//===- InputFiles.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains functions to parse Mach-O object files. In this comment, // we describe the Mach-O file structure and how we parse it. // // Mach-O is not very different from ELF or COFF. The notion of symbols, // sections and relocations exists in Mach-O as it does in ELF and COFF. // // Perhaps the notion that is new to those who know ELF/COFF is "subsections". // In ELF/COFF, sections are an atomic unit of data copied from input files to // output files. When we merge or garbage-collect sections, we treat each // section as an atomic unit. In Mach-O, that's not the case. Sections can // consist of multiple subsections, and subsections are a unit of merging and // garbage-collecting. Therefore, Mach-O's subsections are more similar to // ELF/COFF's sections than Mach-O's sections are. // // A section can have multiple symbols. A symbol that does not have the // N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by // definition, a symbol is always present at the beginning of each subsection. A // symbol with N_ALT_ENTRY attribute does not start a new subsection and can // point to a middle of a subsection. // // The notion of subsections also affects how relocations are represented in // Mach-O. All references within a section need to be explicitly represented as // relocations if they refer to different subsections, because we obviously need // to fix up addresses if subsections are laid out in an output file differently // than they were in object files. To represent that, Mach-O relocations can // refer to an unnamed location via its address. Scattered relocations (those // with the R_SCATTERED bit set) always refer to unnamed locations. // Non-scattered relocations refer to an unnamed location if r_extern is not set // and r_symbolnum is zero. // // Without the above differences, I think you can use your knowledge about ELF // and COFF for Mach-O. // //===----------------------------------------------------------------------===// #include "InputFiles.h" #include "Config.h" #include "Driver.h" #include "Dwarf.h" #include "ExportTrie.h" #include "InputSection.h" #include "MachOStructs.h" #include "ObjC.h" #include "OutputSection.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/CommonLinkerContext.h" #include "lld/Common/DWARF.h" #include "lld/Common/Reproduce.h" #include "llvm/ADT/iterator.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/LTO/LTO.h" #include "llvm/Support/BinaryStreamReader.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/TarWriter.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/TextAPI/Architecture.h" #include "llvm/TextAPI/InterfaceFile.h" #include using namespace llvm; using namespace llvm::MachO; using namespace llvm::support::endian; using namespace llvm::sys; using namespace lld; using namespace lld::macho; // Returns "", "foo.a(bar.o)", or "baz.o". std::string lld::toString(const InputFile *f) { if (!f) return ""; // Multiple dylibs can be defined in one .tbd file. if (auto dylibFile = dyn_cast(f)) if (f->getName().endswith(".tbd")) return (f->getName() + "(" + dylibFile->installName + ")").str(); if (f->archiveName.empty()) return std::string(f->getName()); return (f->archiveName + "(" + path::filename(f->getName()) + ")").str(); } SetVector macho::inputFiles; std::unique_ptr macho::tar; int InputFile::idCount = 0; static VersionTuple decodeVersion(uint32_t version) { unsigned major = version >> 16; unsigned minor = (version >> 8) & 0xffu; unsigned subMinor = version & 0xffu; return VersionTuple(major, minor, subMinor); } static std::vector getPlatformInfos(const InputFile *input) { if (!isa(input) && !isa(input)) return {}; const char *hdr = input->mb.getBufferStart(); std::vector platformInfos; for (auto *cmd : findCommands(hdr, LC_BUILD_VERSION)) { PlatformInfo info; info.target.Platform = static_cast(cmd->platform); info.minimum = decodeVersion(cmd->minos); platformInfos.emplace_back(std::move(info)); } for (auto *cmd : findCommands( hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS, LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) { PlatformInfo info; switch (cmd->cmd) { case LC_VERSION_MIN_MACOSX: info.target.Platform = PLATFORM_MACOS; break; case LC_VERSION_MIN_IPHONEOS: info.target.Platform = PLATFORM_IOS; break; case LC_VERSION_MIN_TVOS: info.target.Platform = PLATFORM_TVOS; break; case LC_VERSION_MIN_WATCHOS: info.target.Platform = PLATFORM_WATCHOS; break; } info.minimum = decodeVersion(cmd->version); platformInfos.emplace_back(std::move(info)); } return platformInfos; } static bool checkCompatibility(const InputFile *input) { std::vector platformInfos = getPlatformInfos(input); if (platformInfos.empty()) return true; auto it = find_if(platformInfos, [&](const PlatformInfo &info) { return removeSimulator(info.target.Platform) == removeSimulator(config->platform()); }); if (it == platformInfos.end()) { std::string platformNames; raw_string_ostream os(platformNames); interleave( platformInfos, os, [&](const PlatformInfo &info) { os << getPlatformName(info.target.Platform); }, "/"); error(toString(input) + " has platform " + platformNames + Twine(", which is different from target platform ") + getPlatformName(config->platform())); return false; } if (it->minimum > config->platformInfo.minimum) warn(toString(input) + " has version " + it->minimum.getAsString() + ", which is newer than target minimum of " + config->platformInfo.minimum.getAsString()); return true; } // This cache mostly exists to store system libraries (and .tbds) as they're // loaded, rather than the input archives, which are already cached at a higher // level, and other files like the filelist that are only read once. // Theoretically this caching could be more efficient by hoisting it, but that // would require altering many callers to track the state. DenseMap macho::cachedReads; // Open a given file path and return it as a memory-mapped file. Optional macho::readFile(StringRef path) { CachedHashStringRef key(path); auto entry = cachedReads.find(key); if (entry != cachedReads.end()) return entry->second; ErrorOr> mbOrErr = MemoryBuffer::getFile(path); if (std::error_code ec = mbOrErr.getError()) { error("cannot open " + path + ": " + ec.message()); return None; } std::unique_ptr &mb = *mbOrErr; MemoryBufferRef mbref = mb->getMemBufferRef(); make>(std::move(mb)); // take mb ownership // If this is a regular non-fat file, return it. const char *buf = mbref.getBufferStart(); const auto *hdr = reinterpret_cast(buf); if (mbref.getBufferSize() < sizeof(uint32_t) || read32be(&hdr->magic) != FAT_MAGIC) { if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return cachedReads[key] = mbref; } llvm::BumpPtrAllocator &bAlloc = lld::bAlloc(); // Object files and archive files may be fat files, which contain multiple // real