1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and other sanitizer
10 // run-time libraries and implements Fuchsia-specific functions from
11 // sanitizer_common.h.
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_fuchsia.h"
15 #if SANITIZER_FUCHSIA
16
17 # include <pthread.h>
18 # include <stdlib.h>
19 # include <unistd.h>
20 # include <zircon/errors.h>
21 # include <zircon/process.h>
22 # include <zircon/syscalls.h>
23 # include <zircon/utc.h>
24
25 # include "sanitizer_common.h"
26 # include "sanitizer_interface_internal.h"
27 # include "sanitizer_libc.h"
28 # include "sanitizer_mutex.h"
29
30 namespace __sanitizer {
31
internal__exit(int exitcode)32 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
33
internal_sched_yield()34 uptr internal_sched_yield() {
35 zx_status_t status = _zx_thread_legacy_yield(0u);
36 CHECK_EQ(status, ZX_OK);
37 return 0; // Why doesn't this return void?
38 }
39
internal_usleep(u64 useconds)40 void internal_usleep(u64 useconds) {
41 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds)));
42 CHECK_EQ(status, ZX_OK);
43 }
44
NanoTime()45 u64 NanoTime() {
46 zx_handle_t utc_clock = _zx_utc_reference_get();
47 CHECK_NE(utc_clock, ZX_HANDLE_INVALID);
48 zx_time_t time;
49 zx_status_t status = _zx_clock_read(utc_clock, &time);
50 CHECK_EQ(status, ZX_OK);
51 return time;
52 }
53
MonotonicNanoTime()54 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
55
internal_getpid()56 uptr internal_getpid() {
57 zx_info_handle_basic_t info;
58 zx_status_t status =
59 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
60 sizeof(info), NULL, NULL);
61 CHECK_EQ(status, ZX_OK);
62 uptr pid = static_cast<uptr>(info.koid);
63 CHECK_EQ(pid, info.koid);
64 return pid;
65 }
66
internal_dlinfo(void * handle,int request,void * p)67 int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); }
68
GetThreadSelf()69 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
70
GetTid()71 tid_t GetTid() { return GetThreadSelf(); }
72
Abort()73 void Abort() { abort(); }
74
Atexit(void (* function)(void))75 int Atexit(void (*function)(void)) { return atexit(function); }
76
GetThreadStackTopAndBottom(bool,uptr * stack_top,uptr * stack_bottom)77 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
78 pthread_attr_t attr;
79 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
80 void *base;
81 size_t size;
82 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
83 CHECK_EQ(pthread_attr_destroy(&attr), 0);
84
85 *stack_bottom = reinterpret_cast<uptr>(base);
86 *stack_top = *stack_bottom + size;
87 }
88
InitializePlatformEarly()89 void InitializePlatformEarly() {}
CheckASLR()90 void CheckASLR() {}
CheckMPROTECT()91 void CheckMPROTECT() {}
PlatformPrepareForSandboxing(void * args)92 void PlatformPrepareForSandboxing(void *args) {}
DisableCoreDumperIfNecessary()93 void DisableCoreDumperIfNecessary() {}
InstallDeadlySignalHandlers(SignalHandlerType handler)94 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
SetAlternateSignalStack()95 void SetAlternateSignalStack() {}
UnsetAlternateSignalStack()96 void UnsetAlternateSignalStack() {}
InitTlsSize()97 void InitTlsSize() {}
98
IsStackOverflow() const99 bool SignalContext::IsStackOverflow() const { return false; }
DumpAllRegisters(void * context)100 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
Describe() const101 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
102
FutexWait(atomic_uint32_t * p,u32 cmp)103 void FutexWait(atomic_uint32_t *p, u32 cmp) {
104 zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp,
105 ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
106 if (status != ZX_ERR_BAD_STATE) // Normal race.
