1 //===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a `-dot-cfg` analysis pass, which emits the 10 // `<prefix>.<fnname>.dot` file for each function in the program, with a graph 11 // of the CFG for that function. The default value for `<prefix>` is `cfg` but 12 // can be customized as needed. 13 // 14 // The other main feature of this file is that it implements the 15 // Function::viewCFG method, which is useful for debugging passes which operate 16 // on the CFG. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/CFGPrinter.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/FileSystem.h" 26 #include "llvm/Support/GraphWriter.h" 27 28 using namespace llvm; 29 30 static cl::opt<std::string> 31 CFGFuncName("cfg-func-name", cl::Hidden, 32 cl::desc("The name of a function (or its substring)" 33 " whose CFG is viewed/printed.")); 34 35 static cl::opt<std::string> CFGDotFilenamePrefix( 36 "cfg-dot-filename-prefix", cl::Hidden, 37 cl::desc("The prefix used for the CFG dot file names.")); 38 39 static cl::opt<bool> HideUnreachablePaths("cfg-hide-unreachable-paths", 40 cl::init(false)); 41 42 static cl::opt<bool> HideDeoptimizePaths("cfg-hide-deoptimize-paths", 43 cl::init(false)); 44 45 static cl::opt<double> HideColdPaths( 46 "cfg-hide-cold-paths", cl::init(0.0), 47 cl::desc("Hide blocks with relative frequency below the given value")); 48 49 static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true), 50 cl::Hidden, 51 cl::desc("Show heat colors in CFG")); 52 53 static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false), 54 cl::Hidden, 55 cl::desc("Use raw weights for labels. " 56 "Use percentages as default.")); 57 58 static cl::opt<bool> 59 ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden, 60 cl::desc("Show edges labeled with weights")); 61 62 static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI, 63 BranchProbabilityInfo *BPI, uint64_t MaxFreq, 64 bool CFGOnly = false) { 65 std::string Filename = 66 (CFGDotFilenamePrefix + "." + F.getName() + ".dot").str(); 67 errs() << "Writing '" << Filename << "'..."; 68 69 std::error_code EC; 70 raw_fd_ostream File(Filename, EC, sys::fs::OF_Text); 71 72 DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); 73 CFGInfo.setHeatColors(ShowHeatColors); 74 CFGInfo.setEdgeWeights(ShowEdgeWeight); 75 CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); 76 77 if (!EC) 78 WriteGraph(File, &CFGInfo, CFGOnly); 79 else 80 errs() << " error opening file for writing!"; 81 errs() << "\n"; 82 } 83 84 static void viewCFG(Function &F, const BlockFrequencyInfo *BFI, 85 const BranchProbabilityInfo *BPI, uint64_t MaxFreq, 86 bool CFGOnly = false) { 87 DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); 88 CFGInfo.setHeatColors(ShowHeatColors); 89 CFGInfo.setEdgeWeights(ShowEdgeWeight); 90 CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); 91 92 ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly); 93 } 94 95 namespace { 96 struct CFGViewerLegacyPass : public FunctionPass { 97 static char ID; // Pass identifcation, replacement for typeid 98 CFGViewerLegacyPass() : FunctionPass(ID) { 99 initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry()); 100 } 101 102 bool runOnFunction(Function &F) override { 103 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) 104 return false; 105 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 106 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 107 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); 108 return false; 109 } 110 111 void print(raw_ostream &OS, const Module * = nullptr) const override {} 112 113 void getAnalysisUsage(AnalysisUsage &AU) const override { 114 FunctionPass::getAnalysisUsage(AU); 115 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 116 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 117 AU.setPreservesAll(); 118 } 119 }; 120 } // namespace 121 122 char CFGViewerLegacyPass::ID = 0; 123 INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false, 124 true) 125 126 PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) { 127 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) 128 return PreservedAnalyses::all(); 129 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 130 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 131 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); 132 return PreservedAnalyses::all(); 133 } 134 135 namespace { 136 struct CFGOnlyViewerLegacyPass : public FunctionPass { 137 static char ID; // Pass identifcation, replacement for typeid 138 CFGOnlyViewerLegacyPass() : FunctionPass(ID) { 139 initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry()); 140 } 141 142 bool runOnFunction(Function &F) override { 143 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) 144 return false; 145 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 146 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 147 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 148 return false; 149 } 150 151 void print(raw_ostream &OS, const Module * = nullptr) const override {} 152 153 void getAnalysisUsage(AnalysisUsage &AU) const override { 154 FunctionPass::getAnalysisUsage(AU); 155 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 156 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 157 AU.setPreservesAll(); 158 } 159 }; 160 } // namespace 161 162 char CFGOnlyViewerLegacyPass::ID = 0; 163 INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only", 164 "View CFG of function (with no function bodies)", false, true) 165 166 PreservedAnalyses CFGOnlyViewerPass::run(Function &F, 167 FunctionAnalysisManager &AM) { 168 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) 169 return PreservedAnalyses::all(); 170 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 171 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 172 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 173 return PreservedAnalyses::all(); 174 } 175 176 namespace { 177 struct CFGPrinterLegacyPass : public FunctionPass { 178 static char ID; // Pass identification, replacement for typeid 179 CFGPrinterLegacyPass() : FunctionPass(ID) { 