files for different CPU ISAs. Here, we search for a file that matches // with the current link target and returns it as a MemoryBufferRef. const auto *arch = reinterpret_cast(buf + sizeof(*hdr)); for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) { if (reinterpret_cast(arch + i + 1) > buf + mbref.getBufferSize()) { error(path + ": fat_arch struct extends beyond end of file"); return None; } if (read32be(&arch[i].cputype) != static_cast(target->cpuType) || read32be(&arch[i].cpusubtype) != target->cpuSubtype) continue; uint32_t offset = read32be(&arch[i].offset); uint32_t size = read32be(&arch[i].size); if (offset + size > mbref.getBufferSize()) error(path + ": slice extends beyond end of file"); if (tar) tar->append(relativeToRoot(path), mbref.getBuffer()); return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc)); } error("unable to find matching architecture in " + path); return None; } InputFile::InputFile(Kind kind, const InterfaceFile &interface) : id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {} // Some sections comprise of fixed-size records, so instead of splitting them at // symbol boundaries, we split them based on size. Records are distinct from // literals in that they may contain references to other sections, instead of // being leaf nodes in the InputSection graph. // // Note that "record" is a term I came up with. In contrast, "literal" is a term // used by the Mach-O format. static Optional getRecordSize(StringRef segname, StringRef name) { if (name == section_names::cfString) { if (config->icfLevel != ICFLevel::none && segname == segment_names::data) return target->wordSize == 8 ? 32 : 16; } else if (name == section_names::compactUnwind) { if (segname == segment_names::ld) return target->wordSize == 8 ? 32 : 20; } return {}; } // Parse the sequence of sections within a single LC_SEGMENT(_64). // Split each section into subsections. template void ObjFile::parseSections(ArrayRef sectionHeaders) { sections.reserve(sectionHeaders.size()); auto *buf = reinterpret_cast(mb.getBufferStart()); for (const SectionHeader &sec : sectionHeaders) { StringRef name = StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname))); StringRef segname = StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname))); ArrayRef data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset, static_cast(sec.size)}; if (sec.align >= 32) { error("alignment " + std::to_string(sec.align) + " of section " + name + " is too large"); sections.push_back(sec.addr); continue; } uint32_t align = 1 << sec.align; uint32_t flags = sec.flags; auto splitRecords = [&](int recordSize) -> void { sections.push_back(sec.addr); if (data.empty()) return; Subsections &subsections = sections.back().subsections; subsections.reserve(data.size() / recordSize); auto *isec = make( segname, name, this, data.slice(0, recordSize), align, flags); subsections.push_back({0, isec}); for (uint64_t off = recordSize; off < data.size(); off += recordSize) { // Copying requires less memory than constructing a fresh InputSection. auto *copy = make(*isec); copy->data = data.slice(off, recordSize); subsections.push_back({off, copy}); } }; if (sectionType(sec.flags) == S_CSTRING_LITERALS || (config->dedupLiterals && isWordLiteralSection(sec.flags))) { if (sec.nreloc && config->dedupLiterals) fatal(toString(this) + " contains relocations in " + sec.segname + "," + sec.sectname + ", so LLD cannot deduplicate literals. Try re-running without " "--deduplicate-literals."); InputSection *isec; if (sectionType(sec.flags) == S_CSTRING_LITERALS) { isec = make(segname, name, this, data, align, flags); // FIXME: parallelize this? cast(isec)->splitIntoPieces(); } else { isec = make(segname, name, this, data, align, flags); } sections.push_back(sec.addr); sections.back().subsections.push_back({0, isec}); } else if (auto recordSize = getRecordSize(segname, name)) { splitRecords(*recordSize); if (name == section_names::compactUnwind) compactUnwindSection = §ions.back(); } else if (segname == segment_names::llvm) { if (name == "__cg_profile" && config->callGraphProfileSort) { TimeTraceScope timeScope("Parsing call graph section"); BinaryStreamReader reader(data, support::little); while (!reader.empty()) { uint32_t fromIndex, toIndex; uint64_t count; if (Error err = reader.readInteger(fromIndex)) fatal(toString(this) + ": Expected 32-bit integer"); if (Error err = reader.readInteger(toIndex)) fatal(toString(this) + ": Expected 32-bit integer"); if (Error err = reader.readInteger(count)) fatal(toString(this) + ": Expected 64-bit integer"); callGraph.emplace_back(); CallGraphEntry &entry = callGraph.back(); entry.fromIndex = fromIndex; entry.toIndex = toIndex; entry.count = count; } } // ld64 does not appear to emit contents from sections within the __LLVM // segment. Symbols within those sections point to bitcode metadata // instead of actual symbols. Global symbols within those sections could // have the same name without causing duplicate symbol errors. Push an // empty entry to ensure indices line up for the remaining sections. // TODO: Evaluate whether the bitcode metadata is needed. sections.push_back(sec.addr); } else { auto *isec = make(segname, name, this, data, align, flags); if (isDebugSection(isec->getFlags()) && isec->getSegName() == segment_names::dwarf) { // Instead of emitting DWARF sections, we emit STABS symbols to the // object files that contain them. We filter them out early to avoid // parsing their relocations unnecessarily. But we must still push an // empty entry to ensure the indices line up for the remaining sections. sections.push_back(sec.addr); debugSections.push_back(isec); } else { sections.push_back(sec.addr); sections.back().subsections.push_back({0, isec}); } } } } // Find the subsection corresponding to the greatest section offset that is <= // that of the given offset. // // offset: an offset relative to the start of the original InputSection (before // any subsection splitting has occurred). It will be updated to represent the // same location as an offset relative to the start of the containing // subsection. template static InputSection *findContainingSubsection(const Subsections &subsections, T *offset) { static_assert(std::is_same::value || std::is_same::value, "unexpected type for offset"); auto it = std::prev(llvm::upper_bound( subsections, *offset, [](uint64_t value, Subsection subsec) { return value < subsec.offset; })); *offset -= it->offset; return it->isec; } template static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec, relocation_info rel) { const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type); bool valid = true; auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) { valid = false; return (relocAttrs.name + " relocation " + diagnostic + " at offset " + std::to_string(rel.r_address) + " of " + sec.segname + "," + sec.sectname + " in " + toString(file)) .str(); }; if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern) error(message("must be extern")); if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel) error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") + "be PC-relative")); if (isThreadLocalVariables(sec.flags) && !relocAttrs.hasAttr(RelocAttrBits::UNSIGNED)) error(message("not allowed in thread-local section, must be UNSIGNED")); if (rel.r_length < 2 || rel.r_length > 3 || !relocAttrs.hasAttr(static_cast(1 << rel.r_length))) { static SmallVector widths{"0", "4", "8", "4 or 8"}; error(message("has width " + std::to_string(1 << rel.r_length) + " bytes, but must be " + widths[(static_cast(relocAttrs.bits) >> 2) & 3] + " bytes")); } return valid; } template void ObjFile::parseRelocations(ArrayRef sectionHeaders, const SectionHeader &sec, Subsections &subsections) { auto *buf = reinterpret_cast(mb.getBufferStart()); ArrayRef relInfos( reinterpret_cast(buf + sec.reloff), sec.nreloc); auto subsecIt = subsections.rbegin(); for (size_t i = 0; i < relInfos.size(); i++) { // Paired relocations serve as Mach-O's method for attaching a // supplemental datum to a primary relocation record. ELF does not // need them because the *_RELOC_RELA records contain the extra // addend field, vs. *_RELOC_REL which omit the addend. // // The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend, // and the paired *_RELOC_UNSIGNED record holds the minuend. The // datum for each is a symbolic address. The result is the offset // between two addresses. // // The ARM64_RELOC_ADDEND record holds the addend, and the paired // ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the // base symbolic address. // // Note: X86 does not use *_RELOC_ADDEND because it can embed an // addend into the instruction stream. On X86, a relocatable address // field always occupies an entire contiguous sequence of byte(s), // so there is no need to merge opcode bits with address // bits. Therefore, it's easy and convenient to store addends in the // instruction-stream bytes that would otherwise contain zeroes. By // contrast, RISC ISAs such as ARM64 mix opcode bits with with // address bits so that bitwise arithmetic is necessary to extract // and insert them. Storing addends in the instruction stream is // possible, but inconvenient and more costly at link time. relocation_info relInfo = relInfos[i]; bool isSubtrahend = target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND); if (isSubtrahend && StringRef(sec.sectname) == section_names::ehFrame) { // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r // adds local "EH_Frame1" and "func.eh". Ignore them because they have // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. ++i; continue; } int64_t pairedAddend = 0; if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) { pairedAddend = SignExtend64<24>(relInfo.r_symbolnum); relInfo = relInfos[++i]; } assert(i < relInfos.size()); if (!validateRelocationInfo(this, sec, relInfo)) continue; if (relInfo.r_address & R_SCATTERED) fatal("TODO: Scattered relocations not supported"); int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo); assert(!(embeddedAddend && pairedAddend)); int64_t totalAddend = pairedAddend + embeddedAddend; Reloc r; r.type = relInfo.r_type; r.pcrel = relInfo.r_pcrel; r.length = relInfo.r_length; r.offset = relInfo.r_address; if (relInfo.r_extern) { r.referent = symbols[relInfo.r_symbolnum]; r.addend = isSubtrahend ? 0 : totalAddend; } else { assert(!isSubtrahend); const SectionHeader &referentSecHead = sectionHeaders[relInfo.r_symbolnum - 1]; uint64_t referentOffset; if (relInfo.r_pcrel) { // The implicit addend for pcrel section relocations is the pcrel offset // in terms of the addresses in the input file. Here we adjust it so // that it describes the offset from the start of the referent section. // FIXME This logic was written around x86_64 behavior -- ARM64 doesn't // have pcrel section relocations. We may want to factor this out into // the arch-specific .cpp file. assert(target->hasAttr(r.type, RelocAttrBits::BYTE4)); referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend - referentSecHead.addr; } else { // The addend for a non-pcrel relocation is its absolute address. referentOffset = totalAddend - referentSecHead.addr; } Subsections &referentSubsections = sections[relInfo.r_symbolnum - 1].subsections; r.referent = findContainingSubsection(referentSubsections, &referentOffset); r.addend = referentOffset; } // Find the subsection that this relocation belongs to. // Though not required by the Mach-O format, clang and gcc seem to emit // relocations in order, so let's take advantage of it. However, ld64 emits // unsorted relocations (in `-r` mode), so we have a fallback for that // uncommon case. InputSection *subsec; while (subsecIt != subsections.rend() && subsecIt->offset > r.offset) ++subsecIt; if (subsecIt == subsections.rend() || subsecIt->offset + subsecIt->isec->getSize() <= r.offset) { subsec = findContainingSubsection(subsections, &r.offset); // Now that we know the relocs are unsorted, avoid trying the 'fast path' // for the other relocations. subsecIt = subsections.rend(); } else { subsec = subsecIt->isec; r.offset -= subsecIt->offset; } subsec->relocs.push_back(r); if (isSubtrahend) { relocation_info minuendInfo = relInfos[++i]; // SUBTRACTOR relocations should always be followed by an UNSIGNED one // attached to the same address. assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) && relInfo.r_address == minuendInfo.r_address); Reloc p; p.type = minuendInfo.r_type; if (minuendInfo.r_extern) { p.referent = symbols[minuendInfo.r_symbolnum]; p.addend = totalAddend; } else { uint64_t referentOffset = totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr; Subsections &referentSubsectVec = sections[minuendInfo.r_symbolnum - 1].subsections; p.referent = findContainingSubsection(referentSubsectVec, &referentOffset); p.addend = referentOffset; } subsec->relocs.push_back(p); } } } template static macho::Symbol *createDefined(const NList &sym, StringRef name, InputSection *isec, uint64_t value, uint64_t size) { // Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT): // N_EXT: Global symbols. These go in the symbol table during the link, // and also in the export table of the output so that the dynamic // linker sees them. // N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the // symbol table during the link so that duplicates are // either reported (for non-weak symbols) or merged // (for weak symbols), but they do not go in the export // table of the output. // N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits // object files) may produce them. LLD does not yet support -r. // These are translation-unit scoped, identical to the `0` case. // 0: