1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains functions to parse Mach-O object files. In this comment, 10 // we describe the Mach-O file structure and how we parse it. 11 // 12 // Mach-O is not very different from ELF or COFF. The notion of symbols, 13 // sections and relocations exists in Mach-O as it does in ELF and COFF. 14 // 15 // Perhaps the notion that is new to those who know ELF/COFF is "subsections". 16 // In ELF/COFF, sections are an atomic unit of data copied from input files to 17 // output files. When we merge or garbage-collect sections, we treat each 18 // section as an atomic unit. In Mach-O, that's not the case. Sections can 19 // consist of multiple subsections, and subsections are a unit of merging and 20 // garbage-collecting. Therefore, Mach-O's subsections are more similar to 21 // ELF/COFF's sections than Mach-O's sections are. 22 // 23 // A section can have multiple symbols. A symbol that does not have the 24 // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by 25 // definition, a symbol is always present at the beginning of each subsection. A 26 // symbol with N_ALT_ENTRY attribute does not start a new subsection and can 27 // point to a middle of a subsection. 28 // 29 // The notion of subsections also affects how relocations are represented in 30 // Mach-O. All references within a section need to be explicitly represented as 31 // relocations if they refer to different subsections, because we obviously need 32 // to fix up addresses if subsections are laid out in an output file differently 33 // than they were in object files. To represent that, Mach-O relocations can 34 // refer to an unnamed location via its address. Scattered relocations (those 35 // with the R_SCATTERED bit set) always refer to unnamed locations. 36 // Non-scattered relocations refer to an unnamed location if r_extern is not set 37 // and r_symbolnum is zero. 38 // 39 // Without the above differences, I think you can use your knowledge about ELF 40 // and COFF for Mach-O. 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "InputFiles.h" 45 #include "Config.h" 46 #include "Driver.h" 47 #include "Dwarf.h" 48 #include "ExportTrie.h" 49 #include "InputSection.h" 50 #include "MachOStructs.h" 51 #include "ObjC.h" 52 #include "OutputSection.h" 53 #include "OutputSegment.h" 54 #include "SymbolTable.h" 55 #include "Symbols.h" 56 #include "SyntheticSections.h" 57 #include "Target.h" 58 59 #include "lld/Common/CommonLinkerContext.h" 60 #include "lld/Common/DWARF.h" 61 #include "lld/Common/Reproduce.h" 62 #include "llvm/ADT/iterator.h" 63 #include "llvm/BinaryFormat/MachO.h" 64 #include "llvm/LTO/LTO.h" 65 #include "llvm/Support/BinaryStreamReader.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/Path.h" 69 #include "llvm/Support/TarWriter.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/TextAPI/Architecture.h" 72 #include "llvm/TextAPI/InterfaceFile.h" 73 74 #include <type_traits> 75 76 using namespace llvm; 77 using namespace llvm::MachO; 78 using namespace llvm::support::endian; 79 using namespace llvm::sys; 80 using namespace lld; 81 using namespace lld::macho; 82 83 // Returns "<internal>", "foo.a(bar.o)", or "baz.o". 84 std::string lld::toString(const InputFile *f) { 85 if (!f) 86 return "<internal>"; 87 88 // Multiple dylibs can be defined in one .tbd file. 89 if (auto dylibFile = dyn_cast<DylibFile>(f)) 90 if (f->getName().endswith(".tbd")) 91 return (f->getName() + "(" + dylibFile->installName + ")").str(); 92 93 if (f->archiveName.empty()) 94 return std::string(f->getName()); 95 return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); 96 } 97 98 SetVector<InputFile *> macho::inputFiles; 99 std::unique_ptr<TarWriter> macho::tar; 100 int InputFile::idCount = 0; 101 102 static VersionTuple decodeVersion(uint32_t version) { 103 unsigned major = version >> 16; 104 unsigned minor = (version >> 8) & 0xffu; 105 unsigned subMinor = version & 0xffu; 106 return VersionTuple(major, minor, subMinor); 107 } 108 109 static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) { 110 if (!isa<ObjFile>(input) && !isa<DylibFile>(input)) 111 return {}; 112 113 const char *hdr = input->mb.getBufferStart(); 114 115 std::vector<PlatformInfo> platformInfos; 116 for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) { 117 PlatformInfo info; 118 info.target.Platform = static_cast<PlatformType>(cmd->platform); 119 info.minimum = decodeVersion(cmd->minos); 120 platformInfos.emplace_back(std::move(info)); 121 } 122 for (auto *cmd : findCommands<version_min_command>( 123 hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, 124 LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { 125 PlatformInfo info; 126 switch (cmd->cmd) { 127 case LC_VERSION_MIN_MACOSX: 128 info.target.Platform = PLATFORM_MACOS; 129 break; 130 case LC_VERSION_MIN_IPHONEOS: 131 info.target.Platform = PLATFORM_IOS; 132 break; 133 case LC_VERSION_MIN_TVOS: 134 info.target.Platform = PLATFORM_TVOS; 135 break; 136 case LC_VERSION_MIN_WATCHOS: 137 info.target.Platform = PLATFORM_WATCHOS; 138 break; 139 } 140 info.minimum = decodeVersion(cmd->version); 141 platformInfos.emplace_back(std::move(info)); 142 } 143 144 return platformInfos; 145 } 146 147 static bool checkCompatibility(const InputFile *input) { 148 std::vector<PlatformInfo> platformInfos = getPlatformInfos(input); 149 if (platformInfos.empty()) 150 return true; 151 152 auto it = find_if(platformInfos, [&](const PlatformInfo &info) { 153 return removeSimulator(info.target.Platform) == 154 removeSimulator(config->platform()); 155 }); 156 if (it == platformInfos.end()) { 157 std::string platformNames; 158 raw_string_ostream os(platformNames); 159 interleave( 160 platformInfos, os, 161 [&](const PlatformInfo &info) { 162 os << getPlatformName(info.target.Platform); 163 }, 164 "/"); 165 error(toString(input) + " has platform " + platformNames + 166 Twine(", which is different from target platform ") + 167 getPlatformName(config->platform())); 168 return false; 169 } 170 171 if (it->minimum > config->platformInfo.minimum) 172 warn(toString(input) + " has version " + it->minimum.getAsString() + 173 ", which is newer than target minimum of " + 174 config->platformInfo.minimum.getAsString()); 175 176 return true; 177 } 178 179 // This cache mostly exists to store system libraries (and .tbds) as they're 180 // loaded, rather than the input archives, which are already cached at a higher 181 // level, and other files like the filelist that are only read once. 182 // Theoretically this caching could be more efficient by hoisting it, but that 183 // would require altering many callers to track the state. 184 DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads; 185 // Open a given file path and return it as a memory-mapped file. 186 Optional<MemoryBufferRef> macho::readFile(StringRef path) { 187 CachedHashStringRef key(path); 188 auto entry = cachedReads.find(key); 189 if (entry != cachedReads.end()) 190 return entry->second; 191 192 ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path); 193 if (std::error_code ec = mbOrErr.getError()) { 194 error("cannot open " + path + ": " + ec.message()); 195 return None; 196 } 197 198 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr; 199 MemoryBufferRef mbref = mb->getMemBufferRef(); 200 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership 201 202 // If this is a regular non-fat file, return it. 203 const char *buf = mbref.getBufferStart(); 204 const auto *hdr = reinterpret_cast<const fat_header *>(buf); 205 if (mbref.getBufferSize() < sizeof(uint32_t) || 206 read32be(&hdr->magic) != FAT_MAGIC) { 207 if (tar) 208 tar->append(relativeToRoot(path), mbref.getBuffer()); 209 return cachedReads[key] = mbref; 210 } 211 212 llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); 213 214 // Object files and archive files may be fat files, which contain multiple 215 // real files for different CPU ISAs. Here, we search for a file that matches 216 // with the current link target and returns it as a MemoryBufferRef. 