xref: /freebsd/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h (revision 7ef62cebc2f965b0f640263e179276928885e33d)
1 //===-- primary32.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef SCUDO_PRIMARY32_H_
10 #define SCUDO_PRIMARY32_H_
11 
12 #include "bytemap.h"
13 #include "common.h"
14 #include "list.h"
15 #include "local_cache.h"
16 #include "options.h"
17 #include "release.h"
18 #include "report.h"
19 #include "stats.h"
20 #include "string_utils.h"
21 
22 namespace scudo {
23 
24 // SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
25 //
26 // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
27 // boundary, and keeps a bytemap of the mappable address space to track the size
28 // class they are associated with.
29 //
30 // Mapped regions are split into equally sized Blocks according to the size
31 // class they belong to, and the associated pointers are shuffled to prevent any
32 // predictable address pattern (the predictability increases with the block
33 // size).
34 //
35 // Regions for size class 0 are special and used to hold TransferBatches, which
36 // allow to transfer arrays of pointers from the global size class freelist to
37 // the thread specific freelist for said class, and back.
38 //
39 // Memory used by this allocator is never unmapped but can be partially
40 // reclaimed if the platform allows for it.
41 
42 template <typename Config> class SizeClassAllocator32 {
43 public:
44   typedef typename Config::PrimaryCompactPtrT CompactPtrT;
45   typedef typename Config::SizeClassMap SizeClassMap;
46   static const uptr GroupSizeLog = Config::PrimaryGroupSizeLog;
47   // The bytemap can only track UINT8_MAX - 1 classes.
48   static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
49   // Regions should be large enough to hold the largest Block.
50   static_assert((1UL << Config::PrimaryRegionSizeLog) >= SizeClassMap::MaxSize,
51                 "");
52   typedef SizeClassAllocator32<Config> ThisT;
53   typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
54   typedef typename CacheT::TransferBatch TransferBatch;
55   typedef typename CacheT::BatchGroup BatchGroup;
56 
57   static uptr getSizeByClassId(uptr ClassId) {
58     return (ClassId == SizeClassMap::BatchClassId)
59                ? sizeof(TransferBatch)
60                : SizeClassMap::getSizeByClassId(ClassId);
61   }
62 
63   static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
64 
65   void init(s32 ReleaseToOsInterval) {
66     if (SCUDO_FUCHSIA)
67       reportError("SizeClassAllocator32 is not supported on Fuchsia");
68 
69     if (SCUDO_TRUSTY)
70       reportError("SizeClassAllocator32 is not supported on Trusty");
71 
72     DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
73     PossibleRegions.init();
74     u32 Seed;
75     const u64 Time = getMonotonicTime();
76     if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
77       Seed = static_cast<u32>(
78           Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
79     for (uptr I = 0; I < NumClasses; I++) {
80       SizeClassInfo *Sci = getSizeClassInfo(I);
81       Sci->RandState = getRandomU32(&Seed);
82       // Sci->MaxRegionIndex is already initialized to 0.
83       Sci->MinRegionIndex = NumRegions;
84       Sci->ReleaseInfo.LastReleaseAtNs = Time;
85     }
86     setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
87   }
88 
89   void unmapTestOnly() {
90     while (NumberOfStashedRegions > 0)
91       unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
92             RegionSize);
93     uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
94     for (uptr I = 0; I < NumClasses; I++) {
95       SizeClassInfo *Sci = getSizeClassInfo(I);
96       if (Sci->MinRegionIndex < MinRegionIndex)
97         MinRegionIndex = Sci->MinRegionIndex;
98       if (Sci->MaxRegionIndex > MaxRegionIndex)
99         MaxRegionIndex = Sci->MaxRegionIndex;
100       *Sci = {};
101     }
102     for (uptr I = MinRegionIndex; I < MaxRegionIndex; I++)
103       if (PossibleRegions[I])
104         unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
105     PossibleRegions.unmapTestOnly();
106   }
107 
108   CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
109     return static_cast<CompactPtrT>(Ptr);
110   }
111 
112   void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
113     return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
114   }
115 
116   uptr compactPtrGroup(CompactPtrT CompactPtr) {
117     return CompactPtr >> GroupSizeLog;
118   }
119 
120   TransferBatch *popBatch(CacheT *C, uptr ClassId) {
121     DCHECK_LT(ClassId, NumClasses);
122     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
123     ScopedLock L(Sci->Mutex);
124     TransferBatch *B = popBatchImpl(C, ClassId);
125     if (UNLIKELY(!B)) {
126       if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
127         return nullptr;
128       B = popBatchImpl(C, ClassId);
129       // if `populateFreeList` succeeded, we are supposed to get free blocks.