Translation-unit scoped. These are not in the symbol table during // link, and not in the export table of the output either. bool isWeakDefCanBeHidden = (sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF); if (sym.n_type & N_EXT) { bool isPrivateExtern = sym.n_type & N_PEXT; // lld's behavior for merging symbols is slightly different from ld64: // ld64 picks the winning symbol based on several criteria (see // pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld // just merges metadata and keeps the contents of the first symbol // with that name (see SymbolTable::addDefined). For: // * inline function F in a TU built with -fvisibility-inlines-hidden // * and inline function F in another TU built without that flag // ld64 will pick the one from the file built without // -fvisibility-inlines-hidden. // lld will instead pick the one listed first on the link command line and // give it visibility as if the function was built without // -fvisibility-inlines-hidden. // If both functions have the same contents, this will have the same // behavior. If not, it won't, but the input had an ODR violation in // that case. // // Similarly, merging a symbol // that's isPrivateExtern and not isWeakDefCanBeHidden with one // that's not isPrivateExtern but isWeakDefCanBeHidden technically // should produce one // that's not isPrivateExtern but isWeakDefCanBeHidden. That matters // with ld64's semantics, because it means the non-private-extern // definition will continue to take priority if more private extern // definitions are encountered. With lld's semantics there's no observable // difference between a symbol that's isWeakDefCanBeHidden(autohide) or one // that's privateExtern -- neither makes it into the dynamic symbol table, // unless the autohide symbol is explicitly exported. // But if a symbol is both privateExtern and autohide then it can't // be exported. // So we nullify the autohide flag when privateExtern is present // and promote the symbol to privateExtern when it is not already. if (isWeakDefCanBeHidden && isPrivateExtern) isWeakDefCanBeHidden = false; else if (isWeakDefCanBeHidden) isPrivateExtern = true; return symtab->addDefined( name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden); } assert(!isWeakDefCanBeHidden && "weak_def_can_be_hidden on already-hidden symbol?"); return make( name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF, /*isExternal=*/false, /*isPrivateExtern=*/false, sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP); } // Absolute symbols are defined symbols that do not have an associated // InputSection. They cannot be weak. template static macho::Symbol *createAbsolute(const NList &sym, InputFile *file, StringRef name) { if (sym.n_type & N_EXT) { return symtab->addDefined( name, file, nullptr, sym.n_value, /*size=*/0, /*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF, /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP, /*isWeakDefCanBeHidden=*/false); } return make(name, file, nullptr, sym.n_value, /*size=*/0, /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/false, sym.n_desc & N_ARM_THUMB_DEF, /*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP); } template macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym, StringRef name) { uint8_t type = sym.n_type & N_TYPE; switch (type) { case N_UNDF: return sym.n_value == 0 ? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF) : symtab->addCommon(name, this, sym.n_value, 1 << GET_COMM_ALIGN(sym.n_desc), sym.n_type & N_PEXT); case N_ABS: return createAbsolute(sym, this, name); case N_PBUD: case N_INDR: error("TODO: support symbols of type " + std::to_string(type)); return nullptr; case N_SECT: llvm_unreachable( "N_SECT symbols should not be passed to parseNonSectionSymbol"); default: llvm_unreachable("invalid symbol type"); } } template static bool isUndef(const NList &sym) { return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0; } template void ObjFile::parseSymbols(ArrayRef sectionHeaders, ArrayRef nList, const char *strtab, bool subsectionsViaSymbols) { using NList = typename LP::nlist; // Groups indices of the symbols by the sections that contain them. std::vector> symbolsBySection(sections.size()); symbols.resize(nList.size()); SmallVector undefineds; for (uint32_t i = 0; i < nList.size(); ++i) { const NList &sym = nList[i]; // Ignore debug symbols for now. // FIXME: may need special handling. if (sym.n_type & N_STAB) continue; StringRef name = strtab + sym.n_strx; if ((sym.n_type & N_TYPE) == N_SECT) { Subsections &subsections = sections[sym.n_sect - 1].subsections; // parseSections() may have chosen not to parse this section. if (subsections.empty()) continue; symbolsBySection[sym.n_sect - 1].push_back(i); } else if (isUndef(sym)) { undefineds.push_back(i); } else { symbols[i] = parseNonSectionSymbol(sym, name); } } for (size_t i = 0; i < sections.size(); ++i) { Subsections &subsections = sections[i].subsections; if (subsections.empty()) continue; InputSection *lastIsec = subsections.back().isec; if (lastIsec->getName() == section_names::ehFrame) { // __TEXT,__eh_frame only has symbols and SUBTRACTOR relocs when ld64 -r // adds local "EH_Frame1" and "func.eh". Ignore them because they have // gone unused by Mac OS since Snow Leopard (10.6), vintage 2009. continue; } std::vector &symbolIndices = symbolsBySection[i]; uint64_t sectionAddr = sectionHeaders[i].addr; uint32_t sectionAlign = 1u << sectionHeaders[i].align; // Record-based sections have already been split into subsections during // parseSections(), so we simply need to match Symbols to the corresponding // subsection here. if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) { for (size_t j = 0; j < symbolIndices.size(); ++j) { uint32_t symIndex = symbolIndices[j]; const NList &sym = nList[symIndex]; StringRef name = strtab + sym.n_strx; uint64_t symbolOffset = sym.n_value - sectionAddr; InputSection *isec = findContainingSubsection(subsections, &symbolOffset); if (symbolOffset != 0) { error(toString(lastIsec) + ": symbol " + name + " at misaligned offset"); continue; } symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize()); } continue; } // Calculate symbol sizes and create subsections by splitting the sections // along symbol boundaries. // We populate subsections by repeatedly splitting the last (highest // address) subsection. llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) { return nList[lhs].n_value < nList[rhs].n_value; }); for (size_t j = 0; j < symbolIndices.size(); ++j) { uint32_t symIndex = symbolIndices[j]; const NList &sym = nList[symIndex]; StringRef name = strtab + sym.n_strx; Subsection &subsec = subsections.back(); InputSection *isec = subsec.isec; uint64_t subsecAddr = sectionAddr + subsec.offset; size_t symbolOffset = sym.n_value - subsecAddr; uint64_t symbolSize = j + 1 < symbolIndices.size() ? nList[symbolIndices[j + 1]].n_value - sym.n_value : isec->data.size() - symbolOffset; // There are 4 cases where we do not need to create a new subsection: // 1. If the input file does not use subsections-via-symbols. // 2. Multiple symbols at the same address only induce one subsection. // (The symbolOffset == 0 check covers both this case as well as // the first loop iteration.) // 3. Alternative entry points do not induce new subsections. // 4. If we have a literal section (e.g. __cstring and __literal4). if (!subsectionsViaSymbols || symbolOffset == 0 || sym.n_desc & N_ALT_ENTRY || !isa(isec)) { symbols[symIndex] = createDefined(sym, name, isec, symbolOffset, symbolSize); continue; } auto *concatIsec = cast(isec); auto *nextIsec = make(*concatIsec); nextIsec->wasCoalesced = false; if (isZeroFill(isec->getFlags())) { // Zero-fill sections have NULL data.data() non-zero data.size() nextIsec->data = {nullptr, isec->data.size() - symbolOffset}; isec->data = {nullptr, symbolOffset}; } else { nextIsec->data = isec->data.slice(symbolOffset); isec->data = isec->data.slice(0, symbolOffset); } // By construction, the symbol will be at offset zero in the new // subsection. symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0, symbolSize); // TODO: ld64 appears to preserve the original alignment as well as each // subsection's offset from the last aligned address. We should consider // emulating that behavior. nextIsec->align = MinAlign(sectionAlign, sym.n_value); subsections.push_back({sym.n_value - sectionAddr, nextIsec}); } } // Undefined symbols can trigger recursive fetch from Archives due to // LazySymbols. Process defined symbols first so that the relative order // between a defined symbol and an undefined symbol does not change the // symbol resolution behavior. In addition, a set of interconnected symbols // will all be resolved to the same file, instead of being resolved to // different files. for (unsigned i : undefineds) { const NList &sym = nList[i]; StringRef name = strtab + sym.n_strx; symbols[i] = parseNonSectionSymbol(sym, name); } } OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName, StringRef sectName) : InputFile(OpaqueKind, mb) { const auto *buf = reinterpret_cast(mb.getBufferStart()); ArrayRef data = {buf, mb.getBufferSize()}; ConcatInputSection *isec = make(segName.take_front(16), sectName.take_front(16), /*file=*/this, data); isec->live = true; sections.push_back(0); sections.back().subsections.push_back({0, isec}); } ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, bool lazy) : InputFile(ObjKind, mb, lazy), modTime(modTime) { this->archiveName = std::string(archiveName); if (lazy) { if (target->wordSize == 8) parseLazy(); else parseLazy(); } else { if (target->wordSize == 8) parse(); else parse(); } } template void ObjFile::parse() { using Header = typename LP::mach_header; using SegmentCommand = typename LP::segment_command; using SectionHeader = typename LP::section; using NList = typename LP::nlist; auto *buf = reinterpret_cast(mb.getBufferStart()); auto *hdr = reinterpret_cast(mb.getBufferStart()); Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype); if (arch != config->arch()) { auto msg = config->errorForArchMismatch ? static_cast(error) : warn; msg(toString(this) + " has architecture " + getArchitectureName(arch) + " which is incompatible with target architecture " + getArchitectureName(config->arch())); return; } if (!checkCompatibility(this)) return; for (auto *cmd : findCommands(hdr, LC_LINKER_OPTION)) { StringRef data{reinterpret_cast(cmd + 1), cmd->cmdsize - sizeof(linker_option_command)}; parseLCLinkerOption(this, cmd->count, data); } ArrayRef sectionHeaders; if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) { auto *c = reinterpret_cast(cmd); sectionHeaders = ArrayRef{ reinterpret_cast(c + 1), c->nsects}; parseSections(sectionHeaders); } // TODO: Error on missing LC_SYMTAB? if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) { auto *c = reinterpret_cast(cmd); ArrayRef nList(reinterpret_cast(buf + c->symoff), c->nsyms); const char *strtab = reinterpret_cast(buf) + c->stroff; bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS; parseSymbols(sectionHeaders, nList, strtab, subsectionsViaSymbols); } // The relocations may refer to the symbols, so we parse them after we have // parsed all the symbols. for (size_t i = 0, n = sections.size(); i < n; ++i) if (!sections[i].subsections.empty()) parseRelocations(sectionHeaders, sectionHeaders[i], sections[i].subsections); parseDebugInfo(); if (compactUnwindSection) registerCompactUnwind(); } template void ObjFile::parseLazy() { using Header = typename LP::mach_header; using NList = typename LP::nlist; auto *buf = reinterpret_cast(mb.getBufferStart()); auto *hdr = reinterpret_cast(mb.getBufferStart()); const load_command *cmd = findCommand(hdr, LC_SYMTAB); if (!cmd) return; auto *c = reinterpret_cast(cmd); ArrayRef nList(reinterpret_cast(buf + c->symoff), c->nsyms); const char *strtab = reinterpret_cast(buf) + c->stroff; symbols.resize(nList.size()); for (auto it : llvm::enumerate(nList)) { const NList &sym = it.value(); if ((sym.n_type & N_EXT) && !isUndef(sym)) { // TODO: Bound checking StringRef name = strtab + sym.n_strx; symbols[it.index()] = symtab->addLazyObject(name, *this); if (!lazy) break; } } } void ObjFile::parseDebugInfo() { std::unique_ptr dObj = DwarfObject::create(this); if (!dObj) return; auto *ctx = make( std::move(dObj), "", [&](Error err) { warn(toString(this) + ": " + toString(std::move(err))); }, [&](Error warning) { warn(toString(this) + ": " + toString(std::move(warning))); }); // TODO: Since object files can contain a lot of DWARF info, we should verify // that we are parsing just the info we need const DWARFContext::compile_unit_range &units = ctx->compile_units(); // FIXME: There can be more than one compile unit per object file. See // PR48637. auto it = units.begin(); compileUnit = it->get(); } ArrayRef ObjFile::getDataInCode() const { const auto *buf = reinterpret_cast(mb.getBufferStart()); const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE); if (!cmd) return {}; const auto *c = reinterpret_cast(cmd); return {reinterpret_cast(buf + c->dataoff), c->datasize / sizeof(data_in_code_entry)}; } // Create pointers from symbols to their associated compact unwind entries. void ObjFile::registerCompactUnwind() { for (const Subsection &subsection : compactUnwindSection->subsections) { ConcatInputSection *isec = cast(subsection.isec); // Hack!! Since each CUE contains a different function address, if ICF // operated naively and compared the entire contents of each CUE, entries // with identical unwind info but belonging to different functions would // never be considered equivalent. To work around this problem, we slice // away the function address here. (Note that we