1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and other sanitizer 10 // run-time libraries and implements Fuchsia-specific functions from 11 // sanitizer_common.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_fuchsia.h" 15 #if SANITIZER_FUCHSIA 16 17 #include <pthread.h> 18 #include <stdlib.h> 19 #include <unistd.h> 20 #include <zircon/errors.h> 21 #include <zircon/process.h> 22 #include <zircon/syscalls.h> 23 #include <zircon/utc.h> 24 25 #include "sanitizer_common.h" 26 #include "sanitizer_libc.h" 27 #include "sanitizer_mutex.h" 28 29 namespace __sanitizer { 30 31 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); } 32 33 uptr internal_sched_yield() { 34 zx_status_t status = _zx_nanosleep(0); 35 CHECK_EQ(status, ZX_OK); 36 return 0; // Why doesn't this return void? 37 } 38 39 void internal_usleep(u64 useconds) { 40 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds))); 41 CHECK_EQ(status, ZX_OK); 42 } 43 44 u64 NanoTime() { 45 zx_handle_t utc_clock = _zx_utc_reference_get(); 46 CHECK_NE(utc_clock, ZX_HANDLE_INVALID); 47 zx_time_t time; 48 zx_status_t status = _zx_clock_read(utc_clock, &time); 49 CHECK_EQ(status, ZX_OK); 50 return time; 51 } 52 53 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); } 54 55 uptr internal_getpid() { 56 zx_info_handle_basic_t info; 57 zx_status_t status = 58 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info, 59 sizeof(info), NULL, NULL); 60 CHECK_EQ(status, ZX_OK); 61 uptr pid = static_cast<uptr>(info.koid); 62 CHECK_EQ(pid, info.koid); 63 return pid; 64 } 65 66 int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); } 67 68 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); } 69 70 tid_t GetTid() { return GetThreadSelf(); } 71 72 void Abort() { abort(); } 73 74 int Atexit(void (*function)(void)) { return atexit(function); } 75 76 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) { 77 pthread_attr_t attr; 78 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); 79 void *base; 80 size_t size; 81 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0); 82 CHECK_EQ(pthread_attr_destroy(&attr), 0); 83 84 *stack_bottom = reinterpret_cast<uptr>(base); 85 *stack_top = *stack_bottom + size; 86 } 87 88 void InitializePlatformEarly() {} 89 void MaybeReexec() {} 90 void CheckASLR() {} 91 void CheckMPROTECT() {} 92 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {} 93 void DisableCoreDumperIfNecessary() {} 94 void InstallDeadlySignalHandlers(SignalHandlerType handler) {} 95 void SetAlternateSignalStack() {} 96 void UnsetAlternateSignalStack() {} 97 void InitTlsSize() {} 98 99 bool SignalContext::IsStackOverflow() const { return false; } 100 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); } 101 const char *SignalContext::Describe() const { UNIMPLEMENTED(); } 102 103 void FutexWait(atomic_uint32_t *p, u32 cmp) { 104 zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp, 105 ZX_HANDLE_INVALID, ZX_TIME_INFINITE); 106 if (status != ZX_ERR_BAD_STATE) // Normal race. 107 CHECK_EQ(status, ZX_OK); 108 } 109 110 void FutexWake(atomic_uint32_t *p, u32 count) { 111 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count); 112 CHECK_EQ(status, ZX_OK); 113 } 114 115 enum MutexState : int { MtxUnlocked = 0, MtxLocked = 1, MtxSleeping = 2 }; 116 117 BlockingMutex::BlockingMutex() { 118 // NOTE! It's important that this use internal_memset, because plain 119 // memset might be intercepted (e.g., actually be __asan_memset). 120 // Defining this so the compiler initializes each field, e.g.: 121 // BlockingMutex::BlockingMutex() : BlockingMutex(LINKER_INITIALIZED) {} 122 // might result in the compiler generating a call to memset, which would 123 // have the same problem. 