xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and other sanitizer
10 // run-time libraries and implements Fuchsia-specific functions from
11 // sanitizer_common.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_fuchsia.h"
15 #if SANITIZER_FUCHSIA
16 
17 #include <pthread.h>
18 #include <stdlib.h>
19 #include <unistd.h>
20 #include <zircon/errors.h>
21 #include <zircon/process.h>
22 #include <zircon/syscalls.h>
23 #include <zircon/utc.h>
24 
25 #include "sanitizer_common.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 
29 namespace __sanitizer {
30 
31 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
32 
33 uptr internal_sched_yield() {
34   zx_status_t status = _zx_nanosleep(0);
35   CHECK_EQ(status, ZX_OK);
36   return 0;  // Why doesn't this return void?
37 }
38 
39 void internal_usleep(u64 useconds) {
40   zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds)));
41   CHECK_EQ(status, ZX_OK);
42 }
43 
44 u64 NanoTime() {
45   zx_handle_t utc_clock = _zx_utc_reference_get();
46   CHECK_NE(utc_clock, ZX_HANDLE_INVALID);
47   zx_time_t time;
48   zx_status_t status = _zx_clock_read(utc_clock, &time);
49   CHECK_EQ(status, ZX_OK);
50   return time;
51 }
52 
53 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
54 
55 uptr internal_getpid() {
56   zx_info_handle_basic_t info;
57   zx_status_t status =
58       _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
59                           sizeof(info), NULL, NULL);
60   CHECK_EQ(status, ZX_OK);
61   uptr pid = static_cast<uptr>(info.koid);
62   CHECK_EQ(pid, info.koid);
63   return pid;
64 }
65 
66 int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); }
67 
68 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
69 
70 tid_t GetTid() { return GetThreadSelf(); }
71 
72 void Abort() { abort(); }
73 
74 int Atexit(void (*function)(void)) { return atexit(function); }
75 
76 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
77   pthread_attr_t attr;
78   CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
79   void *base;
80   size_t size;
81   CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
82   CHECK_EQ(pthread_attr_destroy(&attr), 0);
83 
84   *stack_bottom = reinterpret_cast<uptr>(base);
85   *stack_top = *stack_bottom + size;
86 }
87 
88 void InitializePlatformEarly() {}
89 void MaybeReexec() {}
90 void CheckASLR() {}
91 void CheckMPROTECT() {}
92 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
93 void DisableCoreDumperIfNecessary() {}
94 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
95 void SetAlternateSignalStack() {}
96 void UnsetAlternateSignalStack() {}
97 void InitTlsSize() {}
98 
99 bool SignalContext::IsStackOverflow() const { return false; }
100 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
101 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
102 
103 void FutexWait(atomic_uint32_t *p, u32 cmp) {
104   zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp,
105                                       ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
106   if (status != ZX_ERR_BAD_STATE)  // Normal race.
107     CHECK_EQ(status, ZX_OK);
108 }
109 
110 void FutexWake(atomic_uint32_t *p, u32 count) {
111   zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count);
112   CHECK_EQ(status, ZX_OK);
113 }
114 
115 uptr GetPageSize() { return _zx_system_get_page_size(); }
116 
117 uptr GetMmapGranularity() { return _zx_system_get_page_size(); }
118 
119 sanitizer_shadow_bounds_t ShadowBounds;
120 
121 void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); }
122 
123 uptr GetMaxUserVirtualAddress() {
124   InitShadowBounds();
125   return ShadowBounds.memory_limit - 1;
126 }
127 
128 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
129 
130 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
131                                   bool raw_report, bool die_for_nomem) {
132   size = RoundUpTo(size, GetPageSize());
133 
134   zx_handle_t vmo;
135   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
136   if (status != ZX_OK) {
137     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
138       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
139                               raw_report);
140     return nullptr;
141   }
142   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
143                           internal_strlen(mem_type));
144 
145   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
146   uintptr_t addr;
147   status =
148       _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
149                    vmo, 0, size, &addr);
150   _zx_handle_close(vmo);
151 
152   if (status != ZX_OK) {
153     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
154       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
155                               raw_report);
156     return nullptr;
157   }
158 
159   IncreaseTotalMmap(size);
160 
161   return reinterpret_cast<void *>(addr);
162 }
163 
164 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
165   return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
166 }
167 
168 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
169   return MmapOrDie(size, mem_type);
170 }
171 
172 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
173   return DoAnonymousMmapOrDie(size, mem_type, false, false);
174 }
175 
176 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
177                                 uptr fixed_addr) {
178   init_size = RoundUpTo(init_size, GetPageSize());
179   DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
180   uintptr_t base;
181   zx_handle_t vmar;
182   zx_status_t status = _zx_vmar_allocate(
183       _zx_vmar_root_self(),
184       ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
185       init_size, &vmar, &base);
186   if (status != ZX_OK)
187     ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
188   base_ = reinterpret_cast<void *>(base);
189   size_ = init_size;
190   name_ = name;
191   os_handle_ = vmar;
192 
193   return reinterpret_cast<uptr>(base_);
194 }
195 
196 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
197                              void *base, const char *name, bool die_for_nomem) {
198   uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
199   map_size = RoundUpTo(map_size, GetPageSize());
200   zx_handle_t vmo;
201   zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
202   if (status != ZX_OK) {
203     if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
204       ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
205     return 0;
206   }
207   _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
208   DCHECK_GE(base + size_, map_size + offset);
209   uintptr_t addr;
210 
211   status =
212       _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
213                    offset, vmo, 0, map_size, &addr);
214   _zx_handle_close(vmo);
215   if (status != ZX_OK) {
216     if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
217       ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
218     }
219     return 0;
220   }
221   IncreaseTotalMmap(map_size);
222   return addr;
223 }
224 
225 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
226                                const char *name) {
227   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_,
228                           false);
229 }
230 
231 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
232                                     const char *name) {
233   return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, name_, true);
234 }
235 
236 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar) {
237   if (!addr || !size)
238     return;
239   size = RoundUpTo(size, GetPageSize());
240 
241   zx_status_t status =
242       _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
243   if (status != ZX_OK) {
244     Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
245            SanitizerToolName, size, size, addr);
246     CHECK("unable to unmap" && 0);
247   }
248 
249   DecreaseTotalMmap(size);
250 }
251 
252 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
253   CHECK_LE(size, size_);
254   const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
255   if (addr == reinterpret_cast<uptr>(base_)) {
256     if (size == size_) {
257       // Destroying the vmar effectively unmaps the whole mapping.
