//===- CallGraphSort.cpp --------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// Implementation of Call-Chain Clustering from: Optimizing Function Placement /// for Large-Scale Data-Center Applications /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf /// /// The goal of this algorithm is to improve runtime performance of the final /// executable by arranging code sections such that page table and i-cache /// misses are minimized. /// /// Definitions: /// * Cluster /// * An ordered list of input sections which are laid out as a unit. At the /// beginning of the algorithm each input section has its own cluster and /// the weight of the cluster is the sum of the weight of all incoming /// edges. /// * Call-Chain Clustering (C³) Heuristic /// * Defines when and how clusters are combined. Pick the highest weighted /// input section then add it to its most likely predecessor if it wouldn't /// penalize it too much. /// * Density /// * The weight of the cluster divided by the size of the cluster. This is a /// proxy for the amount of execution time spent per byte of the cluster. /// /// It does so given a call graph profile by the following: /// * Build a weighted call graph from the call graph profile /// * Sort input sections by weight /// * For each input section starting with the highest weight /// * Find its most likely predecessor cluster /// * Check if the combined cluster would be too large, or would have too low /// a density. /// * If not, then combine the clusters. /// * Sort non-empty clusters by density /// //===----------------------------------------------------------------------===// #include "CallGraphSort.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include using namespace llvm; using namespace lld; using namespace lld::elf; namespace { struct Edge { int from; uint64_t weight; }; struct Cluster { Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {} double getDensity() const { if (size == 0) return 0; return double(weight) / double(size); } int next; int prev; size_t size = 0; uint64_t weight = 0; uint64_t initialWeight = 0; Edge bestPred = {-1, 0}; }; class CallGraphSort { public: CallGraphSort(); DenseMap run(); private: std::vector clusters; std::vector sections; }; // Maximum amount the combined cluster density can be worse than the original // cluster to consider merging. constexpr int MAX_DENSITY_DEGRADATION = 8; // Maximum cluster size in bytes. constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; } // end anonymous namespace using SectionPair = std::pair; // Take the edge list in Config->CallGraphProfile, resolve symbol names to // Symbols, and generate a graph between InputSections with the provided // weights. CallGraphSort::CallGraphSort() { MapVector &profile = config->callGraphProfile; DenseMap secToCluster; auto getOrCreateNode = [&](const InputSectionBase *isec) -> int { auto res = secToCluster.try_emplace(isec, clusters.size()); if (res.second) { sections.push_back(isec); clusters.emplace_back(clusters.size(), isec->getSize()); } return res.first->second; }; // Create the graph. for (std::pair &c : profile) { const auto *fromSB = cast(c.first.first->repl); const auto *toSB = cast(c.first.second->repl); uint64_t weight = c.second; // Ignore edges between input sections belonging to different output // sections. This is done because otherwise we would end up with clusters // containing input sections that can't actually be placed adjacently in the // output. This messes with the cluster size and density calculations. We // would also end up moving input sections in other output sections without // moving them closer to what calls them. if (fromSB->getOutputSection() != toSB->getOutputSection()) continue; int from = getOrCreateNode(fromSB); int to = getOrCreateNode(toSB); clusters[to].weight += weight; if (from == to) continue; // Remember the best edge. Cluster &toC = clusters[to]; if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) { toC.bestPred.from = from; toC.bestPred.weight = weight; } } for (Cluster &c : clusters) c.initialWeight = c.weight; } // It's bad to merge clusters which would degrade the density too much. static bool isNewDensityBad(Cluster &a, Cluster &b) { double newDensity = double(a.weight + b.weight) / double(a.size + b.size); return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION; } // Find the leader of V's belonged cluster (represented as an equivalence // class). We apply union-find path-halving technique (simple to implement) in // the meantime as it decreases depths and the time complexity. static int getLeader(std::vector &leaders, int v) { while (leaders[v] != v) { leaders[v] = leaders[leaders[v]]; v = leaders[v]; } return v; } static void mergeClusters(std::vector &cs, Cluster &into, int intoIdx, Cluster &from, int fromIdx) { int tail1 = into.prev, tail2 = from.prev; into.prev = tail2; cs[tail2].next = intoIdx; from.prev = tail1; cs[tail1].next = fromIdx; into.size += from.size; into.weight += from.weight; from.size = 0; from.weight = 0; } // Group InputSections into clusters using the Call-Chain Clustering heuristic // then sort the clusters by density. DenseMap CallGraphSort::run() { std::vector sorted(clusters.size()); std::vector leaders(clusters.size()); std::iota(leaders.begin(), leaders.end(), 0); std::iota(sorted.begin(), sorted.end(), 0); llvm::stable_sort(sorted, [&](int a, int b) { return clusters[a].getDensity() > clusters[b].getDensity(); }); for (int l : sorted) { // The cluster index is the same as the index of its leader here because // clusters[L] has not been merged into another cluster yet. Cluster &c = clusters[l]; // Don't consider merging if the edge is unlikely. if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight) continue; int predL = getLeader(leaders, c.bestPred.from); if (l == predL) continue; Cluster *predC = &clusters[predL]; if (c.size + predC->size > MAX_CLUSTER_SIZE) continue; if (isNewDensityBad(*predC, c)) continue; leaders[l] = predL; mergeClusters(clusters, *predC, predL, c, l); } // Sort remaining non-empty clusters by density. sorted.clear(); for (int i = 0, e = (int)clusters.size(); i != e; ++i) if (clusters[i].size > 0) sorted.push_back(i); llvm::stable_sort(sorted, [&](int a, int b) { return clusters[a].getDensity() > clusters[b].getDensity(); }); DenseMap orderMap; int curOrder = 1; for (int leader : sorted) for (int i = leader;;) { orderMap[sections[i]] = curOrder++; i = clusters[i].next; if (i == leader) break; } if (!config->printSymbolOrder.empty()) { std::error_code ec; raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None); if (ec) { error("cannot open " + config->printSymbolOrder + ": " + ec.message()); return orderMap; } // Print the symbols ordered by C3, in the order of increasing curOrder // Instead of sorting all the orderMap, just repeat the loops above. for (int leader : sorted) for (int i = leader;;) { // Search all the symbols in the file of the section // and find out a Defined symbol with name that is within the section. for (Symbol *sym : sections[i]->file->getSymbols()) if (!sym->isSection()) // Filter out section-type symbols here. if (auto *d = dyn_cast(sym)) if (sections[i] == d->section) os << sym->getName() << "\n"; i = clusters[i].next; if (i == leader) break; } } return orderMap; } // Sort sections by the profile data provided by -callgraph-profile-file // // This first builds a call graph based on the profile data then merges sections // according to the C³ heuristic. All clusters are then sorted by a density // metric to further improve locality. DenseMap elf::computeCallGraphProfileOrder() { return CallGraphSort().run(); }