//===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a `-dot-cfg` analysis pass, which emits the // `..dot` file for each function in the program, with a graph // of the CFG for that function. The default value for `` is `cfg` but // can be customized as needed. // // The other main feature of this file is that it implements the // Function::viewCFG method, which is useful for debugging passes which operate // on the CFG. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/CFGPrinter.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/GraphWriter.h" using namespace llvm; static cl::opt CFGFuncName("cfg-func-name", cl::Hidden, cl::desc("The name of a function (or its substring)" " whose CFG is viewed/printed.")); static cl::opt CFGDotFilenamePrefix( "cfg-dot-filename-prefix", cl::Hidden, cl::desc("The prefix used for the CFG dot file names.")); static cl::opt HideUnreachablePaths("cfg-hide-unreachable-paths", cl::init(false)); static cl::opt HideDeoptimizePaths("cfg-hide-deoptimize-paths", cl::init(false)); static cl::opt HideColdPaths( "cfg-hide-cold-paths", cl::init(0.0), cl::desc("Hide blocks with relative frequency below the given value")); static cl::opt ShowHeatColors("cfg-heat-colors", cl::init(true), cl::Hidden, cl::desc("Show heat colors in CFG")); static cl::opt UseRawEdgeWeight("cfg-raw-weights", cl::init(false), cl::Hidden, cl::desc("Use raw weights for labels. " "Use percentages as default.")); static cl::opt ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden, cl::desc("Show edges labeled with weights")); static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, uint64_t MaxFreq, bool CFGOnly = false) { std::string Filename = (CFGDotFilenamePrefix + "." + F.getName() + ".dot").str(); errs() << "Writing '" << Filename << "'..."; std::error_code EC; raw_fd_ostream File(Filename, EC, sys::fs::OF_Text); DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); CFGInfo.setHeatColors(ShowHeatColors); CFGInfo.setEdgeWeights(ShowEdgeWeight); CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); if (!EC) WriteGraph(File, &CFGInfo, CFGOnly); else errs() << " error opening file for writing!"; errs() << "\n"; } static void viewCFG(Function &F, const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI, uint64_t MaxFreq, bool CFGOnly = false) { DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); CFGInfo.setHeatColors(ShowHeatColors); CFGInfo.setEdgeWeights(ShowEdgeWeight); CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly); } namespace { struct CFGViewerLegacyPass : public FunctionPass { static char ID; // Pass identifcation, replacement for typeid CFGViewerLegacyPass() : FunctionPass(ID) { initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return false; auto *BPI = &getAnalysis().getBPI(); auto *BFI = &getAnalysis().getBFI(); viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); return false; } void print(raw_ostream &OS, const Module * = nullptr) const override {} void getAnalysisUsage(AnalysisUsage &AU) const override { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } }; } // namespace char CFGViewerLegacyPass::ID = 0; INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false, true) PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return PreservedAnalyses::all(); auto *BFI = &AM.getResult(F); auto *BPI = &AM.getResult(F); viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); return PreservedAnalyses::all(); } namespace { struct CFGOnlyViewerLegacyPass : public FunctionPass { static char ID; // Pass identifcation, replacement for typeid CFGOnlyViewerLegacyPass() : FunctionPass(ID) { initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return false; auto *BPI = &getAnalysis().getBPI(); auto *BFI = &getAnalysis().getBFI(); viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); return false; } void print(raw_ostream &OS, const Module * = nullptr) const override {} void getAnalysisUsage(AnalysisUsage &AU) const override { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } }; } // namespace char CFGOnlyViewerLegacyPass::ID = 0; INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only", "View CFG of function (with no function bodies)", false, true) PreservedAnalyses CFGOnlyViewerPass::run(Function &F, FunctionAnalysisManager &AM) { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return PreservedAnalyses::all(); auto *BFI = &AM.getResult(F); auto *BPI = &AM.getResult(F); viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); return PreservedAnalyses::all(); } namespace { struct CFGPrinterLegacyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid CFGPrinterLegacyPass() : FunctionPass(ID) { initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return