1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and other sanitizer 10 // run-time libraries and implements Fuchsia-specific functions from 11 // sanitizer_common.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_fuchsia.h" 15 #if SANITIZER_FUCHSIA 16 17 # include <pthread.h> 18 # include <stdlib.h> 19 # include <unistd.h> 20 # include <zircon/errors.h> 21 # include <zircon/process.h> 22 # include <zircon/syscalls.h> 23 # include <zircon/utc.h> 24 25 # include "sanitizer_common.h" 26 # include "sanitizer_interface_internal.h" 27 # include "sanitizer_libc.h" 28 # include "sanitizer_mutex.h" 29 30 namespace __sanitizer { 31 32 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); } 33 34 uptr internal_sched_yield() { 35 zx_status_t status = _zx_thread_legacy_yield(0u); 36 CHECK_EQ(status, ZX_OK); 37 return 0; // Why doesn't this return void? 38 } 39 40 void internal_usleep(u64 useconds) { 41 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds))); 42 CHECK_EQ(status, ZX_OK); 43 } 44 45 u64 NanoTime() { 46 zx_handle_t utc_clock = _zx_utc_reference_get(); 47 CHECK_NE(utc_clock, ZX_HANDLE_INVALID); 48 zx_time_t time; 49 zx_status_t status = _zx_clock_read(utc_clock, &time); 50 CHECK_EQ(status, ZX_OK); 51 return time; 52 } 53 54 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); } 55 56 uptr internal_getpid() { 57 zx_info_handle_basic_t info; 58 zx_status_t status = 59 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info, 60 sizeof(info), NULL, NULL); 61 CHECK_EQ(status, ZX_OK); 62 uptr pid = static_cast<uptr>(info.koid); 63 CHECK_EQ(pid, info.koid); 64 return pid; 65 } 66 67 int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); } 68 69 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); } 70 71 tid_t GetTid() { return GetThreadSelf(); } 72 73 void Abort() { abort(); } 74 75 int Atexit(void (*function)(void)) { return atexit(function); } 76 77 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) { 78 pthread_attr_t attr; 79 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); 80 void *base; 81 size_t size; 82 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0); 83 CHECK_EQ(pthread_attr_destroy(&attr), 0); 84 85 *stack_bottom = reinterpret_cast<uptr>(base); 86 *stack_top = *stack_bottom + size; 87 } 88 89 void InitializePlatformEarly() {} 90 void CheckASLR() {} 91 void CheckMPROTECT() {} 92 void PlatformPrepareForSandboxing(void *args) {} 93 void DisableCoreDumperIfNecessary() {} 94 void InstallDeadlySignalHandlers(SignalHandlerType handler) {} 95 void SetAlternateSignalStack() {} 96 void UnsetAlternateSignalStack() {} 97 void InitTlsSize() {} 98 99 bool SignalContext::IsStackOverflow() const { return false; } 100 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); } 101 const char *SignalContext::Describe() const { UNIMPLEMENTED(); } 102 103 void FutexWait(atomic_uint32_t *p, u32 cmp) { 104 zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp, 105 ZX_HANDLE_INVALID, ZX_TIME_INFINITE); 106 if (status != ZX_ERR_BAD_STATE) // Normal race. 107 CHECK_EQ(status, ZX_OK); 108 } 109 110 void FutexWake(atomic_uint32_t *p, u32 count) { 111 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count); 112 CHECK_EQ(status, ZX_OK); 113 } 114 115 uptr GetPageSize() { return _zx_system_get_page_size(); } 116 117 uptr GetMmapGranularity() { return _zx_system_get_page_size(); } 118 119 sanitizer_shadow_bounds_t ShadowBounds; 120 121 void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); } 122 123 uptr GetMaxUserVirtualAddress() { 124 InitShadowBounds(); 125 return ShadowBounds.memory_limit - 1; 126 } 127 128 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } 129 130 bool ErrorIsOOM(error_t err) { return err == ZX_ERR_NO_MEMORY; } 131 132 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type, 133 bool raw_report, bool die_for_nomem) { 134 size = RoundUpTo(size, GetPageSize()); 135 136 zx_handle_t vmo; 137 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 138 if (status != ZX_OK) { 139 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 140 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, 141 raw_report); 142 return nullptr; 143 } 144 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, 145 internal_strlen(mem_type)); 146 147 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? 148 uintptr_t addr; 149 status = 150 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, 151 vmo, 0, size, &addr); 152 _zx_handle_close(vmo); 153 154 if (status != ZX_OK) { 155 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 156 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, 157 raw_report); 158 return nullptr; 159 } 160 161 IncreaseTotalMmap(size); 162 163 return reinterpret_cast<void *>(addr); 164 } 165 166 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { 167 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true); 168 } 169 170 void *MmapNoReserveOrDie(uptr size, const char *mem_type) { 171 return MmapOrDie(size, mem_type); 172 } 173 174 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { 175 return DoAnonymousMmapOrDie(size, mem_type, false, false); 