107 CHECK_EQ(status, ZX_OK);
108 }
109
FutexWake(atomic_uint32_t * p,u32 count)110 void FutexWake(atomic_uint32_t *p, u32 count) {
111 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count);
112 CHECK_EQ(status, ZX_OK);
113 }
114
GetPageSize()115 uptr GetPageSize() { return _zx_system_get_page_size(); }
116
GetMmapGranularity()117 uptr GetMmapGranularity() { return _zx_system_get_page_size(); }
118
119 sanitizer_shadow_bounds_t ShadowBounds;
120
InitShadowBounds()121 void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); }
122
GetMaxUserVirtualAddress()123 uptr GetMaxUserVirtualAddress() {
124 InitShadowBounds();
125 return ShadowBounds.memory_limit - 1;
126 }
127
GetMaxVirtualAddress()128 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
129
ErrorIsOOM(error_t err)130 bool ErrorIsOOM(error_t err) { return err == ZX_ERR_NO_MEMORY; }
131
132 // For any sanitizer internal that needs to map something which can be unmapped
133 // later, first attempt to map to a pre-allocated VMAR. This helps reduce
134 // fragmentation from many small anonymous mmap calls. A good value for this
135 // VMAR size would be the total size of your typical sanitizer internal objects
136 // allocated in an "average" process lifetime. Examples of this include:
137 // FakeStack, LowLevelAllocator mappings, TwoLevelMap, InternalMmapVector,
138 // StackStore, CreateAsanThread, etc.
139 //
140 // This is roughly equal to the total sum of sanitizer internal mappings for a
141 // large test case.
142 constexpr size_t kSanitizerHeapVmarSize = 13ULL << 20;
143 static zx_handle_t gSanitizerHeapVmar = ZX_HANDLE_INVALID;
144
GetSanitizerHeapVmar(zx_handle_t * vmar)145 static zx_status_t GetSanitizerHeapVmar(zx_handle_t *vmar) {
146 zx_status_t status = ZX_OK;
147 if (gSanitizerHeapVmar == ZX_HANDLE_INVALID) {
148 CHECK_EQ(kSanitizerHeapVmarSize % GetPageSizeCached(), 0);
149 uintptr_t base;
150 status = _zx_vmar_allocate(
151 _zx_vmar_root_self(),
152 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
153 kSanitizerHeapVmarSize, &gSanitizerHeapVmar, &base);
154 }
155 *vmar = gSanitizerHeapVmar;
156 if (status == ZX_OK)
157 CHECK_NE(gSanitizerHeapVmar, ZX_HANDLE_INVALID);
158 return status;
159 }
160
TryVmoMapSanitizerVmar(zx_vm_option_t options,size_t vmar_offset,zx_handle_t vmo,size_t size,uintptr_t * addr,zx_handle_t * vmar_used=nullptr)161 static zx_status_t TryVmoMapSanitizerVmar(zx_vm_option_t options,
162 size_t vmar_offset, zx_handle_t vmo,
163 size_t size, uintptr_t *addr,
164 zx_handle_t *vmar_used = nullptr) {
165 zx_handle_t vmar;
166 zx_status_t status = GetSanitizerHeapVmar(&vmar);
167 if (status != ZX_OK)
168 return status;
169
170 status = _zx_vmar_map(gSanitizerHeapVmar, options, vmar_offset, vmo,
171 /*vmo_offset=*/0, size, addr);
172 if (vmar_used)
173 *vmar_used = gSanitizerHeapVmar;
174 if (status == ZX_ERR_NO_RESOURCES || status == ZX_ERR_INVALID_ARGS) {
175 // This means there's no space in the heap VMAR, so fallback to the root
176 // VMAR.
