xref: /freebsd/contrib/llvm-project/lld/ELF/CallGraphSort.cpp (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 //===- CallGraphSort.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Implementation of Call-Chain Clustering from: Optimizing Function Placement
10 /// for Large-Scale Data-Center Applications
11 /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
12 ///
13 /// The goal of this algorithm is to improve runtime performance of the final
14 /// executable by arranging code sections such that page table and i-cache
15 /// misses are minimized.
16 ///
17 /// Definitions:
18 /// * Cluster
19 ///   * An ordered list of input sections which are laid out as a unit. At the
20 ///     beginning of the algorithm each input section has its own cluster and
21 ///     the weight of the cluster is the sum of the weight of all incoming
22 ///     edges.
23 /// * Call-Chain Clustering (C³) Heuristic
24 ///   * Defines when and how clusters are combined. Pick the highest weighted
25 ///     input section then add it to its most likely predecessor if it wouldn't
26 ///     penalize it too much.
27 /// * Density
28 ///   * The weight of the cluster divided by the size of the cluster. This is a
29 ///     proxy for the amount of execution time spent per byte of the cluster.
30 ///
31 /// It does so given a call graph profile by the following:
32 /// * Build a weighted call graph from the call graph profile
33 /// * Sort input sections by weight
34 /// * For each input section starting with the highest weight
35 ///   * Find its most likely predecessor cluster
36 ///   * Check if the combined cluster would be too large, or would have too low
37 ///     a density.
38 ///   * If not, then combine the clusters.
39 /// * Sort non-empty clusters by density
40 ///
41 //===----------------------------------------------------------------------===//
42 
43 #include "CallGraphSort.h"
44 #include "OutputSections.h"
45 #include "SymbolTable.h"
46 #include "Symbols.h"
47 
48 #include <numeric>
49 
50 using namespace llvm;
51 using namespace lld;
52 using namespace lld::elf;
53 
54 namespace {
55 struct Edge {
56   int from;
57   uint64_t weight;
58 };
59 
60 struct Cluster {
61   Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
62 
63   double getDensity() const {
64     if (size == 0)
65       return 0;
66     return double(weight) / double(size);
67   }
68 
69   int next;
70   int prev;
71   size_t size = 0;
72   uint64_t weight = 0;
73   uint64_t initialWeight = 0;
74   Edge bestPred = {-1, 0};
75 };
76 
77 class CallGraphSort {
78 public:
79   CallGraphSort();
80 
81   DenseMap<const InputSectionBase *, int> run();
82 
83 private:
84   std::vector<Cluster> clusters;
85   std::vector<const InputSectionBase *> sections;
86 };
87 
88 // Maximum amount the combined cluster density can be worse than the original
89 // cluster to consider merging.
90 constexpr int MAX_DENSITY_DEGRADATION = 8;
91 
92 // Maximum cluster size in bytes.
93 constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
94 } // end anonymous namespace
95 
96 using SectionPair =
97     std::pair<const InputSectionBase *, const InputSectionBase *>;
98 
99 // Take the edge list in Config->CallGraphProfile, resolve symbol names to
100 // Symbols, and generate a graph between InputSections with the provided
101 // weights.
102 CallGraphSort::CallGraphSort() {
103   MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
104   DenseMap<const InputSectionBase *, int> secToCluster;
105 
106   auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
107     auto res = secToCluster.try_emplace(isec, clusters.size());
108     if (res.second) {
109       sections.push_back(isec);
110       clusters.emplace_back(clusters.size(), isec->getSize());
111     }
112     return res.first->second;
113   };
114 
115   // Create the graph.
116   for (std::pair<SectionPair, uint64_t> &c : profile) {
117     const auto *fromSB = cast<InputSectionBase>(c.first.first->repl);
118     const auto *toSB = cast<InputSectionBase>(c.first.second->repl);
119     uint64_t weight = c.second;
120 
121     // Ignore edges between input sections belonging to different output
122     // sections.  This is done because otherwise we would end up with clusters
123     // containing input sections that can't actually be placed adjacently in the
124     // output.  This messes with the cluster size and density calculations.  We
125     // would also end up moving input sections in other output sections without
126     // moving them closer to what calls them.
127     if (fromSB->getOutputSection() != toSB->getOutputSection())
128       continue;
129 
130     int from = getOrCreateNode(fromSB);
131     int to = getOrCreateNode(toSB);
132 
133     clusters[to].weight += weight;
134 
135     if (from == to)
136       continue;
137 
138     // Remember the best edge.
