xref: /freebsd/contrib/llvm-project/lld/MachO/ConcatOutputSection.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/ErrorHandler.h"
17 #include "lld/Common/Memory.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/Support/ScopedPrinter.h"
20 #include "llvm/Support/TimeProfiler.h"
21 
22 using namespace llvm;
23 using namespace llvm::MachO;
24 using namespace lld;
25 using namespace lld::macho;
26 
27 MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections;
28 
29 void ConcatOutputSection::addInput(ConcatInputSection *input) {
30   assert(input->parent == this);
31   if (inputs.empty()) {
32     align = input->align;
33     flags = input->getFlags();
34   } else {
35     align = std::max(align, input->align);
36     finalizeFlags(input);
37   }
38   inputs.push_back(input);
39 }
40 
41 // Branch-range extension can be implemented in two ways, either through ...
42 //
43 // (1) Branch islands: Single branch instructions (also of limited range),
44 //     that might be chained in multiple hops to reach the desired
45 //     destination. On ARM64, as 16 branch islands are needed to hop between
46 //     opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
47 //     even when it needs excessive hops.
48 //
49 // (2) Thunks: Instruction(s) to load the destination address into a scratch
50 //     register, followed by a register-indirect branch. Thunks are
51 //     constructed to reach any arbitrary address, so need not be
52 //     chained. Although thunks need not be chained, a program might need
53 //     multiple thunks to the same destination distributed throughout a large
54 //     program so that all call sites can have one within range.
55 //
56 // The optimal approach is to mix islands for distinations within two hops,
57 // and use thunks for destinations at greater distance. For now, we only
58 // implement thunks. TODO: Adding support for branch islands!
59 //
60 // Internally -- as expressed in LLD's data structures -- a
61 // branch-range-extension thunk comprises ...
62 //
63 // (1) new Defined privateExtern symbol for the thunk named
64 //     <FUNCTION>.thunk.<SEQUENCE>, which references ...
65 // (2) new InputSection, which contains ...
66 // (3.1) new data for the instructions to load & branch to the far address +
67 // (3.2) new Relocs on instructions to load the far address, which reference ...
68 // (4.1) existing Defined extern symbol for the real function in __text, or
69 // (4.2) existing DylibSymbol for the real function in a dylib
70 //
71 // Nearly-optimal thunk-placement algorithm features:
72 //
73 // * Single pass: O(n) on the number of call sites.
74 //
75 // * Accounts for the exact space overhead of thunks - no heuristics
76 //
77 // * Exploits the full range of call instructions - forward & backward
78 //
79 // Data:
80 //
81 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
82 //   to its thunk bookkeeper.
83 //
84 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
85 //   distant call sites might be unable to reach the same thunk, so multiple
86 //   thunks are necessary to serve all call sites in a very large program. A
87 //   thunkInfo stores state for all thunks associated with a particular
88 //   function: (a) thunk symbol, (b) input section containing stub code, and
89 //   (c) sequence number for the active thunk incarnation. When an old thunk
90 //   goes out of range, we increment the sequence number and create a new
91 //   thunk named <FUNCTION>.thunk.<SEQUENCE>.
92 //
93 // * A thunk incarnation comprises (a) private-extern Defined symbol pointing
94 //   to (b) an InputSection holding machine instructions (similar to a MachO
95 //   stub), and (c) Reloc(s) that reference the real function for fixing-up
96 //   the stub code.
97 //
98 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
99 //   to the inputs vector. We store new thunks via cheap vector append, rather
100 //   than costly insertion into the inputs vector.
101 //
102 // Control Flow:
103 //
104 // * During address assignment, MergedInputSection::finalize() examines call
105 //   sites by ascending address and creates thunks.  When a function is beyond
106 //   the range of a call site, we need a thunk. Place it at the largest
107 //   available forward address from the call site. Call sites increase
108 //   monotonically and thunks are always placed as far forward as possible;
109 //   thus, we place thunks at monotonically increasing addresses. Once a thunk
110 //   is placed, it and all previous input-section addresses are final.
