xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and other sanitizer
10 // run-time libraries and implements Fuchsia-specific functions from
11 // sanitizer_common.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_fuchsia.h"
15 #if SANITIZER_FUCHSIA
16 
17 #  include <pthread.h>
18 #  include <stdlib.h>
19 #  include <unistd.h>
20 #  include <zircon/errors.h>
21 #  include <zircon/process.h>
22 #  include <zircon/syscalls.h>
23 #  include <zircon/utc.h>
24 
25 #  include "sanitizer_common.h"
26 #  include "sanitizer_interface_internal.h"
27 #  include "sanitizer_libc.h"
28 #  include "sanitizer_mutex.h"
29 
30 namespace __sanitizer {
31 
internal__exit(int exitcode)32 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
33 
internal_sched_yield()34 uptr internal_sched_yield() {
35   zx_status_t status = _zx_thread_legacy_yield(0u);
36   CHECK_EQ(status, ZX_OK);
37   return 0;  // Why doesn't this return void?
38 }
39 
internal_usleep(u64 useconds)40 void internal_usleep(u64 useconds) {
41   zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds)));
42   CHECK_EQ(status, ZX_OK);
43 }
44 
NanoTime()45 u64 NanoTime() {
46   zx_handle_t utc_clock = _zx_utc_reference_get();
47   CHECK_NE(utc_clock, ZX_HANDLE_INVALID);
48   zx_time_t time;
49   zx_status_t status = _zx_clock_read(utc_clock, &time);
50   CHECK_EQ(status, ZX_OK);
51   return time;
52 }
53 
MonotonicNanoTime()54 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
55 
internal_getpid()56 uptr internal_getpid() {
57   zx_info_handle_basic_t info;
58   zx_status_t status =
59       _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
60                           sizeof(info), NULL, NULL);
61   CHECK_EQ(status, ZX_OK);
62   uptr pid = static_cast<uptr>(info.koid);
63   CHECK_EQ(pid, info.koid);
64   return pid;
65 }
66 
internal_dlinfo(void * handle,int request,void * p)67 int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); }
68 
GetThreadSelf()69 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
70 
GetTid()71 tid_t GetTid() { return GetThreadSelf(); }
72 
Abort()73 void Abort() { abort(); }
74 
Atexit(void (* function)(void))75 int Atexit(void (*function)(void)) { return atexit(function); }
76 
GetThreadStackTopAndBottom(bool,uptr * stack_top,uptr * stack_bottom)77 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
78   pthread_attr_t attr;
79   CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
80   void *base;
81   size_t size;
82   CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
83   CHECK_EQ(pthread_attr_destroy(&attr), 0);
84 
85   *stack_bottom = reinterpret_cast<uptr>(base);
86   *stack_top = *stack_bottom + size;
87 }
88 
InitializePlatformEarly()89 void InitializePlatformEarly() {}
CheckASLR()90 void CheckASLR() {}
CheckMPROTECT()91 void CheckMPROTECT() {}
PlatformPrepareForSandboxing(void * args)92 void PlatformPrepareForSandboxing(void *args) {}
DisableCoreDumperIfNecessary()93 void DisableCoreDumperIfNecessary() {}
InstallDeadlySignalHandlers(SignalHandlerType handler)94 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
SetAlternateSignalStack()95 void SetAlternateSignalStack() {}
UnsetAlternateSignalStack()96 void UnsetAlternateSignalStack() {}
InitTlsSize()97 void InitTlsSize() {}
98 
IsStackOverflow() const99 bool SignalContext::IsStackOverflow() const { return false; }
DumpAllRegisters(void * context)100 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
Describe() const101 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
102 
FutexWait(atomic_uint32_t * p,u32 cmp)103 void FutexWait(atomic_uint32_t *p, u32 cmp) {
104   zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp,
105                                       ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
106   if (status != ZX_ERR_BAD_STATE)  // Normal race.
