1 //===- ConcatOutputSection.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ConcatOutputSection.h" 10 #include "Config.h" 11 #include "OutputSegment.h" 12 #include "SymbolTable.h" 13 #include "Symbols.h" 14 #include "SyntheticSections.h" 15 #include "Target.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/BinaryFormat/MachO.h" 19 #include "llvm/Support/ScopedPrinter.h" 20 #include "llvm/Support/TimeProfiler.h" 21 22 using namespace llvm; 23 using namespace llvm::MachO; 24 using namespace lld; 25 using namespace lld::macho; 26 27 MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections; 28 29 void ConcatOutputSection::addInput(ConcatInputSection *input) { 30 assert(input->parent == this); 31 if (inputs.empty()) { 32 align = input->align; 33 flags = input->getFlags(); 34 } else { 35 align = std::max(align, input->align); 36 finalizeFlags(input); 37 } 38 inputs.push_back(input); 39 } 40 41 // Branch-range extension can be implemented in two ways, either through ... 42 // 43 // (1) Branch islands: Single branch instructions (also of limited range), 44 // that might be chained in multiple hops to reach the desired 45 // destination. On ARM64, as 16 branch islands are needed to hop between 46 // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively, 47 // even when it needs excessive hops. 48 // 49 // (2) Thunks: Instruction(s) to load the destination address into a scratch 50 // register, followed by a register-indirect branch. Thunks are 51 // constructed to reach any arbitrary address, so need not be 52 // chained. Although thunks need not be chained, a program might need 53 // multiple thunks to the same destination distributed throughout a large 54 // program so that all call sites can have one within range. 55 // 56 // The optimal approach is to mix islands for distinations within two hops, 57 // and use thunks for destinations at greater distance. For now, we only 58 // implement thunks. TODO: Adding support for branch islands! 59 // 60 // Internally -- as expressed in LLD's data structures -- a 61 // branch-range-extension thunk comprises ... 62 // 63 // (1) new Defined privateExtern symbol for the thunk named 64 // <FUNCTION>.thunk.<SEQUENCE>, which references ... 65 // (2) new InputSection, which contains ... 66 // (3.1) new data for the instructions to load & branch to the far address + 67 // (3.2) new Relocs on instructions to load the far address, which reference ... 68 // (4.1) existing Defined extern symbol for the real function in __text, or 69 // (4.2) existing DylibSymbol for the real function in a dylib 70 // 71 // Nearly-optimal thunk-placement algorithm features: 72 // 73 // * Single pass: O(n) on the number of call sites. 74 // 75 // * Accounts for the exact space overhead of thunks - no heuristics 76 // 77 // * Exploits the full range of call instructions - forward & backward 78 // 79 // Data: 80 // 81 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol 82 // to its thunk bookkeeper. 83 // 84 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and 85 // distant call sites might be unable to reach the same thunk, so multiple 86 // thunks are necessary to serve all call sites in a very large program. A 87 // thunkInfo stores state for all thunks associated with a particular 88 // function: (a) thunk symbol, (b) input section containing stub code, and 89 // (c) sequence number for the active thunk incarnation. When an old thunk 90 // goes out of range, we increment the sequence number and create a new 91 // thunk named <FUNCTION>.thunk.<SEQUENCE>. 92 // 93 // * A thunk incarnation comprises (a) private-extern Defined symbol pointing 94 // to (b) an InputSection holding machine instructions (similar to a MachO 95 // stub), and (c) Reloc(s) that reference the real function for fixing-up 96 // the stub code. 97 // 98 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel 99 // to the inputs vector. We store new thunks via cheap vector append, rather 100 // than costly insertion into the inputs vector. 