130       DCHECK_NE(B, nullptr);
131     }
132     Sci->Stats.PoppedBlocks += B->getCount();
133     return B;
134   }
135 
136   // Push the array of free blocks to the designated batch group.
137   void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
138     DCHECK_LT(ClassId, NumClasses);
139     DCHECK_GT(Size, 0);
140 
141     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
142     if (ClassId == SizeClassMap::BatchClassId) {
143       ScopedLock L(Sci->Mutex);
144       // Constructing a batch group in the free list will use two blocks in
145       // BatchClassId. If we are pushing BatchClassId blocks, we will use the
146       // blocks in the array directly (can't delegate local cache which will
147       // cause a recursive allocation). However, The number of free blocks may
148       // be less than two. Therefore, populate the free list before inserting
149       // the blocks.
150       if (Size == 1 && !populateFreeList(C, ClassId, Sci))
151         return;
152       pushBlocksImpl(C, ClassId, Array, Size);
153       Sci->Stats.PushedBlocks += Size;
154       return;
155     }
156 
157     // TODO(chiahungduan): Consider not doing grouping if the group size is not
158     // greater than the block size with a certain scale.
159 
160     // Sort the blocks so that blocks belonging to the same group can be pushed
161     // together.
162     bool SameGroup = true;
163     for (u32 I = 1; I < Size; ++I) {
164       if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I]))
165         SameGroup = false;
166       CompactPtrT Cur = Array[I];
167       u32 J = I;
168       while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) {
169         Array[J] = Array[J - 1];
170         --J;
171       }
172       Array[J] = Cur;
173     }
174 
175     ScopedLock L(Sci->Mutex);
176     pushBlocksImpl(C, ClassId, Array, Size, SameGroup);
177 
178     Sci->Stats.PushedBlocks += Size;
179     if (ClassId != SizeClassMap::BatchClassId)
180       releaseToOSMaybe(Sci, ClassId);
181   }
182 
183   void disable() {
184     // The BatchClassId must be locked last since other classes can use it.
185     for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
186       if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
187         continue;
188       getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
189     }
190     getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
191     RegionsStashMutex.lock();
192     PossibleRegions.disable();
193   }
194 
195   void enable() {
196     PossibleRegions.enable();
197     RegionsStashMutex.unlock();
198     getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
199     for (uptr I = 0; I < NumClasses; I++) {
200       if (I == SizeClassMap::BatchClassId)
201         continue;
202       getSizeClassInfo(I)->Mutex.unlock();
203     }
204   }
205 
206   template <typename F> void iterateOverBlocks(F Callback) {
207     uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
208     for (uptr I = 0; I < NumClasses; I++) {
209       SizeClassInfo *Sci = getSizeClassInfo(I);
210       if (Sci->MinRegionIndex < MinRegionIndex)
211         MinRegionIndex = Sci->MinRegionIndex;
212       if (Sci->MaxRegionIndex > MaxRegionIndex)
213         MaxRegionIndex = Sci->MaxRegionIndex;
214     }
215     for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
216       if (PossibleRegions[I] &&
217           (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
218         const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
219         const uptr From = I * RegionSize;
220         const uptr To = From + (RegionSize / BlockSize) * BlockSize;
221         for (uptr Block = From; Block < To; Block += BlockSize)
222           Callback(Block);
223       }
224   }
225 
226   void getStats(ScopedString *Str) {
227     // TODO(kostyak): get the RSS per region.