217 const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr)); 218 219 for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { 220 if (reinterpret_cast<const char *>(arch + i + 1) > 221 buf + mbref.getBufferSize()) { 222 error(path + ": fat_arch struct extends beyond end of file"); 223 return None; 224 } 225 226 if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) || 227 read32be(&arch[i].cpusubtype) != target->cpuSubtype) 228 continue; 229 230 uint32_t offset = read32be(&arch[i].offset); 231 uint32_t size = read32be(&arch[i].size); 232 if (offset + size > mbref.getBufferSize()) 233 error(path + ": slice extends beyond end of file"); 234 if (tar) 235 tar->append(relativeToRoot(path), mbref.getBuffer()); 236 return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), 237 path.copy(bAlloc)); 238 } 239 240 error("unable to find matching architecture in " + path); 241 return None; 242 } 243 244 InputFile::InputFile(Kind kind, const InterfaceFile &interface) 245 : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} 246 247 // Some sections comprise of fixed-size records, so instead of splitting them at 248 // symbol boundaries, we split them based on size. Records are distinct from 249 // literals in that they may contain references to other sections, instead of 250 // being leaf nodes in the InputSection graph. 251 // 252 // Note that "record" is a term I came up with. In contrast, "literal" is a term 253 // used by the Mach-O format. 254 static Optional<size_t> getRecordSize(StringRef segname, StringRef name) { 255 if (name == section_names::cfString) { 256 if (config->icfLevel != ICFLevel::none && segname == segment_names::data) 257 return target->wordSize == 8 ? 32 : 16; 258 } else if (name == section_names::compactUnwind) { 259 if (segname == segment_names::ld) 260 return target->wordSize == 8 ? 32 : 20; 261 } 262 return {}; 263 } 264 265 // Parse the sequence of sections within a single LC_SEGMENT(_64). 266 // Split each section into subsections. 267 template <class SectionHeader> 268 void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) { 269 sections.reserve(sectionHeaders.size()); 270 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 271 272 for (const SectionHeader &sec : sectionHeaders) { 273 StringRef name = 274 StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); 275 StringRef segname = 276 StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); 277 ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr 278 : buf + sec.offset, 279 static_cast<size_t>(sec.size)}; 280 if (sec.align >= 32) { 281 error("alignment " + std::to_string(sec.align) + " of section " + name + 282 " is too large"); 283 sections.push_back(sec.addr); 284 continue; 285 } 286 uint32_t align = 1 << sec.align; 287 uint32_t flags = sec.flags; 288 289 auto splitRecords = [&](int recordSize) -> void { 290 sections.push_back(sec.addr); 291 if (data.empty()) 292 return; 293 Subsections &subsections = sections.back().subsections; 294 subsections.reserve(data.size() / recordSize); 295 auto *isec = make<ConcatInputSection>( 296 segname, name, this, data.slice(0, recordSize), align, flags); 297 subsections.push_back({0, isec}); 298 for (uint64_t off = recordSize; off < data.size(); off += recordSize) { 299 // Copying requires less memory than constructing a fresh InputSection. 300 auto *copy = make<ConcatInputSection>(*isec); 301 copy->data = data.slice(off, recordSize); 302 subsections.push_back({off, copy}); 303 } 304 }; 305 306 if (sectionType(sec.flags) == S_CSTRING_LITERALS || 307 (config->dedupLiterals && isWordLiteralSection(sec.flags))) { 308 if (sec.nreloc && config->dedupLiterals) 309 fatal(toString(this) + " contains relocations in " + sec.segname + "," + 310 sec.sectname + 311 ", so LLD cannot deduplicate literals. Try re-running without " 312 "--deduplicate-literals."); 313 314 InputSection *isec; 315 if (sectionType(sec.flags) == S_CSTRING_LITERALS) { 316 isec = 317 make<CStringInputSection>(segname, name, this, data, align, flags); 318 // FIXME: parallelize this? 319 cast<CStringInputSection>(isec)->splitIntoPieces(); 320 } else { 321 isec = make<WordLiteralInputSection>(segname, name, this, data, align, 322 flags); 323 } 324 sections.push_back(sec.addr); 325 sections.back().subsections.push_back({0, isec}); 326 } else if (auto recordSize = getRecordSize(segname, name)) { 327 splitRecords(*recordSize); 328 if (name == section_names::compactUnwind) 329 compactUnwindSection = §ions.back(); 330 } else if (segname == segment_names::llvm) { 331 if (name == "__cg_profile" && config->callGraphProfileSort) { 332 TimeTraceScope timeScope("Parsing call graph section"); 333 BinaryStreamReader reader(data, support::little); 334 while (!reader.empty()) { 335 uint32_t fromIndex, toIndex; 336 uint64_t count; 337 if (Error err = reader.readInteger(fromIndex)) 338 fatal(toString(this) + ": Expected 32-bit integer"); 339 if (Error err = reader.readInteger(toIndex)) 340 fatal(toString(this) + ": Expected 32-bit integer"); 341 if (Error err = reader.readInteger(count)) 342 fatal(toString(this) + ": Expected 64-bit integer"); 343 callGraph.emplace_back(); 344 CallGraphEntry &entry = callGraph.back(); 345 entry.fromIndex = fromIndex; 346 entry.toIndex = toIndex; 347 entry.count = count; 348 } 349 } 350 // ld64 does not appear to emit contents from sections within the __LLVM 351 // segment. Symbols within those sections point to bitcode metadata 352 // instead of actual symbols. Global symbols within those sections could 353 // have the same name without causing duplicate symbol errors. Push an 354 // empty entry to ensure indices line up for the remaining sections. 355 // TODO: Evaluate whether the bitcode metadata is needed. 356 sections.push_back(sec.addr); 357 } else { 358 auto *isec = 359 make<ConcatInputSection>(segname, name, this, data, align, flags); 360 if (isDebugSection(isec->getFlags()) && 361 isec->getSegName() == segment_names::dwarf) { 362 // Instead of emitting DWARF sections, we emit STABS symbols to the 363 // object files that contain them. We filter them out early to avoid 364 // parsing their relocations unnecessarily. But we must still push an 365 // empty entry to ensure the indices line up for the remaining sections. 366 sections.push_back(sec.addr); 367 debugSections.push_back(isec); 368 } else { 369 sections.push_back(sec.addr); 370 sections.back().subsections.push_back({0, isec}); 371 } 372 } 373 } 374 } 375 376 // Find the subsection corresponding to the greatest section offset that is <= 377 // that of the given offset. 378 // 379 // offset: an offset relative to the start of the original InputSection (before 380 // any subsection splitting has occurred). It will be updated to represent the 381 // same location as an offset relative to the start of the containing 382 // subsection. 383 template <class T> 384 static InputSection *findContainingSubsection(const Subsections &subsections, 385 T *offset) { 386 static_assert(std::is_same<uint64_t, T>::value || 387 std::is_same<uint32_t, T>::value, 388 "unexpected type for offset"); 389 auto it = std::prev(llvm::upper_bound( 390 subsections, *offset, 391 [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); 392 *offset -= it->offset; 393 return it->isec; 394 } 395 396 template <class SectionHeader> 397 static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, 398 relocation_info rel) { 399 const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); 400 bool valid = true; 401 auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { 402 valid = false; 403 return (relocAttrs.name + " relocation " + diagnostic + " at offset " + 404 std::to_string(rel.r_address) + " of " + sec.segname + "," + 405 sec.sectname + " in " + toString(file)) 406 .str(); 407 }; 408 409 if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) 410 error(message("must be extern")); 411 if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) 412 error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + 413 "be PC-relative")); 414 if (isThreadLocalVariables(sec.flags) && 415 !