101 // 102 // Control Flow: 103 // 104 // * During address assignment, MergedInputSection::finalize() examines call 105 // sites by ascending address and creates thunks. When a function is beyond 106 // the range of a call site, we need a thunk. Place it at the largest 107 // available forward address from the call site. Call sites increase 108 // monotonically and thunks are always placed as far forward as possible; 109 // thus, we place thunks at monotonically increasing addresses. Once a thunk 110 // is placed, it and all previous input-section addresses are final. 111 // 112 // * MergedInputSection::finalize() and MergedInputSection::writeTo() merge 113 // the inputs and thunks vectors (both ordered by ascending address), which 114 // is simple and cheap. 115 116 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap; 117 118 // Determine whether we need thunks, which depends on the target arch -- RISC 119 // (i.e., ARM) generally does because it has limited-range branch/call 120 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs 121 // thunks for programs so large that branch source & destination addresses 122 // might differ more than the range of branch instruction(s). 123 bool ConcatOutputSection::needsThunks() const { 124 if (!target->usesThunks()) 125 return false; 126 uint64_t isecAddr = addr; 127 for (InputSection *isec : inputs) 128 isecAddr = alignTo(isecAddr, isec->align) + isec->getSize(); 129 if (isecAddr - addr + in.stubs->getSize() <= target->branchRange) 130 return false; 131 // Yes, this program is large enough to need thunks. 132 for (InputSection *isec : inputs) { 133 for (Reloc &r : isec->relocs) { 134 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH)) 135 continue; 136 auto *sym = r.referent.get<Symbol *>(); 137 // Pre-populate the thunkMap and memoize call site counts for every 138 // InputSection and ThunkInfo. We do this for the benefit of 139 // ConcatOutputSection::estimateStubsInRangeVA() 140 ThunkInfo &thunkInfo = thunkMap[sym]; 141 // Knowing ThunkInfo call site count will help us know whether or not we 142 // might need to create more for this referent at the time we are 143 // estimating distance to __stubs in . 144 ++thunkInfo.callSiteCount; 145 // Knowing InputSection call site count will help us avoid work on those 146 // that have no BRANCH relocs. 147 ++isec->callSiteCount; 148 } 149 } 150 return true; 151 } 152 153 // Since __stubs is placed after __text, we must estimate the address 154 // beyond which stubs are within range of a simple forward branch. 155 uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const { 156 uint64_t branchRange = target->branchRange; 157 size_t endIdx = inputs.size(); 158 ConcatInputSection *isec = inputs[callIdx]; 159 uint64_t isecVA = isec->getVA(); 160 // Tally the non-stub functions which still have call sites 161 // remaining to process, which yields the maximum number 162 // of thunks we might yet place. 163 size_t maxPotentialThunks = 0; 164 for (auto &tp : thunkMap) { 165 ThunkInfo &ti = tp.second; 166 maxPotentialThunks += 167 !tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount; 168 } 169 // Tally the total size of input sections remaining to process. 170 uint64_t isecEnd = isec->getVA(); 171 for (size_t i = callIdx; i < endIdx; i++) { 172 InputSection *isec = inputs[i]; 173 isecEnd = alignTo(isecEnd, isec->align) + isec->getSize(); 174 } 175 // Estimate the address after which call sites can safely call stubs 176 // directly rather than through intermediary thunks. 