() == Y->getType()) // See if "V === X - Y" simplifies. if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) // It does! Now see if "trunc V" simplifies. if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), Q, MaxRecurse - 1)) // It does, return the simplified "trunc V". return W; // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) if (Constant *Result = computePointerDifference(Q.DL, X, Y)) return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); // i1 sub -> xor. if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) return V; // Threading Sub over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A - select(cond, B, C)" means evaluating // "A-B" and "A-C" and seeing if they are equal; but they are equal if and // only if B and C are equal. If B and C are equal then (since we assume // that operands have already been simplified) "select(cond, B, C)" should // have been simplified to the common value of B and C already. Analysing // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly // for threading over phi nodes. return nullptr; } Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const SimplifyQuery &Q) { return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); } /// Given operands for a Mul, see if we can fold the result. /// If not, this returns null. static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) return C; // X * undef -> 0 // X * 0 -> 0 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) return Constant::getNullValue(Op0->getType()); // X * 1 -> X if (match(Op1, m_One())) return Op0; // (X / Y) * Y -> X if the division is exact. Value *X = nullptr; if (Q.IIQ.UseInstrInfo && (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) return X; // i1 mul -> and. if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) return V; // Try some generic simplifications for associative operations. if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) return V; // Mul distributes over Add. Try some generic simplifications based on this. if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, Q, MaxRecurse)) return V; // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) return V; return nullptr; } Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); } /// Check for common or similar folds of integer division or integer remainder. /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv, const SimplifyQuery &Q) { Type *Ty = Op0->getType(); // X / undef -> poison // X % undef -> poison if (Q.isUndefValue(Op1)) return PoisonValue::get(Ty); // X / 0 -> poison // X % 0 -> poison // We don't need to preserve faults! if (match(Op1, m_Zero())) return PoisonValue::get(Ty); // If any element of a constant divisor fixed width vector is zero or undef // the behavior is undefined and we can fold the whole op to poison. auto *Op1C = dyn_cast(Op1); auto *VTy = dyn_cast(Ty); if (Op1C && VTy) { unsigned NumElts = VTy->getNumElements(); for (unsigned i = 0; i != NumElts; ++i) { Constant *Elt = Op1C->getAggregateElement(i); if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) return PoisonValue::get(Ty); } } // undef / X -> 0 // undef % X -> 0 if (Q.isUndefValue(Op0)) return Constant::getNullValue(Ty); // 0 / X -> 0 // 0 % X -> 0 if (match(Op0, m_Zero())) return Constant::getNullValue(Op0->getType()); // X / X -> 1 // X % X -> 0 if (Op0 == Op1) return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); // X / 1 -> X // X % 1 -> 0 // If this is a boolean op (single-bit element type), we can't have // division-by-zero or remainder-by-zero, so assume the divisor is 1. // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. Value *X; if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) return IsDiv ? Op0 : Constant::getNullValue(Ty); return nullptr; } /// Given a predicate and two operands, return true if the comparison is true. /// This is a helper for div/rem simplification where we return some other value /// when we can prove a relationship between the operands. static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); Constant *C = dyn_cast_or_null(V); return (C && C->isAllOnesValue()); } /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer /// to simplify X % Y to X. static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, unsigned MaxRecurse, bool IsSigned) { // Recursion is always used, so bail out at once if we already hit the limit. if (!MaxRecurse--) return false; if (IsSigned) { // |X| / |Y| --> 0 // // We require that 1 operand is a simple constant. That could be extended to // 2 variables if we computed the sign bit for each. // // Make sure that a constant is not the minimum signed value because taking // the abs() of that is undefined. Type *Ty = X->getType(); const APInt *C; if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { // Is the variable divisor magnitude always greater than the constant // dividend magnitude? // |Y| > |C| --> Y < -abs(C) or Y > abs(C) Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) return true; } if (match(Y, m_APInt(C))) { // Special-case: we can't take the abs() of a minimum signed value. If // that's the divisor, then all we have to do is prove that the dividend // is also not the minimum signed value. if (C->isMinSignedValue()) return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); // Is the variable dividend magnitude always less than the constant // divisor magnitude? // |X| < |C| --> X > -abs(C) and X < abs(C) Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) return true; } return false; } // IsSigned == false. // Is the dividend unsigned less than the divisor? return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); } /// These are simplifications common to SDiv and UDiv. static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) return C; if (Value *V = simplifyDivRem(Op0, Op1, true, Q)) return V; bool IsSigned = Opcode == Instruction::SDiv; // (X * Y) / Y -> X if the multiplication does not overflow. Value *X; if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { auto *Mul = cast(Op0); // If the Mul does not overflow, then we are good to go. if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) return X; // If X has the form X = A / Y, then X * Y cannot overflow. if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) return X; } // (X rem Y) / Y -> 0 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) return Constant::getNullValue(Op0->getType()); // (X /u C1) /u C2 -> 0 if C1 * C2 overflow ConstantInt *C1, *C2; if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && match(Op1, m_ConstantInt(C2))) { bool Overflow; (void)C1->getValue().umul_ov(C2->getValue(), Overflow); if (Overflow) return Constant::getNullValue(Op0->getType()); } // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) return V; if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) return Constant::getNullValue(Op0->getType()); return nullptr; } /// These are simplifications common to SRem and URem. static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) return C; if (Value *V = simplifyDivRem(Op0, Op1, false, Q)) return V; // (X % Y) % Y -> X % Y if ((Opcode == Instruction::SRem && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || (Opcode == Instruction::URem && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) return Op0; // (X << Y) % X -> 0 if (Q.IIQ.UseInstrInfo && ((Opcode == Instruction::SRem && match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || (Opcode == Instruction::URem && match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) return Constant::getNullValue(Op0->getType()); // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) return V; // If X / Y == 0, then X % Y == X. if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) return Op0; return nullptr; } /// Given operands for an SDiv, see if we can fold the result. /// If not, this returns null. static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { // If two operands are negated and no signed overflow, return -1. if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) return Constant::getAllOnesValue(Op0->getType()); return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); } Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); } /// Given operands for a UDiv, see if we can fold the result. /// If not, this returns null. static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); } Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); } /// Given operands for an SRem, see if we can fold the result. /// If not, this returns null. static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { // If the divisor is 0, the result is undefined, so assume the divisor is -1. // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 Value *X; if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) return ConstantInt::getNullValue(Op0->getType()); // If the two operands are negated, return 0. if (isKnownNegation(Op0, Op1)) return ConstantInt::getNullValue(Op0->getType()); return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); } Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); } /// Given operands for a URem, see if we can fold the result. /// If not, this returns null. static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); } Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); } /// Returns true if a shift by \c Amount always yields poison. static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { Constant *C = dyn_cast(Amount); if (!C) return false; // X shift by undef -> poison because it may shift by the bitwidth. if (Q.isUndefValue(C)) return true; // Shifting by the bitwidth or more is undefined. if (ConstantInt *CI = dyn_cast(C)) if (CI->getValue().getLimitedValue() >= CI->getType()->getScalarSizeInBits()) return true; // If all lanes of a vector shift are undefined the whole shift is. if (isa(C) || isa(C)) { for (unsigned I = 0, E = cast(C->getType())->getNumElements(); I != E; ++I) if (!isPoisonShift(C->getAggregateElement(I), Q)) return false; return true; } return false; } /// Given operands for an Shl, LShr or AShr, see if we can fold the result. /// If not, this returns null. static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) return C; // 0 shift by X -> 0 if (match(Op0, m_Zero())) return Constant::getNullValue(Op0->getType()); // X shift by 0 -> X // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones // would be poison. Value *X; if (match(Op1, m_Zero()) || (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) return Op0; // Fold undefined shifts. if (isPoisonShift(Op1, Q)) return PoisonValue::get(Op0->getType()); // If the operation is with the result of a select instruction, check whether // operating on either branch of the select always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) return V; // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) return V; // If any bits in the shift amount make that value greater than or equal to // the number of bits in the type, the shift is undefined. KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (Known.One.getLimitedValue() >= Known.getBitWidth()) return PoisonValue::get(Op0->getType()); // If all valid bits in the shift amount are known zero, the first operand is // unchanged. unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); if (Known.countMinTrailingZeros() >= NumValidShiftBits) return Op0; return nullptr; } /// Given operands for an Shl, LShr or AShr, see if we can /// fold the result. If not, this returns null. static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool isExact, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) return V; // X >> X -> 0 if (Op0 == Op1) return Constant::getNullValue(Op0->getType()); // undef >> X -> 0 // undef >> X -> undef (if it's exact) if (Q.isUndefValue(Op0)) return isExact ? Op0 : Constant::getNullValue(Op0->getType()); // The low bit cannot be shifted out of an exact shift if it is set. if (isExact) { KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); if (Op0Known.One[0]) return Op0; } return nullptr; } /// Given operands for an Shl, see if we can fold the result. /// If not, this returns null. static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) return V; // undef << X -> 0 // undef << X -> undef if (if it's NSW/NUW) if (Q.isUndefValue(Op0)) return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); // (X >> A) << A -> X Value *X; if (Q.IIQ.UseInstrInfo && match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) return X; // shl nuw i8 C, %x -> C iff C has sign bit set. if (isNUW && match(Op0, m_Negative())) return Op0; // NOTE: could use computeKnownBits() / LazyValueInfo, // but the cost-benefit analysis suggests it isn't worth it. return nullptr; } Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, const SimplifyQuery &Q) { return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); } /// Given operands for an LShr, see if we can fold the result. /// If not, this returns null. static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, MaxRecurse)) return V; // (X << A) >> A -> X Value *X; if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) return X; // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. // We can return X as we do in the above case since OR alters no bits in X. // SimplifyDemandedBits in InstCombine can do more general optimization for // bit manipulation. This pattern aims to provide opportunities for other // optimizers by supporting a simple but common case in InstSimplify. Value *Y; const APInt *ShRAmt, *ShLAmt; if (match(Op1, m_APInt(ShRAmt)) && match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && *ShRAmt == *ShLAmt) { const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); const unsigned Width = Op0->getType()->getScalarSizeInBits(); const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); if (ShRAmt->uge(EffWidthY)) return X; } return nullptr; } Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, const SimplifyQuery &Q) { return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); } /// Given operands for an AShr, see if we can fold the result. /// If not, this returns null. static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, MaxRecurse)) return V; // all ones >>a X -> -1 // Do not return Op0 because it may contain undef elements if it's a vector. if (match(Op0, m_AllOnes())) return Constant::getAllOnesValue(Op0->getType()); // (X << A) >> A -> X Value *X; if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) return X; // Arithmetic shifting an all-sign-bit value is a no-op. unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (NumSignBits == Op0->getType()->getScalarSizeInBits()) return Op0; return nullptr; } Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, const SimplifyQuery &Q) { return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); } /// Commuted variants are assumed to be handled by calling this function again /// with the parameters swapped. static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q) { Value *X, *Y; ICmpInst::Predicate EqPred; if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || !ICmpInst::isEquality(EqPred)) return nullptr; ICmpInst::Predicate UnsignedPred; Value *A, *B; // Y = (A - B); if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { if (match(UnsignedICmp, m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && ICmpInst::isUnsigned(UnsignedPred)) { // A >=/<= B || (A - B) != 0 <--> true if ((UnsignedPred == ICmpInst::ICMP_UGE || UnsignedPred == ICmpInst::ICMP_ULE) && EqPred == ICmpInst::ICMP_NE && !IsAnd) return ConstantInt::getTrue(UnsignedICmp->getType()); // A B && (A - B) == 0 <--> false if ((UnsignedPred == ICmpInst::ICMP_ULT || UnsignedPred == ICmpInst::ICMP_UGT) && EqPred == ICmpInst::ICMP_EQ && IsAnd) return ConstantInt::getFalse(UnsignedICmp->getType()); // A B && (A - B) != 0 <--> A B // A B || (A - B) != 0 <--> (A - B) != 0 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || UnsignedPred == ICmpInst::ICMP_UGT)) return IsAnd ? UnsignedICmp : ZeroICmp; // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 // A <=/>= B || (A - B) == 0 <--> A <=/>= B if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGE)) return IsAnd ? ZeroICmp : UnsignedICmp; } // Given Y = (A - B) // Y >= A && Y != 0 --> Y >= A iff B != 0 // Y < A || Y == 0 --> Y < A iff B != 0 if (match(UnsignedICmp, m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && EqPred == ICmpInst::ICMP_NE && isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) return UnsignedICmp; if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && EqPred == ICmpInst::ICMP_EQ && isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) return UnsignedICmp; } } if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && ICmpInst::isUnsigned(UnsignedPred)) ; else if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && ICmpInst::isUnsigned(UnsignedPred)) UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); else return nullptr; // X > Y && Y == 0 --> Y == 0 iff X != 0 // X > Y || Y == 0 --> X > Y iff X != 0 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) return IsAnd ? ZeroICmp : UnsignedICmp; // X <= Y && Y != 0 --> X <= Y iff X != 0 // X <= Y || Y != 0 --> Y != 0 iff X != 0 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) return IsAnd ? UnsignedICmp : ZeroICmp; // The transforms below here are expected to be handled more generally with // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, // these are candidates for removal. // X < Y && Y != 0 --> X < Y // X < Y || Y != 0 --> Y != 0 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) return IsAnd ? UnsignedICmp : ZeroICmp; // X >= Y && Y == 0 --> Y == 0 // X >= Y || Y == 0 --> X >= Y if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) return IsAnd ? ZeroICmp : UnsignedICmp; // X < Y && Y == 0 --> false if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && IsAnd) return getFalse(UnsignedICmp->getType()); // X >= Y || Y != 0 --> true if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && !IsAnd) return getTrue(UnsignedICmp->getType()); return nullptr; } /// Commuted variants are assumed to be handled by calling this function again /// with the parameters swapped. static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { ICmpInst::Predicate Pred0, Pred1; Value *A ,*B; if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) return nullptr; // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we // can eliminate Op1 from this 'and'. if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) return Op0; // Check for any combination of predicates that are guaranteed to be disjoint. if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) return getFalse(Op0->getType()); return nullptr; } /// Commuted variants are assumed to be handled by calling this function again /// with the parameters swapped. static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { ICmpInst::Predicate Pred0, Pred1; Value *A ,*B; if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) return nullptr; // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we // can eliminate Op0 from this 'or'. if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) return Op1; // Check for any combination of predicates that cover the entire range of // possibilities. if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) return getTrue(Op0->getType()); return nullptr; } /// Test if a pair of compares with a shared operand and 2 constants has an /// empty set intersection, full set union, or if one compare is a superset of /// the other. static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd) { // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) return nullptr; const APInt *C0, *C1; if (!match(Cmp0->getOperand(1), m_APInt(C0)) || !match(Cmp1->getOperand(1), m_APInt(C1))) return nullptr; auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); // For and-of-compares, check if the intersection is empty: // (icmp X, C0) && (icmp X, C1) --> empty set --> false if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) return getFalse(Cmp0->getType()); // For or-of-compares, check if the union is full: // (icmp X, C0) || (icmp X, C1) --> full set --> true if (!IsAnd && Range0.unionWith(Range1).isFullSet()) return getTrue(Cmp0->getType()); // Is one range a superset of the other? // If this is and-of-compares, take the smaller set: // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 // If this is or-of-compares, take the larger set: // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 if (Range0.contains(Range1)) return IsAnd ? Cmp1 : Cmp0; if (Range1.contains(Range0)) return IsAnd ? Cmp0 : Cmp1; return nullptr; } static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd) { ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); if (!match(Cmp0->getOperand(1), m_Zero()) || !