228     uptr TotalMapped = 0;
229     uptr PoppedBlocks = 0;
230     uptr PushedBlocks = 0;
231     for (uptr I = 0; I < NumClasses; I++) {
232       SizeClassInfo *Sci = getSizeClassInfo(I);
233       TotalMapped += Sci->AllocatedUser;
234       PoppedBlocks += Sci->Stats.PoppedBlocks;
235       PushedBlocks += Sci->Stats.PushedBlocks;
236     }
237     Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
238                 "remains %zu\n",
239                 TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
240     for (uptr I = 0; I < NumClasses; I++)
241       getStats(Str, I, 0);
242   }
243 
244   bool setOption(Option O, sptr Value) {
245     if (O == Option::ReleaseInterval) {
246       const s32 Interval = Max(
247           Min(static_cast<s32>(Value), Config::PrimaryMaxReleaseToOsIntervalMs),
248           Config::PrimaryMinReleaseToOsIntervalMs);
249       atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
250       return true;
251     }
252     // Not supported by the Primary, but not an error either.
253     return true;
254   }
255 
256   uptr releaseToOS() {
257     uptr TotalReleasedBytes = 0;
258     for (uptr I = 0; I < NumClasses; I++) {
259       if (I == SizeClassMap::BatchClassId)
260         continue;
261       SizeClassInfo *Sci = getSizeClassInfo(I);
262       ScopedLock L(Sci->Mutex);
263       TotalReleasedBytes += releaseToOSMaybe(Sci, I, /*Force=*/true);
264     }
265     return TotalReleasedBytes;
266   }
267 
268   const char *getRegionInfoArrayAddress() const { return nullptr; }
269   static uptr getRegionInfoArraySize() { return 0; }
270 
271   static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
272                                     UNUSED uptr Ptr) {
273     return {};
274   }
275 
276   AtomicOptions Options;
277 
278 private:
279   static const uptr NumClasses = SizeClassMap::NumClasses;
280   static const uptr RegionSize = 1UL << Config::PrimaryRegionSizeLog;
281   static const uptr NumRegions =
282       SCUDO_MMAP_RANGE_SIZE >> Config::PrimaryRegionSizeLog;
283   static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
284   typedef FlatByteMap<NumRegions> ByteMap;
285 
286   struct SizeClassStats {
287     uptr PoppedBlocks;
288     uptr PushedBlocks;
289   };
290 
291   struct ReleaseToOsInfo {
292     uptr PushedBlocksAtLastRelease;
293     uptr RangesReleased;
294     uptr LastReleasedBytes;
295     u64 LastReleaseAtNs;
296   };
297 
298   struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
299     HybridMutex Mutex;
300     SinglyLinkedList<BatchGroup> FreeList;
301     uptr CurrentRegion;
302     uptr CurrentRegionAllocated;
303     SizeClassStats Stats;
304     u32 RandState;
305     uptr AllocatedUser;
306     // Lowest & highest region index allocated for this size class, to avoid
307     // looping through the whole NumRegions.
308     uptr MinRegionIndex;
309     uptr MaxRegionIndex;
310     ReleaseToOsInfo ReleaseInfo;
311   };
312   static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
313 
314   uptr computeRegionId(uptr Mem) {
315     const uptr Id = Mem >> Config::PrimaryRegionSizeLog;
316     CHECK_LT(Id, NumRegions);
317     return Id;
318   }
319 
320   uptr allocateRegionSlow() {
321     uptr MapSize = 2 * RegionSize;
322     const uptr MapBase = reinterpret_cast<uptr>(
323         map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
324     if (!MapBase)
325       return 0;
326     const uptr MapEnd = MapBase + MapSize;
327     uptr Region = MapBase;
328     if (isAligned(Region, RegionSize)) {
329       ScopedLock L(RegionsStashMutex);
330       if (NumberOfStashedRegions < MaxStashedRegions)
331         RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
332       else
333         MapSize = RegionSize;
334     } else {
335       Region = roundUpTo(MapBase, RegionSize);
336       unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
337       MapSize = RegionSize;
338     }
339     const uptr End = Region + MapSize;
340     if (End != MapEnd)
341       unmap(reinterpret_cast<void *>(End), MapEnd - End);
342     return Region;
343   }
344 
345   uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) {
346     DCHECK_LT(ClassId, NumClasses);
347     uptr Region = 0;
348     {
349       ScopedLock L(RegionsStashMutex);
350       if (NumberOfStashedRegions > 0)
351         Region = RegionsStash[--NumberOfStashedRegions];
352     }
353     if (!Region)
354       Region = allocateRegionSlow();
355     if (LIKELY(Region)) {
356       // Sci->Mutex is held by the caller, updating the Min/Max is safe.
