1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/BinaryFormat/MachO.h"
18 #include "llvm/Support/ScopedPrinter.h"
19 #include "llvm/Support/TimeProfiler.h"
20
21 using namespace llvm;
22 using namespace llvm::MachO;
23 using namespace lld;
24 using namespace lld::macho;
25
26 MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections;
27
addInput(ConcatInputSection * input)28 void ConcatOutputSection::addInput(ConcatInputSection *input) {
29 assert(input->parent == this);
30 if (inputs.empty()) {
31 align = input->align;
32 flags = input->getFlags();
33 } else {
34 align = std::max(align, input->align);
35 finalizeFlags(input);
36 }
37 inputs.push_back(input);
38 }
39
40 // Branch-range extension can be implemented in two ways, either through ...
41 //
42 // (1) Branch islands: Single branch instructions (also of limited range),
43 // that might be chained in multiple hops to reach the desired
44 // destination. On ARM64, as 16 branch islands are needed to hop between
45 // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
46 // even when it needs excessive hops.
47 //
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch
49 // register, followed by a register-indirect branch. Thunks are
50 // constructed to reach any arbitrary address, so need not be
51 // chained. Although thunks need not be chained, a program might need
52 // multiple thunks to the same destination distributed throughout a large
53 // program so that all call sites can have one within range.
54 //
55 // The optimal approach is to mix islands for destinations within two hops,
56 // and use thunks for destinations at greater distance. For now, we only
57 // implement thunks. TODO: Adding support for branch islands!
58 //
59 // Internally -- as expressed in LLD's data structures -- a
60 // branch-range-extension thunk consists of:
61 //
62 // (1) new Defined symbol for the thunk named
63 // <FUNCTION>.thunk.<SEQUENCE>, which references ...
64 // (2) new InputSection, which contains ...
65 // (3.1) new data for the instructions to load & branch to the far address +
66 // (3.2) new Relocs on instructions to load the far address, which reference ...
67 // (4.1) existing Defined symbol for the real function in __text, or
68 // (4.2) existing DylibSymbol for the real function in a dylib
69 //
70 // Nearly-optimal thunk-placement algorithm features:
71 //
72 // * Single pass: O(n) on the number of call sites.
73 //
74 // * Accounts for the exact space overhead of thunks - no heuristics
75 //
76 // * Exploits the full range of call instructions - forward & backward
77 //
78 // Data:
79 //
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
81 // to its thunk bookkeeper.
82 //
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
84 // distant call sites might be unable to reach the same thunk, so multiple
85 // thunks are necessary to serve all call sites in a very large program. A
86 // thunkInfo stores state for all thunks associated with a particular
87 // function:
88 // (a) thunk symbol
89 // (b) input section containing stub code, and
90 // (c) sequence number for the active thunk incarnation.
91 // When an old thunk goes out of range, we increment the sequence number and
92 // create a new thunk named <FUNCTION>.thunk.<SEQUENCE>.
93 //
94 // * A thunk consists of
95 // (a) a Defined symbol pointing to
96 // (b) an InputSection holding machine code (similar to a MachO stub), and
97 // (c) relocs referencing the real function for fixing up the stub code.
98 //
99 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
100 // to the inputs vector. We store new thunks via cheap vector append, rather
101 // than costly insertion into the inputs vector.
102 //
103 // Control Flow:
104 //
105 // * During address assignment, MergedInputSection::finalize() examines call
106 // sites by ascending address and creates thunks. When a function is beyond
107 // the range of a call site, we need a thunk. Place it at the largest
108 // available forward address from the call site. Call sites increase
109 // monotonically and thunks are always placed as far forward as possible;
110 // thus, we place thunks at monotonically increasing addresses. Once a thunk
111 // is placed, it and all previous input-section addresses are final.
112 //
113 // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge
114 // the inputs and thunks vectors (both ordered by ascending address), which
115 // is simple and cheap.
116
117 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
118
119 // Determine whether we need thunks, which depends on the target arch -- RISC
120 // (i.e., ARM) generally does because it has limited-range branch/call
121 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
122 // thunks for programs so large that branch source & destination addresses
123 // might differ more than the range of branch instruction(s).
needsThunks() const124 bool TextOutputSection::needsThunks() const {
125 if (!target->usesThunks())
126 return false;
127 uint64_t isecAddr = addr;
128 for (ConcatInputSection *isec : inputs)
129 isecAddr = alignToPowerOf2(isecAddr, isec->align) + isec->getSize();
130 if (isecAddr - addr + in.stubs->getSize() <=
131 std::min(target->backwardBranchRange, target->forwardBranchRange))
132 return false;
133 // Yes, this program is large enough to need thunks.