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) 416 error(message("not allowed in thread-local section, must be UNSIGNED")); 417 if (rel.r_length < 2 || rel.r_length > 3 || 418 !relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) { 419 static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"}; 420 error(message("has width " + std::to_string(1 << rel.r_length) + 421 " bytes, but must be " + 422 widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] + 423 " bytes")); 424 } 425 return valid; 426 } 427 428 template <class SectionHeader> 429 void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders, 430 const SectionHeader &sec, 431 Subsections &subsections) { 432 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 433 ArrayRef<relocation_info> relInfos( 434 reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc); 435 436 auto subsecIt = subsections.rbegin(); 437 for (size_t i = 0; i < relInfos.size(); i++) { 438 // Paired relocations serve as Mach-O's method for attaching a 439 // supplemental datum to a primary relocation record. ELF does not 440 // need them because the *_RELOC_RELA records contain the extra 441 // addend field, vs. *_RELOC_REL which omit the addend. 442 // 443 // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, 444 // and the paired *_RELOC_UNSIGNED record holds the minuend. The 445 // datum for each is a symbolic address. The result is the offset 446 // between two addresses. 447 // 448 // The ARM64_RELOC_ADDEND record holds the addend, and the paired 449 // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the 450 // base symbolic address. 451 // 452 // Note: X86 does not use *_RELOC_ADDEND because it can embed an 453 // addend into the instruction stream. On X86, a relocatable address 454 // field always occupies an entire contiguous sequence of byte(s), 455 // so there is no need to merge opcode bits with address 456 // bits. Therefore, it's easy and convenient to store addends in the 457 // instruction-stream bytes that would otherwise contain zeroes. By 458 // contrast, RISC ISAs such as ARM64 mix opcode bits with with 459 // address bits so that bitwise arithmetic is necessary to extract 460 // and insert them. Storing addends in the instruction stream is 461 // possible, but inconvenient and more costly at link time. 462 463 relocation_info relInfo = relInfos[i]; 464 bool isSubtrahend = 465 target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); 466 if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { 467 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 468 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 469 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 470 ++i; 471 continue; 472 } 473 int64_t pairedAddend = 0; 474 if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { 475 pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); 476 relInfo = relInfos[++i]; 477 } 478 assert(i < relInfos.size()); 479 if (!validateRelocationInfo(this, sec, relInfo)) 480 continue; 481 if (relInfo.r_address & R_SCATTERED) 482 fatal("TODO: Scattered relocations not supported"); 483 484 int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); 485 assert(!(embeddedAddend && pairedAddend)); 486 int64_t totalAddend = pairedAddend + embeddedAddend; 487 Reloc r; 488 r.type = relInfo.r_type; 489 r.pcrel = relInfo.r_pcrel; 490 r.length = relInfo.r_length; 491 r.offset = relInfo.r_address; 492 if (relInfo.r_extern) { 493 r.referent = symbols[relInfo.r_symbolnum]; 494 r.addend = isSubtrahend ? 0 : totalAddend; 495 } else { 496 assert(!isSubtrahend); 497 const SectionHeader &referentSecHead = 498 sectionHeaders[relInfo.r_symbolnum - 1]; 499 uint64_t referentOffset; 500 if (relInfo.r_pcrel) { 501 // The implicit addend for pcrel section relocations is the pcrel offset 502 // in terms of the addresses in the input file. Here we adjust it so 503 // that it describes the offset from the start of the referent section. 504 // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't 505 // have pcrel section relocations. We may want to factor this out into 506 // the arch-specific .cpp file. 507 assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); 508 referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - 509 referentSecHead.addr; 510 } else { 511 // The addend for a non-pcrel relocation is its absolute address. 512 referentOffset = totalAddend - referentSecHead.addr; 513 } 514 Subsections &referentSubsections = 515 sections[relInfo.r_symbolnum - 1].subsections; 516 r.referent = 517 findContainingSubsection(referentSubsections, &referentOffset); 518 r.addend = referentOffset; 519 } 520 521 // Find the subsection that this relocation belongs to. 522 // Though not required by the Mach-O format, clang and gcc seem to emit 523 // relocations in order, so let's take advantage of it. However, ld64 emits 524 // unsorted relocations (in `-r` mode), so we have a fallback for that 525 // uncommon case. 526 InputSection *subsec; 527 while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) 528 ++subsecIt; 529 if (subsecIt == subsections.rend() || 530 subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { 531 subsec = findContainingSubsection(subsections, &r.offset); 532 // Now that we know the relocs are unsorted, avoid trying the 'fast path' 533 // for the other relocations. 534 subsecIt = subsections.rend(); 535 } else { 536 subsec = subsecIt->isec; 537 r.offset -= subsecIt->offset; 538 } 539 subsec->relocs.push_back(r); 540 541 if (isSubtrahend) { 542 relocation_info minuendInfo = relInfos[++i]; 543 // SUBTRACTOR relocations should always be followed by an UNSIGNED one 544 // attached to the same address. 545 assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && 546 relInfo.r_address == minuendInfo.r_address); 547 Reloc p; 548 p.type = minuendInfo.r_type; 549 if (minuendInfo.r_extern) { 550 p.referent = symbols[minuendInfo.r_symbolnum]; 551 p.addend = totalAddend; 552 } else { 553 uint64_t referentOffset = 554 totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; 555 Subsections &referentSubsectVec = 556 sections[minuendInfo.r_symbolnum - 1].subsections; 557 p.referent = 558 findContainingSubsection(referentSubsectVec, &referentOffset); 559 p.addend = referentOffset; 560 } 561 subsec->relocs.push_back(p); 562 } 563 } 564 } 565 566 template <class NList> 567 static macho::Symbol *createDefined(const NList &sym, StringRef name, 568 InputSection *isec, uint64_t value, 569 uint64_t size) { 570 // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): 571 // N_EXT: Global symbols. These go in the symbol table during the link, 572 // and also in the export table of the output so that the dynamic 573 // linker sees them. 574 // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the 575 // symbol table during the link so that duplicates are 576 // either reported (for non-weak symbols) or merged 577 // (for weak symbols), but they do not go in the export 578 // table of the output. 579 // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits 580 // object files) may produce them. LLD does not yet support -r. 581 // These are translation-unit scoped, identical to the `0` case. 582 // 0: Translation-unit scoped. These are not in the symbol table during 583 // link, and not in the export table of the output either. 584 bool isWeakDefCanBeHidden = 585 (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); 586 587 if (sym.n_type & N_EXT) { 588 bool isPrivateExtern = sym.n_type & N_PEXT; 589 // lld's behavior for merging symbols is slightly different from ld64: 590 // ld64 picks the winning symbol based on several criteria (see 591 // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld 592 // just merges metadata and keeps the contents of the first symbol 593 // with that name (see SymbolTable::addDefined). For: 594 // * inline function F in a TU built with -fvisibility-inlines-hidden 595 // * and inline function F in another TU built without that flag 596 // ld64 will pick the one from the file built without 597 // -fvisibility-inlines-hidden. 