180 initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 181 } 182 183 bool runOnFunction(Function &F) override { 184 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) 185 return false; 186 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 187 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 188 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); 189 return false; 190 } 191 192 void print(raw_ostream &OS, const Module * = nullptr) const override {} 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 FunctionPass::getAnalysisUsage(AU); 196 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 197 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 198 AU.setPreservesAll(); 199 } 200 }; 201 } // namespace 202 203 char CFGPrinterLegacyPass::ID = 0; 204 INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg", 205 "Print CFG of function to 'dot' file", false, true) 206 207 PreservedAnalyses CFGPrinterPass::run(Function &F, 208 FunctionAnalysisManager &AM) { 209 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) 210 return PreservedAnalyses::all(); 211 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 212 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 213 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); 214 return PreservedAnalyses::all(); 215 } 216 217 namespace { 218 struct CFGOnlyPrinterLegacyPass : public FunctionPass { 219 static char ID; // Pass identification, replacement for typeid 220 CFGOnlyPrinterLegacyPass() : FunctionPass(ID) { 221 initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 222 } 223 224 bool runOnFunction(Function &F) override { 225 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) 226 return false; 227 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 228 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 229 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 230 return false; 231 } 232 void print(raw_ostream &OS, const Module * = nullptr) const override {} 233 234 void getAnalysisUsage(AnalysisUsage &AU) const override { 235 FunctionPass::getAnalysisUsage(AU); 236 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 237 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 238 AU.setPreservesAll(); 239 } 240 }; 241 } // namespace 242 243 char CFGOnlyPrinterLegacyPass::ID = 0; 244 INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only", 245 "Print CFG of function to 'dot' file (with no function bodies)", 246 false, true) 247 248 PreservedAnalyses CFGOnlyPrinterPass::run(Function &F, 249 FunctionAnalysisManager &AM) { 250 if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) 251 return PreservedAnalyses::all(); 252 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 253 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 254 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 255 return PreservedAnalyses::all(); 256 } 257 258 /// viewCFG - This function is meant for use from the debugger. You can just 259 /// say 'call F->viewCFG()' and a ghostview window should pop up from the 260 /// program, displaying the CFG of the current function. This depends on there 261 /// being a 'dot' and 'gv' program in your path. 262 /// 263 void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); } 264 265 void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI, 266 const BranchProbabilityInfo *BPI) const { 267 if (!CFGFuncName.empty() && !getName().contains(CFGFuncName)) 268 return; 269 DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0); 270 ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly); 271 } 272 273 /// viewCFGOnly - This function is meant for use from the debugger. It works 274 /// just like viewCFG, but it does not include the contents of basic blocks 275 /// into the nodes, just the label. If you are only interested in the CFG 276 /// this can make the graph smaller. 277 /// 278 void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); } 279 280 void Function::viewCFGOnly(const BlockFrequencyInfo *BFI, 281 const BranchProbabilityInfo *BPI) const { 282 viewCFG(true, BFI, BPI); 283 } 284 285 FunctionPass *llvm::createCFGPrinterLegacyPassPass() { 286 return new CFGPrinterLegacyPass(); 287 } 288 289 FunctionPass *llvm::createCFGOnlyPrinterLegacyPassPass() { 290 return new CFGOnlyPrinterLegacyPass(); 291 } 292 293 /// Find all blocks on the paths which terminate with a deoptimize or 294 /// unreachable (i.e. all blocks which are post-dominated by a deoptimize 295 /// or unreachable). These paths are hidden if the corresponding cl::opts 296 /// are enabled. 297 void DOTGraphTraits<DOTFuncInfo *>::computeDeoptOrUnreachablePaths( 298 const Function *F) { 299 auto evaluateBB = [&](const BasicBlock *Node) { 300 if (succ_empty(Node)) { 301 const Instruction *TI = Node->getTerminator(); 302 isOnDeoptOrUnreachablePath[Node] = 303 (HideUnreachablePaths && isa<UnreachableInst>(TI)) || 304 (HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall()); 305 return; 306 } 307 isOnDeoptOrUnreachablePath[Node] = 308 llvm::all_of(successors(Node), [this](const BasicBlock *BB) { 309 return isOnDeoptOrUnreachablePath[BB]; 310 }); 311 }; 312 /// The post order traversal iteration is done to know the status of 313 /// isOnDeoptOrUnreachablePath for all the successors on the current BB. 314 llvm::for_each(post_order(&F->getEntryBlock()), evaluateBB); 315 } 316 317 bool DOTGraphTraits<DOTFuncInfo *>::isNodeHidden(const BasicBlock *Node, 318 const DOTFuncInfo *CFGInfo) { 319 if (HideColdPaths.getNumOccurrences() > 0) 320 if (auto *BFI = CFGInfo->getBFI()) { 321 uint64_t NodeFreq = BFI->getBlockFreq(Node).getFrequency(); 322 uint64_t EntryFreq = BFI->getEntryFreq(); 323 // Hide blocks with relative frequency below HideColdPaths threshold. 324 if ((double)NodeFreq / EntryFreq < HideColdPaths) 325 return true; 326 } 327 if (HideUnreachablePaths || HideDeoptimizePaths) { 328 if (isOnDeoptOrUnreachablePath.find(Node) == 329 isOnDeoptOrUnreachablePath.end()) 330 computeDeoptOrUnreachablePaths(Node->getParent()); 331 return isOnDeoptOrUnreachablePath[Node]; 332 } 333 return false; 334 } 335