134 for (ConcatInputSection *isec : inputs) {
135 for (Reloc &r : isec->relocs) {
136 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
137 continue;
138 auto *sym = r.referent.get<Symbol *>();
139 // Pre-populate the thunkMap and memoize call site counts for every
140 // InputSection and ThunkInfo. We do this for the benefit of
141 // estimateStubsInRangeVA().
142 ThunkInfo &thunkInfo = thunkMap[sym];
143 // Knowing ThunkInfo call site count will help us know whether or not we
144 // might need to create more for this referent at the time we are
145 // estimating distance to __stubs in estimateStubsInRangeVA().
146 ++thunkInfo.callSiteCount;
147 // We can avoid work on InputSections that have no BRANCH relocs.
148 isec->hasCallSites = true;
149 }
150 }
151 return true;
152 }
153
154 // Since __stubs is placed after __text, we must estimate the address
155 // beyond which stubs are within range of a simple forward branch.
156 // This is called exactly once, when the last input section has been finalized.
estimateStubsInRangeVA(size_t callIdx) const157 uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
158 // Tally the functions which still have call sites remaining to process,
159 // which yields the maximum number of thunks we might yet place.
160 size_t maxPotentialThunks = 0;
161 for (auto &tp : thunkMap) {
162 ThunkInfo &ti = tp.second;
163 // This overcounts: Only sections that are in forward jump range from the
164 // currently-active section get finalized, and all input sections are
165 // finalized when estimateStubsInRangeVA() is called. So only backward
166 // jumps will need thunks, but we count all jumps.
167 if (ti.callSitesUsed < ti.callSiteCount)
168 maxPotentialThunks += 1;
169 }
170 // Tally the total size of input sections remaining to process.
171 uint64_t isecVA = inputs[callIdx]->getVA();
172 uint64_t isecEnd = isecVA;
173 for (size_t i = callIdx; i < inputs.size(); i++) {
174 InputSection *isec = inputs[i];
175 isecEnd = alignToPowerOf2(isecEnd, isec->align) + isec->getSize();
176 }
177 // Estimate the address after which call sites can safely call stubs
178 // directly rather than through intermediary thunks.
179 uint64_t forwardBranchRange = target->forwardBranchRange;
180 assert(isecEnd > forwardBranchRange &&
181 "should not run thunk insertion if all code fits in jump range");
182 assert(isecEnd - isecVA <= forwardBranchRange &&
183 "should only finalize sections in jump range");
184 uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
185 in.stubs->getSize() - forwardBranchRange;
186 log("thunks = " + std::to_string(thunkMap.size()) +
187 ", potential = " + std::to_string(maxPotentialThunks) +
188 ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
189 utohexstr(isecVA) + ", threshold = " + utohexstr(stubsInRangeVA) +
190 ", isecEnd = " + utohexstr(isecEnd) +
191 ", tail = " + utohexstr(isecEnd - isecVA) +
192 ", slop = " + utohexstr(forwardBranchRange - (isecEnd - isecVA)));
193 return stubsInRangeVA;
194 }
195
finalizeOne(ConcatInputSection * isec)196 void ConcatOutputSection::finalizeOne(ConcatInputSection *isec) {
197 size = alignToPowerOf2(size, isec->align);
198 fileSize = alignToPowerOf2(fileSize, isec->align);
199 isec->outSecOff = size;
200 isec->isFinal = true;
201 size += isec->getSize();
202 fileSize += isec->getFileSize();
203 }
204
finalizeContents()205 void ConcatOutputSection::finalizeContents() {
206 for (ConcatInputSection *isec : inputs)
207 finalizeOne(isec);
208 }
209
finalize()210 void TextOutputSection::finalize() {
211 if (!needsThunks()) {
212 for (ConcatInputSection *isec : inputs)
213 finalizeOne(isec);
214 return;
215 }
216
217 uint64_t forwardBranchRange = target->forwardBranchRange;
218 uint64_t backwardBranchRange = target->backwardBranchRange;
219 uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
220 size_t thunkSize = target->thunkSize;
221 size_t relocCount = 0;
222 size_t callSiteCount = 0;
223 size_t thunkCallCount = 0;
224 size_t thunkCount = 0;
225
226 // Walk all sections in order. Finalize all sections that are less than
227 // forwardBranchRange in front of it.