107     CHECK_EQ(status, ZX_OK);
108 }
109 
FutexWake(atomic_uint32_t * p,u32 count)110 void FutexWake(atomic_uint32_t *p, u32 count) {
111   zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count);
112   CHECK_EQ(status, ZX_OK);
113 }
114 
GetPageSize()115 uptr GetPageSize() { return _zx_system_get_page_size(); }
116 
GetMmapGranularity()117 uptr GetMmapGranularity() { return _zx_system_get_page_size(); }
118 
119 sanitizer_shadow_bounds_t ShadowBounds;
120 
InitShadowBounds()121 void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); }
122 
GetMaxUserVirtualAddress()123 uptr GetMaxUserVirtualAddress() {
124   InitShadowBounds();
125   return ShadowBounds.memory_limit - 1;
126 }
127 
GetMaxVirtualAddress()128 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
129 
ErrorIsOOM(error_t err)130 bool ErrorIsOOM(error_t err) { return err == ZX_ERR_NO_MEMORY; }
131 
132 // For any sanitizer internal that needs to map something which can be unmapped
133 // later, first attempt to map to a pre-allocated VMAR. This helps reduce
134 // fragmentation from many small anonymous mmap calls. A good value for this
135 // VMAR size would be the total size of your typical sanitizer internal objects
136 // allocated in an "average" process lifetime. Examples of this include:
137 // FakeStack, LowLevelAllocator mappings, TwoLevelMap, InternalMmapVector,
138 // StackStore, CreateAsanThread, etc.
139 //
140 // This is roughly equal to the total sum of sanitizer internal mappings for a
141 // large test case.
142 constexpr size_t kSanitizerHeapVmarSize = 13ULL << 20;
143 static zx_handle_t gSanitizerHeapVmar = ZX_HANDLE_INVALID;
144 
GetSanitizerHeapVmar(zx_handle_t * vmar)145 static zx_status_t GetSanitizerHeapVmar(zx_handle_t *vmar) {
146   zx_status_t status = ZX_OK;
147   if (gSanitizerHeapVmar == ZX_HANDLE_INVALID) {
148     CHECK_EQ(kSanitizerHeapVmarSize % GetPageSizeCached(), 0);
149     uintptr_t base;
150     status = _zx_vmar_allocate(
151         _zx_vmar_root_self(),
152         ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
153         kSanitizerHeapVmarSize, &gSanitizerHeapVmar, &base);
154   }
155   *vmar = gSanitizerHeapVmar;
156   if (status == ZX_OK)
157     CHECK_NE(gSanitizerHeapVmar, ZX_HANDLE_INVALID);
158   return status;
159 }
160 
TryVmoMapSanitizerVmar(zx_vm_option_t options,size_t vmar_offset,zx_handle_t vmo,size_t size,uintptr_t * addr,zx_handle_t * vmar_used=nullptr)161 static zx_status_t TryVmoMapSanitizerVmar(zx_vm_option_t options,
162                                           size_t vmar_offset, zx_handle_t vmo,
163                                           size_t size, uintptr_t *addr,
164                                           zx_handle_t *vmar_used = nullptr) {
165   zx_handle_t vmar;
166   zx_status_t status = GetSanitizerHeapVmar(&vmar);
167   if (status != ZX_OK)
168     return status;
169 
170   status = _zx_vmar_map(gSanitizerHeapVmar, options, vmar_offset, vmo,
171                         /*vmo_offset=*/0, size, addr);
172   if (vmar_used)
173     *vmar_used = gSanitizerHeapVmar;
174   if (status == ZX_ERR_NO_RESOURCES || status == ZX_ERR_INVALID_ARGS) {
175     // This means there's no space in the heap VMAR, so fallback to the root
176     // VMAR.