177 status = _zx_vmar_map(_zx_vmar_root_self(), options, vmar_offset, vmo,
178 /*vmo_offset=*/0, size, addr);
179 if (vmar_used)
180 *vmar_used = _zx_vmar_root_self();
181 }
182
183 return status;
184 }
185
DoAnonymousMmapOrDie(uptr size,const char * mem_type,bool raw_report,bool die_for_nomem)186 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
187 bool raw_report, bool die_for_nomem) {
188 size = RoundUpTo(size, GetPageSize());
189
190 zx_handle_t vmo;
191 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
192 if (status != ZX_OK) {
193 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
194 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
195 raw_report);
196 return nullptr;
197 }
198 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
199 internal_strlen(mem_type));
200
201 uintptr_t addr;
202 status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
203 /*vmar_offset=*/0, vmo, size, &addr);
204 _zx_handle_close(vmo);
205
206 if (status != ZX_OK) {
207 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
208 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
209 raw_report);
210 return nullptr;
211 }
212
213 IncreaseTotalMmap(size);
214
215 return reinterpret_cast<void *>(addr);
216 }
217
MmapOrDie(uptr size,const char * mem_type,bool raw_report)218 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
219 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
220 }
221
MmapNoReserveOrDie(uptr size,const char * mem_type)222 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
223 return MmapOrDie(size, mem_type);
224 }
225
MmapOrDieOnFatalError(uptr size,const char * mem_type)226 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
227 return DoAnonymousMmapOrDie(size, mem_type, false, false);
228 }
229
Init(uptr init_size,const char * name,uptr fixed_addr)230 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
231 uptr fixed_addr) {
232 init_size = RoundUpTo(init_size, GetPageSize());
233 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
234 uintptr_t base;
235 zx_handle_t vmar;
236 zx_status_t status = _zx_vmar_allocate(
237 _zx_vmar_root_self(),
238 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
239 init_size, &vmar, &base);
240 if (status != ZX_OK)
241 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
242 base_ = reinterpret_cast<void *>(base);
243 size_ = init_size;
244 name_ = name;
245 os_handle_ = vmar;
246
247 return reinterpret_cast<uptr>(base_);
248 }
249
DoMmapFixedOrDie(zx_handle_t vmar,uptr fixed_addr,uptr map_size,void * base,const char * name,bool die_for_nomem)250 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
251 void *base, const char *name, bool die_for_nomem) {
252 uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
253 map_size = RoundUpTo(map_size, GetPageSize());
254 zx_handle_t vmo;
255 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
256 if (status != ZX_OK) {
257 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
258 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
259 return 0;
260 }
261 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
262 DCHECK_GE(base + size_, map_size + offset);
263 uintptr_t addr;
264
265 status =
266 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
267 offset, vmo, 0, map_size, &addr);
268 _zx_handle_close(vmo);
269 if (status != ZX_OK) {
270 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
271 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
272 }
273 return 0;
274 }
275 IncreaseTotalMmap(map_size);
276 return addr;
277 }
278
Map(uptr fixed_addr,uptr map_size,const char * name)279 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
280 const char *name) {
281 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
282 name ? name : name_, false);
283 }
284
MapOrDie(uptr fixed_addr,uptr map_size,const char * name)285 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
286 const char *name) {
287 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
288 name ? name : name_, true);
289 }
290
UnmapOrDieVmar(void * addr,uptr size,zx_handle_t target_vmar,bool raw_report)291 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar,
292 bool raw_report) {
293 if (!addr || !size)
294 return;
295 size = RoundUpTo(size, GetPageSize());
296
297 zx_status_t status =
298 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
299 if (status == ZX_ERR_INVALID_ARGS && target_vmar == gSanitizerHeapVmar) {
300 // If there wasn't any space in the heap vmar, the fallback was the root
301 // vmar.
302 status = _zx_vmar_unmap(_zx_vmar_root_self(),
303 reinterpret_cast<uintptr_t>(addr), size);
304 }
305 if (status != ZX_OK)
306 ReportMunmapFailureAndDie(addr, size, status, raw_report);
307
308 DecreaseTotalMmap(size);
309 }
310
Unmap(uptr addr,uptr size)311 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
312 CHECK_LE(size, size_);
313 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
314 if (addr == reinterpret_cast<uptr>(base_)) {
315 if (size == size_) {
316 // Destroying the vmar effectively unmaps the whole mapping.
317 _zx_vmar_destroy(vmar);
318 _zx_handle_close(vmar);
319 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
320 DecreaseTotalMmap(size);
321 return;
322 }
323 } else {
324 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
325 }
326 // Partial unmapping does not affect the fact that the initial range is still
327 // reserved, and the resulting unmapped memory can't be reused.
328 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar,
329 /*raw_report=*/false);
330 }
331
332 // This should never be called.