228 // isecVA is the address of the current section.
229 // addr + size is the start address of the first non-finalized section.
230
231 // inputs[finalIdx] is for finalization (address-assignment)
232 size_t finalIdx = 0;
233 // Kick-off by ensuring that the first input section has an address
234 for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
235 ++callIdx) {
236 if (finalIdx == callIdx)
237 finalizeOne(inputs[finalIdx++]);
238 ConcatInputSection *isec = inputs[callIdx];
239 assert(isec->isFinal);
240 uint64_t isecVA = isec->getVA();
241
242 // Assign addresses up-to the forward branch-range limit.
243 // Every call instruction needs a small number of bytes (on Arm64: 4),
244 // and each inserted thunk needs a slightly larger number of bytes
245 // (on Arm64: 12). If a section starts with a branch instruction and
246 // contains several branch instructions in succession, then the distance
247 // from the current position to the position where the thunks are inserted
248 // grows. So leave room for a bunch of thunks.
249 unsigned slop = 256 * thunkSize;
250 while (finalIdx < endIdx) {
251 uint64_t expectedNewSize =
252 alignToPowerOf2(addr + size, inputs[finalIdx]->align) +
253 inputs[finalIdx]->getSize();
254 if (expectedNewSize >= isecVA + forwardBranchRange - slop)
255 break;
256 finalizeOne(inputs[finalIdx++]);
257 }
258
259 if (!isec->hasCallSites)
260 continue;
261
262 if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
263 // When we have finalized all input sections, __stubs (destined
264 // to follow __text) comes within range of forward branches and
265 // we can estimate the threshold address after which we can
266 // reach any stub with a forward branch. Note that although it
267 // sits in the middle of a loop, this code executes only once.
268 // It is in the loop because we need to call it at the proper
269 // time: the earliest call site from which the end of __text
270 // (and start of __stubs) comes within range of a forward branch.
271 stubsInRangeVA = estimateStubsInRangeVA(callIdx);
272 }
273 // Process relocs by ascending address, i.e., ascending offset within isec
274 std::vector<Reloc> &relocs = isec->relocs;
275 // FIXME: This property does not hold for object files produced by ld64's
276 // `-r` mode.
277 assert(is_sorted(relocs,
278 [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
279 for (Reloc &r : reverse(relocs)) {
280 ++relocCount;
281 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
282 continue;
283 ++callSiteCount;
284 // Calculate branch reachability boundaries
285 uint64_t callVA = isecVA + r.offset;
286 uint64_t lowVA =
287 backwardBranchRange < callVA ? callVA - backwardBranchRange : 0;
288 uint64_t highVA = callVA + forwardBranchRange;
289 // Calculate our call referent address
290 auto *funcSym = r.referent.get<Symbol *>();
291 ThunkInfo &thunkInfo = thunkMap[funcSym];
292 // The referent is not reachable, so we need to use a thunk ...
293 if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
294 assert(callVA != TargetInfo::outOfRangeVA);
295 // ... Oh, wait! We are close enough to the end that __stubs
296 // are now within range of a simple forward branch.
297 continue;
298 }
299 uint64_t funcVA = funcSym->resolveBranchVA();
300 ++thunkInfo.callSitesUsed;
301 if (lowVA <= funcVA && funcVA <= highVA) {
302 // The referent is reachable with a simple call instruction.
303 continue;
304 }
305 ++thunkInfo.thunkCallCount;
306 ++thunkCallCount;
307 // If an existing thunk is reachable, use it ...
308 if (thunkInfo.sym) {
309 uint64_t thunkVA = thunkInfo.isec->getVA();
310 if (lowVA <= thunkVA && thunkVA <= highVA) {
311 r.referent = thunkInfo.sym;
312 continue;
313 }
314 }
315 // ... otherwise, create a new thunk.
316 if (addr + size > highVA) {
317 // There were too many consecutive branch instructions for `slop`
318 // above. If you hit this: For the current algorithm, just bumping up
319 // slop above and trying again is probably simplest. (See also PR51578
320 // comment 5).