177     status = _zx_vmar_map(_zx_vmar_root_self(), options, vmar_offset, vmo,
178                           /*vmo_offset=*/0, size, addr);
179     if (vmar_used)
180       *vmar_used = _zx_vmar_root_self();
181   }
182 
183   return status;
184 }
185 
DoAnonymousMmapOrDie(uptr size,const char * mem_type,bool raw_report,bool die_for_nomem)186 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
187                                   bool raw_report, bool die_for_nomem) {
188   size = RoundUpTo(size, GetPageSize());
189 
190   zx_handle_t vmo;
191   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
192   if (status != ZX_OK) {
193     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
194       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
195                               raw_report);
196     return nullptr;
197   }
198   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
199                           internal_strlen(mem_type));
200 
201   uintptr_t addr;
202   status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
203                                   /*vmar_offset=*/0, vmo, size, &addr);
204   _zx_handle_close(vmo);
205 
206   if (status != ZX_OK) {
207     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
208       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
209                               raw_report);
210     return nullptr;
211   }
212 
213   IncreaseTotalMmap(size);
214 
215   return reinterpret_cast<void *>(addr);
216 }
217 
MmapOrDie(uptr size,const char * mem_type,bool raw_report)218 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
219   return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
220 }
221 
MmapNoReserveOrDie(uptr size,const char * mem_type)222 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
223   return MmapOrDie(size, mem_type);
224 }
225 
MmapOrDieOnFatalError(uptr size,const char * mem_type)226 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
227   return DoAnonymousMmapOrDie(size, mem_type, false, false);
228 }
229 
Init(uptr init_size,const char * name,uptr fixed_addr)230 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
231                                 uptr fixed_addr) {
232   init_size = RoundUpTo(init_size, GetPageSize());
233   DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
234   uintptr_t base;
235   zx_handle_t vmar;
236   zx_status_t status = _zx_vmar_allocate(
237       _zx_vmar_root_self(),
238       ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
239       init_size, &vmar, &base);
240   if (status != ZX_OK)
241     ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
242   base_ = reinterpret_cast<void *>(base);
243   size_ = init_size;
244   name_ = name;
245   os_handle_ = vmar;
246 
247   return reinterpret_cast<uptr>(base_);
248 }
249 
DoMmapFixedOrDie(zx_handle_t vmar,uptr fixed_addr,uptr map_size,void * base,const char * name,bool die_for_nomem)250 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
251                              void *base, const char *name, bool die_for_nomem) {
252   uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
253   map_size = RoundUpTo(map_size, GetPageSize());
254   zx_handle_t vmo;
255   zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
256   if (status != ZX_OK) {
257     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
258       ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
259     return 0;
260   }
261   _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
262   DCHECK_GE(base + size_, map_size + offset);
263   uintptr_t addr;
264 
265   status =
266       _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
267                    offset, vmo, 0, map_size, &addr);
268   _zx_handle_close(vmo);
269   if (status != ZX_OK) {
270     if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
271       ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
272     }
273     return 0;
274   }
275   IncreaseTotalMmap(map_size);
276   return addr;
277 }
278 
Map(uptr fixed_addr,uptr map_size,const char * name)279 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
280                                const char *name) {
281   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
282                           name ? name : name_, false);
283 }
284 
MapOrDie(uptr fixed_addr,uptr map_size,const char * name)285 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
286                                     const char *name) {
287   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
288                           name ? name : name_, true);
289 }
290 
UnmapOrDieVmar(void * addr,uptr size,zx_handle_t target_vmar,bool raw_report)291 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar,
292                     bool raw_report) {
293   if (!addr || !size)
294     return;
295   size = RoundUpTo(size, GetPageSize());
296 
297   zx_status_t status =
298       _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
299   if (status == ZX_ERR_INVALID_ARGS && target_vmar == gSanitizerHeapVmar) {
300     // If there wasn't any space in the heap vmar, the fallback was the root
301     // vmar.
302     status = _zx_vmar_unmap(_zx_vmar_root_self(),
303                             reinterpret_cast<uintptr_t>(addr), size);
304   }
305   if (status != ZX_OK)
306     ReportMunmapFailureAndDie(addr, size, status, raw_report);
307 
308   DecreaseTotalMmap(size);
309 }
310 
Unmap(uptr addr,uptr size)311 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
312   CHECK_LE(size, size_);
313   const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
314   if (addr == reinterpret_cast<uptr>(base_)) {
315     if (size == size_) {
316       // Destroying the vmar effectively unmaps the whole mapping.
317       _zx_vmar_destroy(vmar);
318       _zx_handle_close(vmar);
319       os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
320       DecreaseTotalMmap(size);
321       return;
322     }
323   } else {
324     CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
325   }
326   // Partial unmapping does not affect the fact that the initial range is still
327   // reserved, and the resulting unmapped memory can't be reused.
328   UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar,
329                  /*raw_report=*/false);
330 }
331 
332 // This should never be called.