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) return nullptr; if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) return nullptr; // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". Value *X = Cmp0->getOperand(0); Value *Y = Cmp1->getOperand(0); // If one of the compares is a masked version of a (not) null check, then // that compare implies the other, so we eliminate the other. Optionally, look // through a pointer-to-int cast to match a null check of a pointer type. // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 if (match(Y, m_c_And(m_Specific(X), m_Value())) || match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) return Cmp1; // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 if (match(X, m_c_And(m_Specific(Y), m_Value())) || match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) return Cmp0; return nullptr; } static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ) { // (icmp (add V, C0), C1) & (icmp V, C0) ICmpInst::Predicate Pred0, Pred1; const APInt *C0, *C1; Value *V; if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) return nullptr; if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) return nullptr; auto *AddInst = cast(Op0->getOperand(0)); if (AddInst->getOperand(1) != Op1->getOperand(1)) return nullptr; Type *ITy = Op0->getType(); bool isNSW = IIQ.hasNoSignedWrap(AddInst); bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); const APInt Delta = *C1 - *C0; if (C0->isStrictlyPositive()) { if (Delta == 2) { if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) return getFalse(ITy); if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) return getFalse(ITy); } if (Delta == 1) { if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) return getFalse(ITy); if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) return getFalse(ITy); } } if (C0->getBoolValue() && isNUW) { if (Delta == 2) if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) return getFalse(ITy); if (Delta == 1) if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) return getFalse(ITy); } return nullptr; } /// Try to eliminate compares with signed or unsigned min/max constants. static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd) { // Canonicalize an equality compare as Cmp0. if (Cmp1->isEquality()) std::swap(Cmp0, Cmp1); if (!Cmp0->isEquality()) return nullptr; // The non-equality compare must include a common operand (X). Canonicalize // the common operand as operand 0 (the predicate is swapped if the common // operand was operand 1). ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); Value *X = Cmp0->getOperand(0); ICmpInst::Predicate Pred1; bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) return nullptr; if (ICmpInst::isEquality(Pred1)) return nullptr; // The equality compare must be against a constant. Flip bits if we matched // a bitwise not. Convert a null pointer constant to an integer zero value. APInt MinMaxC; const APInt *C; if (match(Cmp0->getOperand(1), m_APInt(C))) MinMaxC = HasNotOp ? ~*C : *C; else if (isa(Cmp0->getOperand(1))) MinMaxC = APInt::getNullValue(8); else return nullptr; // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. if (!IsAnd) { Pred0 = ICmpInst::getInversePredicate(Pred0); Pred1 = ICmpInst::getInversePredicate(Pred1); } // Normalize to unsigned compare and unsigned min/max value. // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 if (ICmpInst::isSigned(Pred1)) { Pred1 = ICmpInst::getUnsignedPredicate(Pred1); MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); } // (X != MAX) && (X < Y) --> X < Y // (X == MAX) || (X >= Y) --> X >= Y if (MinMaxC.isMaxValue()) if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) return Cmp1; // (X != MIN) && (X > Y) --> X > Y // (X == MIN) || (X <= Y) --> X <= Y if (MinMaxC.isMinValue()) if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) return Cmp1; return nullptr; } static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q) { if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) return X; if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) return X; if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) return X; if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) return X; if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) return X; if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) return X; if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) return X; if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) return X; if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) return X; return nullptr; } static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ) { // (icmp (add V, C0), C1) | (icmp V, C0) ICmpInst::Predicate Pred0, Pred1; const APInt *C0, *C1; Value *V; if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) return nullptr; if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) return nullptr; auto *AddInst = cast(Op0->getOperand(0)); if (AddInst->getOperand(1) != Op1->getOperand(1)) return nullptr; Type *ITy = Op0->getType(); bool isNSW = IIQ.hasNoSignedWrap(AddInst); bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); const APInt Delta = *C1 - *C0; if (C0->isStrictlyPositive()) { if (Delta == 2) { if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) return getTrue(ITy); if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) return getTrue(ITy); } if (Delta == 1) { if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) return getTrue(ITy); if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) return getTrue(ITy); } } if (C0->getBoolValue() && isNUW) { if (Delta == 2) if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) return getTrue(ITy); if (Delta == 1) if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) return getTrue(ITy); } return nullptr; } static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q) { if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) return X; if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) return X; if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) return X; if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) return X; if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) return X; if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) return X; if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) return X; if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) return X; if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) return X; return nullptr; } static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); if (LHS0->getType() != RHS0->getType()) return nullptr; FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) return RHS; // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) return LHS; } return nullptr; } static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, Value *Op1, bool IsAnd) { // Look through casts of the 'and' operands to find compares. auto *Cast0 = dyn_cast(Op0); auto *Cast1 = dyn_cast(Op1); if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && Cast0->getSrcTy() == Cast1->getSrcTy()) { Op0 = Cast0->getOperand(0); Op1 = Cast1->getOperand(0); } Value *V = nullptr; auto *ICmp0 = dyn_cast(Op0); auto *ICmp1 = dyn_cast(Op1); if (ICmp0 && ICmp1) V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) : simplifyOrOfICmps(ICmp0, ICmp1, Q); auto *FCmp0 = dyn_cast(Op0); auto *FCmp1 = dyn_cast(Op1); if (FCmp0 && FCmp1) V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); if (!V) return nullptr; if (!Cast0) return V; // If we looked through casts, we can only handle a constant simplification // because we are not allowed to create a cast instruction here. if (auto *C = dyn_cast(V)) return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); return nullptr; } /// Check that the Op1 is in expected form, i.e.: /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) /// %Op1 = extractvalue { i4, i1 } %Agg, 1 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, Value *X) { auto *Extract = dyn_cast(Op1); // We should only be extracting the overflow bit. if (!Extract || !Extract->getIndices().equals(1)) return false; Value *Agg = Extract->getAggregateOperand(); // This should be a multiplication-with-overflow intrinsic. if (!match(Agg, m_CombineOr(m_Intrinsic(), m_Intrinsic()))) return false; // One of its multipliers should be the value we checked for zero before. if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), m_Argument<1>(m_Specific(X))))) return false; return true; } /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some /// other form of check, e.g. one that was using division; it may have been /// guarded against division-by-zero. We can drop that check now. /// Look for: /// %Op0 = icmp ne i4 %X, 0 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) /// %Op1 = extractvalue { i4, i1 } %Agg, 1 /// %??? = and i1 %Op0, %Op1 /// We can just return %Op1 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { ICmpInst::Predicate Pred; Value *X; if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || Pred != ICmpInst::Predicate::ICMP_NE) return nullptr; // Is Op1 in expected form? if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) return nullptr; // Can omit 'and', and just return the overflow bit. return Op1; } /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some /// other form of check, e.g. one that was using division; it may have been /// guarded against division-by-zero. We can drop that check now. /// Look for: /// %Op0 = icmp eq i4 %X, 0 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) /// %Op1 = extractvalue { i4, i1 } %Agg, 1 /// %NotOp1 = xor i1 %Op1, true /// %or = or i1 %Op0, %NotOp1 /// We can just return %NotOp1 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, Value *NotOp1) { ICmpInst::Predicate Pred; Value *X; if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || Pred != ICmpInst::Predicate::ICMP_EQ) return nullptr; // We expect the other hand of an 'or' to be a 'not'. Value *Op1; if (!match(NotOp1, m_Not(m_Value(Op1)))) return nullptr; // Is Op1 in expected form? if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) return nullptr; // Can omit 'and', and just return the inverted overflow bit. return NotOp1; } /// Given a bitwise logic op, check if the operands are add/sub with a common /// source value and inverted constant (identity: C - X -> ~(X + ~C)). static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, Instruction::BinaryOps Opcode) { assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); Value *X; Constant *C1, *C2; if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { if (ConstantExpr::getNot(C1) == C2) { // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 Type *Ty = Op0->getType(); return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) : ConstantInt::getAllOnesValue(Ty); } } return nullptr; } /// Given operands for an And, see if we can fold the result. /// If not, this returns null. static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) return C; // X & undef -> 0 if (Q.isUndefValue(Op1)) return Constant::getNullValue(Op0->getType()); // X & X = X if (Op0 == Op1) return Op0; // X & 0 = 0 if (match(Op1, m_Zero())) return Constant::getNullValue(Op0->getType()); // X & -1 = X if (match(Op1, m_AllOnes())) return Op0; // A & ~A = ~A & A = 0 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) return Constant::getNullValue(Op0->getType()); // (A | ?) & A = A if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) return Op1; // A & (A | ?) = A if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) return Op0; if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) return V; // A mask that only clears known zeros of a shifted value is a no-op. Value *X; const APInt *Mask; const APInt *ShAmt; if (match(Op1, m_APInt(Mask))) { // If all bits in the inverted and shifted mask are clear: // and (shl X, ShAmt), Mask --> shl X, ShAmt if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && (~(*Mask)).lshr(*ShAmt).isNullValue()) return Op0; // If all bits in the inverted and shifted mask are clear: // and (lshr X, ShAmt), Mask --> lshr X, ShAmt if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && (~(*Mask)).shl(*ShAmt).isNullValue()) return Op0; } // If we have a multiplication overflow check that is being 'and'ed with a // check that one of the multipliers is not zero, we can omit the 'and', and // only keep the overflow check. if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) return V; if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) return V; // A & (-A) = A if A is a power of two or zero. if (match(Op0, m_Neg(m_Specific(Op1))) || match(Op1, m_Neg(m_Specific(Op0)))) { if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) return Op0; if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) return Op1; } // This is a similar pattern used for checking if a value is a power-of-2: // (A - 1) & A --> 0 (if A is a power-of-2 or 0) // A & (A - 1) --> 0 (if A is a power-of-2 or 0) if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) return Constant::getNullValue(Op1->getType()); if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) return Constant::getNullValue(Op0->getType()); if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) return V; // Try some generic simplifications for associative operations. if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) return V; // And distributes over Or. Try some generic simplifications based on this. if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, Instruction::Or, Q, MaxRecurse)) return V; // And distributes over Xor. Try some generic simplifications based on this. if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, Instruction::Xor, Q, MaxRecurse)) return V; if (isa(Op0) || isa(Op1)) { if (Op0->getType()->isIntOrIntVectorTy(1)) { // A & (A && B) -> A && B if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) return Op1; else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) return Op0; } // If the operation is with the result of a select instruction, check // whether operating on either branch of the select always yields the same // value. if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) return V; } // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) return V; // Assuming the effective width of Y is not larger than A, i.e. all bits // from X and Y are disjoint in (X << A) | Y, // if the mask of this AND op covers all bits of X or Y, while it covers // no bits from the other, we can bypass this AND op. E.g., // ((X << A) | Y) & Mask -> Y, // if Mask = ((1 << effective_width_of(Y)) - 1) // ((X << A) | Y) & Mask -> X << A, // if Mask = ((1 << effective_width_of(X)) - 1) << A // SimplifyDemandedBits in InstCombine can optimize the general case. // This pattern aims to help other passes for a common case. Value *Y, *XShifted; if (match(Op1, m_APInt(Mask)) && match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), m_Value(XShifted)), m_Value(Y)))) { const unsigned Width = Op0->getType()->getScalarSizeInBits(); const unsigned ShftCnt = ShAmt->getLimitedValue(Width); const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); if (EffWidthY <= ShftCnt) { const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; // If the mask is extracting all bits from X or Y as is, we can skip // this AND op. if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) return Y; if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) return XShifted; } } return nullptr; } Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); } /// Given operands for an Or, see if we can fold the result. /// If not, this returns null. static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) return C; // X | undef -> -1 // X | -1 = -1 // Do not return Op1 because it may contain undef elements if it's a vector. if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) return Constant::getAllOnesValue(Op0->getType()); // X | X = X // X | 0 = X if (Op0 == Op1 || match(Op1, m_Zero())) return Op0; // A | ~A = ~A | A = -1 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) return