false; auto *BPI = &getAnalysis().getBPI(); auto *BFI = &getAnalysis().getBFI(); writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); return false; } void print(raw_ostream &OS, const Module * = nullptr) const override {} void getAnalysisUsage(AnalysisUsage &AU) const override { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } }; } // namespace char CFGPrinterLegacyPass::ID = 0; INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg", "Print CFG of function to 'dot' file", false, true) PreservedAnalyses CFGPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return PreservedAnalyses::all(); auto *BFI = &AM.getResult(F); auto *BPI = &AM.getResult(F); writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); return PreservedAnalyses::all(); } namespace { struct CFGOnlyPrinterLegacyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid CFGOnlyPrinterLegacyPass() : FunctionPass(ID) { initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return false; auto *BPI = &getAnalysis().getBPI(); auto *BFI = &getAnalysis().getBFI(); writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); return false; } void print(raw_ostream &OS, const Module * = nullptr) const override {} void getAnalysisUsage(AnalysisUsage &AU) const override { FunctionPass::getAnalysisUsage(AU); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } }; } // namespace char CFGOnlyPrinterLegacyPass::ID = 0; INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only", "Print CFG of function to 'dot' file (with no function bodies)", false, true) PreservedAnalyses CFGOnlyPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { if (!CFGFuncName.empty() && !F.getName().contains(CFGFuncName)) return PreservedAnalyses::all(); auto *BFI = &AM.getResult(F); auto *BPI = &AM.getResult(F); writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); return PreservedAnalyses::all(); } /// viewCFG - This function is meant for use from the debugger. You can just /// say 'call F->viewCFG()' and a ghostview window should pop up from the /// program, displaying the CFG of the current function. This depends on there /// being a 'dot' and 'gv' program in your path. /// void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); } void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI) const { if (!CFGFuncName.empty() && !getName().contains(CFGFuncName)) return; DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0); ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly); } /// viewCFGOnly - This function is meant for use from the debugger. It works /// just like viewCFG, but it does not include the contents of basic blocks /// into the nodes, just the label. If you are only interested in the CFG /// this can make the graph smaller. /// void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); } void Function::viewCFGOnly(const BlockFrequencyInfo *BFI, const BranchProbabilityInfo *BPI) const { viewCFG(true, BFI, BPI); } FunctionPass *llvm::createCFGPrinterLegacyPassPass() { return new CFGPrinterLegacyPass(); } FunctionPass *llvm::createCFGOnlyPrinterLegacyPassPass() { return new CFGOnlyPrinterLegacyPass(); } /// Find all blocks on the paths which terminate with a deoptimize or /// unreachable (i.e. all blocks which are post-dominated by a deoptimize /// or unreachable). These paths are hidden if the corresponding cl::opts /// are enabled. void DOTGraphTraits::computeDeoptOrUnreachablePaths( const Function *F) { auto evaluateBB = [&](const BasicBlock *Node) { if (succ_empty(Node)) { const Instruction *TI = Node->getTerminator(); isOnDeoptOrUnreachablePath[Node] = (HideUnreachablePaths && isa(TI)) || (HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall()); return; } isOnDeoptOrUnreachablePath[Node] = llvm::all_of(successors(Node), [this](const BasicBlock *BB) { return isOnDeoptOrUnreachablePath[BB]; }); }; /// The post order traversal iteration is done to know the status of /// isOnDeoptOrUnreachablePath for all the successors on the current BB. llvm::for_each(post_order(&F->getEntryBlock()), evaluateBB); } bool DOTGraphTraits::isNodeHidden(const BasicBlock *Node, const DOTFuncInfo *CFGInfo) { if (HideColdPaths.getNumOccurrences() > 0) if (auto *BFI = CFGInfo->getBFI()) { uint64_t NodeFreq = BFI->getBlockFreq(Node).getFrequency(); uint64_t EntryFreq = BFI->getEntryFreq(); // Hide blocks with relative frequency below HideColdPaths threshold. if ((double)NodeFreq / EntryFreq < HideColdPaths) return true; } if (HideUnreachablePaths || HideDeoptimizePaths) { if (isOnDeoptOrUnreachablePath.find(Node) == isOnDeoptOrUnreachablePath.end()) computeDeoptOrUnreachablePaths(Node->getParent()); return isOnDeoptOrUnreachablePath[Node]; } return false; }