357       const uptr RegionIndex = computeRegionId(Region);
358       if (RegionIndex < Sci->MinRegionIndex)
359         Sci->MinRegionIndex = RegionIndex;
360       if (RegionIndex > Sci->MaxRegionIndex)
361         Sci->MaxRegionIndex = RegionIndex;
362       PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
363     }
364     return Region;
365   }
366 
367   SizeClassInfo *getSizeClassInfo(uptr ClassId) {
368     DCHECK_LT(ClassId, NumClasses);
369     return &SizeClassInfoArray[ClassId];
370   }
371 
372   // Push the blocks to their batch group. The layout will be like,
373   //
374   // FreeList - > BG -> BG -> BG
375   //              |     |     |
376   //              v     v     v
377   //              TB    TB    TB
378   //              |
379   //              v
380   //              TB
381   //
382   // Each BlockGroup(BG) will associate with unique group id and the free blocks
383   // are managed by a list of TransferBatch(TB). To reduce the time of inserting
384   // blocks, BGs are sorted and the input `Array` are supposed to be sorted so
385   // that we can get better performance of maintaining sorted property.
386   // Use `SameGroup=true` to indicate that all blocks in the array are from the
387   // same group then we will skip checking the group id of each block.
388   //
389   // Note that this aims to have a better management of dirty pages, i.e., the
390   // RSS usage won't grow indefinitely. There's an exception that we may not put
391   // a block to its associated group. While populating new blocks, we may have
392   // blocks cross different groups. However, most cases will fall into same
393   // group and they are supposed to be popped soon. In that case, it's not worth
394   // sorting the array with the almost-sorted property. Therefore, we use
395   // `SameGroup=true` instead.
396   //
397   // The region mutex needs to be held while calling this method.
398   void pushBlocksImpl(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size,
399                       bool SameGroup = false) {
400     DCHECK_GT(Size, 0U);
401     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
402 
403     auto CreateGroup = [&](uptr GroupId) {
404       BatchGroup *BG = nullptr;
405       TransferBatch *TB = nullptr;
406       if (ClassId == SizeClassMap::BatchClassId) {
407         DCHECK_GE(Size, 2U);
408         BG = reinterpret_cast<BatchGroup *>(
409             decompactPtr(ClassId, Array[Size - 1]));
410         BG->Batches.clear();
411 
412         TB = reinterpret_cast<TransferBatch *>(
413             decompactPtr(ClassId, Array[Size - 2]));
414         TB->clear();
415       } else {
416         BG = C->createGroup();
417         BG->Batches.clear();
418 
419         TB = C->createBatch(ClassId, nullptr);
420         TB->clear();
421       }
422 
423       BG->GroupId = GroupId;
424       BG->Batches.push_front(TB);
425       BG->PushedBlocks = 0;
426       BG->PushedBlocksAtLastCheckpoint = 0;
427       BG->MaxCachedPerBatch =
428           TransferBatch::getMaxCached(getSizeByClassId(ClassId));
429 
430       return BG;
431     };
432 
433     auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) {
434       SinglyLinkedList<TransferBatch> &Batches = BG->Batches;
435       TransferBatch *CurBatch = Batches.front();
436       DCHECK_NE(CurBatch, nullptr);
437 
438       for (u32 I = 0; I < Size;) {
439         DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
440         u16 UnusedSlots =
441             static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
442         if (UnusedSlots == 0) {
443           CurBatch = C->createBatch(
444               ClassId,
445               reinterpret_cast<void *>(decompactPtr(ClassId, Array[I])));
446           CurBatch->clear();
447           Batches.push_front(CurBatch);
448           UnusedSlots = BG->MaxCachedPerBatch;
449         }
450         // `UnusedSlots` is u16 so the result will be also fit in u16.