176 } 177 178 uptr ReservedAddressRange::Init(uptr init_size, const char *name, 179 uptr fixed_addr) { 180 init_size = RoundUpTo(init_size, GetPageSize()); 181 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID); 182 uintptr_t base; 183 zx_handle_t vmar; 184 zx_status_t status = _zx_vmar_allocate( 185 _zx_vmar_root_self(), 186 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0, 187 init_size, &vmar, &base); 188 if (status != ZX_OK) 189 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status); 190 base_ = reinterpret_cast<void *>(base); 191 size_ = init_size; 192 name_ = name; 193 os_handle_ = vmar; 194 195 return reinterpret_cast<uptr>(base_); 196 } 197 198 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size, 199 void *base, const char *name, bool die_for_nomem) { 200 uptr offset = fixed_addr - reinterpret_cast<uptr>(base); 201 map_size = RoundUpTo(map_size, GetPageSize()); 202 zx_handle_t vmo; 203 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo); 204 if (status != ZX_OK) { 205 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) 206 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status); 207 return 0; 208 } 209 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name)); 210 DCHECK_GE(base + size_, map_size + offset); 211 uintptr_t addr; 212 213 status = 214 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC, 215 offset, vmo, 0, map_size, &addr); 216 _zx_handle_close(vmo); 217 if (status != ZX_OK) { 218 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) { 219 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status); 220 } 221 return 0; 222 } 223 IncreaseTotalMmap(map_size); 224 return addr; 225 } 226 227 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size, 228 const char *name) { 229 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, 230 false); 231 } 232 233 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size, 234 const char *name) { 235 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, true); 236 } 237 238 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) { 239 if (!addr || !size) 240 return; 241 size = RoundUpTo(size, GetPageSize()); 242 243 zx_status_t status = 244 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size); 245 if (status != ZX_OK) { 246 Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", 247 SanitizerToolName, size, size, addr); 248 CHECK("unable to unmap" && 0); 249 } 250 251 DecreaseTotalMmap(size); 252 } 253 254 void ReservedAddressRange::Unmap(uptr addr, uptr size) { 255 CHECK_LE(size, size_); 256 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_); 257 if (addr == reinterpret_cast<uptr>(base_)) { 258 if (size == size_) { 259 // Destroying the vmar effectively unmaps the whole mapping. 260 _zx_vmar_destroy(vmar); 261 _zx_handle_close(vmar); 262 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID); 263 DecreaseTotalMmap(size); 264 return; 265 } 266 } else { 267 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_); 268 } 269 // Partial unmapping does not affect the fact that the initial range is still 270 // reserved, and the resulting unmapped memory can't be reused. 271 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar); 272 } 273 274 // This should never be called. 275 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { 276 UNIMPLEMENTED(); 277 } 278 279 bool MprotectNoAccess(uptr addr, uptr size) { 280 return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK; 281 } 282 283 bool MprotectReadOnly(uptr addr, uptr size) { 284 return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) == 285 ZX_OK; 286 } 287 288 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 289 const char *mem_type) { 290 CHECK_GE(size, GetPageSize()); 291 CHECK(IsPowerOfTwo(size)); 292 CHECK(IsPowerOfTwo(alignment)); 293 294 zx_handle_t vmo; 295 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 296 if (status != ZX_OK) { 297 if (status != ZX_ERR_NO_MEMORY) 298 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false); 299 return nullptr; 300 } 301 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, 302 internal_strlen(mem_type)); 303 304 // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that? 305 306 // Map a larger size to get a chunk of address space big enough that 307 // it surely contains an aligned region of the requested size. Then 308 // overwrite the aligned middle portion with a mapping from the 309 // beginning of the VMO, and unmap the excess before and after. 