MmapFixedNoAccess(uptr fixed_addr,uptr size,const char * name)333 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
334 UNIMPLEMENTED();
335 }
336
MprotectNoAccess(uptr addr,uptr size)337 bool MprotectNoAccess(uptr addr, uptr size) {
338 return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK;
339 }
340
MprotectReadOnly(uptr addr,uptr size)341 bool MprotectReadOnly(uptr addr, uptr size) {
342 return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) ==
343 ZX_OK;
344 }
345
MprotectReadWrite(uptr addr,uptr size)346 bool MprotectReadWrite(uptr addr, uptr size) {
347 return _zx_vmar_protect(_zx_vmar_root_self(),
348 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, addr,
349 size) == ZX_OK;
350 }
351
MmapAlignedOrDieOnFatalError(uptr size,uptr alignment,const char * mem_type)352 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
353 const char *mem_type) {
354 CHECK_GE(size, GetPageSize());
355 CHECK(IsPowerOfTwo(size));
356 CHECK(IsPowerOfTwo(alignment));
357
358 zx_handle_t vmo;
359 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
360 if (status != ZX_OK) {
361 if (status != ZX_ERR_NO_MEMORY)
362 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
363 return nullptr;
364 }
365 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
366 internal_strlen(mem_type));
367
368 // Map a larger size to get a chunk of address space big enough that
369 // it surely contains an aligned region of the requested size. Then
370 // overwrite the aligned middle portion with a mapping from the
371 // beginning of the VMO, and unmap the excess before and after.
372 size_t map_size = size + alignment;
373 uintptr_t addr;
374 zx_handle_t vmar_used;
375 status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
376 /*vmar_offset=*/0, vmo, map_size, &addr,
377 &vmar_used);
378 if (status == ZX_OK) {
379 uintptr_t map_addr = addr;
380 uintptr_t map_end = map_addr + map_size;
381 addr = RoundUpTo(map_addr, alignment);
382 uintptr_t end = addr + size;
383 if (addr != map_addr) {
384 zx_info_vmar_t info;
385 status = _zx_object_get_info(vmar_used, ZX_INFO_VMAR, &info, sizeof(info),
386 NULL, NULL);
387 if (status == ZX_OK) {
388 uintptr_t new_addr;
389 status = _zx_vmar_map(
390 vmar_used,
391 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
392 addr - info.base, vmo, 0, size, &new_addr);
393 if (status == ZX_OK)
394 CHECK_EQ(new_addr, addr);
395 }
396 }
397 if (status == ZX_OK && addr != map_addr)
398 status = _zx_vmar_unmap(vmar_used, map_addr, addr - map_addr);
399 if (status == ZX_OK && end != map_end)
400 status = _zx_vmar_unmap(vmar_used, end, map_end - end);
401 }
402 _zx_handle_close(vmo);
403
404 if (status != ZX_OK) {
405 if (status != ZX_ERR_NO_MEMORY)
406 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
407 return nullptr;
408 }
409
410 IncreaseTotalMmap(size);
411
412 return reinterpret_cast<void *>(addr);
413 }
414
UnmapOrDie(void * addr,uptr size,bool raw_report)415 void UnmapOrDie(void *addr, uptr size, bool raw_report) {
416 UnmapOrDieVmar(addr, size, gSanitizerHeapVmar, raw_report);
417 }
418
ReleaseMemoryPagesToOS(uptr beg,uptr end)419 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
420 uptr beg_aligned = RoundUpTo(beg, GetPageSize());
421 uptr end_aligned = RoundDownTo(end, GetPageSize());
422 if (beg_aligned < end_aligned) {
423 zx_handle_t root_vmar = _zx_vmar_root_self();
424 CHECK_NE(root_vmar, ZX_HANDLE_INVALID);
425 zx_status_t status =
426 _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned,
427 end_aligned - beg_aligned, nullptr, 0);
428 CHECK_EQ(status, ZX_OK);
429 }
430 }
431
DumpProcessMap()432 void DumpProcessMap() {
433 // TODO(mcgrathr): write it
434 return;
435 }
436
IsAccessibleMemoryRange(uptr beg,uptr size)437 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
438 // TODO(mcgrathr): Figure out a better way.
439 zx_handle_t vmo;
440 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
441 if (status == ZX_OK) {
442 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
443 _zx_handle_close(vmo);
444 }
445 return status == ZX_OK;
446 }
447
448 // FIXME implement on this platform.