598 // lld will instead pick the one listed first on the link command line and 599 // give it visibility as if the function was built without 600 // -fvisibility-inlines-hidden. 601 // If both functions have the same contents, this will have the same 602 // behavior. If not, it won't, but the input had an ODR violation in 603 // that case. 604 // 605 // Similarly, merging a symbol 606 // that's isPrivateExtern and not isWeakDefCanBeHidden with one 607 // that's not isPrivateExtern but isWeakDefCanBeHidden technically 608 // should produce one 609 // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters 610 // with ld64's semantics, because it means the non-private-extern 611 // definition will continue to take priority if more private extern 612 // definitions are encountered. With lld's semantics there's no observable 613 // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one 614 // that's privateExtern -- neither makes it into the dynamic symbol table, 615 // unless the autohide symbol is explicitly exported. 616 // But if a symbol is both privateExtern and autohide then it can't 617 // be exported. 618 // So we nullify the autohide flag when privateExtern is present 619 // and promote the symbol to privateExtern when it is not already. 620 if (isWeakDefCanBeHidden && isPrivateExtern) 621 isWeakDefCanBeHidden = false; 622 else if (isWeakDefCanBeHidden) 623 isPrivateExtern = true; 624 return symtab->addDefined( 625 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 626 isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, 627 sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, 628 isWeakDefCanBeHidden); 629 } 630 assert(!isWeakDefCanBeHidden && 631 "weak_def_can_be_hidden on already-hidden symbol?"); 632 return make<Defined>( 633 name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, 634 /*isExternal=*/false, /*isPrivateExtern=*/false, 635 sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, 636 sym.n_desc & N_NO_DEAD_STRIP); 637 } 638 639 // Absolute symbols are defined symbols that do not have an associated 640 // InputSection. They cannot be weak. 641 template <class NList> 642 static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, 643 StringRef name) { 644 if (sym.n_type & N_EXT) { 645 return symtab->addDefined( 646 name, file, nullptr, sym.n_value, /*size=*/0, 647 /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, 648 /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, 649 /*isWeakDefCanBeHidden=*/false); 650 } 651 return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0, 652 /*isWeakDef=*/false, 653 /*isExternal=*/false, /*isPrivateExtern=*/false, 654 sym.n_desc & N_ARM_THUMB_DEF, 655 /*isReferencedDynamically=*/false, 656 sym.n_desc & N_NO_DEAD_STRIP); 657 } 658 659 template <class NList> 660 macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, 661 StringRef name) { 662 uint8_t type = sym.n_type & N_TYPE; 663 switch (type) { 664 case N_UNDF: 665 return sym.n_value == 0 666 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) 667 : symtab->addCommon(name, this, sym.n_value, 668 1 << GET_COMM_ALIGN(sym.n_desc), 669 sym.n_type & N_PEXT); 670 case N_ABS: 671 return createAbsolute(sym, this, name); 672 case N_PBUD: 673 case N_INDR: 674 error("TODO: support symbols of type " + std::to_string(type)); 675 return nullptr; 676 case N_SECT: 677 llvm_unreachable( 678 "N_SECT symbols should not be passed to parseNonSectionSymbol"); 679 default: 680 llvm_unreachable("invalid symbol type"); 681 } 682 } 683 684 template <class NList> static bool isUndef(const NList &sym) { 685 return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; 686 } 687 688 template <class LP> 689 void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders, 690 ArrayRef<typename LP::nlist> nList, 691 const char *strtab, bool subsectionsViaSymbols) { 692 using NList = typename LP::nlist; 693 694 // Groups indices of the symbols by the sections that contain them. 695 std::vector<std::vector<uint32_t>> symbolsBySection(sections.size()); 696 symbols.resize(nList.size()); 697 SmallVector<unsigned, 32> undefineds; 698 for (uint32_t i = 0; i < nList.size(); ++i) { 699 const NList &sym = nList[i]; 700 701 // Ignore debug symbols for now. 702 // FIXME: may need special handling. 703 if (sym.n_type & N_STAB) 704 continue; 705 706 StringRef name = strtab + sym.n_strx; 707 if ((sym.n_type & N_TYPE) == N_SECT) { 708 Subsections &subsections = sections[sym.n_sect - 1].subsections; 709 // parseSections() may have chosen not to parse this section. 710 if (subsections.empty()) 711 continue; 712 symbolsBySection[sym.n_sect - 1].push_back(i); 713 } else if (isUndef(sym)) { 714 undefineds.push_back(i); 715 } else { 716 symbols[i] = parseNonSectionSymbol(sym, name); 717 } 718 } 719 720 for (size_t i = 0; i < sections.size(); ++i) { 721 Subsections &subsections = sections[i].subsections; 722 if (subsections.empty()) 723 continue; 724 InputSection *lastIsec = subsections.back().isec; 725 if (lastIsec->getName() == section_names::ehFrame) { 726 // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r 727 // adds local "EH_Frame1" and "func.eh". Ignore them because they have 728 // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. 729 continue; 730 } 731 std::vector<uint32_t> &symbolIndices = symbolsBySection[i]; 732 uint64_t sectionAddr = sectionHeaders[i].addr; 733 uint32_t sectionAlign = 1u << sectionHeaders[i].align; 734 735 // Record-based sections have already been split into subsections during 736 // parseSections(), so we simply need to match Symbols to the corresponding 737 // subsection here. 738 if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { 739 for (size_t j = 0; j < symbolIndices.size(); ++j) { 740 uint32_t symIndex = symbolIndices[j]; 741 const NList &sym = nList[symIndex]; 742 StringRef name = strtab + sym.n_strx; 743 uint64_t symbolOffset = sym.n_value - sectionAddr; 744 InputSection *isec = 745 findContainingSubsection(subsections, &symbolOffset); 746 if (symbolOffset != 0) { 747 error(toString(lastIsec) + ": symbol " + name + 748 " at misaligned offset"); 749 continue; 750 } 751 symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); 752 } 753 continue; 754 } 755 756 // Calculate symbol sizes and create subsections by splitting the sections 757 // along symbol boundaries. 758 // We populate subsections by repeatedly splitting the last (highest 759 // address) subsection. 760 llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { 761 return nList[lhs].n_value < nList[rhs].n_value; 762 }); 763 for (size_t j = 0; j < symbolIndices.size(); ++j) { 764 uint32_t symIndex = symbolIndices[j]; 765 const NList &sym = nList[symIndex]; 766 StringRef name = strtab + sym.n_strx; 767 Subsection &subsec = subsections.back(); 768 InputSection *isec = subsec.isec; 769 770 uint64_t subsecAddr = sectionAddr + subsec.offset; 771 size_t symbolOffset = sym.n_value - subsecAddr; 772 uint64_t symbolSize = 773 j + 1 < symbolIndices.size() 774 ? nList[symbolIndices[j + 1]].n_value - sym.n_value 775 : isec->data.size() - symbolOffset; 776 // There are 4 cases where we do not need to create a new subsection: 777 // 1. If the input file does not use subsections-via-symbols. 778 // 2. Multiple symbols at the same address only induce one subsection. 779 // (The symbolOffset == 0 check covers both this case as well as 780 // the first loop iteration.) 781 // 3. Alternative entry points do not induce new subsections. 782 // 4. If we have a literal section (e.g. __cstring and __literal4). 