310 size_t map_size = size + alignment; 311 uintptr_t addr; 312 status = 313 _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, 314 vmo, 0, map_size, &addr); 315 if (status == ZX_OK) { 316 uintptr_t map_addr = addr; 317 uintptr_t map_end = map_addr + map_size; 318 addr = RoundUpTo(map_addr, alignment); 319 uintptr_t end = addr + size; 320 if (addr != map_addr) { 321 zx_info_vmar_t info; 322 status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info, 323 sizeof(info), NULL, NULL); 324 if (status == ZX_OK) { 325 uintptr_t new_addr; 326 status = _zx_vmar_map( 327 _zx_vmar_root_self(), 328 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE, 329 addr - info.base, vmo, 0, size, &new_addr); 330 if (status == ZX_OK) 331 CHECK_EQ(new_addr, addr); 332 } 333 } 334 if (status == ZX_OK && addr != map_addr) 335 status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr); 336 if (status == ZX_OK && end != map_end) 337 status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end); 338 } 339 _zx_handle_close(vmo); 340 341 if (status != ZX_OK) { 342 if (status != ZX_ERR_NO_MEMORY) 343 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false); 344 return nullptr; 345 } 346 347 IncreaseTotalMmap(size); 348 349 return reinterpret_cast<void *>(addr); 350 } 351 352 void UnmapOrDie(void *addr, uptr size) { 353 UnmapOrDieVmar(addr, size, _zx_vmar_root_self()); 354 } 355 356 void ReleaseMemoryPagesToOS(uptr beg, uptr end) { 357 uptr beg_aligned = RoundUpTo(beg, GetPageSize()); 358 uptr end_aligned = RoundDownTo(end, GetPageSize()); 359 if (beg_aligned < end_aligned) { 360 zx_handle_t root_vmar = _zx_vmar_root_self(); 361 CHECK_NE(root_vmar, ZX_HANDLE_INVALID); 362 zx_status_t status = 363 _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned, 364 end_aligned - beg_aligned, nullptr, 0); 365 CHECK_EQ(status, ZX_OK); 366 } 367 } 368 369 void DumpProcessMap() { 370 // TODO(mcgrathr): write it 371 return; 372 } 373 374 bool IsAccessibleMemoryRange(uptr beg, uptr size) { 375 // TODO(mcgrathr): Figure out a better way. 376 zx_handle_t vmo; 377 zx_status_t status = _zx_vmo_create(size, 0, &vmo); 378 if (status == ZX_OK) { 379 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size); 380 _zx_handle_close(vmo); 381 } 382 return status == ZX_OK; 383 } 384 385 // FIXME implement on this platform. 386 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {} 387 388 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, 389 uptr *read_len, uptr max_len, error_t *errno_p) { 390 *errno_p = ZX_ERR_NOT_SUPPORTED; 391 return false; 392 } 393 394 void RawWrite(const char *buffer) { 395 constexpr size_t size = 128; 396 static _Thread_local char line[size]; 397 static _Thread_local size_t lastLineEnd = 0; 398 static _Thread_local size_t cur = 0; 399 400 while (*buffer) { 401 if (cur >= size) { 402 if (lastLineEnd == 0) 403 lastLineEnd = size; 404 __sanitizer_log_write(line, lastLineEnd); 405 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); 406 cur = cur - lastLineEnd; 407 lastLineEnd = 0; 408 } 409 if (*buffer == '\n') 410 lastLineEnd = cur + 1; 411 line[cur++] = *buffer++; 412 } 413 // Flush all complete lines before returning. 414 if (lastLineEnd != 0) { 415 __sanitizer_log_write(line, lastLineEnd); 416 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); 417 cur = cur - lastLineEnd; 418 lastLineEnd = 0; 419 } 420 } 421 422 void CatastrophicErrorWrite(const char *buffer, uptr length) { 423 __sanitizer_log_write(buffer, length); 424 } 425 426 char **StoredArgv; 427 char **StoredEnviron; 428 429 char **GetArgv() { return StoredArgv; } 430 char **GetEnviron() { return StoredEnviron; } 431 432 const char *GetEnv(const char *name) { 433 if (StoredEnviron) { 434 uptr NameLen = internal_strlen(name); 435 for (char **Env = StoredEnviron; *Env != 0; Env++) { 436 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') 437 return (*Env) + NameLen + 1; 438 } 439 } 440 return nullptr; 441 } 442 443 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { 444 const char *argv0 = "<UNKNOWN>"; 445 if (StoredArgv && StoredArgv[0]) { 446 argv0 = StoredArgv[0]; 447 } 448 internal_strncpy(buf, argv0, buf_len); 449 return internal_strlen(buf); 450 } 451 452 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { 453 return ReadBinaryName(buf, buf_len); 454 } 455 456 uptr MainThreadStackBase, MainThreadStackSize; 457 458 bool GetRandom(void *buffer, uptr length, bool blocking) { 459 CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN); 460 _zx_cprng_draw(buffer, length); 461 return true; 462 } 463 464 u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); } 465 466 uptr GetRSS() { UNIMPLEMENTED(); } 467 468 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; } 469 void internal_join_thread(void *th) {} 470 471 void InitializePlatformCommonFlags(CommonFlags *cf) {} 472 473 } // namespace __sanitizer 474 475 using namespace __sanitizer; 476 477 extern "C" { 478 void __sanitizer_startup_hook(int argc, char **argv, char **envp, 479 void *stack_base, size_t stack_size) { 480 __sanitizer::StoredArgv = argv; 481 __sanitizer::StoredEnviron = envp; 482 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base); 483 __sanitizer::MainThreadStackSize = stack_size; 484 } 485 486 void __sanitizer_set_report_path(const char *path) { 487 // Handle the initialization code in each sanitizer, but no other calls. 488 // This setting is never consulted on Fuchsia. 489 DCHECK_EQ(path, common_flags()->log_path); 490 } 491 492 void __sanitizer_set_report_fd(void *fd) { 493 UNREACHABLE("not available on Fuchsia"); 494 } 495 496 const char *__sanitizer_get_report_path() { 497 UNREACHABLE("not available on Fuchsia"); 498 } 499 } // extern "C" 500 501 #endif // SANITIZER_FUCHSIA 502