Constant::getAllOnesValue(Op0->getType()); // (A & ?) | A = A if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) return Op1; // A | (A & ?) = A if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) return Op0; // ~(A & ?) | A = -1 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) return Constant::getAllOnesValue(Op1->getType()); // A | ~(A & ?) = -1 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) return Constant::getAllOnesValue(Op0->getType()); if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) return V; Value *A, *B, *NotA; // (A & ~B) | (A ^ B) -> (A ^ B) // (~B & A) | (A ^ B) -> (A ^ B) // (A & ~B) | (B ^ A) -> (B ^ A) // (~B & A) | (B ^ A) -> (B ^ A) if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) return Op1; // Commute the 'or' operands. // (A ^ B) | (A & ~B) -> (A ^ B) // (A ^ B) | (~B & A) -> (A ^ B) // (B ^ A) | (A & ~B) -> (B ^ A) // (B ^ A) | (~B & A) -> (B ^ A) if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) return Op0; // (A & B) | (~A ^ B) -> (~A ^ B) // (B & A) | (~A ^ B) -> (~A ^ B) // (A & B) | (B ^ ~A) -> (B ^ ~A) // (B & A) | (B ^ ~A) -> (B ^ ~A) if (match(Op0, m_And(m_Value(A), m_Value(B))) && (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) return Op1; // Commute the 'or' operands. // (~A ^ B) | (A & B) -> (~A ^ B) // (~A ^ B) | (B & A) -> (~A ^ B) // (B ^ ~A) | (A & B) -> (B ^ ~A) // (B ^ ~A) | (B & A) -> (B ^ ~A) if (match(Op1, m_And(m_Value(A), m_Value(B))) && (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) return Op0; // (~A & B) | ~(A | B) --> ~A // (~A & B) | ~(B | A) --> ~A // (B & ~A) | ~(A | B) --> ~A // (B & ~A) | ~(B | A) --> ~A if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), m_Value(B))) && match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) return NotA; // Commute the 'or' operands. // ~(A | B) | (~A & B) --> ~A // ~(B | A) | (~A & B) --> ~A // ~(A | B) | (B & ~A) --> ~A // ~(B | A) | (B & ~A) --> ~A if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), m_Value(B))) && match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) return NotA; if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) return V; // If we have a multiplication overflow check that is being 'and'ed with a // check that one of the multipliers is not zero, we can omit the 'and', and // only keep the overflow check. if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) return V; if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) return V; // Try some generic simplifications for associative operations. if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) return V; // Or distributes over And. Try some generic simplifications based on this. if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, MaxRecurse)) return V; if (isa(Op0) || isa(Op1)) { if (Op0->getType()->isIntOrIntVectorTy(1)) { // A | (A || B) -> A || B if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) return Op1; else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) return Op0; } // If the operation is with the result of a select instruction, check // whether operating on either branch of the select always yields the same // value. if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) return V; } // (A & C1)|(B & C2) const APInt *C1, *C2; if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && match(Op1, m_And(m_Value(B), m_APInt(C2)))) { if (*C1 == ~*C2) { // (A & C1)|(B & C2) // If we have: ((V + N) & C1) | (V & C2) // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 // replace with V+N. Value *N; if (C2->isMask() && // C2 == 0+1+ match(A, m_c_Add(m_Specific(B), m_Value(N)))) { // Add commutes, try both ways. if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) return A; } // Or commutes, try both ways. if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { // Add commutes, try both ways. if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) return B; } } } // If the operation is with the result of a phi instruction, check whether // operating on all incoming values of the phi always yields the same value. if (isa(Op0) || isa(Op1)) if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) return V; return nullptr; } Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); } /// Given operands for a Xor, see if we can fold the result. /// If not, this returns null. static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) return C; // A ^ undef -> undef if (Q.isUndefValue(Op1)) return Op1; // A ^ 0 = A if (match(Op1, m_Zero())) return Op0; // A ^ A = 0 if (Op0 == Op1) return Constant::getNullValue(Op0->getType()); // A ^ ~A = ~A ^ A = -1 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) return Constant::getAllOnesValue(Op0->getType()); if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) return V; // Try some generic simplifications for associative operations. if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) return V; // Threading Xor over selects and phi nodes is pointless, so don't bother. // Threading over the select in "A ^ select(cond, B, C)" means evaluating // "A^B" and "A^C" and seeing if they are equal; but they are equal if and // only if B and C are equal. If B and C are equal then (since we assume // that operands have already been simplified) "select(cond, B, C)" should // have been simplified to the common value of B and C already. Analysing // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly // for threading over phi nodes. return nullptr; } Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); } static Type *GetCompareTy(Value *Op) { return CmpInst::makeCmpResultType(Op->getType()); } /// Rummage around inside V looking for something equivalent to the comparison /// "LHS Pred RHS". Return such a value if found, otherwise return null. /// Helper function for analyzing max/min idioms. static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS) { SelectInst *SI = dyn_cast(V); if (!SI) return nullptr; CmpInst *Cmp = dyn_cast(SI->getCondition()); if (!Cmp) return nullptr; Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) return Cmp; if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && LHS == CmpRHS && RHS == CmpLHS) return Cmp; return nullptr; } // A significant optimization not implemented here is assuming that alloca // addresses are not equal to incoming argument values. They don't *alias*, // as we say, but that doesn't mean they aren't equal, so we take a // conservative approach. // // This is inspired in part by C++11 5.10p1: // "Two pointers of the same type compare equal if and only if they are both // null, both point to the same function, or both represent the same // address." // // This is pretty permissive. // // It's also partly due to C11 6.5.9p6: // "Two pointers compare equal if and only if both are null pointers, both are // pointers to the same object (including a pointer to an object and a // subobject at its beginning) or function, both are pointers to one past the // last element of the same array object, or one is a pointer to one past the // end of one array object and the other is a pointer to the start of a // different array object that happens to immediately follow the first array // object in the address space.) // // C11's version is more restrictive, however there's no reason why an argument // couldn't be a one-past-the-end value for a stack object in the caller and be // equal to the beginning of a stack object in the callee. // // If the C and C++ standards are ever made sufficiently restrictive in this // area, it may be possible to update LLVM's semantics accordingly and reinstate // this optimization. static Constant * computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, const DominatorTree *DT, CmpInst::Predicate Pred, AssumptionCache *AC, const Instruction *CxtI, const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { // First, skip past any trivial no-ops. LHS = LHS->stripPointerCasts(); RHS = RHS->stripPointerCasts(); // A non-null pointer is not equal to a null pointer. if (isa(RHS) && ICmpInst::isEquality(Pred) && llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, IIQ.UseInstrInfo)) return ConstantInt::get(GetCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); // We can only fold certain predicates on pointer comparisons. switch (Pred) { default: return nullptr; // Equality comaprisons are easy to fold. case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: break; // We can only handle unsigned relational comparisons because 'inbounds' on // a GEP only protects against unsigned wrapping. case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: // However, we have to switch them to their signed variants to handle // negative indices from the base pointer. Pred = ICmpInst::getSignedPredicate(Pred); break; } // Strip off any constant offsets so that we can reason about them. // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets // here and compare base addresses like AliasAnalysis does, however there are // numerous hazards. AliasAnalysis and its utilities rely on special rules // governing loads and stores which don't apply to icmps. Also, AliasAnalysis // doesn't need to guarantee pointer inequality when it says NoAlias. Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); // If LHS and RHS are related via constant offsets to the same base // value, we can replace it with an icmp which just compares the offsets. if (LHS == RHS) return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); // Various optimizations for (in)equality comparisons. if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { // Different non-empty allocations that exist at the same time have // different addresses (if the program can tell). Global variables always // exist, so they always exist during the lifetime of each other and all // allocas. Two different allocas usually have different addresses... // // However, if there's an @llvm.stackrestore dynamically in between two // allocas, they may have the same address. It's tempting to reduce the // scope of the problem by only looking at *static* allocas here. That would // cover the majority of allocas while significantly reducing the likelihood // of having an @llvm.stackrestore pop up in the middle. However, it's not // actually impossible for an @llvm.stackrestore to pop up in the middle of // an entry block. Also, if we have a block that's not attached to a // function, we can't tell if it's "static" under the current definition. // Theoretically, this problem could be fixed by creating a new kind of // instruction kind specifically for static allocas. Such a new instruction // could be required to be at the top of the entry block, thus preventing it // from being subject to a @llvm.stackrestore. Instcombine could even // convert regular allocas into these special allocas. It'd be nifty. // However, until then, this problem remains open. // // So, we'll assume that two non-empty allocas have different addresses // for now. // // With all that, if the offsets are within the bounds of their allocations // (and not one-past-the-end! so we can't use inbounds!), and their // allocations aren't the same, the pointers are not equal. // // Note that it's not necessary to check for LHS being a global variable // address, due to canonicalization and constant folding. if (isa(LHS) && (isa(RHS) || isa(RHS))) { ConstantInt *LHSOffsetCI = dyn_cast(LHSOffset); ConstantInt *RHSOffsetCI = dyn_cast(RHSOffset); uint64_t LHSSize, RHSSize; ObjectSizeOpts Opts; Opts.NullIsUnknownSize = NullPointerIsDefined(cast(LHS)->getFunction()); if (LHSOffsetCI && RHSOffsetCI && getObjectSize(LHS, LHSSize, DL, TLI, Opts) && getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); if (!LHSOffsetValue.isNegative() && !RHSOffsetValue.isNegative() && LHSOffsetValue.ult(LHSSize) && RHSOffsetValue.ult(RHSSize)) { return ConstantInt::get(GetCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); } } // Repeat the above check but this time without depending on DataLayout // or being able to compute a precise size. if (!cast(LHS->getType())->isEmptyTy() && !cast(RHS->getType())->isEmptyTy() && LHSOffset->isNullValue() && RHSOffset->isNullValue()) return ConstantInt::get(GetCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); } // Even if an non-inbounds GEP occurs along the path we can still optimize // equality comparisons concerning the result. We avoid walking the whole // chain again by starting where the last calls to // stripAndComputeConstantOffsets left off and accumulate the offsets. Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); if (LHS == RHS) return ConstantExpr::getICmp(Pred, ConstantExpr::getAdd(LHSOffset, LHSNoBound), ConstantExpr::getAdd(RHSOffset, RHSNoBound)); // If one side of the equality comparison must come from a noalias call // (meaning a system memory allocation function), and the other side must // come from a pointer that cannot overlap with dynamically-allocated // memory within the lifetime of the current function (allocas, byval // arguments, globals), then determine the comparison result here. SmallVector LHSUObjs, RHSUObjs; getUnderlyingObjects(LHS, LHSUObjs); getUnderlyingObjects(RHS, RHSUObjs); // Is the set of underlying objects all noalias calls? auto IsNAC = [](ArrayRef Objects) { return all_of(Objects, isNoAliasCall); }; // Is the set of underlying objects all things which must be disjoint from // noalias calls. For allocas, we consider only static ones (dynamic // allocas might be transformed into calls to malloc not simultaneously // live with the compared-to allocation). For globals, we exclude symbols // that might be resolve lazily to symbols in another dynamically-loaded // library (and, thus, could be malloc'ed by the implementation). auto IsAllocDisjoint = [](ArrayRef Objects) { return all_of(Objects, [](const Value *V) { if (const AllocaInst *AI = dyn_cast(V)) return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); if (const GlobalValue *GV = dyn_cast(V)) return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && !GV->isThreadLocal(); if (const Argument *A = dyn_cast(V)) return A->hasByValAttr(); return false; }); }; if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) return ConstantInt::get(GetCompareTy(LHS), !CmpInst::isTrueWhenEqual(Pred)); // Fold comparisons for non-escaping pointer even if the allocation call // cannot be elided. We cannot fold malloc comparison to null. Also, the // dynamic allocation call could be either of the operands. Value *MI = nullptr; if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) MI = LHS; else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) MI = RHS; // FIXME: We should also fold the compare when the pointer escapes, but the // compare dominates the pointer escape if (MI && !PointerMayBeCaptured(MI, true, true)) return ConstantInt::get(GetCompareTy(LHS), CmpInst::isFalseWhenEqual(Pred)); } // Otherwise, fail. return nullptr; } /// Fold an icmp when its operands have i1 scalar type. static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q) { Type *ITy = GetCompareTy(LHS); // The return type. Type *OpTy = LHS->getType(); // The operand type. if (!OpTy->isIntOrIntVectorTy(1)) return nullptr; // A boolean compared to true/false can be simplified in 14 out of the 20 // (10 predicates * 2 constants) possible combinations. Cases not handled here // require a 'not' of the LHS, so those must be transformed in InstCombine. if (match(RHS, m_Zero())) { switch (Pred) { case CmpInst::ICMP_NE: // X != 0 -> X case CmpInst::ICMP_UGT: // X >u 0 -> X case CmpInst::ICMP_SLT: // X X return LHS; case CmpInst::ICMP_ULT: // X false case CmpInst::ICMP_SGT: // X >s 0 -> false return getFalse(ITy); case CmpInst::ICMP_UGE: // X >=u 0 -> true case CmpInst::ICMP_SLE: // X <=s 0 -> true return getTrue(ITy); default: break; } } else if (match(RHS, m_One())) { switch (Pred) { case CmpInst::ICMP_EQ: // X == 1 -> X case CmpInst::ICMP_UGE: // X >=u 1 -> X case CmpInst::ICMP_SLE: // X <=s -1 -> X return LHS; case CmpInst::ICMP_UGT: // X >u 1 -> false case CmpInst::ICMP_SLT: // X false return getFalse(ITy); case CmpInst::ICMP_ULE: // X <=u 1 -> true case CmpInst::ICMP_SGE: // X >=s -1 -> true return getTrue(ITy); default: break; } } switch (Pred) { default: break; case ICmpInst::ICMP_UGE: if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) return getTrue(ITy); break; case ICmpInst::ICMP_SGE: /// For signed comparison, the values for an i1 are 0 and -1 /// respectively. This maps into a truth table of: /// LHS | RHS | LHS >=s RHS | LHS implies RHS /// 0 | 0 | 1 (0 >= 0) | 1 /// 0 | 1 | 1 (0 >= -1) | 1 /// 1 | 0 | 0 (-1 >= 0) | 0 /// 1 | 1 | 1 (-1 >= -1) | 1 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) return getTrue(ITy); break; case ICmpInst::ICMP_ULE: if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) return getTrue(ITy); break; } return nullptr; } /// Try hard to fold icmp with zero RHS because this is a common case. static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q) { if (!match(RHS, m_Zero())) return nullptr; Type *ITy = GetCompareTy(LHS); // The return type. switch (Pred) { default: llvm_unreachable("Unknown ICmp predicate!"); case ICmpInst::ICMP_ULT: return getFalse(ITy); case ICmpInst::ICMP_UGE: return getTrue(ITy); case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) return getFalse(ITy); break; case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) return getTrue(ITy); break; case ICmpInst::ICMP_SLT: { KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (LHSKnown.isNegative()) return getTrue(ITy); if (LHSKnown.isNonNegative()) return getFalse(ITy); break; } case ICmpInst::ICMP_SLE: { KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (LHSKnown.isNegative()) return getTrue(ITy); if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) return getFalse(ITy); break; } case ICmpInst::ICMP_SGE: { KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (LHSKnown.isNegative()) return getFalse(ITy); if (LHSKnown.isNonNegative()) return getTrue(ITy); break; } case ICmpInst::ICMP_SGT: { KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (LHSKnown.isNegative()) return getFalse(ITy); if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) return getTrue(ITy); break; } } return nullptr; } static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const InstrInfoQuery &IIQ) { Type *ITy = GetCompareTy(RHS); // The return type. Value *X; // Sign-bit checks can be optimized to true/false after unsigned // floating-point casts: // icmp slt (bitcast (uitofp X)), 0 --> false // icmp sgt (bitcast (uitofp X)), -1 --> true if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) return ConstantInt::getFalse(ITy); if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) return ConstantInt::getTrue(ITy); } const APInt *C; if (!match(RHS, m_APIntAllowUndef(C))) return nullptr; // Rule out tautological comparisons (eg., ult 0 or uge 0). ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); if (RHS_CR.isEmptySet()) return ConstantInt::getFalse(ITy); if (RHS_CR.isFullSet()) return ConstantInt::getTrue(ITy); ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); if (!LHS_CR.isFullSet()) { if (RHS_CR.contains(LHS_CR)) return ConstantInt::getTrue(ITy); if (RHS_CR.inverse().contains(LHS_CR)) return ConstantInt::getFalse(ITy); } // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) const APInt *MulC; if (ICmpInst::isEquality(Pred) && ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && *MulC != 0 && C->urem(*MulC) != 0) || (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && *MulC != 0 && C->srem(*MulC) != 0))) return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); return nullptr; } static Value *simplifyICmpWithBinOpOnLHS( CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { Type *ITy = GetCompareTy(RHS); // The return type. Value *Y = nullptr; // icmp pred (or X, Y), X if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { if (Pred == ICmpInst::ICMP_ULT) return getFalse(ITy); if (Pred == ICmpInst::ICMP_UGE) return getTrue(ITy); if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (RHSKnown.isNonNegative() && YKnown.isNegative()) return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); if (RHSKnown.isNegative() || YKnown.isNonNegative()) return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); } } // icmp pred (and X, Y), X if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { if (Pred == ICmpInst::ICMP_UGT) return getFalse(ITy); if (Pred == ICmpInst::ICMP_ULE) return getTrue(ITy); } // icmp pred (urem X, Y), Y if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { switch (Pred) { default: break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: { KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (!Known.isNonNegative()) break; LLVM_FALLTHROUGH; } case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: return getFalse(ITy); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: { KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); if (!Known.isNonNegative()) break; LLVM_FALLTHROUGH; } case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: return getTrue(ITy); } } // icmp pred (urem X, Y), X if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { if (Pred == ICmpInst::ICMP_ULE) return getTrue(ITy); if (Pred == ICmpInst::ICMP_UGT) return getFalse(ITy); } // x >> y <=u x // x udiv y <=u x. if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { // icmp pred (X op Y), X if (Pred == ICmpInst::ICMP_UGT) return getFalse(ITy); if (Pred == ICmpInst::ICMP_ULE) return getTrue(ITy); } // (x*C1)/C2 <= x for C1 <= C2. // This holds even if the multiplication overflows: Assume that x != 0 and // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. // // Additionally, either the multiplication and division might be represented // as shifts: // (x*C1)>>C2 <= x for C1 < 2**C2. // (x<ule(*C2)) || (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { if (Pred == ICmpInst::ICMP_UGT) return getFalse(ITy); if (Pred == ICmpInst::ICMP_ULE) return getTrue(ITy); } return nullptr; } // If only one of the icmp's operands has NSW flags, try to prove that: // // icmp slt (x + C1), (x +nsw C2) // // is equivalent to: // // icmp slt C1, C2 // // which is true if x + C2 has the NSW flags set and: // *) C1 < C2 && C1 >= 0, or // *) C2 < C1 && C1 <= 0. // static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, Value *RHS) { // TODO: only support icmp slt for now. if (Pred != CmpInst::ICMP_SLT) return false; // Canonicalize nsw add as RHS. if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) std::swap(LHS, RHS); if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) return false; Value *X; const APInt *C1, *C2; if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) return false; return (C1->slt(*C2) && C1->isNonNegative()) || (C2->slt(*C1) && C1->isNonPositive()); } /// TODO: A large part of this logic is duplicated in InstCombine's /// foldICmpBinOp(). We should be able to share that and avoid the code /// duplication. static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { BinaryOperator *LBO = dyn_cast(LHS); BinaryOperator *RBO = dyn_cast(RHS); if (MaxRecurse && (LBO || RBO)) { // Analyze the case when either LHS or RHS is an add instruction. Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; if (LBO && LBO->getOpcode() == Instruction::Add) { A = LBO->getOperand(0); B = LBO->getOperand(1); NoLHSWrapProblem = ICmpInst::isEquality(Pred) || (CmpInst::isUnsigned(Pred) && Q.IIQ.hasNoUnsignedWrap(cast(LBO))) || (CmpInst::isSigned(Pred) && Q.IIQ.hasNoSignedWrap(cast(LBO))); } if (RBO && RBO->getOpcode() == Instruction::Add) { C = RBO->getOperand(0); D = RBO->getOperand(1); NoRHSWrapProblem = ICmpInst::isEquality(Pred) || (CmpInst::isUnsigned(Pred) && Q.IIQ.hasNoUnsignedWrap(cast(RBO))) || (CmpInst::isSigned(Pred) && Q.IIQ.hasNoSignedWrap(cast(RBO))); } // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. if ((A == RHS || B == RHS) && NoLHSWrapProblem) if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, Constant::getNullValue(RHS->getType()), Q, MaxRecurse - 1)) return V; // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. if ((C == LHS || D == LHS) && NoRHSWrapProblem) if (Value *V = SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), C == LHS ? D : C, Q, MaxRecurse - 1)) return V; // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || trySimplifyICmpWithAdds(Pred, LHS, RHS); if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { // Determine Y and Z in the form icmp (X+Y), (X+Z). Value *Y, *Z; if (A == C) { // C + B == C + D -> B == D Y = B; Z = D; } else if (A == D) { // D + B == C + D -> B == C Y = B; Z = C; } else if (B == C) { // A + C == C + D -> A == D Y = A; Z = D; } else { assert(B == D); // A + D == C + D -> A == C Y = A; Z = C; } if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) return V; } } if (LBO) if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) return V; if (RBO) if (Value *V = simplifyICmpWithBinOpOnLHS( ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) return V; // 0 - (zext X) pred C if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { const APInt *C; if (match(RHS, m_APInt(C))) { if (C->isStrictlyPositive()) { if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue(GetCompareTy(RHS)); if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse(GetCompareTy(RHS)); } if (C->isNonNegative()) { if (Pred == ICmpInst::ICMP_SLE) return ConstantInt::getTrue(GetCompareTy(RHS)); if (Pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse(GetCompareTy(RHS)); } } } // If C2 is a power-of-2 and C is not: // (C2 << X) == C --> false // (C2 << X) != C --> true const APInt *C; if (match(LHS, m_Shl(m_Power2(), m_Value())) && match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { // C2 << X can equal zero in some circumstances. // This simplification might be unsafe if C is zero. // // We know it is safe if: // - The shift is nsw. We can't shift out the one bit. // - The shift is nuw. We can't shift out the one bit. // - C2 is one. // - C isn't zero. if (Q.IIQ.hasNoSignedWrap(cast(LBO)) || Q.IIQ.hasNoUnsignedWrap(cast(LBO)) || match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { if (Pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse(GetCompareTy(RHS)); if (Pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue(GetCompareTy(RHS)); } } // TODO: This is overly constrained. LHS can be any power-of-2. // (1 << X) >u 0x8000 --> false // (1 << X) <=u 0x8000 --> true if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { if (Pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse(GetCompareTy(RHS)); if (Pred == ICmpInst::ICMP_ULE) return ConstantInt::getTrue(GetCompareTy(RHS)); } if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && LBO->getOperand(1) == RBO->getOperand(1)) { switch (LBO->getOpcode()) { default: break; case Instruction::UDiv: case Instruction::LShr: if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) break; if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), RBO->getOperand(0), Q, MaxRecurse - 1)) return V; break; case Instruction::SDiv: if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) break; if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), RBO->getOperand(0), Q, MaxRecurse - 1)) return V; break; case Instruction::AShr: if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) break; if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), RBO->getOperand(0), Q, MaxRecurse - 1)) return V; break; case Instruction::Shl: { bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); if (!NUW && !NSW) break; if (!NSW && ICmpInst::isSigned(Pred)) break; if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), RBO->getOperand(0), Q, MaxRecurse - 1)) return V; break; } } } return nullptr; } /// Simplify integer comparisons where at least one operand of the compare /// matches an integer min/max idiom. static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { Type *ITy = GetCompareTy(LHS); // The return type. Value *A, *B; CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". // Signed variants on "max(a,b)>=a -> true". if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { if (A != RHS) std::swap(A, B); // smax(A, B) pred A. EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". // We analyze this as smax(A, B) pred A. P = Pred; } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && (A == LHS || B == LHS)) { if (A != LHS) std::swap(A, B); // A pred smax(A, B). EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". // We analyze this as smax(A, B) swapped-pred A. P = CmpInst::getSwappedPredicate(Pred); } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { if (A != RHS) std::swap(A, B); // smin(A, B) pred A. EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". // We analyze this as smax(-A, -B) swapped-pred -A. // Note that we do not need to actually form -A or -B thanks to EqP. P = CmpInst::getSwappedPredicate(Pred); } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && (A == LHS || B == LHS)) { if (A != LHS) std::swap(A, B); // A pred smin(A, B). EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". // We analyze this as smax(-A, -B) pred -A. // Note that we do not need to actually form -A or -B thanks to EqP. P = Pred; } if (P != CmpInst::BAD_ICMP_PREDICATE) { // Cases correspond to "max(A, B) p A". switch (P) { default: break; case CmpInst::ICMP_EQ: case CmpInst::ICMP_SLE: // Equivalent to "A EqP B". This may be the same as the condition tested // in the max/min; if so, we can just return that. if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) return V; if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) return V; // Otherwise, see if "A EqP B" simplifies. if (MaxRecurse) if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) return V; break; case CmpInst::ICMP_NE: case CmpInst::ICMP_SGT: { CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); // Equivalent to "A InvEqP B". This may be the same as the condition // tested in the max/min; if so, we can just return that. if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) return V; if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) return V; // Otherwise, see if "A InvEqP B" simplifies. if (MaxRecurse) if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) return V; break; } case CmpInst::ICMP_SGE: // Always true. return getTrue(ITy); case CmpInst::ICMP_SLT: // Always false. return getFalse(ITy); } } // Unsigned variants on "max(a,b)>=a -> true". P = CmpInst::BAD_ICMP_PREDICATE; if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { if (A != RHS) std::swap(A, B); // umax(A, B) pred A. EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". // We analyze this as umax(A, B) pred A. P = Pred; } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && (A == LHS || B == LHS)) { if (A != LHS) std::swap(A, B); // A pred umax(A, B). EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". // We analyze this as umax(A, B) swapped-pred A. P = CmpInst::getSwappedPredicate(Pred); } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { if (A != RHS) std::swap(A, B); // umin(A, B) pred A. EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". // We analyze this as umax(-A, -B) swapped-pred -A. // Note that we do not need to actually form -A or -B thanks to EqP. P = CmpInst::getSwappedPredicate(Pred); } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && (A == LHS || B == LHS)) { if (A != LHS) std::swap(A, B); // A pred umin(A, B). EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". // We analyze this as umax(-A, -B) pred -A. // Note that we do not need to actually form -A or -B thanks to EqP. P = Pred; } if (P != CmpInst::BAD_ICMP_PREDICATE) { // Cases correspond to "max(A, B) p A". switch (P) { default: break; case CmpInst::ICMP_EQ: case CmpInst::ICMP_ULE: // Equivalent to "A EqP B". This may be the same as the condition tested // in the max/min; if so, we can just return that. if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) return V; if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) return V; // Otherwise, see if "A EqP B" simplifies. if (MaxRecurse) if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) return V; break; case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: { CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); // Equivalent to "A InvEqP B". This may be the same as the condition // tested in the max/min; if so, we can just return that. if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) return V; if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) return V; // Otherwise, see if "A InvEqP B" simplifies. if (MaxRecurse) if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) return V; break; } case CmpInst::ICMP_UGE: return getTrue(ITy); case CmpInst::ICMP_ULT: return getFalse(ITy); } } // Comparing 1 each of min/max with a common operand? // Canonicalize min operand to RHS. if (match(LHS, m_UMin(m_Value(), m_Value())) || match(LHS, m_SMin(m_Value(), m_Value()))) { std::swap(LHS, RHS); Pred = ICmpInst::getSwappedPredicate(Pred); } Value *C, *D; if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && match(RHS, m_SMin(m_Value(C), m_Value(D))) && (A == C || A == D || B == C || B == D)) { // smax(A, B) >=s smin(A, D) --> true if (Pred == CmpInst::ICMP_SGE) return getTrue(ITy); // smax(A, B) false if (Pred == CmpInst::ICMP_SLT) return getFalse(ITy); } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && match(RHS, m_UMin(m_Value(C), m_Value(D))) && (A == C || A == D || B == C || B == D)) { // umax(A, B) >=u umin(A, D) --> true if (Pred == CmpInst::ICMP_UGE) return getTrue(ITy); // umax(A, B) false if (Pred == CmpInst::ICMP_ULT) return getFalse(ITy); } return nullptr; } static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q) { // Gracefully handle instructions that have not been inserted yet. if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) return nullptr; for (Value *AssumeBaseOp : {LHS, RHS}) { for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { if (!AssumeVH) continue; CallInst *Assume = cast(AssumeVH); if (Optional Imp = isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL)) if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) return ConstantInt::get(GetCompareTy(LHS), *Imp); } } return nullptr; } /// Given operands for an ICmpInst, see if we can fold the result. /// If not, this returns null. static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); if (Constant *CLHS = dyn_cast(LHS)) { if (Constant *CRHS = dyn_cast(RHS)) return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); // If we have a constant, make sure it is on the RHS. std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } assert(!isa(LHS) && "Unexpected icmp undef,%X"); Type *ITy = GetCompareTy(LHS); // The return type. // For EQ and NE, we can always pick a value for the undef to make the // predicate pass or fail, so we can return undef. // Matches behavior in llvm::ConstantFoldCompareInstruction. if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) return UndefValue::get(ITy); // icmp X, X -> true/false // icmp X, undef -> true/false because undef could be X. if (LHS == RHS || Q.isUndefValue(RHS)) return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) return V; if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) return V; if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) return V; // If both operands have range metadata, use the metadata // to simplify the comparison. if (isa(RHS) && isa(LHS)) { auto RHS_Instr = cast(RHS); auto LHS_Instr = cast(LHS); if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { auto RHS_CR = getConstantRangeFromMetadata( *RHS_Instr->getMetadata(LLVMContext::MD_range)); auto LHS_CR = getConstantRangeFromMetadata( *LHS_Instr->getMetadata(LLVMContext::MD_range)); auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); if (Satisfied_CR.contains(LHS_CR)) return ConstantInt::getTrue(RHS->getContext()); auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( CmpInst::getInversePredicate(Pred), RHS_CR); if (InversedSatisfied_CR.contains(LHS_CR)) return ConstantInt::getFalse(RHS->getContext()); } } // Compare of cast, for example (zext X) != 0 -> X != 0 if (isa(LHS) && (isa(RHS) || isa(RHS))) { Instruction *LI = cast(LHS); Value *SrcOp = LI->getOperand(0); Type *SrcTy = SrcOp->getType(); Type *DstTy = LI->getType(); // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input // if the integer type is the same size as the pointer type. if (MaxRecurse && isa(LI) && Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { if (Constant *RHSC = dyn_cast(RHS)) { // Transfer the cast to the constant. if (Value *V = SimplifyICmpInst(Pred, SrcOp, ConstantExpr::getIntToPtr(RHSC, SrcTy), Q, MaxRecurse-1)) return V; } else if (PtrToIntInst *RI = dyn_cast(RHS)) { if (RI->getOperand(0)->getType() == SrcTy) // Compare without the cast. if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, MaxRecurse-1)) return V; } } if (isa(LHS)) { // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the // same type. if (ZExtInst *RI = dyn_cast(RHS)) { if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) // Compare X and Y. Note that signed predicates become unsigned. if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, RI->getOperand(0), Q, MaxRecurse-1)) return V; } // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. else if (SExtInst *RI = dyn_cast(RHS)) { if (SrcOp == RI->getOperand(0)) { if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) return ConstantInt::getTrue(ITy); if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse(ITy); } } // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended // too. If not, then try to deduce the result of the comparison. else if (ConstantInt *CI = dyn_cast(RHS)) { // Compute the constant that would happen if we truncated to SrcTy then // reextended to DstTy. Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); // If the re-extended constant didn't change then this is effectively // also a case of comparing two zero-extended values. if (RExt == CI && MaxRecurse) if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, Trunc, Q, MaxRecurse-1)) return V; // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit // there. Use this to work out the result of the comparison. if (RExt != CI) { switch (Pred) { default: llvm_unreachable("Unknown ICmp predicate!"); // LHS getContext()); case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: return ConstantInt::getTrue(CI->getContext()); // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS // is non-negative then LHS getValue().isNegative() ? ConstantInt::getTrue(CI->getContext()) : ConstantInt::getFalse(CI->getContext()); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: return CI->getValue().isNegative() ? ConstantInt::getFalse(CI->getContext()) : ConstantInt::getTrue(CI->getContext()); } } } } if (isa(LHS)) { // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the // same type. if (SExtInst *RI = dyn_cast(RHS)) { if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) // Compare X and Y. Note that the predicate does not change. if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, MaxRecurse-1)) return V; } // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. else if (ZExtInst *RI = dyn_cast(RHS)) { if (SrcOp == RI->getOperand(0)) { if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) return ConstantInt::getTrue(ITy); if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse(ITy); } } // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended // too. If not, then try to deduce the result of the comparison. else if (ConstantInt *CI = dyn_cast(RHS)) { // Compute the constant that would happen if we truncated to SrcTy then // reextended to DstTy. Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); // If the re-extended constant didn't change then this is effectively // also a case of comparing two sign-extended values. if (RExt == CI && MaxRecurse) if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) return V; // Otherwise the upper bits of LHS are all equal, while RHS has varying // bits there. Use this to work out the result of the comparison. if (RExt != CI) { switch (Pred) { default: llvm_unreachable("Unknown ICmp predicate!"); case ICmpInst::ICMP_EQ: return ConstantInt::getFalse(CI->getContext()); case ICmpInst::ICMP_NE: return ConstantInt::getTrue(CI->getContext()); // If RHS is non-negative then LHS s RHS. case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: return CI->getValue().isNegative() ? ConstantInt::getTrue(CI->getContext()) : ConstantInt::getFalse(CI->getContext()); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: return CI->getValue().isNegative() ? ConstantInt::getFalse(CI->getContext()) : ConstantInt::getTrue(CI->getContext()); // If LHS is non-negative then LHS u RHS. case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: // Comparison is true iff the LHS =s 0. if (MaxRecurse) if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, Constant::getNullValue(SrcTy), Q, MaxRecurse-1)) return V; break; } } } } } // icmp eq|ne X, Y -> false|true if X != Y if (ICmpInst::isEquality(Pred) && isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); } if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) return V; if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) return V; if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) return V; // Simplify comparisons of related pointers using a powerful, recursive // GEP-walk when we have target data available.. if (LHS->getType()->isPointerTy()) if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, Q.IIQ, LHS, RHS)) return C; if (auto *CLHS = dyn_cast(LHS)) if (auto *CRHS = dyn_cast(RHS)) if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == Q.DL.getTypeSizeInBits(CLHS->getType()) && Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == Q.DL.getTypeSizeInBits(CRHS->getType())) if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, Q.IIQ, CLHS->getPointerOperand(), CRHS->getPointerOperand())) return C; if (GetElementPtrInst *GLHS = dyn_cast(LHS)) { if (GEPOperator *GRHS = dyn_cast(RHS)) { if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && (ICmpInst::isEquality(Pred) || (GLHS->isInBounds() && GRHS->isInBounds() && Pred == ICmpInst::getSignedPredicate(Pred)))) { // The bases are equal and the indices are constant. Build a constant // expression GEP with the same indices and a null base pointer to see // what constant folding can make out of it. Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); SmallVector IndicesLHS(GLHS->indices()); Constant *NewLHS = ConstantExpr::getGetElementPtr( GLHS->getSourceElementType(), Null, IndicesLHS); SmallVector IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); Constant *NewRHS = ConstantExpr::getGetElementPtr( GLHS->getSourceElementType(), Null, IndicesRHS); Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); return ConstantFoldConstant(NewICmp, Q.DL); } } } // If the comparison is with the result of a select instruction, check whether // comparing with either branch of the select always yields the same value. if (isa(LHS) || isa(RHS)) if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) return V; // If the comparison is with the result of a phi instruction, check whether // doing the compare with each incoming phi value yields a common result. if (isa(LHS) || isa(RHS)) if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) return V; return nullptr; } Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q) { return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); } /// Given operands for an FCmpInst, see if we can fold the result. /// If not, this returns null. static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse) { CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); if (Constant *CLHS = dyn_cast(LHS)) { if (Constant *CRHS = dyn_cast(RHS)) return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); // If we have a constant, make sure it is on the RHS. std::swap(LHS, RHS); Pred = CmpInst::getSwappedPredicate(Pred); } // Fold trivial predicates. Type *RetTy = GetCompareTy(LHS); if (Pred == FCmpInst::FCMP_FALSE) return getFalse(RetTy); if (Pred == FCmpInst::FCMP_TRUE) return getTrue(RetTy); // Fold (un)ordered comparison if we can determine there are no NaNs. if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) if (FMF.noNaNs() || (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); // NaN is unordered; NaN is not ordered. assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && "Comparison must be either ordered or unordered"); if (match(RHS, m_NaN())) return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); // fcmp pred x, undef and fcmp pred undef, x // fold to true if unordered, false if ordered if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { // Choosing NaN for the undef will always make unordered comparison succeed // and ordered comparison fail. return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); } // fcmp x,x -> true/false. Not all compares are foldable. if (LHS == RHS) { if (CmpInst::isTrueWhenEqual(Pred)) return getTrue(RetTy); if (CmpInst::isFalseWhenEqual(Pred)) return getFalse(RetTy); } // Handle fcmp with constant RHS. // TODO: Use match with a specific FP value, so these work with vectors with // undef lanes. const APFloat *C; if (match(RHS, m_APFloat(C))) { // Check whether the constant is an infinity. if (C->isInfinity()) { if (C->isNegative()) { switch (Pred) { case FCmpInst::FCMP_OLT: // No value is ordered and less than negative infinity. return getFalse(RetTy); case FCmpInst::FCMP_UGE: // All values are unordered with or at least negative infinity. return getTrue(RetTy); default: break; } } else { switch (Pred) { case FCmpInst::FCMP_OGT: // No value is ordered and greater than infinity. return getFalse(RetTy); case FCmpInst::FCMP_ULE: // All values are unordered with and at most infinity. return getTrue(RetTy); default: break; } } // LHS == Inf if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) return getFalse(RetTy); // LHS != Inf if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) return getTrue(RetTy); // LHS == Inf || LHS == NaN if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && isKnownNeverNaN(LHS, Q.TLI)) return getFalse(RetTy); // LHS != Inf && LHS != NaN if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && isKnownNeverNaN(LHS, Q.TLI)) return getTrue(RetTy); } if (C->isNegative() && !C->isNegZero()) { assert(!C->isNaN() && "Unexpected NaN constant!"); // TODO: We can catch more cases by using a range check rather than // relying on CannotBeOrderedLessThanZero. switch (Pred) { case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UNE: // (X >= 0) implies (X > C) when (C < 0) if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) return getTrue(RetTy); break; case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_OLT: // (X >= 0) implies !(X < C) when (C < 0) if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) return getFalse(RetTy); break; default: break; } } // Check comparison of [minnum/maxnum with constant] with other constant. const APFloat *C2; if ((match(LHS, m_Intrinsic(m_Value(), m_APFloat(C2))) && *C2 < *C) || (match(LHS, m_Intrinsic(m_Value(), m_APFloat(C2))) && *C2 > *C)) { bool IsMaxNum = cast(LHS)->getIntrinsicID() == Intrinsic::maxnum; // The ordered relationship and minnum/maxnum guarantee that we do not // have NaN constants, so ordered/unordered preds are handled the same. switch (Pred) { case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: // minnum(X, LesserC) == C --> false // maxnum(X, GreaterC) == C --> false return getFalse(RetTy); case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: // minnum(X, LesserC) != C --> true // maxnum(X, GreaterC) != C --> true return getTrue(RetTy); case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: // minnum(X, LesserC) >= C --> false // minnum(X, LesserC) > C --> false // maxnum(X, GreaterC) >= C --> true // maxnum(X, GreaterC) > C --> true return ConstantInt::get(RetTy, IsMaxNum); case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: // minnum(X, LesserC) <= C --> true // minnum(X, LesserC) < C --> true // maxnum(X, GreaterC) <= C --> false // maxnum(X, GreaterC) < C --> false return ConstantInt::get(RetTy, !IsMaxNum); default: // TRUE/FALSE/ORD/UNO should be handled before this. llvm_unreachable("Unexpected fcmp predicate"); } } } if (match(RHS, m_AnyZeroFP())) { switch (Pred) { case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_ULT: // Positive or zero X >= 0.0 --> true // Positive or zero X < 0.0 --> false if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && CannotBeOrderedLessThanZero(LHS, Q.TLI)) return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); break; case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_OLT: // Positive or zero or nan X >= 0.0 --> true // Positive or zero or nan X < 0.0 --> false if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); break; default: break; } } // If the comparison is with the result of a select instruction, check whether // comparing with either branch of the select always yields the same value. if (isa(LHS) || isa(RHS)) if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) return V; // If the comparison is with the result of a phi instruction, check whether // doing the compare with each incoming phi value yields a common result. if (isa(LHS) || isa(RHS)) if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) return V; return nullptr; } Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q) { return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); } static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, unsigned MaxRecurse) { // Trivial replacement. if (V == Op) return RepOp; // We cannot replace a constant, and shouldn't even try. if (isa(Op)) return nullptr; auto *I = dyn_cast(V); if (!I) return nullptr; // Consider: // %cmp = icmp eq i32 %x, 2147483647 // %add = add nsw i32 %x, 1 // %sel = select i1 %cmp, i32 -2147483648, i32 %add // // We can't replace %sel with %add unless we strip away the flags (which will // be done in InstCombine). // TODO: This is unsound, because it only catches some forms of refinement. if (!AllowRefinement && canCreatePoison(cast(I))) return nullptr; // The simplification queries below may return the original value. Consider: // %div = udiv i32 %arg, %arg2 // %mul = mul nsw i32 %div, %arg2 // %cmp = icmp eq i32 %mul, %arg // %sel = select i1 %cmp, i32 %div, i32 undef // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which // simplifies back to %arg. This can only happen because %mul does not // dominate %div. To ensure a consistent return value contract, we make sure // that this case returns nullptr as well. auto PreventSelfSimplify = [V](Value *Simplified) { return Simplified != V ? Simplified : nullptr; }; // If this is a binary operator, try to simplify it with the replaced op. if (auto *B = dyn_cast(I)) { if (MaxRecurse) { if (B->getOperand(0) == Op) return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, MaxRecurse - 1)); if (B->getOperand(1) == Op) return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, MaxRecurse - 1)); } } // Same for CmpInsts. if (CmpInst *C = dyn_cast(I)) { if (MaxRecurse) { if (C->getOperand(0) == Op) return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, MaxRecurse - 1)); if (C->getOperand(1) == Op) return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, MaxRecurse - 1)); } } // Same for GEPs. if (auto *GEP = dyn_cast(I)) { if (MaxRecurse) { SmallVector NewOps(GEP->getNumOperands()); transform(GEP->operands(), NewOps.begin(), [&](Value *V) { return V == Op ? RepOp : V; }); return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, MaxRecurse - 1)); } } // TODO: We could hand off more cases to instsimplify here. // If all operands are constant after substituting Op for RepOp then we can // constant fold the instruction. if (Constant *CRepOp = dyn_cast(RepOp)) { // Build a list of all constant operands. SmallVector ConstOps; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { if (I->getOperand(i) == Op) ConstOps.push_back(CRepOp); else if (Constant *COp = dyn_cast(I->getOperand(i))) ConstOps.push_back(COp); else break; } // All operands were constants, fold it. if (ConstOps.size() == I->getNumOperands()) { if (CmpInst *C = dyn_cast(I)) return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], ConstOps[1], Q.DL, Q.TLI); if (LoadInst *LI = dyn_cast(I)) if (!LI->isVolatile()) return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); } } return nullptr; } Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement) { return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, RecursionLimit); } /// Try to simplify a select instruction when its condition operand is an /// integer comparison where one operand of the compare is a constant. static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, const APInt *Y, bool TrueWhenUnset) { const APInt *C; // (X & Y) == 0 ? X & ~Y : X --> X // (X & Y) != 0 ? X & ~Y : X --> X & ~Y if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && *Y == ~*C) return TrueWhenUnset ? FalseVal : TrueVal; // (X & Y) == 0 ? X : X & ~Y --> X & ~Y // (X & Y) != 0 ? X : X & ~Y --> X if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && *Y == ~*C) return TrueWhenUnset ? FalseVal : TrueVal; if (Y->isPowerOf2()) { // (X & Y) == 0 ? X | Y : X --> X | Y // (X & Y) != 0 ? X | Y : X --> X if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && *Y == *C) return TrueWhenUnset ? TrueVal : FalseVal; // (X & Y) == 0 ? X : X | Y --> X // (X & Y) != 0 ? X : X | Y --> X | Y if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && *Y == *C) return TrueWhenUnset ? TrueVal : FalseVal; } return nullptr; } /// An alternative way to test if a bit is set or not uses sgt/slt instead of /// eq/ne. static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, ICmpInst::Predicate Pred, Value *TrueVal, Value *FalseVal) { Value *X; APInt Mask; if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) return nullptr; return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, Pred == ICmpInst::ICMP_EQ); } /// Try to simplify a select instruction when its condition operand is an /// integer comparison. static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse) { ICmpInst::Predicate Pred; Value *CmpLHS, *CmpRHS; if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) return nullptr; // Canonicalize ne to eq predicate. if (Pred == ICmpInst::ICMP_NE) { Pred = ICmpInst::ICMP_EQ; std::swap(TrueVal, FalseVal); } if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { Value *X; const APInt *Y; if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, /*TrueWhenUnset=*/true)) return V; // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. Value *ShAmt; auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) return X; // Test for a zero-shift-guard-op around rotates. These are used to // avoid UB from oversized shifts in raw IR rotate patterns, but the // intrinsics do not have that problem. // We do not allow this transform for the general funnel shift case because // that would not preserve the poison safety of the original code. auto isRotate = m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && Pred == ICmpInst::ICMP_EQ) return FalseVal; // X == 0 ? abs(X) : -abs(X) --> -abs(X) // X == 0 ? -abs(X) : abs(X) --> abs(X) if (match(TrueVal, m_Intrinsic(m_Specific(CmpLHS))) && match(FalseVal, m_Neg(m_Intrinsic(m_Specific(CmpLHS))))) return FalseVal; if (match(TrueVal, m_Neg(m_Intrinsic(m_Specific(CmpLHS)))) && match(FalseVal, m_Intrinsic(m_Specific(CmpLHS)))) return FalseVal; } // Check for other compares that behave like bit test. if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) return V; // If we have a scalar equality comparison, then we know the value in one of // the arms of the select. See if substituting this value into the arm and // simplifying the result yields the same value as the other arm. // Note that the equivalence/replacement opportunity does not hold for vectors // because each element of a vector select is chosen independently. if (Pred == ICmpInst::ICMP_EQ && !CondVal->getType()->isVectorTy()) { if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, /* AllowRefinement */ false, MaxRecurse) == TrueVal || SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, /* AllowRefinement */ false, MaxRecurse) == TrueVal) return FalseVal; if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, /* AllowRefinement */ true, MaxRecurse) == FalseVal || SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, /* AllowRefinement */ true, MaxRecurse) == FalseVal) return FalseVal; } return nullptr; } /// Try to simplify a select instruction when its condition operand is a /// floating-point comparison. static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, const SimplifyQuery &Q) { FCmpInst::Predicate Pred; if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) return nullptr; // This transform is safe if we do not have (do not care about) -0.0 or if // at least one operand is known to not be -0.0. Otherwise, the select can // change the sign of a zero operand. bool HasNoSignedZeros = Q.CxtI && isa(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); const APFloat *C; if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || (match(F, m_APFloat(C)) && C->isNonZero())) { // (T == F) ? T : F --> F // (F == T) ? T : F --> F if (Pred == FCmpInst::FCMP_OEQ) return F; // (T != F) ? T : F --> T // (F != T) ? T : F --> T if (Pred == FCmpInst::FCMP_UNE) return T; } return nullptr; } /// Given operands for a SelectInst, see if we can fold the result. /// If not, this returns null. static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse) { if (auto *CondC = dyn_cast(Cond)) { if (auto *TrueC = dyn_cast(TrueVal)) if (auto *FalseC = dyn_cast(FalseVal)) return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); // select undef, X, Y -> X or Y if (Q.isUndefValue(CondC)) return isa(FalseVal) ? FalseVal : TrueVal; // TODO: Vector constants with undef elements don't simplify. // select true, X, Y -> X if (CondC->isAllOnesValue()) return TrueVal; // select false, X, Y -> Y if (CondC->isNullValue()) return FalseVal; } // select i1 Cond, i1 true, i1 false --> i1 Cond assert(Cond->getType()->isIntOrIntVectorTy(1) && "Select must have bool or bool vector condition"); assert(TrueVal->getType() == FalseVal->getType() && "Select must have same types for true/false ops"); if (Cond->getType() == TrueVal->getType() && match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) return Cond; // select ?, X, X -> X if (TrueVal == FalseVal) return TrueVal; // If the true or false value is undef, we can fold to the other value as // long as the other value isn't poison. // select ?, undef, X -> X if (Q.isUndefValue(TrueVal) && isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT)) return FalseVal; // select ?, X, undef -> X if (Q.isUndefValue(FalseVal) && isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT)) return TrueVal; // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' Constant *TrueC, *FalseC; if (isa(TrueVal->getType()) && match(TrueVal, m_Constant(TrueC)) && match(FalseVal, m_Constant(FalseC))) { unsigned NumElts = cast(TrueC->getType())->getNumElements(); SmallVector NewC; for (unsigned i = 0; i != NumElts; ++i) { // Bail out on incomplete vector constants. Constant *TEltC = TrueC->getAggregateElement(i); Constant *FEltC = FalseC->getAggregateElement(i); if (!TEltC || !FEltC) break; // If the elements match (undef or not), that value is the result. If only // one element is undef, choose the defined element as the safe result. if (TEltC == FEltC) NewC.push_back(TEltC); else if (Q.isUndefValue(TEltC) && isGuaranteedNotToBeUndefOrPoison(FEltC)) NewC.push_back(FEltC); else if (Q.isUndefValue(FEltC) && isGuaranteedNotToBeUndefOrPoison(TEltC)) NewC.push_back(TEltC); else break; } if (NewC.size() == NumElts) return ConstantVector::get(NewC); } if (Value *V = simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) return V; if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) return V; if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) return V; Optional Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); if (Imp) return *Imp ? TrueVal : FalseVal; return nullptr; } Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q) { return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); } /// Given operands for an GetElementPtrInst, see if we can fold the result. /// If not, this returns null. static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef Ops, const SimplifyQuery &Q, unsigned) { // The type of the GEP pointer operand. unsigned AS = cast(Ops[0]->getType()->getScalarType())->getAddressSpace(); // getelementptr P -> P. if (Ops.size() == 1) return Ops[0]; // Compute the (pointer) type returned by the GEP instruction. Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); Type *GEPTy = PointerType::get(LastType, AS); if (VectorType *VT = dyn_cast(Ops[0]->getType())) GEPTy = VectorType::get(GEPTy, VT->getElementCount()); else if (VectorType *VT = dyn_cast(Ops[1]->getType())) GEPTy = VectorType::get(GEPTy, VT->getElementCount()); // getelementptr poison, idx -> poison // getelementptr baseptr, poison -> poison if (any_of(Ops, [](const auto *V) { return isa(V); })) return PoisonValue::get(GEPTy); if (Q.isUndefValue(Ops[0])) return UndefValue::get(GEPTy); bool IsScalableVec = isa(SrcTy); if (Ops.size() == 2) { // getelementptr P, 0 -> P. if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) return Ops[0]; Type *Ty = SrcTy; if (!IsScalableVec && Ty->isSized()) { Value *P; uint64_t C; uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); // getelementptr P, N -> P if P points to a type of zero size. if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) return Ops[0]; // The following transforms are only safe if the ptrtoint cast // doesn't truncate the pointers. if (Ops[1]->getType()->getScalarSizeInBits() == Q.DL.getPointerSizeInBits(AS)) { auto PtrToInt = [GEPTy](Value *P) -> Value * { Value *Temp; if (match(P, m_PtrToInt(m_Value(Temp)))) if (Temp->getType() == GEPTy) return Temp; return nullptr; }; // FIXME: The following transforms are only legal if P and V have the // same provenance (PR44403). Check whether getUnderlyingObject() is // the same? // getelementptr V, (sub P, V) -> P if P points to a type of size 1. if (TyAllocSize == 1 && match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) if (Value *R = PtrToInt(P)) return R; // getelementptr V, (ashr (sub P, V), C) -> Q // if P points to a type of size 1 << C. if (match(Ops[1], m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), m_ConstantInt(C))) && TyAllocSize == 1ULL << C) if (Value *R = PtrToInt(P)) return R; // getelementptr V, (sdiv (sub P, V), C) -> Q // if P points to a type of size C. if (match(Ops[1], m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), m_SpecificInt(TyAllocSize)))) if (Value *R = PtrToInt(P)) return R; } } } if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && all_of(Ops.slice(1).drop_back(1), [](Value *Idx) { return match(Idx, m_Zero()); })) { unsigned IdxWidth = Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { APInt BasePtrOffset(IdxWidth, 0); Value *StrippedBasePtr = Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); // Avoid creating inttoptr of zero here: While LLVMs treatment of // inttoptr is generally conservative, this particular case is folded to // a null pointer, which will have incorrect provenance. // gep (gep V, C), (sub 0, V) -> C if (match(Ops.back(), m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && !BasePtrOffset.isNullValue()) { auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); return ConstantExpr::getIntToPtr(CI, GEPTy); } // gep (gep V, C), (xor V, -1) -> C-1 if (match(Ops.back(), m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && !BasePtrOffset.isOneValue()) { auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); return ConstantExpr::getIntToPtr(CI, GEPTy); } } } // Check to see if this is constant foldable. if (!all_of(Ops, [](Value *V) { return isa(V); })) return nullptr; auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast(Ops[0]), Ops.slice(1)); return ConstantFoldConstant(CE, Q.DL); } Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef Ops, const SimplifyQuery &Q) { return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); } /// Given operands for an InsertValueInst, see if we can fold the result. /// If not, this returns null. static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const SimplifyQuery &Q, unsigned) { if (Constant *CAgg = dyn_cast(Agg)) if (Constant *CVal = dyn_cast(Val)) return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); // insertvalue x, undef, n -> x if (Q.isUndefValue(Val)) return Agg; // insertvalue x, (extractvalue y, n), n if (ExtractValueInst *EV = dyn_cast(Val)) if (EV->getAggregateOperand()->getType() == Agg->getType() && EV->getIndices() == Idxs) { // insertvalue undef, (extractvalue y, n), n -> y if (Q.isUndefValue(Agg)) return EV->getAggregateOperand(); // insertvalue y, (extractvalue y, n), n -> y if (Agg == EV->getAggregateOperand()) return Agg; } return nullptr; } Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const SimplifyQuery &Q) { return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); } Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, const SimplifyQuery &Q) { // Try to constant fold. auto *VecC = dyn_cast(Vec); auto *ValC = dyn_cast(Val); auto *IdxC = dyn_cast(Idx); if (VecC && ValC && IdxC) return ConstantExpr::getInsertElement(VecC, ValC, IdxC); // For fixed-length vector, fold into poison if index is out of bounds. if (auto *CI = dyn_cast(Idx)) { if (isa(Vec->getType()) && CI->uge(cast(Vec->getType())->getNumElements())) return PoisonValue::get(Vec->getType()); } // If index is undef, it might be out of bounds (see above case) if (Q.isUndefValue(Idx)) return PoisonValue::get(Vec->getType()); // If the scalar is poison, or it is undef and there is no risk of // propagating poison from the vector value, simplify to the vector value. if (isa(Val) || (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) return Vec; // If we are extracting a value from a vector, then inserting it into the same // place, that's the input vector: // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) return Vec; return nullptr; } /// Given operands for an ExtractValueInst, see if we can fold the result. /// If not, this returns null. static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef Idxs, const SimplifyQuery &, unsigned) { if (auto *CAgg = dyn_cast(Agg)) return ConstantFoldExtractValueInstruction(CAgg, Idxs); // extractvalue x, (insertvalue y, elt, n), n -> elt unsigned NumIdxs = Idxs.size(); for (auto *IVI = dyn_cast(Agg); IVI != nullptr; IVI = dyn_cast(IVI->getAggregateOperand())) { ArrayRef InsertValueIdxs = IVI->getIndices(); unsigned NumInsertValueIdxs = InsertValueIdxs.size(); unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); if (InsertValueIdxs.slice(0, NumCommonIdxs) == Idxs.slice(0, NumCommonIdxs)) { if (NumIdxs == NumInsertValueIdxs) return IVI->getInsertedValueOperand(); break; } } return nullptr; } Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef Idxs, const SimplifyQuery &Q) { return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); } /// Given operands for an ExtractElementInst, see if we can fold the result. /// If not, this returns null. static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q, unsigned) { auto *VecVTy = cast(Vec->getType()); if (auto *CVec = dyn_cast(Vec)) { if (auto *CIdx = dyn_cast(Idx)) return ConstantExpr::getExtractElement(CVec, CIdx); // The index is not relevant if our vector is a splat. if (auto *Splat = CVec->getSplatValue()) return Splat; if (Q.isUndefValue(Vec)) return UndefValue::get(VecVTy->getElementType()); } // If extracting a specified index from the vector, see if we can recursively // find a previously computed scalar that was inserted into the vector. if (auto *IdxC = dyn_cast(Idx)) { // For fixed-length vector, fold into undef if index is out of bounds. if (isa(VecVTy) && IdxC->getValue().uge(cast(VecVTy)->getNumElements())) return PoisonValue::get(VecVTy->getElementType()); if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) return Elt; } // An undef extract index can be arbitrarily chosen to be an out-of-range // index value, which would result in the instruction being poison. if (Q.isUndefValue(Idx)) return PoisonValue::get(VecVTy->getElementType()); return nullptr; } Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q) { return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); } /// See if we can fold the given phi. If not, returns null. static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE // here, because the PHI we may succeed simplifying to was not // def-reachable from the original PHI! // If all of the PHI's incoming values are the same then replace the PHI node // with the common value. Value *CommonValue = nullptr; bool HasUndefInput = false; for (Value *Incoming : PN->incoming_values()) { // If the incoming value is the phi node itself, it can safely be skipped. if (Incoming == PN) continue; if (Q.isUndefValue(Incoming)) { // Remember that we saw an undef value, but otherwise ignore them. HasUndefInput = true; continue; } if (CommonValue && Incoming != CommonValue) return nullptr; // Not the same, bail out. CommonValue = Incoming; } // If CommonValue is null then all of the incoming values were either undef or // equal to the phi node itself. if (!CommonValue) return UndefValue::get(PN->getType()); // If we have a PHI node like phi(X, undef, X), where X is defined by some // instruction, we cannot return X as the result of the PHI node unless it // dominates the PHI block. if (HasUndefInput) return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; return CommonValue; } static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { if (auto *C = dyn_cast(Op)) return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); if (auto *CI = dyn_cast(Op)) { auto *Src = CI->getOperand(0); Type *SrcTy = Src->getType(); Type *MidTy = CI->getType(); Type *DstTy = Ty; if (Src->getType() == Ty) { auto FirstOp = static_cast(CI->getOpcode()); auto SecondOp = static_cast(CastOpc); Type *SrcIntPtrTy = SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; Type *MidIntPtrTy = MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; Type *DstIntPtrTy = DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, SrcIntPtrTy, MidIntPtrTy, DstIntPtrTy) == Instruction::BitCast) return Src; } } // bitcast x -> x if (CastOpc == Instruction::BitCast) if (Op->getType() == Ty) return Op; return nullptr; } Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q) { return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); } /// For the given destination element of a shuffle, peek through shuffles to /// match a root vector source operand that contains that element in the same /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, int MaskVal, Value *RootVec, unsigned MaxRecurse) { if (!MaxRecurse--) return nullptr; // Bail out if any mask value is undefined. That kind of shuffle may be // simplified further based on demanded bits or other folds. if (MaskVal == -1) return nullptr; // The mask value chooses which source operand we need to look at next. int InVecNumElts = cast(Op0->getType())->getNumElements(); int RootElt = MaskVal; Value *SourceOp = Op0; if (MaskVal >= InVecNumElts) { RootElt = MaskVal - InVecNumElts; SourceOp = Op1; } // If the source operand is a shuffle itself, look through it to find the // matching root vector. if (auto *SourceShuf = dyn_cast(SourceOp)) { return foldIdentityShuffles( DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); } // TODO: Look through bitcasts? What if the bitcast changes the vector element // size? // The source operand is not a shuffle. Initialize the root vector value for // this shuffle if that has not been done yet. if (!RootVec) RootVec = SourceOp; // Give up as soon as a source operand does not match the existing root value. if (RootVec != SourceOp) return nullptr; // The element must be coming from the same lane in the source vector // (although it may have crossed lanes in intermediate shuffles). if (RootElt != DestElt) return nullptr; return RootVec; } static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef Mask, Type *RetTy, const SimplifyQuery &Q, unsigned MaxRecurse) { if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) return UndefValue::get(RetTy); auto *InVecTy = cast(Op0->getType()); unsigned MaskNumElts = Mask.size(); ElementCount InVecEltCount = InVecTy->getElementCount(); bool Scalable = InVecEltCount.isScalable(); SmallVector Indices; Indices.assign(Mask.begin(), Mask.end()); // Canonicalization: If mask does not select elements from an input vector, // replace that input vector with poison. if (!Scalable) { bool MaskSelects0 = false, MaskSelects1 = false; unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); for (unsigned i = 0; i != MaskNumElts; ++i) { if (Indices[i] == -1) continue; if ((unsigned)Indices[i] < InVecNumElts) MaskSelects0 = true; else MaskSelects1 = true; } if (!MaskSelects0) Op0 = PoisonValue::get(InVecTy); if (!MaskSelects1) Op1 = PoisonValue::get(InVecTy); } auto *Op0Const = dyn_cast(Op0); auto *Op1Const = dyn_cast(Op1); // If all operands are constant, constant fold the shuffle. This // transformation depends on the value of the mask which is not known at // compile time for scalable vectors if (Op0Const && Op1Const) return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); // Canonicalization: if only one input vector is constant, it shall be the // second one. This transformation depends on the value of the mask which // is not known at compile time for scalable vectors if (!Scalable && Op0Const && !Op1Const) { std::swap(Op0, Op1); ShuffleVectorInst::commuteShuffleMask(Indices, InVecEltCount.getKnownMinValue()); } // A splat of an inserted scalar constant becomes a vector constant: // shuf (inselt ?, C, IndexC), undef, --> // NOTE: We may have commuted above, so analyze the updated Indices, not the // original mask constant. // NOTE: This transformation depends on the value of the mask which is not // known at compile time for scalable vectors Constant *C; ConstantInt *IndexC; if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), m_ConstantInt(IndexC)))) { // Match a splat shuffle mask of the insert index allowing undef elements. int InsertIndex = IndexC->getZExtValue(); if (all_of(Indices, [InsertIndex](int MaskElt) { return MaskElt == InsertIndex || MaskElt == -1; })) { assert(isa(Op1) && "Expected undef operand 1 for splat"); // Shuffle mask undefs become undefined constant result elements. SmallVector VecC(MaskNumElts, C); for (unsigned i = 0; i != MaskNumElts; ++i) if (Indices[i] == -1) VecC[i] = UndefValue::get(C->getType()); return ConstantVector::get(VecC); } } // A shuffle of a splat is always the splat itself. Legal if the shuffle's // value type is same as the input vectors' type. if (auto *OpShuf = dyn_cast(Op0)) if (Q.isUndefValue(Op1) && RetTy == InVecTy && is_splat(OpShuf->getShuffleMask())) return Op0; // All remaining transformation depend on the value of the mask, which is // not known at compile time for scalable vectors. if (Scalable) return nullptr; // Don't fold a shuffle with undef mask elements. This may get folded in a // better way using demanded bits or other analysis. // TODO: Should we allow this? if (is_contained(Indices, -1)) return nullptr; // Check if every element of this shuffle can be mapped back to the // corresponding element of a single root vector. If so, we don't need this // shuffle. This handles simple identity shuffles as well as chains of // shuffles that may widen/narrow and/or move elements across lanes and back. Value *RootVec = nullptr; for (unsigned i = 0; i != MaskNumElts; ++i) { // Note that recursion is limited for each vector element, so if any element // exceeds the limit, this will fail to simplify. RootVec = foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); // We can't replace a widening/narrowing shuffle with one of its operands. if (!RootVec || RootVec->getType() != RetTy) return nullptr; } return RootVec; } /// Given operands for a ShuffleVectorInst, fold the result or return null. Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef Mask, Type *RetTy, const SimplifyQuery &Q) { return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); } static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, const SimplifyQuery &Q) { if (auto *C = dyn_cast(Op)) return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); return nullptr; } /// Given the operand for an FNeg, see if we can fold the result. If not, this /// returns null. static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) return C; Value *X; // fneg (fneg X) ==> X if (match(Op, m_FNeg(m_Value(X)))) return X; return nullptr; } Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q) { return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); } static Constant *propagateNaN(Constant *In) { // If the input is a vector with undef elements, just return a default NaN. if (!In->isNaN()) return ConstantFP::getNaN(In->getType()); // Propagate the existing NaN constant when possible. // TODO: Should we quiet a signaling NaN? return In; } /// Perform folds that are common to any floating-point operation. This implies /// transforms based on undef/NaN because the operation itself makes no /// difference to the result. static Constant *simplifyFPOp(ArrayRef Ops, FastMathFlags FMF, const SimplifyQuery &Q) { for (Value *V : Ops) { bool IsNan = match(V, m_NaN()); bool IsInf = match(V, m_Inf()); bool IsUndef = Q.isUndefValue(V); // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand // (an undef operand can be chosen to be Nan/Inf), then the result of // this operation is poison. if (FMF.noNaNs() && (IsNan || IsUndef)) return PoisonValue::get(V->getType()); if (FMF.noInfs() && (IsInf || IsUndef)) return PoisonValue::get(V->getType()); if (IsUndef || IsNan) return propagateNaN(cast(V)); } return nullptr; } /// Given operands for an FAdd, see if we can fold the result. If not, this /// returns null. static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) return C; if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) return C; // fadd X, -0 ==> X if (match(Op1, m_NegZeroFP())) return Op0; // fadd X, 0 ==> X, when we know X is not -0 if (match(Op1, m_PosZeroFP()) && (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) return Op0; // With nnan: -X + X --> 0.0 (and commuted variant) // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. // Negative zeros are allowed because we always end up with positive zero: // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 if (FMF.noNaNs()) { if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) return ConstantFP::getNullValue(Op0->getType()); if (match(Op0, m_FNeg(m_Specific(Op1))) || match(Op1, m_FNeg(m_Specific(Op0)))) return ConstantFP::getNullValue(Op0->getType()); } // (X - Y) + Y --> X // Y + (X - Y) --> X Value *X; if (FMF.noSignedZeros() && FMF.allowReassoc() && (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) return X; return nullptr; } /// Given operands for an FSub, see if we can fold the result. If not, this /// returns null. static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) return C; if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) return C; // fsub X, +0 ==> X if (match(Op1, m_PosZeroFP())) return Op0; // fsub X, -0 ==> X, when we know X is not -0 if (match(Op1, m_NegZeroFP()) && (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) return Op0; // fsub -0.0, (fsub -0.0, X) ==> X // fsub -0.0, (fneg X) ==> X Value *X; if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) return X; // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || match(Op1, m_FNeg(m_Value(X))))) return X; // fsub nnan x, x ==> 0.0 if (FMF.noNaNs() && Op0 == Op1) return Constant::getNullValue(Op0->getType()); // Y - (Y - X) --> X // (X + Y) - Y --> X if (FMF.noSignedZeros() && FMF.allowReassoc() && (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) return X; return nullptr; } static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) return C; // fmul X, 1.0 ==> X if (match(Op1, m_FPOne())) return Op0; // fmul 1.0, X ==> X if (match(Op0, m_FPOne())) return Op1; // fmul nnan nsz X, 0 ==> 0 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) return ConstantFP::getNullValue(Op0->getType()); // fmul nnan nsz 0, X ==> 0 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) return ConstantFP::getNullValue(Op1->getType()); // sqrt(X) * sqrt(X) --> X, if we can: // 1. Remove the intermediate rounding (reassociate). // 2. Ignore non-zero negative numbers because sqrt would produce NAN. // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. Value *X; if (Op0 == Op1 && match(Op0, m_Intrinsic(m_Value(X))) && FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) return X; return nullptr; } /// Given the operands for an FMul, see if we can fold the result static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned MaxRecurse) { if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) return C; // Now apply simplifications that do not require rounding. return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); } Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q) { return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); } Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q) { return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); } Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q) { return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); } Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q) { return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); } static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned) { if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) return C; if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) return C; // X / 1.0 -> X if (match(Op1, m_FPOne())) return Op0; // 0 / X -> 0 // Requires that NaNs are off (X could be zero) and signed zeroes are // ignored (X could be positive or negative, so the output sign is unknown). if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) return ConstantFP::getNullValue(Op0->getType()); if (FMF.noNaNs()) { // X / X -> 1.0 is legal when NaNs are ignored. // We can ignore infinities because INF/INF is NaN. if (Op0 == Op1) return ConstantFP::get(Op0->getType(), 1.0); // (X * Y) / Y --> X if we can reassociate to the above form. Value *X; if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) return X; // -X / X -> -1.0 and // X / -X -> -1.0 are legal when NaNs are ignored. // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || match(Op1, m_FNegNSZ(m_Specific(Op0)))) return ConstantFP::get(Op0->getType(), -1.0); } return nullptr; } Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q) { return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); } static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q, unsigned) { if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) return C; if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) return C; // Unlike fdiv, the result of frem always matches the sign of the dividend. // The constant match may include undef elements in a vector, so return a full // zero constant as the result. if (FMF.noNaNs()) { // +0 % X -> 0 if (match(Op0, m_PosZeroFP())) return ConstantFP::getNullValue(Op0->getType()); // -0 % X -> -0 if (match(Op0, m_NegZeroFP())) return ConstantFP::getNegativeZero(Op0->getType()); } return nullptr; } Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, const SimplifyQuery &Q) { return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); } //=== Helper functions for higher up the class hierarchy. /// Given the operand for a UnaryOperator, see if we can fold the result. /// If not, this returns null. static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, unsigned MaxRecurse) { switch (Opcode) { case Instruction::FNeg: return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); default: llvm_unreachable("Unexpected opcode"); } } /// Given the operand for a UnaryOperator, see if we can fold the result. /// If not, this returns null. /// Try to use FastMathFlags when folding the result. static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, const FastMathFlags &FMF, const SimplifyQuery &Q, unsigned MaxRecurse) { switch (Opcode) { case Instruction::FNeg: return simplifyFNegInst(Op, FMF, Q, MaxRecurse); default: return simplifyUnOp(Opcode, Op, Q, MaxRecurse); } } Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); } Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, const SimplifyQuery &Q) { return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); } /// Given operands for a BinaryOperator, see if we can fold the result. /// If not, this returns null. static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { switch (Opcode) { case Instruction::Add: return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); case Instruction::Sub: return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); case Instruction::Mul: return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); case Instruction::Shl: return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); case Instruction::Or: return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); case Instruction::FAdd: return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); case Instruction::FSub: return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); case Instruction::FMul: return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); default: llvm_unreachable("Unexpected opcode"); } } /// Given operands for a BinaryOperator, see if we can fold the result. /// If not, this returns null. /// Try to use FastMathFlags when folding the result. static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const FastMathFlags &FMF, const SimplifyQuery &Q, unsigned MaxRecurse) { switch (Opcode) { case Instruction::FAdd: return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); case Instruction::FSub: return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); case Instruction::FMul: return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); default: return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); } } Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q) { return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); } Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q) { return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); } /// Given operands for a CmpInst, see if we can fold the result. static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse) { if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); } Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q) { return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); } static bool IsIdempotent(Intrinsic::ID ID) { switch (ID) { default: return false; // Unary idempotent: f(f(x)) = f(x) case Intrinsic::fabs: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: case Intrinsic::roundeven: case Intrinsic::canonicalize: return true; } } static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, const DataLayout &DL) { GlobalValue *PtrSym; APInt PtrOffset; if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) return nullptr; Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); Type *Int32PtrTy = Int32Ty->getPointerTo(); Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); auto *OffsetConstInt = dyn_cast(Offset); if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) return nullptr; uint64_t OffsetInt = OffsetConstInt->getSExtValue(); if (OffsetInt % 4 != 0) return nullptr; Constant *C = ConstantExpr::getGetElementPtr( Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), ConstantInt::get(Int64Ty, OffsetInt / 4)); Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); if (!Loaded) return nullptr; auto *LoadedCE = dyn_cast(Loaded); if (!LoadedCE) return nullptr; if (LoadedCE->getOpcode() == Instruction::Trunc) { LoadedCE = dyn_cast(LoadedCE->getOperand(0)); if (!LoadedCE) return nullptr; } if (LoadedCE->getOpcode() != Instruction::Sub) return nullptr; auto *LoadedLHS = dyn_cast(LoadedCE->getOperand(0)); if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) return nullptr; auto *LoadedLHSPtr = LoadedLHS->getOperand(0); Constant *LoadedRHS = LoadedCE->getOperand(1); GlobalValue *LoadedRHSSym; APInt LoadedRHSOffset; if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, DL) || PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) return nullptr; return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); } static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, const SimplifyQuery &Q) { // Idempotent functions return the same result when called repeatedly. Intrinsic::ID IID = F->getIntrinsicID(); if (IsIdempotent(IID)) if (auto *II = dyn_cast(Op0)) if (II->getIntrinsicID() == IID) return II; Value *X; switch (IID) { case Intrinsic::fabs: if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; break; case Intrinsic::bswap: // bswap(bswap(x)) -> x if (match(Op0, m_BSwap(m_Value(X)))) return X; break; case Intrinsic::bitreverse: // bitreverse(bitreverse(x)) -> x if (match(Op0, m_BitReverse(m_Value(X)))) return X; break; case Intrinsic::ctpop: { // If everything but the lowest bit is zero, that bit is the pop-count. Ex: // ctpop(and X, 1) --> and X, 1 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) return Op0; break; } case Intrinsic::exp: // exp(log(x)) -> x if (Q.CxtI->hasAllowReassoc() && match(Op0, m_Intrinsic(m_Value(X)))) return X; break; case Intrinsic::exp2: // exp2(log2(x)) -> x if (Q.CxtI->hasAllowReassoc() && match(Op0, m_Intrinsic(m_Value(X)))) return X; break; case Intrinsic::log: // log(exp(x)) -> x if (Q.CxtI->hasAllowReassoc() && match(Op0, m_Intrinsic(m_Value(X)))) return X; break; case Intrinsic::log2: // log2(exp2(x)) -> x if (Q.CxtI->hasAllowReassoc() && (match(Op0, m_Intrinsic(m_Value(X))) || match(Op0, m_Intrinsic(m_SpecificFP(2.0), m_Value(X))))) return X; break; case Intrinsic::log10: // log10(pow(10.0, x)) -> x if (Q.CxtI->hasAllowReassoc() && match(Op0, m_Intrinsic(m_SpecificFP(10.0), m_Value(X)))) return X; break; case Intrinsic::floor: case Intrinsic::trunc: case Intrinsic::ceil: case Intrinsic::round: case Intrinsic::roundeven: case Intrinsic::nearbyint: case Intrinsic::rint: { // floor (sitofp x) -> sitofp x // floor (uitofp x) -> uitofp x // // Converting from int always results in a finite integral number or // infinity. For either of those inputs, these rounding functions always // return the same value, so the rounding can be eliminated. if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) return Op0; break; } default: break; } return nullptr; } static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) { switch (IID) { case Intrinsic::smax: return Intrinsic::smin; case Intrinsic::smin: return Intrinsic::smax; case Intrinsic::umax: return Intrinsic::umin; case Intrinsic::umin: return Intrinsic::umax; default: llvm_unreachable("Unexpected intrinsic"); } } static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { switch (IID) { case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); case Intrinsic::umax: return APInt::getMaxValue(BitWidth); case Intrinsic::umin: return APInt::getMinValue(BitWidth); default: llvm_unreachable("Unexpected intrinsic"); } } static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { switch (IID) { case Intrinsic::smax: return ICmpInst::ICMP_SGE; case Intrinsic::smin: return ICmpInst::ICMP_SLE; case Intrinsic::umax: return ICmpInst::ICMP_UGE; case Intrinsic::umin: return ICmpInst::ICMP_ULE; default: llvm_unreachable("Unexpected intrinsic"); } } /// Given a min/max intrinsic, see if it can be removed based on having an /// operand that is another min/max intrinsic with shared operand(s). The caller /// is expected to swap the operand arguments to handle commutation. static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { Value *X, *Y; if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) return nullptr; auto *MM0 = dyn_cast(Op0); if (!MM0) return nullptr; Intrinsic::ID IID0 = MM0->getIntrinsicID(); if (Op1 == X || Op1 == Y || match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { // max (max X, Y), X --> max X, Y if (IID0 == IID) return MM0; // max (min X, Y), X --> X if (IID0 == getMaxMinOpposite(IID)) return Op1; } return nullptr; } static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, const SimplifyQuery &Q) { Intrinsic::ID IID = F->getIntrinsicID(); Type *ReturnType = F->getReturnType(); unsigned BitWidth = ReturnType->getScalarSizeInBits(); switch (IID) { case Intrinsic::abs: // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. // It is always ok to pick the earlier abs. We'll just lose nsw if its only // on the outer abs. if (match(Op0, m_Intrinsic(m_Value(), m_Value()))) return Op0; break; case Intrinsic::smax: case Intrinsic::smin: case Intrinsic::umax: case Intrinsic::umin: { // If the arguments are the same, this is a no-op. if (Op0 == Op1) return Op0; // Canonicalize constant operand as Op1. if (isa(Op0)) std::swap(Op0, Op1); // Assume undef is the limit value. if (Q.isUndefValue(Op1)) return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); const APInt *C; if (match(Op1, m_APIntAllowUndef(C))) { // Clamp to limit value. For example: // umax(i8 %x, i8 255) --> 255 if (*C == getMaxMinLimit(IID, BitWidth)) return ConstantInt::get(ReturnType, *C); // If the constant op is the opposite of the limit value, the other must // be larger/smaller or equal. For example: // umin(i8 %x, i8 255) --> %x if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth)) return Op0; // Remove nested call if constant operands allow it. Example: // max (max X, 7), 5 -> max X, 7 auto *MinMax0 = dyn_cast(Op0); if (MinMax0 && MinMax0->getIntrinsicID() == IID) { // TODO: loosen undef/splat restrictions for vector constants. Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); const APInt *InnerC; if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && ((IID == Intrinsic::smax && InnerC->sge(*C)) || (IID == Intrinsic::smin && InnerC->sle(*C)) || (IID == Intrinsic::umax && InnerC->uge(*C)) || (IID == Intrinsic::umin && InnerC->ule(*C)))) return Op0; } } if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) return V; if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) return V; ICmpInst::Predicate Pred = getMaxMinPredicate(IID); if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) return Op0; if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) return Op1; if (Optional Imp = isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) return *Imp ? Op0 : Op1; if (Optional Imp = isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) return *Imp ? Op1 : Op0; break; } case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: // X - X -> { 0, false } // X - undef -> { 0, false } // undef - X -> { 0, false } if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) return Constant::getNullValue(ReturnType); break; case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: // X + undef -> { -1, false } // undef + x -> { -1, false } if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { return ConstantStruct::get( cast(ReturnType), {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), Constant::getNullValue(ReturnType->getStructElementType(1))}); } break; case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: // 0 * X -> { 0, false } // X * 0 -> { 0, false } if (match(Op0, m_Zero()) || match(Op1, m_Zero())) return Constant::getNullValue(ReturnType); // undef * X -> { 0, false } // X * undef -> { 0, false } if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) return Constant::getNullValue(ReturnType); break; case Intrinsic::uadd_sat: // sat(MAX + X) -> MAX // sat(X + MAX) -> MAX if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) return Constant::getAllOnesValue(ReturnType); LLVM_FALLTHROUGH; case Intrinsic::sadd_sat: // sat(X + undef) -> -1 // sat(undef + X) -> -1 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). // For signed: Assume undef is ~X, in which case X + ~X = -1. if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) return Constant::getAllOnesValue(ReturnType); // X + 0 -> X if (match(Op1, m_Zero())) return Op0; // 0 + X -> X if (match(Op0, m_Zero())) return Op1; break; case Intrinsic::usub_sat: // sat(0 - X) -> 0, sat(X - MAX) -> 0 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) return Constant::getNullValue(ReturnType); LLVM_FALLTHROUGH; case Intrinsic::ssub_sat: // X - X -> 0, X - undef -> 0, undef - X -> 0 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) return Constant::getNullValue(ReturnType); // X - 0 -> X if (match(Op1, m_Zero())) return Op0; break; case Intrinsic::load_relative: if (auto *C0 = dyn_cast(Op0)) if (auto *C1 = dyn_cast(Op1)) return SimplifyRelativeLoad(C0, C1, Q.DL); break; case Intrinsic::powi: if (auto *Power = dyn_cast(Op1)) { // powi(x, 0) -> 1.0 if (Power->isZero()) return ConstantFP::get(Op0->getType(), 1.0); // powi(x, 1) -> x if (Power->isOne()) return Op0; } break; case Intrinsic::copysign: // copysign X, X --> X if (Op0 == Op1) return Op0; // copysign -X, X --> X // copysign X, -X --> -X if (match(Op0, m_FNeg(m_Specific(Op1))) || match(Op1, m_FNeg(m_Specific(Op0)))) return Op1; break; case Intrinsic::maxnum: case Intrinsic::minnum: case Intrinsic::maximum: case Intrinsic::minimum: { // If the arguments are the same, this is a no-op. if (Op0 == Op1) return Op0; // Canonicalize constant operand as Op1. if (isa(Op0)) std::swap(Op0, Op1); // If an argument is undef, return the other argument. if (Q.isUndefValue(Op1)) return Op0; bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; // minnum(X, nan) -> X // maxnum(X, nan) -> X // minimum(X, nan) -> nan // maximum(X, nan) -> nan if (match(Op1, m_NaN())) return PropagateNaN ? propagateNaN(cast(Op1)) : Op0; // In the following folds, inf can be replaced with the largest finite // float, if the ninf flag is set. const APFloat *C; if (match(Op1, m_APFloat(C)) && (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { // minnum(X, -inf) -> -inf // maxnum(X, +inf) -> +inf // minimum(X, -inf) -> -inf if nnan // maximum(X, +inf) -> +inf if nnan if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) return ConstantFP::get(ReturnType, *C); // minnum(X, +inf) -> X if nnan // maxnum(X, -inf) -> X if nnan // minimum(X, +inf) -> X // maximum(X, -inf) -> X if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) return Op0; } // Min/max of the same operation with common operand: // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) if (auto *M0 = dyn_cast(Op0)) if (M0->getIntrinsicID() == IID && (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) return Op0; if (auto *M1 = dyn_cast(Op1)) if (M1->getIntrinsicID() == IID && (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) return Op1; break; } default: break; } return nullptr; } static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { // Intrinsics with no operands have some kind of side effect. Don't simplify. unsigned NumOperands = Call->getNumArgOperands(); if (!NumOperands) return nullptr; Function *F = cast(Call->getCalledFunction()); Intrinsic::ID IID = F->getIntrinsicID(); if (NumOperands == 1) return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); if (NumOperands == 2) return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), Call->getArgOperand(1), Q); // Handle intrinsics with 3 or more arguments. switch (IID) { case Intrinsic::masked_load: case Intrinsic::masked_gather: { Value *MaskArg = Call->getArgOperand(2); Value *PassthruArg = Call->getArgOperand(3); // If the mask is all zeros or undef, the "passthru" argument is the result. if (maskIsAllZeroOrUndef(MaskArg)) return PassthruArg; return nullptr; } case Intrinsic::fshl: case Intrinsic::fshr: { Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), *ShAmtArg = Call->getArgOperand(2); // If both operands are undef, the result is undef. if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) return UndefValue::get(F->getReturnType()); // If shift amount is undef, assume it is zero. if (Q.isUndefValue(ShAmtArg)) return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); const APInt *ShAmtC; if (match(ShAmtArg, m_APInt(ShAmtC))) { // If there's effectively no shift, return the 1st arg or 2nd arg. APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); if (ShAmtC->urem(BitWidth).isNullValue()) return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); } return nullptr; } case Intrinsic::fma: case Intrinsic::fmuladd: { Value *Op0 = Call->getArgOperand(0); Value *Op1 = Call->getArgOperand(1); Value *Op2 = Call->getArgOperand(2); if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) return V; return nullptr; } default: return nullptr; } } static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { auto *F = dyn_cast(Call->getCalledOperand()); if (!F || !canConstantFoldCallTo(Call, F)) return nullptr; SmallVector ConstantArgs; unsigned NumArgs = Call->getNumArgOperands(); ConstantArgs.reserve(NumArgs); for (auto &Arg : Call->args()) { Constant *C = dyn_cast(&Arg); if (!C) { if (isa(Arg.get())) continue; return nullptr; } ConstantArgs.push_back(C); } return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); } Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { // musttail calls can only be simplified if they are also DCEd. // As we can't guarantee this here, don't simplify them. if (Call->isMustTailCall()) return nullptr; // call undef -> poison // call null -> poison Value *Callee = Call->getCalledOperand(); if (isa(Callee) || isa(Callee)) return PoisonValue::get(Call->getType()); if (Value *V = tryConstantFoldCall(Call, Q)) return V; auto *F = dyn_cast(Callee); if (F && F->isIntrinsic()) if (Value *Ret = simplifyIntrinsic(Call, Q)) return Ret; return nullptr; } /// Given operands for a Freeze, see if we can fold the result. static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { // Use a utility function defined in ValueTracking. if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) return Op0; // We have room for improvement. return nullptr; } Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { return ::SimplifyFreezeInst(Op0, Q); } /// See if we can compute a simplified version of this instruction. /// If not, this returns null. Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, OptimizationRemarkEmitter *ORE) { const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); Value *Result; switch (I->getOpcode()) { default: Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); break; case Instruction::FNeg: Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); break; case Instruction::FAdd: Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), I->getFastMathFlags(), Q); break; case Instruction::Add: Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), Q.IIQ.hasNoSignedWrap(cast(I)), Q.IIQ.hasNoUnsignedWrap(cast(I)), Q); break; case Instruction::FSub: Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), I->getFastMathFlags(), Q); break; case Instruction::Sub: Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), Q.IIQ.hasNoSignedWrap(cast(I)), Q.IIQ.hasNoUnsignedWrap(cast(I)), Q); break; case Instruction::FMul: Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), I->getFastMathFlags(), Q); break; case Instruction::Mul: Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); break; case Instruction::SDiv: Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); break; case Instruction::UDiv: Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); break; case Instruction::FDiv: Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), I->getFastMathFlags(), Q); break; case Instruction::SRem: Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); break; case Instruction::URem: Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); break; case Instruction::FRem: Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), I->getFastMathFlags(), Q); break; case Instruction::Shl: Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), Q.IIQ.hasNoSignedWrap(cast(I)), Q.IIQ.hasNoUnsignedWrap(cast(I)), Q); break; case Instruction::LShr: Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), Q.IIQ.isExact(cast(I)), Q); break; case Instruction::AShr: Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), Q.IIQ.isExact(cast(I)), Q); break; case Instruction::And: Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); break; case Instruction::Or: Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); break; case Instruction::Xor: Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); break; case Instruction::ICmp: Result = SimplifyICmpInst(cast(I)->getPredicate(), I->getOperand(0), I->getOperand(1), Q); break; case Instruction::FCmp: Result = SimplifyFCmpInst(cast(I)->getPredicate(), I->getOperand(0), I->getOperand(1), I->getFastMathFlags(), Q); break; case Instruction::Select: Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), I->getOperand(2), Q); break; case Instruction::GetElementPtr: { SmallVector Ops(I->operands()); Result = SimplifyGEPInst(cast(I)->getSourceElementType(), Ops, Q); break; } case Instruction::InsertValue: { InsertValueInst *IV = cast(I); Result = SimplifyInsertValueInst(IV->getAggregateOperand(), IV->getInsertedValueOperand(), IV->getIndices(), Q); break; } case Instruction::InsertElement: { auto *IE = cast(I); Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), IE->getOperand(2), Q); break; } case Instruction::ExtractValue: { auto *EVI = cast(I); Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), EVI->getIndices(), Q); break; } case Instruction::ExtractElement: { auto *EEI = cast(I); Result = SimplifyExtractElementInst(EEI->getVectorOperand(), EEI->getIndexOperand(), Q); break; } case Instruction::ShuffleVector: { auto *SVI = cast(I); Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), SVI->getShuffleMask(), SVI->getType(), Q); break; } case Instruction::PHI: Result = SimplifyPHINode(cast(I), Q); break; case Instruction::Call: { Result = SimplifyCall(cast(I), Q); break; } case Instruction::Freeze: Result = SimplifyFreezeInst(I->getOperand(0), Q); break; #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: #include "llvm/IR/Instruction.def" #undef HANDLE_CAST_INST Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); break; case Instruction::Alloca: // No simplifications for Alloca and it can't be constant folded. Result = nullptr; break; } /// If called on unreachable code, the above logic may report that the /// instruction simplified to itself. Make life easier for users by /// detecting that case here, returning a safe value instead. return Result == I ? UndefValue::get(I->getType()) : Result; } /// Implementation of recursive simplification through an instruction's /// uses. /// /// This is the common implementation of the recursive simplification routines. /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of /// instructions to process and attempt to simplify it using /// InstructionSimplify. Recursively visited users which could not be /// simplified themselves are to the optional UnsimplifiedUsers set for /// further processing by the caller. /// /// This routine returns 'true' only when *it* simplifies something. The passed /// in simplified value does not count toward this. static bool replaceAndRecursivelySimplifyImpl( Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, SmallSetVector *UnsimplifiedUsers = nullptr) { bool Simplified = false; SmallSetVector Worklist; const DataLayout &DL = I->getModule()->getDataLayout(); // If we have an explicit value to collapse to, do that round of the // simplification loop by hand initially. if (SimpleV) { for (User *U : I->users()) if (U != I) Worklist.insert(cast(U)); // Replace the instruction with its simplified value. I->replaceAllUsesWith(SimpleV); // Gracefully handle edge cases where the instruction is not wired into any // parent block. if (I->getParent() && !I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) I->eraseFromParent(); } else { Worklist.insert(I); } // Note that we must test the size on each iteration, the worklist can grow. for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { I = Worklist[Idx]; // See if this instruction simplifies. SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); if (!SimpleV) { if (UnsimplifiedUsers) UnsimplifiedUsers->insert(I); continue; } Simplified = true; // Stash away all the uses of the old instruction so we can check them for // recursive simplifications after a RAUW. This is cheaper than checking all // uses of To on the recursive step in most cases. for (User *U : I->users()) Worklist.insert(cast(U)); // Replace the instruction with its simplified value. I->replaceAllUsesWith(SimpleV); // Gracefully handle edge cases where the instruction is not wired into any // parent block. if (I->getParent() && !I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) I->eraseFromParent(); } return Simplified; } bool llvm::replaceAndRecursivelySimplify( Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, SmallSetVector *UnsimplifiedUsers) { assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); assert(SimpleV && "Must provide a simplified value."); return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, UnsimplifiedUsers); } namespace llvm { const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { auto *DTWP = P.getAnalysisIfAvailable(); auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; auto *TLIWP = P.getAnalysisIfAvailable(); auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; auto *ACWP = P.getAnalysisIfAvailable(); auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; return {F.getParent()->getDataLayout(), TLI, DT, AC}; } const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, const DataLayout &DL) { return {DL, &AR.TLI, &AR.DT, &AR.AC}; } template const SimplifyQuery getBestSimplifyQuery(AnalysisManager &AM, Function &F) { auto *DT = AM.template getCachedResult(F); auto *TLI = AM.template getCachedResult(F); auto *AC = AM.template getCachedResult(F); return {F.getParent()->getDataLayout(), TLI, DT, AC}; } template const SimplifyQuery getBestSimplifyQuery(AnalysisManager &, Function &); }