451         u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
452         CurBatch->appendFromArray(&Array[I], AppendSize);
453         I += AppendSize;
454       }
455 
456       BG->PushedBlocks += Size;
457     };
458 
459     BatchGroup *Cur = Sci->FreeList.front();
460 
461     if (ClassId == SizeClassMap::BatchClassId) {
462       if (Cur == nullptr) {
463         // Don't need to classify BatchClassId.
464         Cur = CreateGroup(/*GroupId=*/0);
465         Sci->FreeList.push_front(Cur);
466       }
467       InsertBlocks(Cur, Array, Size);
468       return;
469     }
470 
471     // In the following, `Cur` always points to the BatchGroup for blocks that
472     // will be pushed next. `Prev` is the element right before `Cur`.
473     BatchGroup *Prev = nullptr;
474 
475     while (Cur != nullptr && compactPtrGroup(Array[0]) > Cur->GroupId) {
476       Prev = Cur;
477       Cur = Cur->Next;
478     }
479 
480     if (Cur == nullptr || compactPtrGroup(Array[0]) != Cur->GroupId) {
481       Cur = CreateGroup(compactPtrGroup(Array[0]));
482       if (Prev == nullptr)
483         Sci->FreeList.push_front(Cur);
484       else
485         Sci->FreeList.insert(Prev, Cur);
486     }
487 
488     // All the blocks are from the same group, just push without checking group
489     // id.
490     if (SameGroup) {
491       InsertBlocks(Cur, Array, Size);
492       return;
493     }
494 
495     // The blocks are sorted by group id. Determine the segment of group and
496     // push them to their group together.
497     u32 Count = 1;
498     for (u32 I = 1; I < Size; ++I) {
499       if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) {
500         DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->GroupId);
501         InsertBlocks(Cur, Array + I - Count, Count);
502 
503         while (Cur != nullptr && compactPtrGroup(Array[I]) > Cur->GroupId) {
504           Prev = Cur;
505           Cur = Cur->Next;
506         }
507 
508         if (Cur == nullptr || compactPtrGroup(Array[I]) != Cur->GroupId) {
509           Cur = CreateGroup(compactPtrGroup(Array[I]));
510           DCHECK_NE(Prev, nullptr);
511           Sci->FreeList.insert(Prev, Cur);
512         }
513 
514         Count = 1;
515       } else {
516         ++Count;
517       }
518     }
519 
520     InsertBlocks(Cur, Array + Size - Count, Count);
521   }
522 
523   // Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
524   // group id will be considered first.
525   //
526   // The region mutex needs to be held while calling this method.
527   TransferBatch *popBatchImpl(CacheT *C, uptr ClassId) {
528     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
529     if (Sci->FreeList.empty())
530       return nullptr;
531 
532     SinglyLinkedList<TransferBatch> &Batches = Sci->FreeList.front()->Batches;
533     DCHECK(!Batches.empty());
534 
535     TransferBatch *B = Batches.front();
536     Batches.pop_front();
537     DCHECK_NE(B, nullptr);
538     DCHECK_GT(B->getCount(), 0U);
539 
540     if (Batches.empty()) {
541       BatchGroup *BG = Sci->FreeList.front();
542       Sci->FreeList.pop_front();
543 
544       // We don't keep BatchGroup with zero blocks to avoid empty-checking while
545       // allocating. Note that block used by constructing BatchGroup is recorded
546       // as free blocks in the last element of BatchGroup::Batches. Which means,
547       // once we pop the last TransferBatch, the block is implicitly
548       // deallocated.
549       if (ClassId != SizeClassMap::BatchClassId)
550         C->deallocate(SizeClassMap::BatchClassId, BG);
551     }
552 
553     return B;
554   }
555 
556   NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci) {
557     uptr Region;
558     uptr Offset;
559     // If the size-class currently has a region associated to it, use it. The
560     // newly created blocks will be located after the currently allocated memory
561     // for that region (up to RegionSize). Otherwise, create a new region, where
562     // the new blocks will be carved from the beginning.