321 fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
322 }
323 thunkInfo.isec =
324 makeSyntheticInputSection(isec->getSegName(), isec->getName());
325 thunkInfo.isec->parent = this;
326 assert(thunkInfo.isec->live);
327
328 StringRef thunkName = saver().save(funcSym->getName() + ".thunk." +
329 std::to_string(thunkInfo.sequence++));
330 if (!isa<Defined>(funcSym) || cast<Defined>(funcSym)->isExternal()) {
331 r.referent = thunkInfo.sym = symtab->addDefined(
332 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize,
333 /*isWeakDef=*/false, /*isPrivateExtern=*/true,
334 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false,
335 /*isWeakDefCanBeHidden=*/false);
336 } else {
337 r.referent = thunkInfo.sym = make<Defined>(
338 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize,
339 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/true,
340 /*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
341 /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false);
342 }
343 thunkInfo.sym->used = true;
344 target->populateThunk(thunkInfo.isec, funcSym);
345 finalizeOne(thunkInfo.isec);
346 thunks.push_back(thunkInfo.isec);
347 ++thunkCount;
348 }
349 }
350
351 log("thunks for " + parent->name + "," + name +
352 ": funcs = " + std::to_string(thunkMap.size()) +
353 ", relocs = " + std::to_string(relocCount) +
354 ", all calls = " + std::to_string(callSiteCount) +
355 ", thunk calls = " + std::to_string(thunkCallCount) +
356 ", thunks = " + std::to_string(thunkCount));
357 }
358
writeTo(uint8_t * buf) const359 void ConcatOutputSection::writeTo(uint8_t *buf) const {
360 for (ConcatInputSection *isec : inputs)
361 isec->writeTo(buf + isec->outSecOff);
362 }
363
writeTo(uint8_t * buf) const364 void TextOutputSection::writeTo(uint8_t *buf) const {
365 // Merge input sections from thunk & ordinary vectors
366 size_t i = 0, ie = inputs.size();
367 size_t t = 0, te = thunks.size();
368 while (i < ie || t < te) {
369 while (i < ie && (t == te || inputs[i]->empty() ||
370 inputs[i]->outSecOff < thunks[t]->outSecOff)) {
371 inputs[i]->writeTo(buf + inputs[i]->outSecOff);
372 ++i;
373 }
374 while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
375 thunks[t]->writeTo(buf + thunks[t]->outSecOff);
376 ++t;
377 }
378 }
379 }
380
finalizeFlags(InputSection * input)381 void ConcatOutputSection::finalizeFlags(InputSection *input) {
382 switch (sectionType(input->getFlags())) {
383 default /*type-unspec'ed*/:
384 // FIXME: Add additional logic here when supporting emitting obj files.
385 break;
386 case S_4BYTE_LITERALS:
387 case S_8BYTE_LITERALS:
388 case S_16BYTE_LITERALS:
389 case S_CSTRING_LITERALS:
390 case S_ZEROFILL:
391 case S_LAZY_SYMBOL_POINTERS:
392 case S_MOD_TERM_FUNC_POINTERS:
393 case S_THREAD_LOCAL_REGULAR:
394 case S_THREAD_LOCAL_ZEROFILL:
395 case S_THREAD_LOCAL_VARIABLES:
396 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
397 case S_THREAD_LOCAL_VARIABLE_POINTERS:
398 case S_NON_LAZY_SYMBOL_POINTERS:
399 case S_SYMBOL_STUBS:
400 flags |= input->getFlags();
401 break;
402 }
403 }
404
405 ConcatOutputSection *
getOrCreateForInput(const InputSection * isec)406 ConcatOutputSection::getOrCreateForInput(const InputSection *isec) {
407 NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()});
408 ConcatOutputSection *&osec = concatOutputSections[names];
409 if (!osec) {
410 if (isec->getSegName() == segment_names::text &&
411 isec->getName() != section_names::gccExceptTab &&
412 isec->getName() != section_names::ehFrame)
413 osec = make<TextOutputSection>(names.second);
414 else
415 osec = make<ConcatOutputSection>(names.second);
416 }
417 return osec;
418 }
419
maybeRenameSection(NamePair key)420 NamePair macho::maybeRenameSection(NamePair key) {
421 auto newNames = config->sectionRenameMap.find(key);
422 if (newNames != config->sectionRenameMap.end())
423 return newNames->second;
424 return key;
425 }
426