258       _zx_vmar_destroy(vmar);
259       _zx_handle_close(vmar);
260       os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
261       DecreaseTotalMmap(size);
262       return;
263     }
264   } else {
265     CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
266   }
267   // Partial unmapping does not affect the fact that the initial range is still
268   // reserved, and the resulting unmapped memory can't be reused.
269   UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar);
270 }
271 
272 // This should never be called.
273 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
274   UNIMPLEMENTED();
275 }
276 
277 bool MprotectNoAccess(uptr addr, uptr size) {
278   return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK;
279 }
280 
281 bool MprotectReadOnly(uptr addr, uptr size) {
282   return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) ==
283          ZX_OK;
284 }
285 
286 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
287                                    const char *mem_type) {
288   CHECK_GE(size, GetPageSize());
289   CHECK(IsPowerOfTwo(size));
290   CHECK(IsPowerOfTwo(alignment));
291 
292   zx_handle_t vmo;
293   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
294   if (status != ZX_OK) {
295     if (status != ZX_ERR_NO_MEMORY)
296       ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
297     return nullptr;
298   }
299   _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
300                           internal_strlen(mem_type));
301 
302   // TODO(mcgrathr): Maybe allocate a VMAR for all sanitizer heap and use that?
303 
304   // Map a larger size to get a chunk of address space big enough that
305   // it surely contains an aligned region of the requested size.  Then
306   // overwrite the aligned middle portion with a mapping from the
307   // beginning of the VMO, and unmap the excess before and after.
308   size_t map_size = size + alignment;
309   uintptr_t addr;
310   status =
311       _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
312                    vmo, 0, map_size, &addr);
313   if (status == ZX_OK) {
314     uintptr_t map_addr = addr;
315     uintptr_t map_end = map_addr + map_size;
316     addr = RoundUpTo(map_addr, alignment);
317     uintptr_t end = addr + size;
318     if (addr != map_addr) {
319       zx_info_vmar_t info;
320       status = _zx_object_get_info(_zx_vmar_root_self(), ZX_INFO_VMAR, &info,
321                                    sizeof(info), NULL, NULL);
322       if (status == ZX_OK) {
323         uintptr_t new_addr;
324         status = _zx_vmar_map(
325             _zx_vmar_root_self(),
326             ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
327             addr - info.base, vmo, 0, size, &new_addr);
328         if (status == ZX_OK)
329           CHECK_EQ(new_addr, addr);
330       }
331     }
332     if (status == ZX_OK && addr != map_addr)
333       status = _zx_vmar_unmap(_zx_vmar_root_self(), map_addr, addr - map_addr);
334     if (status == ZX_OK && end != map_end)
335       status = _zx_vmar_unmap(_zx_vmar_root_self(), end, map_end - end);
336   }
337   _zx_handle_close(vmo);
338 
339   if (status != ZX_OK) {
340     if (status != ZX_ERR_NO_MEMORY)
341       ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
342     return nullptr;
343   }
344 
345   IncreaseTotalMmap(size);
346 
347   return reinterpret_cast<void *>(addr);
348 }
349 
350 void UnmapOrDie(void *addr, uptr size) {
351   UnmapOrDieVmar(addr, size, _zx_vmar_root_self());
352 }
353 
354 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
355   uptr beg_aligned = RoundUpTo(beg, GetPageSize());
356   uptr end_aligned = RoundDownTo(end, GetPageSize());
357   if (beg_aligned < end_aligned) {
358     zx_handle_t root_vmar = _zx_vmar_root_self();
359     CHECK_NE(root_vmar, ZX_HANDLE_INVALID);
360     zx_status_t status =
361         _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned,
362                           end_aligned - beg_aligned, nullptr, 0);
363     CHECK_EQ(status, ZX_OK);
364   }
365 }
366 
367 void DumpProcessMap() {
368   // TODO(mcgrathr): write it
369   return;
370 }
371 
372 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
373   // TODO(mcgrathr): Figure out a better way.