783 if (!subsectionsViaSymbols || symbolOffset == 0 || 784 sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) { 785 symbols[symIndex] = 786 createDefined(sym, name, isec, symbolOffset, symbolSize); 787 continue; 788 } 789 auto *concatIsec = cast<ConcatInputSection>(isec); 790 791 auto *nextIsec = make<ConcatInputSection>(*concatIsec); 792 nextIsec->wasCoalesced = false; 793 if (isZeroFill(isec->getFlags())) { 794 // Zero-fill sections have NULL data.data() non-zero data.size() 795 nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; 796 isec->data = {nullptr, symbolOffset}; 797 } else { 798 nextIsec->data = isec->data.slice(symbolOffset); 799 isec->data = isec->data.slice(0, symbolOffset); 800 } 801 802 // By construction, the symbol will be at offset zero in the new 803 // subsection. 804 symbols[symIndex] = 805 createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); 806 // TODO: ld64 appears to preserve the original alignment as well as each 807 // subsection's offset from the last aligned address. We should consider 808 // emulating that behavior. 809 nextIsec->align = MinAlign(sectionAlign, sym.n_value); 810 subsections.push_back({sym.n_value - sectionAddr, nextIsec}); 811 } 812 } 813 814 // Undefined symbols can trigger recursive fetch from Archives due to 815 // LazySymbols. Process defined symbols first so that the relative order 816 // between a defined symbol and an undefined symbol does not change the 817 // symbol resolution behavior. In addition, a set of interconnected symbols 818 // will all be resolved to the same file, instead of being resolved to 819 // different files. 820 for (unsigned i : undefineds) { 821 const NList &sym = nList[i]; 822 StringRef name = strtab + sym.n_strx; 823 symbols[i] = parseNonSectionSymbol(sym, name); 824 } 825 } 826 827 OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, 828 StringRef sectName) 829 : InputFile(OpaqueKind, mb) { 830 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 831 ArrayRef<uint8_t> data = {buf, mb.getBufferSize()}; 832 ConcatInputSection *isec = 833 make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16), 834 /*file=*/this, data); 835 isec->live = true; 836 sections.push_back(0); 837 sections.back().subsections.push_back({0, isec}); 838 } 839 840 ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, 841 bool lazy) 842 : InputFile(ObjKind, mb, lazy), modTime(modTime) { 843 this->archiveName = std::string(archiveName); 844 if (lazy) { 845 if (target->wordSize == 8) 846 parseLazy<LP64>(); 847 else 848 parseLazy<ILP32>(); 849 } else { 850 if (target->wordSize == 8) 851 parse<LP64>(); 852 else 853 parse<ILP32>(); 854 } 855 } 856 857 template <class LP> void ObjFile::parse() { 858 using Header = typename LP::mach_header; 859 using SegmentCommand = typename LP::segment_command; 860 using SectionHeader = typename LP::section; 861 using NList = typename LP::nlist; 862 863 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 864 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 865 866 Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); 867 if (arch != config->arch()) { 868 auto msg = config->errorForArchMismatch 869 ? static_cast<void (*)(const Twine &)>(error) 870 : warn; 871 msg(toString(this) + " has architecture " + getArchitectureName(arch) + 872 " which is incompatible with target architecture " + 873 getArchitectureName(config->arch())); 874 return; 875 } 876 877 if (!checkCompatibility(this)) 878 return; 879 880 for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) { 881 StringRef data{reinterpret_cast<const char *>(cmd + 1), 882 cmd->cmdsize - sizeof(linker_option_command)}; 883 parseLCLinkerOption(this, cmd->count, data); 884 } 885 886 ArrayRef<SectionHeader> sectionHeaders; 887 if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { 888 auto *c = reinterpret_cast<const SegmentCommand *>(cmd); 889 sectionHeaders = ArrayRef<SectionHeader>{ 890 reinterpret_cast<const SectionHeader *>(c + 1), c->nsects}; 891 parseSections(sectionHeaders); 892 } 893 894 // TODO: Error on missing LC_SYMTAB? 895 if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { 896 auto *c = reinterpret_cast<const symtab_command *>(cmd); 897 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 898 c->nsyms); 899 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 900 bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; 901 parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols); 902 } 903 904 // The relocations may refer to the symbols, so we parse them after we have 905 // parsed all the symbols. 906 for (size_t i = 0, n = sections.size(); i < n; ++i) 907 if (!sections[i].subsections.empty()) 908 parseRelocations(sectionHeaders, sectionHeaders[i], 909 sections[i].subsections); 910 911 parseDebugInfo(); 912 if (compactUnwindSection) 913 registerCompactUnwind(); 914 } 915 916 template <class LP> void ObjFile::parseLazy() { 917 using Header = typename LP::mach_header; 918 using NList = typename LP::nlist; 919 920 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 921 auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart()); 922 const load_command *cmd = findCommand(hdr, LC_SYMTAB); 923 if (!cmd) 924 return; 925 auto *c = reinterpret_cast<const symtab_command *>(cmd); 926 ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff), 927 c->nsyms); 928 const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff; 929 symbols.resize(nList.size()); 930 for (auto it : llvm::enumerate(nList)) { 931 const NList &sym = it.value(); 932 if ((sym.n_type & N_EXT) && !isUndef(sym)) { 933 // TODO: Bound checking 934 StringRef name = strtab + sym.n_strx; 935 symbols[it.index()] = symtab->addLazyObject(name, *this); 936 if (!lazy) 937 break; 938 } 939 } 940 } 941 942 void ObjFile::parseDebugInfo() { 943 std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this); 944 if (!dObj) 945 return; 946 947 auto *ctx = make<DWARFContext>( 948 std::move(dObj), "", 949 [&](Error err) { 950 warn(toString(this) + ": " + toString(std::move(err))); 951 }, 952 [&](Error warning) { 953 warn(toString(this) + ": " + toString(std::move(warning))); 954 }); 955 956 // TODO: Since object files can contain a lot of DWARF info, we should verify 957 // that we are parsing just the info we need 958 const DWARFContext::compile_unit_range &units = ctx->compile_units(); 959 // FIXME: There can be more than one compile unit per object file. See 960 // PR48637. 961 auto it = units.begin(); 962 compileUnit = it->get(); 963 } 964 965 ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const { 966 const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 967 const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); 968 if (!cmd) 969 return {}; 970 const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd); 971 return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff), 972 c->datasize / sizeof(data_in_code_entry)}; 973 } 974 975 // Create pointers from symbols to their associated compact unwind entries. 976 void ObjFile::registerCompactUnwind() { 977 for (const Subsection &subsection : compactUnwindSection->subsections) { 978 ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec); 979 // Hack!! Since each CUE contains a different function address, if ICF 980 // operated naively and compared the entire contents of each CUE, entries 981 // with identical unwind info but belonging to different functions would 982 // never be considered equivalent. To work around this problem, we slice 983 // away the function address here. (Note that we do not adjust the offsets 984 // of the corresponding relocations.) We rely on `relocateCompactUnwind()` 985 // to correctly handle these truncated input sections. 986 isec->data = isec->data.slice(target->wordSize); 987 988 ConcatInputSection *referentIsec; 989 for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { 990 Reloc &r = *it; 991 // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. 