xref: /freebsd/contrib/llvm-project/lld/MachO/ConcatOutputSection.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/BinaryFormat/MachO.h"
18 #include "llvm/Support/ScopedPrinter.h"
19 #include "llvm/Support/TimeProfiler.h"
20 
21 using namespace llvm;
22 using namespace llvm::MachO;
23 using namespace lld;
24 using namespace lld::macho;
25 
26 MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections;
27 
28 void ConcatOutputSection::addInput(ConcatInputSection *input) {
29   assert(input->parent == this);
30   if (inputs.empty()) {
31     align = input->align;
32     flags = input->getFlags();
33   } else {
34     align = std::max(align, input->align);
35     finalizeFlags(input);
36   }
37   inputs.push_back(input);
38 }
39 
40 // Branch-range extension can be implemented in two ways, either through ...
41 //
42 // (1) Branch islands: Single branch instructions (also of limited range),
43 //     that might be chained in multiple hops to reach the desired
44 //     destination. On ARM64, as 16 branch islands are needed to hop between
45 //     opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
46 //     even when it needs excessive hops.
47 //
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch
49 //     register, followed by a register-indirect branch. Thunks are
50 //     constructed to reach any arbitrary address, so need not be
51 //     chained. Although thunks need not be chained, a program might need
52 //     multiple thunks to the same destination distributed throughout a large
53 //     program so that all call sites can have one within range.
54 //
55 // The optimal approach is to mix islands for destinations within two hops,
56 // and use thunks for destinations at greater distance. For now, we only
57 // implement thunks. TODO: Adding support for branch islands!
58 //
59 // Internally -- as expressed in LLD's data structures -- a
60 // branch-range-extension thunk consists of:
61 //
62 // (1) new Defined symbol for the thunk named
63 //     <FUNCTION>.thunk.<SEQUENCE>, which references ...
64 // (2) new InputSection, which contains ...
65 // (3.1) new data for the instructions to load & branch to the far address +
66 // (3.2) new Relocs on instructions to load the far address, which reference ...
67 // (4.1) existing Defined symbol for the real function in __text, or
68 // (4.2) existing DylibSymbol for the real function in a dylib
69 //
70 // Nearly-optimal thunk-placement algorithm features:
71 //
72 // * Single pass: O(n) on the number of call sites.
73 //
74 // * Accounts for the exact space overhead of thunks - no heuristics
75 //
76 // * Exploits the full range of call instructions - forward & backward
77 //
78 // Data:
79 //
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
81 //   to its thunk bookkeeper.
82 //
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
84 //   distant call sites might be unable to reach the same thunk, so multiple
85 //   thunks are necessary to serve all call sites in a very large program. A
86 //   thunkInfo stores state for all thunks associated with a particular
87 //   function:
88 //     (a) thunk symbol
89 //     (b) input section containing stub code, and
90 //     (c) sequence number for the active thunk incarnation.
91 //   When an old thunk goes out of range, we increment the sequence number and
92 //   create a new thunk named <FUNCTION>.thunk.<SEQUENCE>.
93 //
94 // * A thunk consists of
95 //     (a) a Defined symbol pointing to
96 //     (b) an InputSection holding machine code (similar to a MachO stub), and
97 //     (c) relocs referencing the real function for fixing up the stub code.
98 //
99 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
100 //   to the inputs vector. We store new thunks via cheap vector append, rather
101 //   than costly insertion into the inputs vector.
102 //
103 // Control Flow:
104 //
105 // * During address assignment, MergedInputSection::finalize() examines call
106 //   sites by ascending address and creates thunks.  When a function is beyond
107 //   the range of a call site, we need a thunk. Place it at the largest
108 //   available forward address from the call site. Call sites increase
109 //   monotonically and thunks are always placed as far forward as possible;
110 //   thus, we place thunks at monotonically increasing addresses. Once a thunk
111 //   is placed, it and all previous input-section addresses are final.
112 //
113 // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge
114 //   the inputs and thunks vectors (both ordered by ascending address), which
115 //   is simple and cheap.
116 
117 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
118 
119 // Determine whether we need thunks, which depends on the target arch -- RISC
120 // (i.e., ARM) generally does because it has limited-range branch/call
121 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
122 // thunks for programs so large that branch source & destination addresses
123 // might differ more than the range of branch instruction(s).