563     if (Sci->CurrentRegion) {
564       Region = Sci->CurrentRegion;
565       DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
566       Offset = Sci->CurrentRegionAllocated;
567     } else {
568       DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
569       Region = allocateRegion(Sci, ClassId);
570       if (UNLIKELY(!Region))
571         return false;
572       C->getStats().add(StatMapped, RegionSize);
573       Sci->CurrentRegion = Region;
574       Offset = 0;
575     }
576 
577     const uptr Size = getSizeByClassId(ClassId);
578     const u16 MaxCount = TransferBatch::getMaxCached(Size);
579     DCHECK_GT(MaxCount, 0U);
580     // The maximum number of blocks we should carve in the region is dictated
581     // by the maximum number of batches we want to fill, and the amount of
582     // memory left in the current region (we use the lowest of the two). This
583     // will not be 0 as we ensure that a region can at least hold one block (via
584     // static_assert and at the end of this function).
585     const u32 NumberOfBlocks =
586         Min(MaxNumBatches * MaxCount,
587             static_cast<u32>((RegionSize - Offset) / Size));
588     DCHECK_GT(NumberOfBlocks, 0U);
589 
590     constexpr u32 ShuffleArraySize =
591         MaxNumBatches * TransferBatch::MaxNumCached;
592     // Fill the transfer batches and put them in the size-class freelist. We
593     // need to randomize the blocks for security purposes, so we first fill a
594     // local array that we then shuffle before populating the batches.
595     CompactPtrT ShuffleArray[ShuffleArraySize];
596     DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
597 
598     uptr P = Region + Offset;
599     for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
600       ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
601     // No need to shuffle the batches size class.
602     if (ClassId != SizeClassMap::BatchClassId)
603       shuffle(ShuffleArray, NumberOfBlocks, &Sci->RandState);
604     for (u32 I = 0; I < NumberOfBlocks;) {
605       // `MaxCount` is u16 so the result will also fit in u16.
606       const u16 N = static_cast<u16>(Min<u32>(MaxCount, NumberOfBlocks - I));
607       // Note that the N blocks here may have different group ids. Given that
608       // it only happens when it crosses the group size boundary. Instead of
609       // sorting them, treat them as same group here to avoid sorting the
610       // almost-sorted blocks.
611       pushBlocksImpl(C, ClassId, &ShuffleArray[I], N, /*SameGroup=*/true);
612       I += N;
613     }
614 
615     const uptr AllocatedUser = Size * NumberOfBlocks;
616     C->getStats().add(StatFree, AllocatedUser);
617     DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
618     // If there is not enough room in the region currently associated to fit
619     // more blocks, we deassociate the region by resetting CurrentRegion and
620     // CurrentRegionAllocated. Otherwise, update the allocated amount.
621     if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
622       Sci->CurrentRegion = 0;
623       Sci->CurrentRegionAllocated = 0;
624     } else {
625       Sci->CurrentRegionAllocated += AllocatedUser;
626     }
627     Sci->AllocatedUser += AllocatedUser;
628 
629     return true;
630   }
631 
632   void getStats(ScopedString *Str, uptr ClassId, uptr Rss) {
633     SizeClassInfo *Sci = getSizeClassInfo(ClassId);
634     if (Sci->AllocatedUser == 0)
635       return;
636     const uptr InUse = Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks;
637     const uptr AvailableChunks = Sci->AllocatedUser / getSizeByClassId(ClassId);
638     Str->append("  %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
639                 "inuse: %6zu avail: %6zu rss: %6zuK releases: %6zu\n",
640                 ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
641                 Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks, InUse,
642                 AvailableChunks, Rss >> 10, Sci->ReleaseInfo.RangesReleased);
643   }
644 
645   NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
646                                  bool Force = false) {
647     const uptr BlockSize = getSizeByClassId(ClassId);
648     const uptr PageSize = getPageSizeCached();
649 
650     DCHECK_GE(Sci->Stats.PoppedBlocks, Sci->Stats.PushedBlocks);
651     const uptr BytesInFreeList =
652         Sci->AllocatedUser -
653         (Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks) * BlockSize;
654     if (BytesInFreeList < PageSize)
655       return 0; // No chance to release anything.
656     const uptr BytesPushed =
657         (Sci->Stats.PushedBlocks - Sci->ReleaseInfo.PushedBlocksAtLastRelease) *
658         BlockSize;
659     if (BytesPushed < PageSize)
660       return 0; // Nothing new to release.