124 internal_memset(this, 0, sizeof(*this)); 125 } 126 127 void BlockingMutex::Lock() { 128 CHECK_EQ(owner_, 0); 129 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_); 130 if (atomic_exchange(m, MtxLocked, memory_order_acquire) == MtxUnlocked) 131 return; 132 while (atomic_exchange(m, MtxSleeping, memory_order_acquire) != MtxUnlocked) { 133 zx_status_t status = 134 _zx_futex_wait(reinterpret_cast<zx_futex_t *>(m), MtxSleeping, 135 ZX_HANDLE_INVALID, ZX_TIME_INFINITE); 136 if (status != ZX_ERR_BAD_STATE) // Normal race. 137 CHECK_EQ(status, ZX_OK); 138 } 139 } 140 141 void BlockingMutex::Unlock() { 142 atomic_uint32_t *m = reinterpret_cast<atomic_uint32_t *>(&opaque_storage_); 143 u32 v = atomic_exchange(m, MtxUnlocked, memory_order_release); 144 CHECK_NE(v, MtxUnlocked); 145 if (v == MtxSleeping) { 146 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(m), 1); 147 CHECK_EQ(status, ZX_OK); 148 } 149 } 150 151 void BlockingMutex::CheckLocked() const { 152 auto m = reinterpret_cast<atomic_uint32_t const *>(&opaque_storage_); 153 CHECK_NE(MtxUnlocked, atomic_load(m, memory_order_relaxed)); 154 } 155 156 uptr GetPageSize() { return _zx_system_get_page_size(); } 157 158 uptr GetMmapGranularity() { return _zx_system_get_page_size(); } 159 160 sanitizer_shadow_bounds_t ShadowBounds; 161 162 void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); } 163 164 uptr GetMaxUserVirtualAddress() { 165 InitShadowBounds(); 166 return ShadowBounds.memory_limit - 1; 167 } 168 169 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } 170 171 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type, 172 bool raw_report, bool die_for_nomem) { 173 size = RoundUpTo(size, GetPageSize()); 174 175 zx_handle_t vmo; 176 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 177 if (status != ZX_OK) { 178 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 179 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, 180 raw_report); 181 return nullptr; 182 } 183 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, 184 internal_strlen(mem_type)); 185 186 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? 187 uintptr_t addr; 188 status = 189 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, 190 vmo, 0, size, &addr); 191 _zx_handle_close(vmo); 192 193 if (status != ZX_OK) { 194 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 195 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, 196 raw_report); 197 return nullptr; 198 } 199 200 IncreaseTotalMmap(size); 201 202 return reinterpret_cast<void *>(addr); 203 } 204 205 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { 206 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true); 207 } 208 209 void *MmapNoReserveOrDie(uptr size, const char *mem_type) { 210 return MmapOrDie(size, mem_type); 211 } 212 213 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { 214 return DoAnonymousMmapOrDie(size, mem_type, false, false); 215 } 216 217 uptr ReservedAddressRange::Init(uptr init_size, const char *name, 218 uptr fixed_addr) { 219 init_size = RoundUpTo(init_size, GetPageSize()); 220 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID); 221 uintptr_t base; 222 zx_handle_t vmar; 223 zx_status_t status = _zx_vmar_allocate( 224 _zx_vmar_root_self(), 225 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0, 226 init_size, &vmar, &base); 227 if (status != ZX_OK) 228 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status); 229 base_ = reinterpret_cast<void *>(base); 230 size_ = init_size; 231 name_ = name; 232 os_handle_ = vmar; 233 234 return reinterpret_cast<uptr>(base_); 235 } 236 237 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size, 238 void *base, const char *name, bool die_for_nomem) { 239 uptr offset = fixed_addr - reinterpret_cast<uptr>(base); 240 map_size = RoundUpTo(map_size, GetPageSize()); 241 zx_handle_t vmo; 242 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo); 243 if (status != ZX_OK) { 244 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 245 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status); 246 return 0; 247 } 248 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name)); 249 DCHECK_GE(base + size_, map_size + offset); 250 uintptr_t addr; 251 252 status = 253 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC, 254 offset, vmo, 0, map_size, &addr); 255 _zx_handle_close(vmo); 256 if (status != ZX_OK) { 257 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) { 258 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status); 259 } 260 return 0; 261 } 262 IncreaseTotalMmap(map_size); 263 return addr; 264 } 265 266 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size, 267 const char *name) { 268 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, 269 false); 270 } 271 272 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size, 273 const