992 if (r.offset != 0) { 993 ++it; 994 continue; 995 } 996 uint64_t add = r.addend; 997 if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) { 998 // Check whether the symbol defined in this file is the prevailing one. 999 // Skip if it is e.g. a weak def that didn't prevail. 1000 if (sym->getFile() != this) { 1001 ++it; 1002 continue; 1003 } 1004 add += sym->value; 1005 referentIsec = cast<ConcatInputSection>(sym->isec); 1006 } else { 1007 referentIsec = 1008 cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>()); 1009 } 1010 if (referentIsec->getSegName() != segment_names::text) 1011 error("compact unwind references address in " + toString(referentIsec) + 1012 " which is not in segment __TEXT"); 1013 // The functionAddress relocations are typically section relocations. 1014 // However, unwind info operates on a per-symbol basis, so we search for 1015 // the function symbol here. 1016 auto symIt = llvm::lower_bound( 1017 referentIsec->symbols, add, 1018 [](Defined *d, uint64_t add) { return d->value < add; }); 1019 // The relocation should point at the exact address of a symbol (with no 1020 // addend). 1021 if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { 1022 assert(referentIsec->wasCoalesced); 1023 ++it; 1024 continue; 1025 } 1026 (*symIt)->unwindEntry = isec; 1027 // Since we've sliced away the functionAddress, we should remove the 1028 // corresponding relocation too. Given that clang emits relocations in 1029 // reverse order of address, this relocation should be at the end of the 1030 // vector for most of our input object files, so this is typically an O(1) 1031 // operation. 1032 it = isec->relocs.erase(it); 1033 } 1034 } 1035 } 1036 1037 // The path can point to either a dylib or a .tbd file. 1038 static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { 1039 Optional<MemoryBufferRef> mbref = readFile(path); 1040 if (!mbref) { 1041 error("could not read dylib file at " + path); 1042 return nullptr; 1043 } 1044 return loadDylib(*mbref, umbrella); 1045 } 1046 1047 // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with 1048 // the first document storing child pointers to the rest of them. When we are 1049 // processing a given TBD file, we store that top-level document in 1050 // currentTopLevelTapi. When processing re-exports, we search its children for 1051 // potentially matching documents in the same TBD file. Note that the children 1052 // themselves don't point to further documents, i.e. this is a two-level tree. 1053 // 1054 // Re-exports can either refer to on-disk files, or to documents within .tbd 1055 // files. 1056 static DylibFile *findDylib(StringRef path, DylibFile *umbrella, 1057 const InterfaceFile *currentTopLevelTapi) { 1058 // Search order: 1059 // 1. Install name basename in -F / -L directories. 1060 { 1061 StringRef stem = path::stem(path); 1062 SmallString<128> frameworkName; 1063 path::append(frameworkName, path::Style::posix, stem + ".framework", stem); 1064 bool isFramework = path.endswith(frameworkName); 1065 if (isFramework) { 1066 for (StringRef dir : config->frameworkSearchPaths) { 1067 SmallString<128> candidate = dir; 1068 path::append(candidate, frameworkName); 1069 if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str())) 1070 return loadDylib(*dylibPath, umbrella); 1071 } 1072 } else if (Optional<StringRef> dylibPath = findPathCombination( 1073 stem, config->librarySearchPaths, {".tbd", ".dylib"})) 1074 return loadDylib(*dylibPath, umbrella); 1075 } 1076 1077 // 2. As absolute path. 1078 if (path::is_absolute(path, path::Style::posix)) 1079 for (StringRef root : config->systemLibraryRoots) 1080 if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str())) 1081 return loadDylib(*dylibPath, umbrella); 1082 1083 // 3. As relative path. 1084 1085 // TODO: Handle -dylib_file 1086 1087 // Replace @executable_path, @loader_path, @rpath prefixes in install name. 1088 SmallString<128> newPath; 1089 if (config->outputType == MH_EXECUTE && 1090 path.consume_front("@executable_path/")) { 1091 // ld64 allows overriding this with the undocumented flag -executable_path. 1092 // lld doesn't currently implement that flag. 1093 // FIXME: Consider using finalOutput instead of outputFile. 1094 path::append(newPath, path::parent_path(config->outputFile), path); 1095 path = newPath; 1096 } else if (path.consume_front("@loader_path/")) { 1097 fs::real_path(umbrella->getName(), newPath); 1098 path::remove_filename(newPath); 1099 path::append(newPath, path); 1100 path = newPath; 1101 } else if (path.startswith("@rpath/")) { 1102 for (StringRef rpath : umbrella->rpaths) { 1103 newPath.clear(); 1104 if (rpath.consume_front("@loader_path/")) { 1105 fs::real_path(umbrella->getName(), newPath); 1106 path::remove_filename(newPath); 1107 } 1108 path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); 1109 if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str())) 1110 return loadDylib(*dylibPath, umbrella); 1111 } 1112 } 1113 1114 // FIXME: Should this be further up? 1115 if (currentTopLevelTapi) { 1116 for (InterfaceFile &child : 1117 make_pointee_range(currentTopLevelTapi->documents())) { 1118 assert(child.documents().empty()); 1119 if (path == child.getInstallName()) { 1120 auto file = make<DylibFile>(child, umbrella); 1121 file->parseReexports(child); 1122 return file; 1123 } 1124 } 1125 } 1126 1127 if (Optional<StringRef> dylibPath = resolveDylibPath(path)) 1128 return loadDylib(*dylibPath, umbrella); 1129 1130 return nullptr; 1131 } 1132 1133 // If a re-exported dylib is public (lives in /usr/lib or 1134 // /System/Library/Frameworks), then it is considered implicitly linked: we 1135 // should bind to its symbols directly instead of via the re-exporting umbrella 1136 // library. 1137 static bool isImplicitlyLinked(StringRef path) { 1138 if (!config->implicitDylibs) 1139 return false; 1140 1141 if (path::parent_path(path) == "/usr/lib") 1142 return true; 1143 1144 // Match /System/Library/Frameworks/$FOO.framework/**/$FOO 1145 if (path.consume_front("/System/Library/Frameworks/")) { 1146 StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); 1147 return path::filename(path) == frameworkName; 1148 } 1149 1150 return false; 1151 } 1152 1153 static void loadReexport(StringRef path, DylibFile *umbrella, 1154 const InterfaceFile *currentTopLevelTapi) { 1155 DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); 1156 if (!reexport) 1157 error("unable to locate re-export with install name " + path); 1158 } 1159 1160 DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, 1161 bool isBundleLoader) 1162 : InputFile(DylibKind, mb), refState(RefState::Unreferenced), 1163 isBundleLoader(isBundleLoader) { 1164 assert(!isBundleLoader || !umbrella); 1165 if (umbrella == nullptr) 1166 umbrella = this; 1167 this->umbrella = umbrella; 1168 1169 auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart()); 1170 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1171 1172 // Initialize installName. 1173 if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { 1174 auto *c = reinterpret_cast<const dylib_command *>(cmd); 1175 currentVersion = read32le(&c->dylib.current_version); 1176 compatibilityVersion = read32le(&c->dylib.compatibility_version); 1177 installName = 1178 reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name); 1179 } else if (!isBundleLoader) { 1180 // macho_executable and macho_bundle don't have LC_ID_DYLIB, 1181 // so it's OK. 1182 error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); 1183 return; 1184 } 1185 1186 if (config->printEachFile) 1187 message(toString(this)); 1188 inputFiles.insert(this); 1189 1190 deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; 1191 1192 if (!checkCompatibility(this)) 1193 return; 1194 1195 checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); 1196 1197 for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) { 1198 StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path}; 1199 rpaths.push_back(rpath); 1200 } 1201 1202 // Initialize symbols. 