MmapFixedNoAccess(uptr fixed_addr,uptr size,const char * name)333 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
334   UNIMPLEMENTED();
335 }
336 
MprotectNoAccess(uptr addr,uptr size)337 bool MprotectNoAccess(uptr addr, uptr size) {
338   return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK;
339 }
340 
MprotectReadOnly(uptr addr,uptr size)341 bool MprotectReadOnly(uptr addr, uptr size) {
342   return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) ==
343          ZX_OK;
344 }
345 
MprotectReadWrite(uptr addr,uptr size)346 bool MprotectReadWrite(uptr addr, uptr size) {
347   return _zx_vmar_protect(_zx_vmar_root_self(),
348                           ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, addr,
349                           size) == ZX_OK;
350 }
351 
MmapAlignedOrDieOnFatalError(uptr size,uptr alignment,const char * mem_type)352 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
353                                    const char *mem_type) {
354   CHECK_GE(size, GetPageSize());
355   CHECK(IsPowerOfTwo(size));
356   CHECK(IsPowerOfTwo(alignment));
357 
358   zx_handle_t vmo;
359   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
360   if (status != ZX_OK) {
361     if (status != ZX_ERR_NO_MEMORY)
362       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
363     return nullptr;
364   }
365   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
366                           internal_strlen(mem_type));
367 
368   // Map a larger size to get a chunk of address space big enough that
369   // it surely contains an aligned region of the requested size.  Then
370   // overwrite the aligned middle portion with a mapping from the
371   // beginning of the VMO, and unmap the excess before and after.
372   size_t map_size = size + alignment;
373   uintptr_t addr;
374   zx_handle_t vmar_used;
375   status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
376                                   /*vmar_offset=*/0, vmo, map_size, &addr,
377                                   &vmar_used);
378   if (status == ZX_OK) {
379     uintptr_t map_addr = addr;
380     uintptr_t map_end = map_addr + map_size;
381     addr = RoundUpTo(map_addr, alignment);
382     uintptr_t end = addr + size;
383     if (addr != map_addr) {
384       zx_info_vmar_t info;
385       status = _zx_object_get_info(vmar_used, ZX_INFO_VMAR, &info, sizeof(info),
386                                    NULL, NULL);
387       if (status == ZX_OK) {
388         uintptr_t new_addr;
389         status = _zx_vmar_map(
390             vmar_used,
391             ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
392             addr - info.base, vmo, 0, size, &new_addr);
393         if (status == ZX_OK)
394           CHECK_EQ(new_addr, addr);
395       }
396     }
397     if (status == ZX_OK && addr != map_addr)
398       status = _zx_vmar_unmap(vmar_used, map_addr, addr - map_addr);
399     if (status == ZX_OK && end != map_end)
400       status = _zx_vmar_unmap(vmar_used, end, map_end - end);
401   }
402   _zx_handle_close(vmo);
403 
404   if (status != ZX_OK) {
405     if (status != ZX_ERR_NO_MEMORY)
406       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
407     return nullptr;
408   }
409 
410   IncreaseTotalMmap(size);
411 
412   return reinterpret_cast<void *>(addr);
413 }
414 
UnmapOrDie(void * addr,uptr size,bool raw_report)415 void UnmapOrDie(void *addr, uptr size, bool raw_report) {
416   UnmapOrDieVmar(addr, size, gSanitizerHeapVmar, raw_report);
417 }
418 
ReleaseMemoryPagesToOS(uptr beg,uptr end)419 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
420   uptr beg_aligned = RoundUpTo(beg, GetPageSize());
421   uptr end_aligned = RoundDownTo(end, GetPageSize());
422   if (beg_aligned < end_aligned) {
423     zx_handle_t root_vmar = _zx_vmar_root_self();
424     CHECK_NE(root_vmar, ZX_HANDLE_INVALID);
425     zx_status_t status =
426         _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned,
427                           end_aligned - beg_aligned, nullptr, 0);
428     CHECK_EQ(status, ZX_OK);
429   }
430 }
431 
DumpProcessMap()432 void DumpProcessMap() {
433   // TODO(mcgrathr): write it
434   return;
435 }
436 
IsAccessibleMemoryRange(uptr beg,uptr size)437 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
438   // TODO(mcgrathr): Figure out a better way.
439   zx_handle_t vmo;
440   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
441   if (status == ZX_OK) {
442     status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
443     _zx_handle_close(vmo);
444   }
445   return status == ZX_OK;
446 }
447 
448 // FIXME implement on this platform.