177 uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize + 178 in.stubs->getSize() - branchRange; 179 log("thunks = " + std::to_string(thunkMap.size()) + 180 ", potential = " + std::to_string(maxPotentialThunks) + 181 ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " + 182 to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) + 183 ", isecEnd = " + to_hexString(isecEnd) + 184 ", tail = " + to_hexString(isecEnd - isecVA) + 185 ", slop = " + to_hexString(branchRange - (isecEnd - isecVA))); 186 return stubsInRangeVA; 187 } 188 189 void ConcatOutputSection::finalize() { 190 uint64_t isecAddr = addr; 191 uint64_t isecFileOff = fileOff; 192 auto finalizeOne = [&](ConcatInputSection *isec) { 193 isecAddr = alignTo(isecAddr, isec->align); 194 isecFileOff = alignTo(isecFileOff, isec->align); 195 isec->outSecOff = isecAddr - addr; 196 isec->isFinal = true; 197 isecAddr += isec->getSize(); 198 isecFileOff += isec->getFileSize(); 199 }; 200 201 if (!needsThunks()) { 202 for (ConcatInputSection *isec : inputs) 203 finalizeOne(isec); 204 size = isecAddr - addr; 205 fileSize = isecFileOff - fileOff; 206 return; 207 } 208 209 uint64_t branchRange = target->branchRange; 210 uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA; 211 size_t thunkSize = target->thunkSize; 212 size_t relocCount = 0; 213 size_t callSiteCount = 0; 214 size_t thunkCallCount = 0; 215 size_t thunkCount = 0; 216 217 // inputs[finalIdx] is for finalization (address-assignment) 218 size_t finalIdx = 0; 219 // Kick-off by ensuring that the first input section has an address 220 for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx; 221 ++callIdx) { 222 if (finalIdx == callIdx) 223 finalizeOne(inputs[finalIdx++]); 224 ConcatInputSection *isec = inputs[callIdx]; 225 assert(isec->isFinal); 226 uint64_t isecVA = isec->getVA(); 227 // Assign addresses up-to the forward branch-range limit 228 while (finalIdx < endIdx && 229 isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange) 230 finalizeOne(inputs[finalIdx++]); 231 if (isec->callSiteCount == 0) 232 continue; 233 if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) { 234 // When we have finalized all input sections, __stubs (destined 235 // to follow __text) comes within range of forward branches and 236 // we can estimate the threshold address after which we can 237 // reach any stub with a forward branch. Note that although it 238 // sits in the middle of a loop, this code executes only once. 239 // It is in the loop because we need to call it at the proper 240 // time: the earliest call site from which the end of __text 241 // (and start of __stubs) comes within range of a forward branch. 242 stubsInRangeVA = estimateStubsInRangeVA(callIdx); 243 } 244 // Process relocs by ascending address, i.e., ascending offset within isec 245 std::vector<Reloc> &relocs = isec->relocs; 246 // FIXME: This property does not hold for object files produced by ld64's 247 // `-r` mode. 248 assert(is_sorted(relocs, 249 [](Reloc &a, Reloc &b) { return a.offset > b.offset; })); 250 for (Reloc &r : reverse(relocs)) { 251 ++relocCount; 252 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH)) 253 continue; 254 ++callSiteCount; 255 // Calculate branch reachability boundaries 256 uint64_t callVA = isecVA + r.offset; 257 uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0; 258 uint64_t highVA = callVA + branchRange; 259 // Calculate our call referent address 260 auto *funcSym = r.referent.get<Symbol *>(); 261 ThunkInfo &thunkInfo = thunkMap[funcSym]; 262 // The referent is not reachable, so we need to use a thunk ... 263 if (funcSym->isInStubs() && callVA >= stubsInRangeVA) { 264 // ... Oh, wait! We are close enough to the end that __stubs 265 // are now within range of a simple forward branch. 266 continue; 267 } 268 uint64_t funcVA = funcSym->resolveBranchVA(); 269 ++thunkInfo.callSitesUsed; 270 if (lowVA < funcVA && funcVA < highVA) { 271 // The referent is reachable with a simple call instruction. 