111 //
112 // * MergedInputSection::finalize() and MergedInputSection::writeTo() merge
113 //   the inputs and thunks vectors (both ordered by ascending address), which
114 //   is simple and cheap.
115 
116 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
117 
118 // Determine whether we need thunks, which depends on the target arch -- RISC
119 // (i.e., ARM) generally does because it has limited-range branch/call
120 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
121 // thunks for programs so large that branch source & destination addresses
122 // might differ more than the range of branch instruction(s).
123 bool ConcatOutputSection::needsThunks() const {
124   if (!target->usesThunks())
125     return false;
126   uint64_t isecAddr = addr;
127   for (InputSection *isec : inputs)
128     isecAddr = alignTo(isecAddr, isec->align) + isec->getSize();
129   if (isecAddr - addr + in.stubs->getSize() <= target->branchRange)
130     return false;
131   // Yes, this program is large enough to need thunks.
132   for (InputSection *isec : inputs) {
133     for (Reloc &r : isec->relocs) {
134       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
135         continue;
136       auto *sym = r.referent.get<Symbol *>();
137       // Pre-populate the thunkMap and memoize call site counts for every
138       // InputSection and ThunkInfo. We do this for the benefit of
139       // ConcatOutputSection::estimateStubsInRangeVA()
140       ThunkInfo &thunkInfo = thunkMap[sym];
141       // Knowing ThunkInfo call site count will help us know whether or not we
142       // might need to create more for this referent at the time we are
143       // estimating distance to __stubs in .
144       ++thunkInfo.callSiteCount;
145       // Knowing InputSection call site count will help us avoid work on those
146       // that have no BRANCH relocs.
147       ++isec->callSiteCount;
148     }
149   }
150   return true;
151 }
152 
153 // Since __stubs is placed after __text, we must estimate the address
154 // beyond which stubs are within range of a simple forward branch.
155 uint64_t ConcatOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
156   uint64_t branchRange = target->branchRange;
157   size_t endIdx = inputs.size();
158   ConcatInputSection *isec = inputs[callIdx];
159   uint64_t isecVA = isec->getVA();
160   // Tally the non-stub functions which still have call sites
161   // remaining to process, which yields the maximum number
162   // of thunks we might yet place.
163   size_t maxPotentialThunks = 0;
164   for (auto &tp : thunkMap) {
165     ThunkInfo &ti = tp.second;
166     maxPotentialThunks +=
167         !tp.first->isInStubs() && ti.callSitesUsed < ti.callSiteCount;
168   }
169   // Tally the total size of input sections remaining to process.
170   uint64_t isecEnd = isec->getVA();
171   for (size_t i = callIdx; i < endIdx; i++) {
172     InputSection *isec = inputs[i];
173     isecEnd = alignTo(isecEnd, isec->align) + isec->getSize();
174   }
175   // Estimate the address after which call sites can safely call stubs
176   // directly rather than through intermediary thunks.