char *name) { 274 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, true); 275 } 276 277 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) { 278 if (!addr || !size) 279 return; 280 size = RoundUpTo(size, GetPageSize()); 281 282 zx_status_t status = 283 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size); 284 if (status != ZX_OK) { 285 Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", 286 SanitizerToolName, size, size, addr); 287 CHECK("unable to unmap" && 0); 288 } 289 290 DecreaseTotalMmap(size); 291 } 292 293 void ReservedAddressRange::Unmap(uptr addr, uptr size) { 294 CHECK_LE(size, size_); 295 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_); 296 if (addr == reinterpret_cast<uptr>(base_)) { 297 if (size == size_) { 298 // Destroying the vmar effectively unmaps the whole mapping. 299 _zx_vmar_destroy(vmar); 300 _zx_handle_close(vmar); 301 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID); 302 DecreaseTotalMmap(size); 303 return; 304 } 305 } else { 306 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_); 307 } 308 // Partial unmapping does not affect the fact that the initial range is still 309 // reserved, and the resulting unmapped memory can't be reused. 310 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar); 311 } 312 313 // This should never be called. 314 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { 315 UNIMPLEMENTED(); 316 } 317 318 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 319 const char *mem_type) { 320 CHECK_GE(size, GetPageSize()); 321 CHECK(IsPowerOfTwo(size)); 322 CHECK(IsPowerOfTwo(alignment)); 323 324 zx_handle_t vmo; 325 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 326 if (status != ZX_OK) { 327 if (status != ZX_ERR_NO_MEMORY) 328 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false); 329 return nullptr; 330 } 331 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, 332 internal_strlen(mem_type)); 333 334 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? 335 336 // Map a larger size to get a chunk of address space big enough that 337 // it surely contains an aligned region of the requested size. Then 338 // overwrite the aligned middle portion with a mapping from the 339 // beginning of the VMO, and unmap the excess before and after. 340 size_t map_size = size + alignment; 341 uintptr_t addr; 342 status = 343 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, 344 vmo, 0, map_size, &addr); 345 if (status == ZX_OK) { 346 uintptr_t map_addr = addr; 347 uintptr_t map_end = map_addr + map_size; 348 addr = RoundUpTo(map_addr, alignment); 349 uintptr_t end = addr + size; 350 if (addr != map_addr) { 351 zx_info_vmar_t info; 352 status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info, 353 sizeof(info), NULL, NULL); 354 if (status == ZX_OK) { 355 uintptr_t new_addr; 356 status = _zx_vmar_map( 357 _zx_vmar_root_self(), 358 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE, 359 addr - info.base, vmo, 0, size, &new_addr); 360 if (status == ZX_OK) 361 CHECK_EQ(new_addr, addr); 362 } 363 } 364 if (status == ZX_OK && addr != map_addr) 365 status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr); 366 if (status == ZX_OK && end != map_end) 367 status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end); 368 } 369 _zx_handle_close(vmo); 370 371 if (status != ZX_OK) { 372 if (status != ZX_ERR_NO_MEMORY) 373 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false); 374 return nullptr; 375 } 376 377 IncreaseTotalMmap(size); 378 379 return reinterpret_cast<void *>(addr); 380 } 381 382 void UnmapOrDie(void *addr, uptr size) { 383 UnmapOrDieVmar(addr, size, _zx_vmar_root_self()); 384 } 385 386 void ReleaseMemoryPagesToOS(uptr beg, uptr end) { 387 uptr beg_aligned = RoundUpTo(beg, GetPageSize()); 388 uptr end_aligned = RoundDownTo(end, GetPageSize()); 389 if (beg_aligned < end_aligned) { 390 zx_handle_t root_vmar = _zx_vmar_root_self(); 391 CHECK_NE(root_vmar, ZX_HANDLE_INVALID); 392 zx_status_t status = 393 _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned, 394 end_aligned - beg_aligned, nullptr, 0); 395 CHECK_EQ(status, ZX_OK); 396 } 397 } 398 399 void DumpProcessMap() { 400 // TODO(mcgrathr): write it 401 return; 402 } 403 404 bool IsAccessibleMemoryRange(uptr beg, uptr size) { 405 // TODO(mcgrathr): Figure out a better way. 406 zx_handle_t vmo; 407 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 408 if (status == ZX_OK) { 409 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size); 410 _zx_handle_close(vmo); 411 } 412 return status == ZX_OK; 413 } 414 415 // FIXME implement on this platform. 