do not adjust the offsets // of the corresponding relocations.) We rely on `relocateCompactUnwind()` // to correctly handle these truncated input sections. isec->data = isec->data.slice(target->wordSize); ConcatInputSection *referentIsec; for (auto it = isec->relocs.begin(); it != isec->relocs.end();) { Reloc &r = *it; // CUE::functionAddress is at offset 0. Skip personality & LSDA relocs. if (r.offset != 0) { ++it; continue; } uint64_t add = r.addend; if (auto *sym = cast_or_null(r.referent.dyn_cast())) { // Check whether the symbol defined in this file is the prevailing one. // Skip if it is e.g. a weak def that didn't prevail. if (sym->getFile() != this) { ++it; continue; } add += sym->value; referentIsec = cast(sym->isec); } else { referentIsec = cast(r.referent.dyn_cast()); } if (referentIsec->getSegName() != segment_names::text) error("compact unwind references address in " + toString(referentIsec) + " which is not in segment __TEXT"); // The functionAddress relocations are typically section relocations. // However, unwind info operates on a per-symbol basis, so we search for // the function symbol here. auto symIt = llvm::lower_bound( referentIsec->symbols, add, [](Defined *d, uint64_t add) { return d->value < add; }); // The relocation should point at the exact address of a symbol (with no // addend). if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) { assert(referentIsec->wasCoalesced); ++it; continue; } (*symIt)->unwindEntry = isec; // Since we've sliced away the functionAddress, we should remove the // corresponding relocation too. Given that clang emits relocations in // reverse order of address, this relocation should be at the end of the // vector for most of our input object files, so this is typically an O(1) // operation. it = isec->relocs.erase(it); } } } // The path can point to either a dylib or a .tbd file. static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) { Optional mbref = readFile(path); if (!mbref) { error("could not read dylib file at " + path); return nullptr; } return loadDylib(*mbref, umbrella); } // TBD files are parsed into a series of TAPI documents (InterfaceFiles), with // the first document storing child pointers to the rest of them. When we are // processing a given TBD file, we store that top-level document in // currentTopLevelTapi. When processing re-exports, we search its children for // potentially matching documents in the same TBD file. Note that the children // themselves don't point to further documents, i.e. this is a two-level tree. // // Re-exports can either refer to on-disk files, or to documents within .tbd // files. static DylibFile *findDylib(StringRef path, DylibFile *umbrella, const InterfaceFile *currentTopLevelTapi) { // Search order: // 1. Install name basename in -F / -L directories. { StringRef stem = path::stem(path); SmallString<128> frameworkName; path::append(frameworkName, path::Style::posix, stem + ".framework", stem); bool isFramework = path.endswith(frameworkName); if (isFramework) { for (StringRef dir : config->frameworkSearchPaths) { SmallString<128> candidate = dir; path::append(candidate, frameworkName); if (Optional dylibPath = resolveDylibPath(candidate.str())) return loadDylib(*dylibPath, umbrella); } } else if (Optional dylibPath = findPathCombination( stem, config->librarySearchPaths, {".tbd", ".dylib"})) return loadDylib(*dylibPath, umbrella); } // 2. As absolute path. if (path::is_absolute(path, path::Style::posix)) for (StringRef root : config->systemLibraryRoots) if (Optional dylibPath = resolveDylibPath((root + path).str())) return loadDylib(*dylibPath, umbrella); // 3. As relative path. // TODO: Handle -dylib_file // Replace @executable_path, @loader_path, @rpath prefixes in install name. SmallString<128> newPath; if (config->outputType == MH_EXECUTE && path.consume_front("@executable_path/")) { // ld64 allows overriding this with the undocumented flag -executable_path. // lld doesn't currently implement that flag. // FIXME: Consider using finalOutput instead of outputFile. path::append(newPath, path::parent_path(config->outputFile), path); path = newPath; } else if (path.consume_front("@loader_path/")) { fs::real_path(umbrella->getName(), newPath); path::remove_filename(newPath); path::append(newPath, path); path = newPath; } else if (path.startswith("@rpath/")) { for (StringRef rpath : umbrella->rpaths) { newPath.clear(); if (rpath.consume_front("@loader_path/")) { fs::real_path(umbrella->getName(), newPath); path::remove_filename(newPath); } path::append(newPath, rpath, path.drop_front(strlen("@rpath/"))); if (Optional dylibPath = resolveDylibPath(newPath.str())) return loadDylib(*dylibPath, umbrella); } } // FIXME: Should this be further up? if (currentTopLevelTapi) { for (InterfaceFile &child : make_pointee_range(currentTopLevelTapi->documents())) { assert(child.documents().empty()); if (path == child.getInstallName()) { auto file = make(child, umbrella); file->parseReexports(child); return file; } } } if (Optional dylibPath = resolveDylibPath(path)) return loadDylib(*dylibPath, umbrella); return nullptr; } // If a re-exported dylib is public (lives in /usr/lib or // /System/Library/Frameworks), then it is considered implicitly linked: we // should bind to its symbols directly instead of via the re-exporting umbrella // library. static bool isImplicitlyLinked(StringRef path) { if (!config->implicitDylibs) return false; if (path::parent_path(path) == "/usr/lib") return true; // Match /System/Library/Frameworks/$FOO.framework/**/$FOO if (path.consume_front("/System/Library/Frameworks/")) { StringRef frameworkName = path.take_until([](char c) { return c == '.'; }); return path::filename(path) == frameworkName; } return false; } static void loadReexport(StringRef path, DylibFile *umbrella, const InterfaceFile *currentTopLevelTapi) { DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi); if (!reexport) error("unable to locate re-export with install name " + path); } DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella, bool isBundleLoader) : InputFile(DylibKind, mb), refState(RefState::Unreferenced), isBundleLoader(isBundleLoader) { assert(!isBundleLoader || !umbrella); if (umbrella == nullptr) umbrella = this; this->umbrella = umbrella; auto *buf = reinterpret_cast(mb.getBufferStart()); auto *hdr = reinterpret_cast(mb.getBufferStart()); // Initialize installName. if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) { auto *c = reinterpret_cast(cmd); currentVersion = read32le(&c->dylib.current_version); compatibilityVersion = read32le(&c->dylib.compatibility_version); installName = reinterpret_cast(cmd) + read32le(&c->dylib.name); } else if (!isBundleLoader) { // macho_executable and macho_bundle don't have LC_ID_DYLIB, // so it's OK. error("dylib " + toString(this) + " missing LC_ID_DYLIB load