GetMemoryProfile(fill_profile_f cb,uptr * stats)449 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
450
ReadFileToBuffer(const char * file_name,char ** buff,uptr * buff_size,uptr * read_len,uptr max_len,error_t * errno_p)451 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
452 uptr *read_len, uptr max_len, error_t *errno_p) {
453 *errno_p = ZX_ERR_NOT_SUPPORTED;
454 return false;
455 }
456
RawWrite(const char * buffer)457 void RawWrite(const char *buffer) {
458 constexpr size_t size = 128;
459 static _Thread_local char line[size];
460 static _Thread_local size_t lastLineEnd = 0;
461 static _Thread_local size_t cur = 0;
462
463 while (*buffer) {
464 if (cur >= size) {
465 if (lastLineEnd == 0)
466 lastLineEnd = size;
467 __sanitizer_log_write(line, lastLineEnd);
468 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
469 cur = cur - lastLineEnd;
470 lastLineEnd = 0;
471 }
472 if (*buffer == '\n')
473 lastLineEnd = cur + 1;
474 line[cur++] = *buffer++;
475 }
476 // Flush all complete lines before returning.
477 if (lastLineEnd != 0) {
478 __sanitizer_log_write(line, lastLineEnd);
479 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
480 cur = cur - lastLineEnd;
481 lastLineEnd = 0;
482 }
483 }
484
CatastrophicErrorWrite(const char * buffer,uptr length)485 void CatastrophicErrorWrite(const char *buffer, uptr length) {
486 __sanitizer_log_write(buffer, length);
487 }
488
489 char **StoredArgv;
490 char **StoredEnviron;
491
GetArgv()492 char **GetArgv() { return StoredArgv; }
GetEnviron()493 char **GetEnviron() { return StoredEnviron; }
494
GetEnv(const char * name)495 const char *GetEnv(const char *name) {
496 if (StoredEnviron) {
497 uptr NameLen = internal_strlen(name);
498 for (char **Env = StoredEnviron; *Env != 0; Env++) {
499 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
500 return (*Env) + NameLen + 1;
501 }
502 }
503 return nullptr;
504 }
505
ReadBinaryName(char * buf,uptr buf_len)506 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
507 const char *argv0 = "<UNKNOWN>";
508 if (StoredArgv && StoredArgv[0]) {
509 argv0 = StoredArgv[0];
510 }
511 internal_strncpy(buf, argv0, buf_len);
512 return internal_strlen(buf);
513 }
514
ReadLongProcessName(char * buf,uptr buf_len)515 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
516 return ReadBinaryName(buf, buf_len);
517 }
518
519 uptr MainThreadStackBase, MainThreadStackSize;
520
GetRandom(void * buffer,uptr length,bool blocking)521 bool GetRandom(void *buffer, uptr length, bool blocking) {
522 CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
523 _zx_cprng_draw(buffer, length);
524 return true;
525 }
526
GetNumberOfCPUs()527 u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); }
528
GetRSS()529 uptr GetRSS() { UNIMPLEMENTED(); }
530
internal_start_thread(void * (* func)(void * arg),void * arg)531 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
internal_join_thread(void * th)532 void internal_join_thread(void *th) {}
533
InitializePlatformCommonFlags(CommonFlags * cf)534 void InitializePlatformCommonFlags(CommonFlags *cf) {}
535
536 } // namespace __sanitizer
537
538 using namespace __sanitizer;
539
540 extern "C" {
__sanitizer_startup_hook(int argc,char ** argv,char ** envp,void * stack_base,size_t stack_size)541 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
542 void *stack_base, size_t stack_size) {
543 __sanitizer::StoredArgv = argv;
544 __sanitizer::StoredEnviron = envp;
545 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
546 __sanitizer::MainThreadStackSize = stack_size;
547 }
548
__sanitizer_set_report_path(const char * path)549 void __sanitizer_set_report_path(const char *path) {
550 // Handle the initialization code in each sanitizer, but no other calls.
551 // This setting is never consulted on Fuchsia.
552 DCHECK_EQ(path, common_flags()->log_path);
553 }
554
__sanitizer_set_report_fd(void * fd)555 void __sanitizer_set_report_fd(void *fd) {
556 UNREACHABLE("not available on Fuchsia");
557 }
558
__sanitizer_get_report_path()559 const char *__sanitizer_get_report_path() {
560 UNREACHABLE("not available on Fuchsia");
561 }
562 } // extern "C"
563
564 #endif // SANITIZER_FUCHSIA
565