416 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {} 417 418 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, 419 uptr *read_len, uptr max_len, error_t *errno_p) { 420 zx_handle_t vmo; 421 zx_status_t status = __sanitizer_get_configuration(file_name, &vmo); 422 if (status == ZX_OK) { 423 uint64_t vmo_size; 424 status = _zx_vmo_get_size(vmo, &vmo_size); 425 if (status == ZX_OK) { 426 if (vmo_size < max_len) 427 max_len = vmo_size; 428 size_t map_size = RoundUpTo(max_len, GetPageSize()); 429 uintptr_t addr; 430 status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0, 431 map_size, &addr); 432 if (status == ZX_OK) { 433 *buff = reinterpret_cast<char *>(addr); 434 *buff_size = map_size; 435 *read_len = max_len; 436 } 437 } 438 _zx_handle_close(vmo); 439 } 440 if (status != ZX_OK && errno_p) 441 *errno_p = status; 442 return status == ZX_OK; 443 } 444 445 void RawWrite(const char *buffer) { 446 constexpr size_t size = 128; 447 static _Thread_local char line[size]; 448 static _Thread_local size_t lastLineEnd = 0; 449 static _Thread_local size_t cur = 0; 450 451 while (*buffer) { 452 if (cur >= size) { 453 if (lastLineEnd == 0) 454 lastLineEnd = size; 455 __sanitizer_log_write(line, lastLineEnd); 456 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); 457 cur = cur - lastLineEnd; 458 lastLineEnd = 0; 459 } 460 if (*buffer == '\n') 461 lastLineEnd = cur + 1; 462 line[cur++] = *buffer++; 463 } 464 // Flush all complete lines before returning. 465 if (lastLineEnd != 0) { 466 __sanitizer_log_write(line, lastLineEnd); 467 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); 468 cur = cur - lastLineEnd; 469 lastLineEnd = 0; 470 } 471 } 472 473 void CatastrophicErrorWrite(const char *buffer, uptr length) { 474 __sanitizer_log_write(buffer, length); 475 } 476 477 char **StoredArgv; 478 char **StoredEnviron; 479 480 char **GetArgv() { return StoredArgv; } 481 char **GetEnviron() { return StoredEnviron; } 482 483 const char *GetEnv(const char *name) { 484 if (StoredEnviron) { 485 uptr NameLen = internal_strlen(name); 486 for (char **Env = StoredEnviron; *Env != 0; Env++) { 487 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') 488 return (*Env) + NameLen + 1; 489 } 490 } 491 return nullptr; 492 } 493 494 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { 495 const char *argv0 = "<UNKNOWN>"; 496 if (StoredArgv && StoredArgv[0]) { 497 argv0 = StoredArgv[0]; 498 } 499 internal_strncpy(buf, argv0, buf_len); 500 return internal_strlen(buf); 501 } 502 503 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { 504 return ReadBinaryName(buf, buf_len); 505 } 506 507 uptr MainThreadStackBase, MainThreadStackSize; 508 509 bool GetRandom(void *buffer, uptr length, bool blocking) { 510 CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN); 511 _zx_cprng_draw(buffer, length); 512 return true; 513 } 514 515 u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); } 516 517 uptr GetRSS() { UNIMPLEMENTED(); } 518 519 void InitializePlatformCommonFlags(CommonFlags *cf) {} 520 521 } // namespace __sanitizer 522 523 using namespace __sanitizer; 524 525 extern "C" { 526 void __sanitizer_startup_hook(int argc, char **argv, char **envp, 527 void *stack_base, size_t stack_size) { 528 __sanitizer::StoredArgv = argv; 529 __sanitizer::StoredEnviron = envp; 530 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base); 531 __sanitizer::MainThreadStackSize = stack_size; 532 } 533 534 void __sanitizer_set_report_path(const char *path) { 535 // Handle the initialization code in each sanitizer, but no other calls. 536 // This setting is never consulted on Fuchsia. 537 DCHECK_EQ(path, common_flags()->log_path); 538 } 539 540 void __sanitizer_set_report_fd(void *fd) { 541 UNREACHABLE("not available on Fuchsia"); 542 } 543 544 const char *__sanitizer_get_report_path() { 545 UNREACHABLE("not available on Fuchsia"); 546 } 547 } // extern "C" 548 549 #endif // SANITIZER_FUCHSIA 550