command"); return; } if (config->printEachFile) message(toString(this)); inputFiles.insert(this); deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB; if (!checkCompatibility(this)) return; checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE); for (auto *cmd : findCommands(hdr, LC_RPATH)) { StringRef rpath{reinterpret_cast(cmd) + cmd->path}; rpaths.push_back(rpath); } // Initialize symbols. exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella; if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) { auto *c = reinterpret_cast(cmd); struct TrieEntry { StringRef name; uint64_t flags; }; std::vector entries; // Find all the $ld$* symbols to process first. parseTrie(buf + c->export_off, c->export_size, [&](const Twine &name, uint64_t flags) { StringRef savedName = saver().save(name); if (handleLDSymbol(savedName)) return; entries.push_back({savedName, flags}); }); // Process the "normal" symbols. for (TrieEntry &entry : entries) { if (exportingFile->hiddenSymbols.contains( CachedHashStringRef(entry.name))) continue; bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION; bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL; symbols.push_back( symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv)); } } else { error("LC_DYLD_INFO_ONLY not found in " + toString(this)); return; } } void DylibFile::parseLoadCommands(MemoryBufferRef mb) { auto *hdr = reinterpret_cast(mb.getBufferStart()); const uint8_t *p = reinterpret_cast(mb.getBufferStart()) + target->headerSize; for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) { auto *cmd = reinterpret_cast(p); p += cmd->cmdsize; if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) && cmd->cmd == LC_REEXPORT_DYLIB) { const auto *c = reinterpret_cast(cmd); StringRef reexportPath = reinterpret_cast(c) + read32le(&c->dylib.name); loadReexport(reexportPath, exportingFile, nullptr); } // FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB, // LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with // MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)? if (config->namespaceKind == NamespaceKind::flat && cmd->cmd == LC_LOAD_DYLIB) { const auto *c = reinterpret_cast(cmd); StringRef dylibPath = reinterpret_cast(c) + read32le(&c->dylib.name); DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr); if (!dylib) error(Twine("unable to locate library '") + dylibPath + "' loaded from '" + toString(this) + "' for -flat_namespace"); } } } // Some versions of XCode ship with .tbd files that don't have the right // platform settings. static constexpr std::array skipPlatformChecks{ "/usr/lib/system/libsystem_kernel.dylib", "/usr/lib/system/libsystem_platform.dylib", "/usr/lib/system/libsystem_pthread.dylib"}; DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella, bool isBundleLoader) : InputFile(DylibKind, interface), refState(RefState::Unreferenced), isBundleLoader(isBundleLoader) { // FIXME: Add test for the missing TBD code path. if (umbrella == nullptr) umbrella = this; this->umbrella = umbrella; installName = saver().save(interface.getInstallName()); compatibilityVersion = interface.getCompatibilityVersion().rawValue(); currentVersion = interface.getCurrentVersion().rawValue(); if (config->printEachFile) message(toString(this)); inputFiles.insert(this); if (!is_contained(skipPlatformChecks, installName) && !is_contained(interface.targets(), config->platformInfo.target)) { error(toString(this) + " is incompatible with " + std::string(config->platformInfo.target)); return; } checkAppExtensionSafety(interface.isApplicationExtensionSafe()); exportingFile = isImplicitlyLinked(installName) ? this : umbrella; auto addSymbol = [&](const Twine &name) -> void { StringRef savedName = saver().save(name); if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName))) return; symbols.push_back(symtab->addDylib(savedName, exportingFile, /*isWeakDef=*/false, /*isTlv=*/false)); }; std::vector normalSymbols; normalSymbols.reserve(interface.symbolsCount()); for (const auto *symbol : interface.symbols()) { if (!symbol->getArchitectures().has(config->arch())) continue; if (handleLDSymbol(symbol->getName())) continue; switch (symbol->getKind()) { case SymbolKind::GlobalSymbol: // Fallthrough case SymbolKind::ObjectiveCClass: // Fallthrough case SymbolKind::ObjectiveCClassEHType: // Fallthrough case SymbolKind::ObjectiveCInstanceVariable: // Fallthrough normalSymbols.push_back(symbol); } } // TODO(compnerd) filter out symbols based on the target platform // TODO: handle weak defs, thread locals for (const auto *symbol : normalSymbols) { switch (symbol->getKind()) { case SymbolKind::GlobalSymbol: addSymbol(symbol->getName()); break; case SymbolKind::ObjectiveCClass: // XXX ld64 only creates these symbols when -ObjC is passed in. We may // want to emulate that. addSymbol(objc::klass + symbol->getName()); addSymbol(objc::metaclass + symbol->getName()); break; case SymbolKind::ObjectiveCClassEHType: addSymbol(objc::ehtype + symbol->getName()); break; case SymbolKind::ObjectiveCInstanceVariable: addSymbol(objc::ivar + symbol->getName()); break; } } } void DylibFile::parseReexports(const InterfaceFile &interface) { const InterfaceFile *topLevel = interface.getParent() == nullptr ? &interface : interface.getParent(); for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) { InterfaceFile::const_target_range targets = intfRef.targets(); if (is_contained(skipPlatformChecks, intfRef.getInstallName()) || is_contained(targets, config->platformInfo.target)) loadReexport(intfRef.getInstallName(), exportingFile, topLevel); } } // $ld$ symbols modify the properties/behavior of the library (e.g. its install // name, compatibility version or hide/add symbols) for specific target // versions. bool DylibFile::handleLDSymbol(StringRef originalName) { if (!originalName.startswith("$ld$")) return false; StringRef action; StringRef name; std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$'); if (action == "previous") handleLDPreviousSymbol(name, originalName); else if (action == "install_name") handleLDInstallNameSymbol(name, originalName); else if (action == "hide") handleLDHideSymbol(name, originalName); return true; } void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) { // originalName: $ld$ previous $ $ $ // $ $ $ $ StringRef installName; StringRef compatVersion; StringRef platformStr; StringRef startVersion; StringRef endVersion; StringRef symbolName; StringRef rest; std::tie(installName, name) = name.split('$'); std::tie(compatVersion, name) = name.split('$'); std::tie(platformStr, name) = name.split('$'); std::tie(startVersion, name) = name.split('$'); std::tie(endVersion, name) = name.split('$'); std::tie(symbolName, rest) = name.split('$'); // TODO: ld64 contains some logic for non-empty symbolName as well. if (!symbolName.empty()) return; unsigned platform; if (platformStr.getAsInteger(10, platform) || platform != static_cast(config->platform())) return; VersionTuple start; if (start.tryParse(startVersion)) { warn("failed to parse start version, symbol '" + originalName + "' ignored"); return; } VersionTuple end; if (end.tryParse(endVersion)) { warn("failed to parse end version, symbol '" + originalName + "' ignored"); return; } if (config->platformInfo.minimum < start || config->platformInfo.minimum >= end) return; this->installName = saver().save(installName); if (!compatVersion.empty()) { VersionTuple cVersion; if (cVersion.tryParse(compatVersion)) { warn("failed to parse compatibility version, symbol '" + originalName + "' ignored"); return; } compatibilityVersion = encodeVersion(cVersion); } } void DylibFile::handleLDInstallNameSymbol(StringRef name, StringRef originalName) { // originalName: $ld$ install_name $ os $ install_name StringRef condition, installName; std::tie(condition, installName) = name.split('$'); VersionTuple version; if (!condition.consume_front("os") || version.tryParse(condition)) warn("failed to parse os version, symbol '" + originalName + "' ignored"); else if (version == config->platformInfo.minimum) this->installName = saver().save(installName); } void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) { StringRef symbolName; bool shouldHide = true; if (name.startswith("os")) { // If it's hidden based on versions. name = name.drop_front(2); StringRef minVersion; std::tie(minVersion, symbolName) = name.split('$'); VersionTuple versionTup; if (versionTup.tryParse(minVersion)) { warn("Failed to parse hidden version, symbol `" + originalName + "` ignored."); return; } shouldHide = versionTup == config->platformInfo.minimum; } else { symbolName = name; } if (shouldHide) exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName)); } void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const { if (config->applicationExtension && !dylibIsAppExtensionSafe) warn("using '-application_extension' with unsafe dylib: " + toString(this)); } ArchiveFile::ArchiveFile(std::unique_ptr &&f) : InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {} void ArchiveFile::addLazySymbols() { for (const object::Archive::Symbol &sym : file->symbols()) symtab->addLazyArchive(sym.getName(), this, sym); } static Expected loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName, uint64_t offsetInArchive) { if (config->zeroModTime) modTime = 0; switch (identify_magic(mb.getBuffer())) { case file_magic::macho_object: return make(mb, modTime, archiveName); case file_magic::bitcode: return make(mb, archiveName, offsetInArchive); default: return createStringError(inconvertibleErrorCode(), mb.getBufferIdentifier() + " has unhandled file type"); } } Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) { if (!seen.insert(c.getChildOffset()).second) return Error::success(); Expected mb = c.getMemoryBufferRef(); if (!mb) return mb.takeError(); // Thin archives refer to .o files, so --reproduce needs the .o files too. if (tar && c.getParent()->isThin()) tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer()); Expected> modTime = c.getLastModified(); if (!modTime) return modTime.takeError(); Expected file = loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset()); if (!file) return file.takeError(); inputFiles.insert(*file); printArchiveMemberLoad(reason, *file); return Error::success(); } void ArchiveFile::fetch(const object::Archive::Symbol &sym) { object::Archive::Child c = CHECK(sym.getMember(), toString(this) + ": could not get the member defining symbol " + toMachOString(sym)); // `sym` is owned by a LazySym, which will be replace<>()d by make // and become invalid after that call. Copy it to the stack so we can refer // to it later. const object::Archive::Symbol symCopy = sym; // ld64 doesn't demangle sym here even with -demangle. // Match that: intentionally don't call toMachOString(). if (Error e = fetch(c, symCopy.getName())) error(toString(this) + ": could not get the member defining symbol " + toMachOString(symCopy) + ": " + toString(std::move(e))); } static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym, BitcodeFile &file) { StringRef name = saver().save(objSym.getName()); if (objSym.isUndefined()) return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak()); // TODO: Write a test demonstrating why computing isPrivateExtern before // LTO compilation is important. bool isPrivateExtern = false; switch (objSym.getVisibility()) { case GlobalValue::HiddenVisibility: isPrivateExtern = true; break; case GlobalValue::ProtectedVisibility: error(name + " has protected visibility, which is not supported by Mach-O"); break; case GlobalValue::DefaultVisibility: break; } if (objSym.isCommon()) return symtab->addCommon(name, &file, objSym.getCommonSize(), objSym.getCommonAlignment(), isPrivateExtern); return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0, /*size=*/0, objSym.isWeak(), isPrivateExtern, /*isThumb=*/false, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false); } BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName, uint64_t offsetInArchive, bool lazy) : InputFile(BitcodeKind, mb, lazy) { this->archiveName = std::string(archiveName); std::string path = mb.getBufferIdentifier().str(); // ThinLTO assumes that all MemoryBufferRefs given to it have a unique // name. If two members with the same name are provided, this causes a // collision and ThinLTO can't proceed. // So, we append the archive name to disambiguate two members with the same // name from multiple different archives, and offset within the archive to // disambiguate two members of the same name from a single archive. MemoryBufferRef mbref(mb.getBuffer(), saver().save(archiveName.empty() ? path : archiveName + sys::path::filename(path) + utostr(offsetInArchive))); obj = check(lto::InputFile::create(mbref)); if (lazy) parseLazy(); else parse(); } void BitcodeFile::parse() { // Convert LTO Symbols to LLD Symbols in order to perform resolution. The // "winning" symbol will then be marked as Prevailing at LTO compilation // time. symbols.clear(); for (const lto::InputFile::Symbol &objSym : obj->symbols()) symbols.push_back(createBitcodeSymbol(objSym, *this)); } void BitcodeFile::parseLazy() { symbols.resize(obj->symbols().size()); for (auto it : llvm::enumerate(obj->symbols())) { const lto::InputFile::Symbol &objSym = it.value(); if (!objSym.isUndefined()) { symbols[it.index()] = symtab->addLazyObject(saver().save(objSym.getName()), *this); if (!lazy) break; } } } void macho::extract(InputFile &file, StringRef reason) { assert(file.lazy); file.lazy = false; printArchiveMemberLoad(reason, &file); if (auto *bitcode = dyn_cast(&file)) { bitcode->parse(); } else { auto &f = cast(file); if (target->wordSize == 8) f.parse(); else f.parse(); } } template void ObjFile::parse();