124 bool TextOutputSection::needsThunks() const {
125   if (!target->usesThunks())
126     return false;
127   uint64_t isecAddr = addr;
128   for (ConcatInputSection *isec : inputs)
129     isecAddr = alignToPowerOf2(isecAddr, isec->align) + isec->getSize();
130   if (isecAddr - addr + in.stubs->getSize() <=
131       std::min(target->backwardBranchRange, target->forwardBranchRange))
132     return false;
133   // Yes, this program is large enough to need thunks.
134   for (ConcatInputSection *isec : inputs) {
135     for (Reloc &r : isec->relocs) {
136       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
137         continue;
138       auto *sym = r.referent.get<Symbol *>();
139       // Pre-populate the thunkMap and memoize call site counts for every
140       // InputSection and ThunkInfo. We do this for the benefit of
141       // estimateStubsInRangeVA().
142       ThunkInfo &thunkInfo = thunkMap[sym];
143       // Knowing ThunkInfo call site count will help us know whether or not we
144       // might need to create more for this referent at the time we are
145       // estimating distance to __stubs in estimateStubsInRangeVA().
146       ++thunkInfo.callSiteCount;
147       // We can avoid work on InputSections that have no BRANCH relocs.
148       isec->hasCallSites = true;
149     }
150   }
151   return true;
152 }
153 
154 // Since __stubs is placed after __text, we must estimate the address
155 // beyond which stubs are within range of a simple forward branch.
156 // This is called exactly once, when the last input section has been finalized.
157 uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
158   // Tally the functions which still have call sites remaining to process,
159   // which yields the maximum number of thunks we might yet place.
160   size_t maxPotentialThunks = 0;
161   for (auto &tp : thunkMap) {
162     ThunkInfo &ti = tp.second;
163     // This overcounts: Only sections that are in forward jump range from the
164     // currently-active section get finalized, and all input sections are
165     // finalized when estimateStubsInRangeVA() is called. So only backward
166     // jumps will need thunks, but we count all jumps.
167     if (ti.callSitesUsed < ti.callSiteCount)
168       maxPotentialThunks += 1;
169   }
170   // Tally the total size of input sections remaining to process.
171   uint64_t isecVA = inputs[callIdx]->getVA();
172   uint64_t isecEnd = isecVA;
173   for (size_t i = callIdx; i < inputs.size(); i++) {
174     InputSection *isec = inputs[i];
175     isecEnd = alignToPowerOf2(isecEnd, isec->align) + isec->getSize();
176   }
177   // Estimate the address after which call sites can safely call stubs
178   // directly rather than through intermediary thunks.
179   uint64_t forwardBranchRange = target->forwardBranchRange;
180   assert(isecEnd > forwardBranchRange &&
181          "should not run thunk insertion if all code fits in jump range");
182   assert(isecEnd - isecVA <= forwardBranchRange &&
183          "should only finalize sections in jump range");
184   uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
185                             in.stubs->getSize() - forwardBranchRange;
186   log("thunks = " + std::to_string(thunkMap.size()) +
187       ", potential = " + std::to_string(maxPotentialThunks) +
188       ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
189       utohexstr(isecVA) + ", threshold = " + utohexstr(stubsInRangeVA) +
190       ", isecEnd = " + utohexstr(isecEnd) +
191       ", tail = " + utohexstr(isecEnd - isecVA) +
192       ", slop = " + utohexstr(forwardBranchRange - (isecEnd - isecVA)));
193   return stubsInRangeVA;
194 }
195 
196 void ConcatOutputSection::finalizeOne(ConcatInputSection *isec) {
197   size = alignToPowerOf2(size, isec->align);
198   fileSize = alignToPowerOf2(fileSize, isec->align);
199   isec->outSecOff = size;
200   isec->isFinal = true;
201   size += isec->getSize();
202   fileSize += isec->getFileSize();
203 }
204 
205 void ConcatOutputSection::finalizeContents() {
206   for (ConcatInputSection *isec : inputs)
207     finalizeOne(isec);
208 }
209 
210 void TextOutputSection::finalize() {
211   if (!needsThunks()) {
212     for (ConcatInputSection *isec : inputs)
213       finalizeOne(isec);
214     return;
215   }
216 
217   uint64_t forwardBranchRange = target->forwardBranchRange;
218   uint64_t backwardBranchRange = target->backwardBranchRange;
219   uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
220   size_t thunkSize = target->thunkSize;
221   size_t relocCount = 0;
222   size_t callSiteCount = 0;
223   size_t thunkCallCount = 0;
224   size_t thunkCount = 0;
225 
226   // Walk all sections in order. Finalize all sections that are less than
227   // forwardBranchRange in front of it.