GetMemoryProfile(fill_profile_f cb,uptr * stats)449 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
450 
ReadFileToBuffer(const char * file_name,char ** buff,uptr * buff_size,uptr * read_len,uptr max_len,error_t * errno_p)451 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
452                       uptr *read_len, uptr max_len, error_t *errno_p) {
453   *errno_p = ZX_ERR_NOT_SUPPORTED;
454   return false;
455 }
456 
RawWrite(const char * buffer)457 void RawWrite(const char *buffer) {
458   constexpr size_t size = 128;
459   static _Thread_local char line[size];
460   static _Thread_local size_t lastLineEnd = 0;
461   static _Thread_local size_t cur = 0;
462 
463   while (*buffer) {
464     if (cur >= size) {
465       if (lastLineEnd == 0)
466         lastLineEnd = size;
467       __sanitizer_log_write(line, lastLineEnd);
468       internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
469       cur = cur - lastLineEnd;
470       lastLineEnd = 0;
471     }
472     if (*buffer == '\n')
473       lastLineEnd = cur + 1;
474     line[cur++] = *buffer++;
475   }
476   // Flush all complete lines before returning.
477   if (lastLineEnd != 0) {
478     __sanitizer_log_write(line, lastLineEnd);
479     internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
480     cur = cur - lastLineEnd;
481     lastLineEnd = 0;
482   }
483 }
484 
CatastrophicErrorWrite(const char * buffer,uptr length)485 void CatastrophicErrorWrite(const char *buffer, uptr length) {
486   __sanitizer_log_write(buffer, length);
487 }
488 
489 char **StoredArgv;
490 char **StoredEnviron;
491 
GetArgv()492 char **GetArgv() { return StoredArgv; }
GetEnviron()493 char **GetEnviron() { return StoredEnviron; }
494 
GetEnv(const char * name)495 const char *GetEnv(const char *name) {
496   if (StoredEnviron) {
497     uptr NameLen = internal_strlen(name);
498     for (char **Env = StoredEnviron; *Env != 0; Env++) {
499       if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
500         return (*Env) + NameLen + 1;
501     }
502   }
503   return nullptr;
504 }
505 
ReadBinaryName(char * buf,uptr buf_len)506 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
507   const char *argv0 = "<UNKNOWN>";
508   if (StoredArgv && StoredArgv[0]) {
509     argv0 = StoredArgv[0];
510   }
511   internal_strncpy(buf, argv0, buf_len);
512   return internal_strlen(buf);
513 }
514 
ReadLongProcessName(char * buf,uptr buf_len)515 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
516   return ReadBinaryName(buf, buf_len);
517 }
518 
519 uptr MainThreadStackBase, MainThreadStackSize;
520 
GetRandom(void * buffer,uptr length,bool blocking)521 bool GetRandom(void *buffer, uptr length, bool blocking) {
522   CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
523   _zx_cprng_draw(buffer, length);
524   return true;
525 }
526 
GetNumberOfCPUs()527 u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); }
528 
GetRSS()529 uptr GetRSS() { UNIMPLEMENTED(); }
530 
internal_start_thread(void * (* func)(void * arg),void * arg)531 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
internal_join_thread(void * th)532 void internal_join_thread(void *th) {}
533 
InitializePlatformCommonFlags(CommonFlags * cf)534 void InitializePlatformCommonFlags(CommonFlags *cf) {}
535 
536 }  // namespace __sanitizer
537 
538 using namespace __sanitizer;
539 
540 extern "C" {
__sanitizer_startup_hook(int argc,char ** argv,char ** envp,void * stack_base,size_t stack_size)541 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
542                               void *stack_base, size_t stack_size) {
543   __sanitizer::StoredArgv = argv;
544   __sanitizer::StoredEnviron = envp;
545   __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
546   __sanitizer::MainThreadStackSize = stack_size;
547 }
548 
__sanitizer_set_report_path(const char * path)549 void __sanitizer_set_report_path(const char *path) {
550   // Handle the initialization code in each sanitizer, but no other calls.
551   // This setting is never consulted on Fuchsia.
552   DCHECK_EQ(path, common_flags()->log_path);
553 }
554 
__sanitizer_set_report_fd(void * fd)555 void __sanitizer_set_report_fd(void *fd) {
556   UNREACHABLE("not available on Fuchsia");
557 }
558 
__sanitizer_get_report_path()559 const char *__sanitizer_get_report_path() {
560   UNREACHABLE("not available on Fuchsia");
561 }
562 }  // extern "C"
563 
564 #endif  // SANITIZER_FUCHSIA
565