1203 exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; 1204 if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { 1205 auto *c = reinterpret_cast<const dyld_info_command *>(cmd); 1206 struct TrieEntry { 1207 StringRef name; 1208 uint64_t flags; 1209 }; 1210 1211 std::vector<TrieEntry> entries; 1212 // Find all the $ld$* symbols to process first. 1213 parseTrie(buf + c->export_off, c->export_size, 1214 [&](const Twine &name, uint64_t flags) { 1215 StringRef savedName = saver().save(name); 1216 if (handleLDSymbol(savedName)) 1217 return; 1218 entries.push_back({savedName, flags}); 1219 }); 1220 1221 // Process the "normal" symbols. 1222 for (TrieEntry &entry : entries) { 1223 if (exportingFile->hiddenSymbols.contains( 1224 CachedHashStringRef(entry.name))) 1225 continue; 1226 1227 bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; 1228 bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; 1229 1230 symbols.push_back( 1231 symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); 1232 } 1233 1234 } else { 1235 error("LC_DYLD_INFO_ONLY not found in " + toString(this)); 1236 return; 1237 } 1238 } 1239 1240 void DylibFile::parseLoadCommands(MemoryBufferRef mb) { 1241 auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart()); 1242 const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) + 1243 target->headerSize; 1244 for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { 1245 auto *cmd = reinterpret_cast<const load_command *>(p); 1246 p += cmd->cmdsize; 1247 1248 if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && 1249 cmd->cmd == LC_REEXPORT_DYLIB) { 1250 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1251 StringRef reexportPath = 1252 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1253 loadReexport(reexportPath, exportingFile, nullptr); 1254 } 1255 1256 // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, 1257 // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with 1258 // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? 1259 if (config->namespaceKind == NamespaceKind::flat && 1260 cmd->cmd == LC_LOAD_DYLIB) { 1261 const auto *c = reinterpret_cast<const dylib_command *>(cmd); 1262 StringRef dylibPath = 1263 reinterpret_cast<const char *>(c) + read32le(&c->dylib.name); 1264 DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); 1265 if (!dylib) 1266 error(Twine("unable to locate library '") + dylibPath + 1267 "' loaded from '" + toString(this) + "' for -flat_namespace"); 1268 } 1269 } 1270 } 1271 1272 // Some versions of XCode ship with .tbd files that don't have the right 1273 // platform settings. 1274 static constexpr std::array<StringRef, 3> skipPlatformChecks{ 1275 "/usr/lib/system/libsystem_kernel.dylib", 1276 "/usr/lib/system/libsystem_platform.dylib", 1277 "/usr/lib/system/libsystem_pthread.dylib"}; 1278 1279 DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, 1280 bool isBundleLoader) 1281 : InputFile(DylibKind, interface), refState(RefState::Unreferenced), 1282 isBundleLoader(isBundleLoader) { 1283 // FIXME: Add test for the missing TBD code path. 1284 1285 if (umbrella == nullptr) 1286 umbrella = this; 1287 this->umbrella = umbrella; 1288 1289 installName = saver().save(interface.getInstallName()); 1290 compatibilityVersion = interface.getCompatibilityVersion().rawValue(); 1291 currentVersion = interface.getCurrentVersion().rawValue(); 1292 1293 if (config->printEachFile) 1294 message(toString(this)); 1295 inputFiles.insert(this); 1296 1297 if (!is_contained(skipPlatformChecks, installName) && 1298 !is_contained(interface.targets(), config->platformInfo.target)) { 1299 error(toString(this) + " is incompatible with " + 1300 std::string(config->platformInfo.target)); 1301 return; 1302 } 1303 1304 checkAppExtensionSafety(interface.isApplicationExtensionSafe()); 1305 1306 exportingFile = isImplicitlyLinked(installName) ? this : umbrella; 1307 auto addSymbol = [&](const Twine &name) -> void { 1308 StringRef savedName = saver().save(name); 1309 if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) 1310 return; 1311 1312 symbols.push_back(symtab->addDylib(savedName, exportingFile, 1313 /*isWeakDef=*/false, 1314 /*isTlv=*/false)); 1315 }; 1316 1317 std::vector<const llvm::MachO::Symbol *> normalSymbols; 1318 normalSymbols.reserve(interface.symbolsCount()); 1319 for (const auto *symbol : interface.symbols()) { 1320 if (!symbol->getArchitectures().has(config->arch())) 1321 continue; 1322 if (handleLDSymbol(symbol->getName())) 1323 continue; 1324 1325 switch (symbol->getKind()) { 1326 case SymbolKind::GlobalSymbol: // Fallthrough 1327 case SymbolKind::ObjectiveCClass: // Fallthrough 1328 case SymbolKind::ObjectiveCClassEHType: // Fallthrough 1329 case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough 1330 normalSymbols.push_back(symbol); 1331 } 1332 } 1333 1334 // TODO(compnerd) filter out symbols based on the target platform 1335 // TODO: handle weak defs, thread locals 1336 for (const auto *symbol : normalSymbols) { 1337 switch (symbol->getKind()) { 1338 case SymbolKind::GlobalSymbol: 1339 addSymbol(symbol->getName()); 1340 break; 1341 case SymbolKind::ObjectiveCClass: 1342 // XXX ld64 only creates these symbols when -ObjC is passed in. We may 1343 // want to emulate that. 1344 addSymbol(objc::klass + symbol->getName()); 1345 addSymbol(objc::metaclass + symbol->getName()); 1346 break; 1347 case SymbolKind::ObjectiveCClassEHType: 1348 addSymbol(objc::ehtype + symbol->getName()); 1349 break; 1350 case SymbolKind::ObjectiveCInstanceVariable: 1351 addSymbol(objc::ivar + symbol->getName()); 1352 break; 1353 } 1354 } 1355 } 1356 1357 void DylibFile::parseReexports(const InterfaceFile &interface) { 1358 const InterfaceFile *topLevel = 1359 interface.getParent() == nullptr ? &interface : interface.getParent(); 1360 for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { 1361 InterfaceFile::const_target_range targets = intfRef.targets(); 1362 if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || 1363 is_contained(targets, config->platformInfo.target)) 1364 loadReexport(intfRef.getInstallName(), exportingFile, topLevel); 1365 } 1366 } 1367 1368 // $ld$ symbols modify the properties/behavior of the library (e.g. its install 1369 // name, compatibility version or hide/add symbols) for specific target 1370 // versions. 1371 bool DylibFile::handleLDSymbol(StringRef originalName) { 1372 if (!originalName.startswith("$ld$")) 1373 return false; 1374 1375 StringRef action; 1376 StringRef name; 1377 std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); 1378 if (action == "previous") 1379 handleLDPreviousSymbol(name, originalName); 1380 else if (action == "install_name") 1381 handleLDInstallNameSymbol(name, originalName); 1382 else if (action == "hide") 1383 handleLDHideSymbol(name, originalName); 1384 return true; 1385 } 1386 1387 void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { 1388 // originalName: $ld$ previous $ <installname> $ <compatversion> $ 1389 // <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $ 1390 StringRef installName; 1391 StringRef compatVersion; 1392 StringRef platformStr; 1393 StringRef startVersion; 1394 StringRef endVersion; 1395 StringRef symbolName; 1396 StringRef rest; 1397 1398 std::tie(installName, name) = name.split('$'); 1399 std::tie(compatVersion, name) = name.split('$'); 1400 std::tie(platformStr, name) = name.split('$'); 1401 std::tie(startVersion, name) = name.split('$'); 1402 std::tie(endVersion, name) = name.split('$'); 1403 std::tie(symbolName, rest) = name.split('$'); 1404 // TODO: ld64 contains some logic for non-empty symbolName as well. 1405 if (!symbolName.empty()) 1406 return; 1407 unsigned platform; 1408 if (platformStr.getAsInteger(10, platform) || 1409 platform != static_cast<unsigned>(config->platform())) 1410 return; 1411 1412 VersionTuple start; 1413 if (start.tryParse(startVersion)) { 1414 warn("failed to parse start version, symbol '" + originalName + 1415 "' ignored"); 1416 return; 1417 } 1418 VersionTuple end; 1419 if (end.tryParse(endVersion)) { 1420 warn("failed to parse end version, symbol '" + originalName + "' ignored"); 1421 return; 1422 } 1423 if (config->platformInfo.minimum < start || 1424 config->platformInfo.minimum >= end) 1425 return; 1426 1427 this->installName = saver().save(installName); 1428 1429 if (!compatVersion.empty()) { 1430 VersionTuple cVersion; 1431 if (cVersion.tryParse(compatVersion)) { 1432 warn("failed to parse compatibility version, symbol '" + originalName + 1433 "' ignored"); 1434 return; 1435 } 1436 compatibilityVersion = encodeVersion(cVersion); 1437 } 1438 } 1439 1440 void DylibFile::handleLDInstallNameSymbol(StringRef name, 1441 StringRef originalName) { 1442 // originalName: $ld$ install_name $ os<version> $ install_name 1443 StringRef condition, installName; 1444 std::tie(condition, installName) = name.split('$'); 1445 VersionTuple version; 1446 if (!condition.consume_front("os") || version.tryParse(condition)) 1447 warn("failed to parse os version, symbol '" + originalName + "' ignored"); 1448 else if (version == config->platformInfo.minimum) 1449 this->installName = saver().save(installName); 1450 } 1451 1452 void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { 1453 StringRef symbolName; 1454 bool shouldHide = true; 1455 if (name.startswith("os")) { 1456 // If it's hidden based on versions. 1457 name = name.drop_front(2); 1458 StringRef minVersion; 1459 std::tie(minVersion, symbolName) = name.split('$'); 1460 VersionTuple versionTup; 1461 if (versionTup.tryParse(minVersion)) { 1462 warn("Failed to parse hidden version, symbol `" + originalName + 1463 "` ignored."); 1464 return; 1465 } 1466 shouldHide = versionTup == config->platformInfo.minimum; 1467 } else { 1468 symbolName = name; 1469 } 1470 1471 if (shouldHide) 1472 exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); 1473 } 1474 1475 void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { 1476 if (config->applicationExtension && !dylibIsAppExtensionSafe) 1477 warn("using '-application_extension' with unsafe dylib: " + toString(this)); 1478 } 1479 1480 ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f) 1481 : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} 1482 1483 void ArchiveFile::addLazySymbols() { 1484 for (const object::Archive::Symbol &sym : file->symbols()) 1485 symtab->addLazyArchive(sym.getName(), this, sym); 1486 } 1487 1488 static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb, 1489 uint32_t modTime, 1490 StringRef archiveName, 1491 uint64_t offsetInArchive) { 1492 if (config->zeroModTime) 1493 modTime = 0; 1494 1495 switch (identify_magic(mb.getBuffer())) { 1496 case file_magic::macho_object: 1497 return make<ObjFile>(mb, modTime, archiveName); 1498 case file_magic::bitcode: 1499 return make<BitcodeFile>(mb, archiveName, offsetInArchive); 1500 default: 1501 return createStringError(inconvertibleErrorCode(), 1502 mb.getBufferIdentifier() + 1503 " has unhandled file type"); 1504 } 1505 } 1506 1507 Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { 1508 if (!seen.insert(c.getChildOffset()).second) 1509 return Error::success(); 1510 1511 Expected<MemoryBufferRef> mb = c.getMemoryBufferRef(); 1512 if (!mb) 1513 return mb.takeError(); 1514 1515 // Thin archives refer to .o files, so --reproduce needs the .o files too. 1516 if (tar && c.getParent()->isThin()) 1517 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); 1518 1519 Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified(); 1520 if (!modTime) 1521 return modTime.takeError(); 1522 1523 Expected<InputFile *> file = 1524 loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); 1525 1526 if (!file) 1527 return file.takeError(); 1528 1529 inputFiles.insert(*file); 1530 printArchiveMemberLoad(reason, *file); 1531 return Error::success(); 1532 } 1533 1534 void ArchiveFile::fetch(const object::Archive::Symbol &sym) { 1535 object::Archive::Child c = 1536 CHECK(sym.getMember(), toString(this) + 1537 ": could not get the member defining symbol " + 1538 toMachOString(sym)); 1539 1540 // `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile> 1541 // and become invalid after that call. Copy it to the stack so we can refer 1542 // to it later. 1543 const object::Archive::Symbol symCopy = sym; 1544 1545 // ld64 doesn't demangle sym here even with -demangle. 1546 // Match that: intentionally don't call toMachOString(). 1547 if (Error e = fetch(c, symCopy.getName())) 1548 error(toString(this) + ": could not get the member defining symbol " + 1549 toMachOString(symCopy) + ": " + toString(std::move(e))); 1550 } 1551 1552 static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, 1553 BitcodeFile &file) { 1554 StringRef name = saver().save(objSym.getName()); 1555 1556 if (objSym.isUndefined()) 1557 return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); 1558 1559 // TODO: Write a test demonstrating why computing isPrivateExtern before 1560 // LTO compilation is important. 1561 bool isPrivateExtern = false; 1562 switch (objSym.getVisibility()) { 1563 case GlobalValue::HiddenVisibility: 1564 isPrivateExtern = true; 1565 break; 1566 case GlobalValue::ProtectedVisibility: 1567 error(name + " has protected visibility, which is not supported by Mach-O"); 1568 break; 1569 case GlobalValue::DefaultVisibility: 1570 break; 1571 } 1572 1573 if (objSym.isCommon()) 1574 return symtab->addCommon(name, &file, objSym.getCommonSize(), 1575 objSym.getCommonAlignment(), isPrivateExtern); 1576 1577 return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, 1578 /*size=*/0, objSym.isWeak(), isPrivateExtern, 1579 /*isThumb=*/false, 1580 /*isReferencedDynamically=*/false, 1581 /*noDeadStrip=*/false, 1582 /*isWeakDefCanBeHidden=*/false); 1583 } 1584 1585 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, 1586 uint64_t offsetInArchive, bool lazy) 1587 : InputFile(BitcodeKind, mb, lazy) { 1588 this->archiveName = std::string(archiveName); 1589 std::string path = mb.getBufferIdentifier().str(); 1590 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1591 // name. If two members with the same name are provided, this causes a 1592 // collision and ThinLTO can't proceed. 1593 // So, we append the archive name to disambiguate two members with the same 1594 // name from multiple different archives, and offset within the archive to 1595 // disambiguate two members of the same name from a single archive. 1596 MemoryBufferRef mbref(mb.getBuffer(), 1597 saver().save(archiveName.empty() 1598 ? path 1599 : archiveName + 1600 sys::path::filename(path) + 1601 utostr(offsetInArchive))); 1602 1603 obj = check(lto::InputFile::create(mbref)); 1604 if (lazy) 1605 parseLazy(); 1606 else 1607 parse(); 1608 } 1609 1610 void BitcodeFile::parse() { 1611 // Convert LTO Symbols to LLD Symbols in order to perform resolution. The 1612 // "winning" symbol will then be marked as Prevailing at LTO compilation 1613 // time. 1614 symbols.clear(); 1615 for (const lto::InputFile::Symbol &objSym : obj->symbols()) 1616 symbols.push_back(createBitcodeSymbol(objSym, *this)); 1617 } 1618 1619 void BitcodeFile::parseLazy() { 1620 symbols.resize(obj->symbols().size()); 1621 for (auto it : llvm::enumerate(obj->symbols())) { 1622 const lto::InputFile::Symbol &objSym = it.value(); 1623 if (!objSym.isUndefined()) { 1624 symbols[it.index()] = 1625 symtab->addLazyObject(saver().save(objSym.getName()), *this); 1626 if (!lazy) 1627 break; 1628 } 1629 } 1630 } 1631 1632 void macho::extract(InputFile &file, StringRef reason) { 1633 assert(file.lazy); 1634 file.lazy = false; 1635 printArchiveMemberLoad(reason, &file); 1636 if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) { 1637 bitcode->parse(); 1638 } else { 1639 auto &f = cast<ObjFile>(file); 1640 if (target->wordSize == 8) 1641 f.parse<LP64>(); 1642 else 1643 f.parse<ILP32>(); 1644 } 1645 } 1646 1647 template void ObjFile::parse<LP64>(); 1648