228   // isecVA is the address of the current section.
229   // addr + size is the start address of the first non-finalized section.
230 
231   // inputs[finalIdx] is for finalization (address-assignment)
232   size_t finalIdx = 0;
233   // Kick-off by ensuring that the first input section has an address
234   for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
235        ++callIdx) {
236     if (finalIdx == callIdx)
237       finalizeOne(inputs[finalIdx++]);
238     ConcatInputSection *isec = inputs[callIdx];
239     assert(isec->isFinal);
240     uint64_t isecVA = isec->getVA();
241 
242     // Assign addresses up-to the forward branch-range limit.
243     // Every call instruction needs a small number of bytes (on Arm64: 4),
244     // and each inserted thunk needs a slightly larger number of bytes
245     // (on Arm64: 12). If a section starts with a branch instruction and
246     // contains several branch instructions in succession, then the distance
247     // from the current position to the position where the thunks are inserted
248     // grows. So leave room for a bunch of thunks.
249     unsigned slop = 256 * thunkSize;
250     while (finalIdx < endIdx) {
251       uint64_t expectedNewSize =
252           alignToPowerOf2(addr + size, inputs[finalIdx]->align) +
253           inputs[finalIdx]->getSize();
254       if (expectedNewSize >= isecVA + forwardBranchRange - slop)
255         break;
256       finalizeOne(inputs[finalIdx++]);
257     }
258 
259     if (!isec->hasCallSites)
260       continue;
261 
262     if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
263       // When we have finalized all input sections, __stubs (destined
264       // to follow __text) comes within range of forward branches and
265       // we can estimate the threshold address after which we can
266       // reach any stub with a forward branch. Note that although it
267       // sits in the middle of a loop, this code executes only once.
268       // It is in the loop because we need to call it at the proper
269       // time: the earliest call site from which the end of __text
270       // (and start of __stubs) comes within range of a forward branch.
271       stubsInRangeVA = estimateStubsInRangeVA(callIdx);
272     }
273     // Process relocs by ascending address, i.e., ascending offset within isec
274     std::vector<Reloc> &relocs = isec->relocs;
275     // FIXME: This property does not hold for object files produced by ld64's
276     // `-r` mode.
277     assert(is_sorted(relocs,
278                      [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
279     for (Reloc &r : reverse(relocs)) {
280       ++relocCount;
281       if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
282         continue;
283       ++callSiteCount;
284       // Calculate branch reachability boundaries
285       uint64_t callVA = isecVA + r.offset;
286       uint64_t lowVA =
287           backwardBranchRange < callVA ? callVA - backwardBranchRange : 0;
288       uint64_t highVA = callVA + forwardBranchRange;
289       // Calculate our call referent address
290       auto *funcSym = r.referent.get<Symbol *>();
291       ThunkInfo &thunkInfo = thunkMap[funcSym];
292       // The referent is not reachable, so we need to use a thunk ...
293       if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
294         assert(callVA != TargetInfo::outOfRangeVA);
295         // ... Oh, wait! We are close enough to the end that __stubs
296         // are now within range of a simple forward branch.
297         continue;
298       }
299       uint64_t funcVA = funcSym->resolveBranchVA();
300       ++thunkInfo.callSitesUsed;
301       if (lowVA <= funcVA && funcVA <= highVA) {
302         // The referent is reachable with a simple call instruction.
303         continue;
304       }
305       ++thunkInfo.thunkCallCount;
306       ++thunkCallCount;
307       // If an existing thunk is reachable, use it ...
308       if (thunkInfo.sym) {
309         uint64_t thunkVA = thunkInfo.isec->getVA();
310         if (lowVA <= thunkVA && thunkVA <= highVA) {
311           r.referent = thunkInfo.sym;
312           continue;
313         }
314       }
315       // ... otherwise, create a new thunk.
316       if (addr + size > highVA) {
317         // There were too many consecutive branch instructions for `slop`
318         // above. If you hit this: For the current algorithm, just bumping up
319         // slop above and trying again is probably simplest. (See also PR51578
320         // comment 5).