272 continue; 273 } 274 ++thunkInfo.thunkCallCount; 275 ++thunkCallCount; 276 // If an existing thunk is reachable, use it ... 277 if (thunkInfo.sym) { 278 uint64_t thunkVA = thunkInfo.isec->getVA(); 279 if (lowVA < thunkVA && thunkVA < highVA) { 280 r.referent = thunkInfo.sym; 281 continue; 282 } 283 } 284 // ... otherwise, create a new thunk 285 if (isecAddr > highVA) { 286 // When there is small-to-no margin between highVA and 287 // isecAddr and the distance between subsequent call sites is 288 // smaller than thunkSize, then a new thunk can go out of 289 // range. Fix by unfinalizing inputs[finalIdx] to reduce the 290 // distance between callVA and highVA, then shift some thunks 291 // to occupy address-space formerly occupied by the 292 // unfinalized inputs[finalIdx]. 293 fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun"); 294 } 295 thunkInfo.isec = 296 make<ConcatInputSection>(isec->getSegName(), isec->getName()); 297 thunkInfo.isec->parent = this; 298 StringRef thunkName = saver.save(funcSym->getName() + ".thunk." + 299 std::to_string(thunkInfo.sequence++)); 300 r.referent = thunkInfo.sym = symtab->addDefined( 301 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, 302 /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true, 303 /*isThumb=*/false, /*isReferencedDynamically=*/false, 304 /*noDeadStrip=*/false); 305 target->populateThunk(thunkInfo.isec, funcSym); 306 finalizeOne(thunkInfo.isec); 307 thunks.push_back(thunkInfo.isec); 308 ++thunkCount; 309 } 310 } 311 size = isecAddr - addr; 312 fileSize = isecFileOff - fileOff; 313 314 log("thunks for " + parent->name + "," + name + 315 ": funcs = " + std::to_string(thunkMap.size()) + 316 ", relocs = " + std::to_string(relocCount) + 317 ", all calls = " + std::to_string(callSiteCount) + 318 ", thunk calls = " + std::to_string(thunkCallCount) + 319 ", thunks = " + std::to_string(thunkCount)); 320 } 321 322 void ConcatOutputSection::writeTo(uint8_t *buf) const { 323 // Merge input sections from thunk & ordinary vectors 324 size_t i = 0, ie = inputs.size(); 325 size_t t = 0, te = thunks.size(); 326 while (i < ie || t < te) { 327 while (i < ie && (t == te || inputs[i]->getSize() == 0 || 328 inputs[i]->outSecOff < thunks[t]->outSecOff)) { 329 inputs[i]->writeTo(buf + inputs[i]->outSecOff); 330 ++i; 331 } 332 while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) { 333 thunks[t]->writeTo(buf + thunks[t]->outSecOff); 334 ++t; 335 } 336 } 337 } 338 339 void ConcatOutputSection::finalizeFlags(InputSection *input) { 340 switch (sectionType(input->getFlags())) { 341 default /*type-unspec'ed*/: 342 // FIXME: Add additional logic here when supporting emitting obj files. 343 break; 344 case S_4BYTE_LITERALS: 345 case S_8BYTE_LITERALS: 346 case S_16BYTE_LITERALS: 347 case S_CSTRING_LITERALS: 348 case S_ZEROFILL: 349 case S_LAZY_SYMBOL_POINTERS: 350 case S_MOD_TERM_FUNC_POINTERS: 351 case S_THREAD_LOCAL_REGULAR: 352 case S_THREAD_LOCAL_ZEROFILL: 353 case S_THREAD_LOCAL_VARIABLES: 354 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS: 355 case S_THREAD_LOCAL_VARIABLE_POINTERS: 356 case S_NON_LAZY_SYMBOL_POINTERS: 357 case S_SYMBOL_STUBS: 358 flags |= input->getFlags(); 359 break; 360 } 361 } 362 363 ConcatOutputSection * 364 ConcatOutputSection::getOrCreateForInput(const InputSection *isec) { 365 NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()}); 366 ConcatOutputSection *&osec = concatOutputSections[names]; 367 if (!osec) 368 osec = make<ConcatOutputSection>(names.second); 369 return osec; 370 } 371 372 NamePair macho::maybeRenameSection(NamePair key) { 373 auto newNames = config->sectionRenameMap.find(key); 374 if (newNames != config->sectionRenameMap.end()) 375 return newNames->second; 376 return key; 377 } 378