661 
662     const bool CheckDensity = BlockSize < PageSize / 16U;
663     // Releasing smaller blocks is expensive, so we want to make sure that a
664     // significant amount of bytes are free, and that there has been a good
665     // amount of batches pushed to the freelist before attempting to release.
666     if (CheckDensity) {
667       if (!Force && BytesPushed < Sci->AllocatedUser / 16U)
668         return 0;
669     }
670 
671     if (!Force) {
672       const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
673       if (IntervalMs < 0)
674         return 0;
675       if (Sci->ReleaseInfo.LastReleaseAtNs +
676               static_cast<u64>(IntervalMs) * 1000000 >
677           getMonotonicTime()) {
678         return 0; // Memory was returned recently.
679       }
680     }
681 
682     const uptr First = Sci->MinRegionIndex;
683     const uptr Last = Sci->MaxRegionIndex;
684     DCHECK_NE(Last, 0U);
685     DCHECK_LE(First, Last);
686     uptr TotalReleasedBytes = 0;
687     const uptr Base = First * RegionSize;
688     const uptr NumberOfRegions = Last - First + 1U;
689     const uptr GroupSize = (1U << GroupSizeLog);
690     const uptr CurRegionGroupId =
691         compactPtrGroup(compactPtr(ClassId, Sci->CurrentRegion));
692 
693     ReleaseRecorder Recorder(Base);
694     PageReleaseContext Context(BlockSize, RegionSize, NumberOfRegions);
695 
696     auto DecompactPtr = [](CompactPtrT CompactPtr) {
697       return reinterpret_cast<uptr>(CompactPtr);
698     };
699     for (BatchGroup &BG : Sci->FreeList) {
700       const uptr PushedBytesDelta =
701           BG.PushedBlocks - BG.PushedBlocksAtLastCheckpoint;
702       if (PushedBytesDelta * BlockSize < PageSize)
703         continue;
704 
705       uptr AllocatedGroupSize = BG.GroupId == CurRegionGroupId
706                                     ? Sci->CurrentRegionAllocated
707                                     : GroupSize;
708       if (AllocatedGroupSize == 0)
709         continue;
710 
711       // TransferBatches are pushed in front of BG.Batches. The first one may
712       // not have all caches used.
713       const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
714                              BG.Batches.front()->getCount();
715       const uptr BytesInBG = NumBlocks * BlockSize;
716       // Given the randomness property, we try to release the pages only if the
717       // bytes used by free blocks exceed certain proportion of allocated
718       // spaces.
719       if (CheckDensity && (BytesInBG * 100U) / AllocatedGroupSize <
720                               (100U - 1U - BlockSize / 16U)) {
721         continue;
722       }
723 
724       BG.PushedBlocksAtLastCheckpoint = BG.PushedBlocks;
725       // Note that we don't always visit blocks in each BatchGroup so that we
726       // may miss the chance of releasing certain pages that cross BatchGroups.
727       Context.markFreeBlocks(BG.Batches, DecompactPtr, Base);
728     }
729 
730     if (!Context.hasBlockMarked())
731       return 0;
732 
733     auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
734       return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
735     };
736     releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
737 
738     if (Recorder.getReleasedRangesCount() > 0) {
739       Sci->ReleaseInfo.PushedBlocksAtLastRelease = Sci->Stats.PushedBlocks;
740       Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
741       Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
742       TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
743     }
744     Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTime();
745 
746     return TotalReleasedBytes;
747   }
748 
749   SizeClassInfo SizeClassInfoArray[NumClasses] = {};
750 
751   // Track the regions in use, 0 is unused, otherwise store ClassId + 1.
752   ByteMap PossibleRegions = {};
753   atomic_s32 ReleaseToOsIntervalMs = {};
754   // Unless several threads request regions simultaneously from different size
755   // classes, the stash rarely contains more than 1 entry.
756   static constexpr uptr MaxStashedRegions = 4;
757   HybridMutex RegionsStashMutex;
758   uptr NumberOfStashedRegions = 0;
759   uptr RegionsStash[MaxStashedRegions] = {};
760 };
761 
762 } // namespace scudo
763 
764 #endif // SCUDO_PRIMARY32_H_
765