177   uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
178                             in.stubs->getSize() - branchRange;
179   log("thunks = " + std::to_string(thunkMap.size()) +
180       ", potential = " + std::to_string(maxPotentialThunks) +
181       ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
182       to_hexString(isecVA) + ", threshold = " + to_hexString(stubsInRangeVA) +
183       ", isecEnd = " + to_hexString(isecEnd) +
184       ", tail = " + to_hexString(isecEnd - isecVA) +
185       ", slop = " + to_hexString(branchRange - (isecEnd - isecVA)));
186   return stubsInRangeVA;
187 }
188 
189 void ConcatOutputSection::finalize() {
190   uint64_t isecAddr = addr;
191   uint64_t isecFileOff = fileOff;
192   auto finalizeOne = [&](ConcatInputSection *isec) {
193     isecAddr = alignTo(isecAddr, isec->align);
194     isecFileOff = alignTo(isecFileOff, isec->align);
195     isec->outSecOff = isecAddr - addr;
196     isec->isFinal = true;
197     isecAddr += isec->getSize();
198     isecFileOff += isec->getFileSize();
199   };
200 
201   if (!needsThunks()) {
202     for (ConcatInputSection *isec : inputs)
203       finalizeOne(isec);
204     size = isecAddr - addr;
205     fileSize = isecFileOff - fileOff;
206     return;
207   }
208 
209   uint64_t branchRange = target->branchRange;
210   uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
211   size_t thunkSize = target->thunkSize;
212   size_t relocCount = 0;
213   size_t callSiteCount = 0;
214   size_t thunkCallCount = 0;
215   size_t thunkCount = 0;
216 
217   // inputs[finalIdx] is for finalization (address-assignment)
218   size_t finalIdx = 0;
219   // Kick-off by ensuring that the first input section has an address
220   for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
221        ++callIdx) {
222     if (finalIdx == callIdx)
223       finalizeOne(inputs[finalIdx++]);
224     ConcatInputSection *isec = inputs[callIdx];
225     assert(isec->isFinal);
226     uint64_t isecVA = isec->getVA();
227     // Assign addresses up-to the forward branch-range limit
228     while (finalIdx < endIdx &&
229            isecAddr + inputs[finalIdx]->getSize() < isecVA + branchRange)
230       finalizeOne(inputs[finalIdx++]);
231     if (isec->callSiteCount == 0)
232       continue;
233     if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
234       // When we have finalized all input sections, __stubs (destined
235       // to follow __text) comes within range of forward branches and
236       // we can estimate the threshold address after which we can
237       // reach any stub with a forward branch. Note that although it
238       // sits in the middle of a loop, this code executes only once.
239       // It is in the loop because we need to call it at the proper
240       // time: the earliest call site from which the end of __text
241       // (and start of __stubs) comes within range of a forward branch.
242       stubsInRangeVA = estimateStubsInRangeVA(callIdx);
243     }
244     // Process relocs by ascending address, i.e., ascending offset within isec
245     std::vector<Reloc> &relocs = isec->relocs;
246     // FIXME: This property does not hold for object files produced by ld64's
247     // `-r` mode.
248     assert(is_sorted(relocs,
249                      [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
250     for (Reloc &r : reverse(relocs)) {
251       ++relocCount;
252       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
253         continue;
254       ++callSiteCount;
255       // Calculate branch reachability boundaries
256       uint64_t callVA = isecVA + r.offset;
257       uint64_t lowVA = branchRange < callVA ? callVA - branchRange : 0;
258       uint64_t highVA = callVA + branchRange;
259       // Calculate our call referent address
260       auto *funcSym = r.referent.get<Symbol *>();
261       ThunkInfo &thunkInfo = thunkMap[funcSym];
262       // The referent is not reachable, so we need to use a thunk ...
263       if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
264         // ... Oh, wait! We are close enough to the end that __stubs
265         // are now within range of a simple forward branch.
266         continue;
267       }
268       uint64_t funcVA = funcSym->resolveBranchVA();
269       ++thunkInfo.callSitesUsed;
270       if (lowVA < funcVA && funcVA < highVA) {
271         // The referent is reachable with a simple call instruction.
272         continue;
273       }
274       ++thunkInfo.thunkCallCount;
275       ++thunkCallCount;
276       // If an existing thunk is reachable, use it ...
277       if (thunkInfo.sym) {
278         uint64_t thunkVA = thunkInfo.isec->getVA();
279         if (lowVA < thunkVA && thunkVA < highVA) {
280           r.referent = thunkInfo.sym;
281           continue;
282         }
283       }
284       // ... otherwise, create a new thunk
285       if (isecAddr > highVA) {
286         // When there is small-to-no margin between highVA and
287         // isecAddr and the distance between subsequent call sites is
288         // smaller than thunkSize, then a new thunk can go out of
289         // range.  Fix by unfinalizing inputs[finalIdx] to reduce the
290         // distance between callVA and highVA, then shift some thunks
291         // to occupy address-space formerly occupied by the
292         // unfinalized inputs[finalIdx].