139     Cluster &toC = clusters[to];
140     if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
141       toC.bestPred.from = from;
142       toC.bestPred.weight = weight;
143     }
144   }
145   for (Cluster &c : clusters)
146     c.initialWeight = c.weight;
147 }
148 
149 // It's bad to merge clusters which would degrade the density too much.
150 static bool isNewDensityBad(Cluster &a, Cluster &b) {
151   double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
152   return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
153 }
154 
155 // Find the leader of V's belonged cluster (represented as an equivalence
156 // class). We apply union-find path-halving technique (simple to implement) in
157 // the meantime as it decreases depths and the time complexity.
158 static int getLeader(std::vector<int> &leaders, int v) {
159   while (leaders[v] != v) {
160     leaders[v] = leaders[leaders[v]];
161     v = leaders[v];
162   }
163   return v;
164 }
165 
166 static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
167                           Cluster &from, int fromIdx) {
168   int tail1 = into.prev, tail2 = from.prev;
169   into.prev = tail2;
170   cs[tail2].next = intoIdx;
171   from.prev = tail1;
172   cs[tail1].next = fromIdx;
173   into.size += from.size;
174   into.weight += from.weight;
175   from.size = 0;
176   from.weight = 0;
177 }
178 
179 // Group InputSections into clusters using the Call-Chain Clustering heuristic
180 // then sort the clusters by density.
181 DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
182   std::vector<int> sorted(clusters.size());
183   std::vector<int> leaders(clusters.size());
184 
185   std::iota(leaders.begin(), leaders.end(), 0);
186   std::iota(sorted.begin(), sorted.end(), 0);
187   llvm::stable_sort(sorted, [&](int a, int b) {
188     return clusters[a].getDensity() > clusters[b].getDensity();
189   });
190 
191   for (int l : sorted) {
192     // The cluster index is the same as the index of its leader here because
193     // clusters[L] has not been merged into another cluster yet.
194     Cluster &c = clusters[l];
195 
196     // Don't consider merging if the edge is unlikely.
197     if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
198       continue;
199 
200     int predL = getLeader(leaders, c.bestPred.from);
201     if (l == predL)
202       continue;
203 
204     Cluster *predC = &clusters[predL];
205     if (c.size + predC->size > MAX_CLUSTER_SIZE)
206       continue;
207 
208     if (isNewDensityBad(*predC, c))
209       continue;
210 
211     leaders[l] = predL;
212     mergeClusters(clusters, *predC, predL, c, l);
213   }
214 
215   // Sort remaining non-empty clusters by density.
216   sorted.clear();
217   for (int i = 0, e = (int)clusters.size(); i != e; ++i)
218     if (clusters[i].size > 0)
219       sorted.push_back(i);
220   llvm::stable_sort(sorted, [&](int a, int b) {
221     return clusters[a].getDensity() > clusters[b].getDensity();
222   });
223 
224   DenseMap<const InputSectionBase *, int> orderMap;
225   int curOrder = 1;
226   for (int leader : sorted)
227     for (int i = leader;;) {
228       orderMap[sections[i]] = curOrder++;
229       i = clusters[i].next;
230       if (i == leader)
231         break;
232     }
233 
234   if (!config->printSymbolOrder.empty()) {
235     std::error_code ec;
236     raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
237     if (ec) {
238       error("cannot open " + config->printSymbolOrder + ": " + ec.message());
239       return orderMap;
240     }
241 
242     // Print the symbols ordered by C3, in the order of increasing curOrder
243     // Instead of sorting all the orderMap, just repeat the loops above.
244     for (int leader : sorted)
245       for (int i = leader;;) {
246         // Search all the symbols in the file of the section
247         // and find out a Defined symbol with name that is within the section.
248         for (Symbol *sym : sections[i]->file->getSymbols())
249           if (!sym->isSection()) // Filter out section-type symbols here.
250             if (auto *d = dyn_cast<Defined>(sym))
251               if (sections[i] == d->section)
252                 os << sym->getName() << "\n";
253         i = clusters[i].next;
254         if (i == leader)
255           break;
256       }
257   }
258 
259   return orderMap;
260 }
261 
262 // Sort sections by the profile data provided by -callgraph-profile-file
263 //
264 // This first builds a call graph based on the profile data then merges sections
265 // according to the C³ heuristic. All clusters are then sorted by a density
266 // metric to further improve locality.
267 DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
268   return CallGraphSort().run();
269 }
270