374   zx_handle_t vmo;
375   zx_status_t status = _zx_vmo_create(size, 0, &vmo);
376   if (status == ZX_OK) {
377     status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
378     _zx_handle_close(vmo);
379   }
380   return status == ZX_OK;
381 }
382 
383 // FIXME implement on this platform.
384 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
385 
386 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
387                       uptr *read_len, uptr max_len, error_t *errno_p) {
388   zx_handle_t vmo;
389   zx_status_t status = __sanitizer_get_configuration(file_name, &vmo);
390   if (status == ZX_OK) {
391     uint64_t vmo_size;
392     status = _zx_vmo_get_size(vmo, &vmo_size);
393     if (status == ZX_OK) {
394       if (vmo_size < max_len)
395         max_len = vmo_size;
396       size_t map_size = RoundUpTo(max_len, GetPageSize());
397       uintptr_t addr;
398       status = _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ, 0, vmo, 0,
399                             map_size, &addr);
400       if (status == ZX_OK) {
401         *buff = reinterpret_cast<char *>(addr);
402         *buff_size = map_size;
403         *read_len = max_len;
404       }
405     }
406     _zx_handle_close(vmo);
407   }
408   if (status != ZX_OK && errno_p)
409     *errno_p = status;
410   return status == ZX_OK;
411 }
412 
413 void RawWrite(const char *buffer) {
414   constexpr size_t size = 128;
415   static _Thread_local char line[size];
416   static _Thread_local size_t lastLineEnd = 0;
417   static _Thread_local size_t cur = 0;
418 
419   while (*buffer) {
420     if (cur >= size) {
421       if (lastLineEnd == 0)
422         lastLineEnd = size;
423       __sanitizer_log_write(line, lastLineEnd);
424       internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
425       cur = cur - lastLineEnd;
426       lastLineEnd = 0;
427     }
428     if (*buffer == '\n')
429       lastLineEnd = cur + 1;
430     line[cur++] = *buffer++;
431   }
432   // Flush all complete lines before returning.
433   if (lastLineEnd != 0) {
434     __sanitizer_log_write(line, lastLineEnd);
435     internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
436     cur = cur - lastLineEnd;
437     lastLineEnd = 0;
438   }
439 }
440 
441 void CatastrophicErrorWrite(const char *buffer, uptr length) {
442   __sanitizer_log_write(buffer, length);
443 }
444 
445 char **StoredArgv;
446 char **StoredEnviron;
447 
448 char **GetArgv() { return StoredArgv; }
449 char **GetEnviron() { return StoredEnviron; }
450 
451 const char *GetEnv(const char *name) {
452   if (StoredEnviron) {
453     uptr NameLen = internal_strlen(name);
454     for (char **Env = StoredEnviron; *Env != 0; Env++) {
455       if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
456         return (*Env) + NameLen + 1;
457     }
458   }
459   return nullptr;
460 }
461 
462 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
463   const char *argv0 = "<UNKNOWN>";
464   if (StoredArgv && StoredArgv[0]) {
465     argv0 = StoredArgv[0];
466   }
467   internal_strncpy(buf, argv0, buf_len);
468   return internal_strlen(buf);
469 }
470 
471 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
472   return ReadBinaryName(buf, buf_len);
473 }
474 
475 uptr MainThreadStackBase, MainThreadStackSize;
476 
477 bool GetRandom(void *buffer, uptr length, bool blocking) {
478   CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN);
479   _zx_cprng_draw(buffer, length);
480   return true;
481 }
482 
483 u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); }
484 
485 uptr GetRSS() { UNIMPLEMENTED(); }
486 
487 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
488 void internal_join_thread(void *th) {}
489 
490 void InitializePlatformCommonFlags(CommonFlags *cf) {}
491 
492 }  // namespace __sanitizer
493 
494 using namespace __sanitizer;
495 
496 extern "C" {
497 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
498                               void *stack_base, size_t stack_size) {
499   __sanitizer::StoredArgv = argv;
500   __sanitizer::StoredEnviron = envp;
501   __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
502   __sanitizer::MainThreadStackSize = stack_size;
503 }
504 
505 void __sanitizer_set_report_path(const char *path) {
506   // Handle the initialization code in each sanitizer, but no other calls.
507   // This setting is never consulted on Fuchsia.
508   DCHECK_EQ(path, common_flags()->log_path);
509 }
510 
511 void __sanitizer_set_report_fd(void *fd) {
512   UNREACHABLE("not available on Fuchsia");
513 }
514 
515 const char *__sanitizer_get_report_path() {
516   UNREACHABLE("not available on Fuchsia");
517 }
518 }  // extern "C"
519 
520 #endif  // SANITIZER_FUCHSIA
521