321         fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
322       }
323       thunkInfo.isec =
324           makeSyntheticInputSection(isec->getSegName(), isec->getName());
325       thunkInfo.isec->parent = this;
326 
327       // This code runs after dead code removal. Need to set the `live` bit
328       // on the thunk isec so that asserts that check that only live sections
329       // get written are happy.
330       thunkInfo.isec->live = true;
331 
332       StringRef thunkName = saver().save(funcSym->getName() + ".thunk." +
333                                          std::to_string(thunkInfo.sequence++));
334       if (!isa<Defined>(funcSym) || cast<Defined>(funcSym)->isExternal()) {
335         r.referent = thunkInfo.sym = symtab->addDefined(
336             thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize,
337             /*isWeakDef=*/false, /*isPrivateExtern=*/true,
338             /*isReferencedDynamically=*/false, /*noDeadStrip=*/false,
339             /*isWeakDefCanBeHidden=*/false);
340       } else {
341         r.referent = thunkInfo.sym = make<Defined>(
342             thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize,
343             /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/true,
344             /*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
345             /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false);
346       }
347       thunkInfo.sym->used = true;
348       target->populateThunk(thunkInfo.isec, funcSym);
349       finalizeOne(thunkInfo.isec);
350       thunks.push_back(thunkInfo.isec);
351       ++thunkCount;
352     }
353   }
354 
355   log("thunks for " + parent->name + "," + name +
356       ": funcs = " + std::to_string(thunkMap.size()) +
357       ", relocs = " + std::to_string(relocCount) +
358       ", all calls = " + std::to_string(callSiteCount) +
359       ", thunk calls = " + std::to_string(thunkCallCount) +
360       ", thunks = " + std::to_string(thunkCount));
361 }
362 
363 void ConcatOutputSection::writeTo(uint8_t *buf) const {
364   for (ConcatInputSection *isec : inputs)
365     isec->writeTo(buf + isec->outSecOff);
366 }
367 
368 void TextOutputSection::writeTo(uint8_t *buf) const {
369   // Merge input sections from thunk & ordinary vectors
370   size_t i = 0, ie = inputs.size();
371   size_t t = 0, te = thunks.size();
372   while (i < ie || t < te) {
373     while (i < ie && (t == te || inputs[i]->empty() ||
374                       inputs[i]->outSecOff < thunks[t]->outSecOff)) {
375       inputs[i]->writeTo(buf + inputs[i]->outSecOff);
376       ++i;
377     }
378     while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
379       thunks[t]->writeTo(buf + thunks[t]->outSecOff);
380       ++t;
381     }
382   }
383 }
384 
385 void ConcatOutputSection::finalizeFlags(InputSection *input) {
386   switch (sectionType(input->getFlags())) {
387   default /*type-unspec'ed*/:
388     // FIXME: Add additional logic here when supporting emitting obj files.
389     break;
390   case S_4BYTE_LITERALS:
391   case S_8BYTE_LITERALS:
392   case S_16BYTE_LITERALS:
393   case S_CSTRING_LITERALS:
394   case S_ZEROFILL:
395   case S_LAZY_SYMBOL_POINTERS:
396   case S_MOD_TERM_FUNC_POINTERS:
397   case S_THREAD_LOCAL_REGULAR:
398   case S_THREAD_LOCAL_ZEROFILL:
399   case S_THREAD_LOCAL_VARIABLES:
400   case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
401   case S_THREAD_LOCAL_VARIABLE_POINTERS:
402   case S_NON_LAZY_SYMBOL_POINTERS:
403   case S_SYMBOL_STUBS:
404     flags |= input->getFlags();
405     break;
406   }
407 }
408 
409 ConcatOutputSection *
410 ConcatOutputSection::getOrCreateForInput(const InputSection *isec) {
411   NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()});
412   ConcatOutputSection *&osec = concatOutputSections[names];
413   if (!osec) {
414     if (isec->getSegName() == segment_names::text &&
415         isec->getName() != section_names::gccExceptTab &&
416         isec->getName() != section_names::ehFrame)
417       osec = make<TextOutputSection>(names.second);
418     else
419       osec = make<ConcatOutputSection>(names.second);
420   }
421   return osec;
422 }
423 
424 NamePair macho::maybeRenameSection(NamePair key) {
425   auto newNames = config->sectionRenameMap.find(key);
426   if (newNames != config->sectionRenameMap.end())
427     return newNames->second;
428   return key;
429 }
430