293         fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
294       }
295       thunkInfo.isec =
296           make<ConcatInputSection>(isec->getSegName(), isec->getName());
297       thunkInfo.isec->parent = this;
298       StringRef thunkName = saver.save(funcSym->getName() + ".thunk." +
299                                        std::to_string(thunkInfo.sequence++));
300       r.referent = thunkInfo.sym = symtab->addDefined(
301           thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0,
302           /*size=*/thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true,
303           /*isThumb=*/false, /*isReferencedDynamically=*/false,
304           /*noDeadStrip=*/false);
305       target->populateThunk(thunkInfo.isec, funcSym);
306       finalizeOne(thunkInfo.isec);
307       thunks.push_back(thunkInfo.isec);
308       ++thunkCount;
309     }
310   }
311   size = isecAddr - addr;
312   fileSize = isecFileOff - fileOff;
313 
314   log("thunks for " + parent->name + "," + name +
315       ": funcs = " + std::to_string(thunkMap.size()) +
316       ", relocs = " + std::to_string(relocCount) +
317       ", all calls = " + std::to_string(callSiteCount) +
318       ", thunk calls = " + std::to_string(thunkCallCount) +
319       ", thunks = " + std::to_string(thunkCount));
320 }
321 
322 void ConcatOutputSection::writeTo(uint8_t *buf) const {
323   // Merge input sections from thunk & ordinary vectors
324   size_t i = 0, ie = inputs.size();
325   size_t t = 0, te = thunks.size();
326   while (i < ie || t < te) {
327     while (i < ie && (t == te || inputs[i]->getSize() == 0 ||
328                       inputs[i]->outSecOff < thunks[t]->outSecOff)) {
329       inputs[i]->writeTo(buf + inputs[i]->outSecOff);
330       ++i;
331     }
332     while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
333       thunks[t]->writeTo(buf + thunks[t]->outSecOff);
334       ++t;
335     }
336   }
337 }
338 
339 void ConcatOutputSection::finalizeFlags(InputSection *input) {
340   switch (sectionType(input->getFlags())) {
341   default /*type-unspec'ed*/:
342     // FIXME: Add additional logic here when supporting emitting obj files.
343     break;
344   case S_4BYTE_LITERALS:
345   case S_8BYTE_LITERALS:
346   case S_16BYTE_LITERALS:
347   case S_CSTRING_LITERALS:
348   case S_ZEROFILL:
349   case S_LAZY_SYMBOL_POINTERS:
350   case S_MOD_TERM_FUNC_POINTERS:
351   case S_THREAD_LOCAL_REGULAR:
352   case S_THREAD_LOCAL_ZEROFILL:
353   case S_THREAD_LOCAL_VARIABLES:
354   case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
355   case S_THREAD_LOCAL_VARIABLE_POINTERS:
356   case S_NON_LAZY_SYMBOL_POINTERS:
357   case S_SYMBOL_STUBS:
358     flags |= input->getFlags();
359     break;
360   }
361 }
362 
363 ConcatOutputSection *
364 ConcatOutputSection::getOrCreateForInput(const InputSection *isec) {
365   NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()});
366   ConcatOutputSection *&osec = concatOutputSections[names];
367   if (!osec)
368     osec = make<ConcatOutputSection>(names.second);
369   return osec;
370 }
371 
372 NamePair macho::maybeRenameSection(NamePair key) {
373   auto newNames = config->sectionRenameMap.find(key);
374   if (newNames != config->sectionRenameMap.end())
375     return newNames->second;
376   return key;
377 }
378